US20110281795A1 - Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use - Google Patents

Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use Download PDF

Info

Publication number
US20110281795A1
US20110281795A1 US13/146,220 US201013146220A US2011281795A1 US 20110281795 A1 US20110281795 A1 US 20110281795A1 US 201013146220 A US201013146220 A US 201013146220A US 2011281795 A1 US2011281795 A1 US 2011281795A1
Authority
US
United States
Prior art keywords
alkyl
compound
alkoxy
pharmaceutically acceptable
haloc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/146,220
Inventor
Songnian Lin
Fengqi Zhang
Emma R. Parmee
Sunita V. Dewnani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/146,220 priority Critical patent/US20110281795A1/en
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEWNANI, SUNITA V., LIN, SONGNIAN, PARMEE, EMMA R., ZHANG, FENGQI
Publication of US20110281795A1 publication Critical patent/US20110281795A1/en
Assigned to SCHERING CORPORATION reassignment SCHERING CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: MERCK SHARP & DOHME CORP.
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCHERING CORPORATION
Priority to US14/452,143 priority patent/US9359339B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D333/60Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to glucagon receptor antagonist compounds, compositions containing such compounds and various methods of treatment relating to type 2 diabetes mellitus and related conditions.
  • Diabetes refers to a disease process derived from multiple causative factors and is characterized by elevated levels of plasma glucose (hyperglycemia) in the fasting state or following glucose administration during an oral glucose tolerance test.
  • Frank diabetes mellitus e.g., a blood glucose level >126 mg/dL in a fasting state
  • Type 2 diabetes mellitus Patients with non-insulin dependent diabetes mellitus (type 2 diabetes mellitus), approximately 95% of patients with diabetes mellitus, frequently display elevated levels of serum lipids, such as cholesterol and triglycerides, and have poor blood-lipid profiles, with high levels of LDLcholesterol and low levels of HDL-cholesterol.
  • Those suffering from Type 2 diabetes mellitus are thus at an increased risk of developing macrovascular and microvascular complications, including coronary heart disease, stroke, peripheral vascular disease, hypertension (for example, blood pressure >130/80 mmHg in a resting state), nephropathy, neuropathy and retinopathy.
  • Type 2 diabetes at least early in the natural progression of the disease is characterized primarily by insulin resistance rather than by a decrease in insulin production, resulting in insufficient uptake, oxidation and storage of glucose in muscle, inadequate repression of lipolysis in adipose tissue, and excess glucose production and secretion by the liver.
  • the net effect of decreased sensitivity to insulin is high levels of insulin circulating in the blood without appropriate reduction in plasma glucose (hyperglycemia). Hyperinsulinemia is a risk factor for developing hypertension and may also contribute to vascular disease.
  • Glucagon serves as the major regulatory hormone attenuating the effect of insulin in its inhibition of liver gluconeogenesis and is normally secreted by alpha cells in pancreatic islets in response to falling blood glucose levels.
  • the hormone binds to specific receptors in liver cells that trigger glycogenolysis and an increase in gluconeogenesis through cAMP-mediated events. These responses generate glucose (e.g. hepatic glucose production) to help maintain euglyeemia by preventing blood glucose levels from falling significantly.
  • type 2 diabetics have elevated levels of plasma glucagon and increased rates of hepatic glucose production.
  • Antagonists of the glucagon receptor are useful in improving insulin responsiveness in the liver, decreasing the rate of gluconeogenesis and glycogenolysis, and lowering the rate of hepatic glucose output resulting in a decrease in the levels of plasma glucose.
  • the present invention relates to a compound represented by formula I:
  • each R 1 represents H or is selected from the group consisting of halo, CN, OH, NO 2 , CO 2 R a , NR a R b , S(O) p R a , C 1-10 alkyl, C 2-10 alkenyl or C 1-10 alkoxy, the alkyl and alkenyl portions of C 1-10 alkyl, C 2-10 alkenyl and C 1-10 alkoxy being optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C 1-6 alkox Y ;
  • p 0, 1 or 2;
  • each R a and R b independently represents H or C 1-4 alkyl optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C 1-6 alkoxy;
  • R 2 represents C 1-6 alkyl or C 2-6 alkenyl, each optionally substituted with 1-5 halo atoms up to perhalo, and further optionally substituted with 1 group selected from OH, oxo and C 1-6 alkoxy;
  • each R 4 independently represents H or is selected from the group consisting of halo, OH, C 1-4 alkyl, OC 1-4 alkyl, haloC 1-4 alkyl and haloOC 1-4 alkyl;
  • n 0, 1 or 2; such that when m represents 0 or 1, Z represents tetrazolyl; and when m represents 2, Z represents a member selected from the group consisting of CO 2 H, SO 3 H and C(O)NH 2 .
  • Alkyl as well as other groups having the prefix “alk”, such as alkoxy, alkanoyl and the like, means carbon chains which may be linear, branched, or cyclic, or combinations thereof, containing the indicated number of carbon atoms. If no number is specified, 1-10 carbon atoms are intended for linear or branched alkyl groups. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec- and tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl and the like.
  • Cycloalkyl is a subset of alkyl; if no number of atoms is specified, 3-10 carbon atoms are intended, forming 1-3 carbocyclic rings that are fused.
  • Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, decahydronaphthyl and the like.
  • Alkenyl means carbon chains which contain at least one carbon-carbon double bond, and which may be linear or branched or combinations thereof. Examples of alkenyl include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, and the like. Cycloalkenyl is a subset of alkenyl. If no number is specified, 4-8 carbon atoms are included. Examples include cyclopentenyl, cyclohexenyl and the like.
  • Aryl (Ar) means mono- and bicyclic aromatic rings containing 6-12 carbon atoms. Examples of aryl include phenyl, naphthyl, indenyl and the like. “Aryl” also includes monocyclic rings fused to an aryl group. Examples include tetrahydronaphthyl, indanyl and the like.
  • Heteroaryl means a mono- or bicyclic aromatic ring or ring system containing at least one heteroatom selected from 0, S and N, with each ring containing 5 to 6 atoms. Examples include pyrrolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyridyl, oxazolyl, oxadiazolyl, thiadiazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, furanyl, triazinyl, thienyl, pyrimidyl, pyridazinyl, pyrazinyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, benzofuranyl, benzothiophenyl, furo(2,3-b)pyridyl, quinolyl, indolyl, isoquinolyl and the like.
  • Heteroaryl also includes aromatic heterocyclic groups fused to heterocycles that are non-aromatic or partially aromatic, and aromatic heterocyclic groups fused to cycloalkyl rings. Heteroaryl also includes such groups in charged form, e.g., pyridinium.
  • Halogen includes fluorine, chlorine, bromine and iodine.
  • Haloalkyl and haloalkoxy refer to halogenated alkyl and alkoxy groups having the indicated number of carbon atoms, substituted with one to five halo atoms, up to perhalo, and preferably one to three halo atoms selected from fluoro and chloro.
  • haloC 1-6 alkyl refers to a C 1-6 alkyl group substituted with halo atoms, up to perhalo.
  • structures I, I-1 and I-2 depict the R 3 groups on the benzene ring of the benzothiophene moiety, the R 3 groups can be attached at any available point on the thiophene portion as well.
  • One aspect of the invention relates to a compound represented by formula I:
  • each R 1 represents H or is selected from the group consisting of halo, CN, OH, NO 2 , CO 2 R a , NR a R b , S(O) p R a , C 1-10 alkyl, C 2-10 alkenyl or C 1-10 alkoxy, the alkyl and alkenyl portions of C 1-10 alkyl, C 2-10 alkenyl and C 1-10 alkoxy being optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C 1-6 aikoxY;
  • p 0, 1 or 2;
  • each R a and R b independently represents H or C 1-4 alkyl optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C 1-6 alkoxy ;
  • R 2 represents C 1-6 alkyl or C 2-6 alkenyl, each optionally substituted with 1-5 halo atoms up to perhalo, and further optionally substituted with 1 group selected from OH, oxo and C 1-6 alkoxy ;
  • each R 3 represents H or is selected from the group consisting of halo; CN; OH; NO 2 ; CO 2 R a ; NR a R b ; S(O) p R a ; a 5-membered heteroaryl ring containing 1-3 nitrogen atoms, 0-1 oxygen or sulfur atom, and optionally substituted with 1-2 C 1-4 alkyl groups; C 1-10 alkyl; C 2-10 alkenyl and Cmoalkoxy, the alkyl and alkenyl portions of C 1-10 alkyl, C 2-10 alkenyl and C 1-10 alkoxy being optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo, NR a R b and C 1-6 alkoxy;
  • each R 4 independently represents H or is selected from the group consisting of halo, OH, C 1-4 alkyl, OC 1-4 alkyl, haloC 1-4 alkyl and haloOC 1-4 alkyl;
  • n 0, 1 or 2; such that when m represents 0 or 1, Z represents tetrazolyl; and when m represents 2, Z represents a member selected from the group consisting of CO 2 H, SO 3 H and C(O)NH 2 .
  • Another aspect of the invention that is of interest relates to a compound of formula I-2:
  • R 1 represents H or is selected from the group consisting of halo, CN, C 1-6 alkyl, C 1-6 alkoxy, haloC 1-6 alkyl and haloC 1-6 alkoxy.
  • each R 1 represents H or is selected from the group consisting of: halo selected from fluoro and chloro; CN; CH 3 ; OCH 3 ; CF 3 and OCF 3 .
  • R 2 represents a member selected from the group consisting of: C 1-6 alkyl and C 3-4 alkenyl, each optionally substituted with 1-3 halo atoms.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein R 2 represents C 2-5 alkyl optionally substituted with 1-3 halo atoms.
  • R 2 is selected from the group consisting of ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and 3-methylbutyl, each optionally substituted with 1-3 halo atoms selected from fluoro and chloro.
  • R 2 is selected from the group consisting of ethyl, n-propyl, n-butyl, CH 2 CH(CH 3 ) 2 , CH 2 CH 2 CH(CH 3 ) 2 and CH 2 CH 2 CF 3 .
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each
  • R 3 represents H or is selected from the group consisting of halo, CN, OH, SCH 3 , SO 2 CH 3 , C 1-6 alkyl, C 1-6 alkoxy, haloC 1-6 alkyl, haloC 1-6 alkoxy and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms and 0-1 oxygen atom, said ring being optionally substituted with 1-2 C 1-4 alkyl groups.
  • each R 3 represents H or is selected from the group consisting of halo which is selected from F, Cl and Br, CN, OH, SCH 3 , SO 2 CH 3 , C 1-2 alkyl, C 1-2 alkoxy, haloC 1-2 alkyl and haloC 1-2 alkoxy wherein the halo portion of haloC 1-2 alkyl and haloC 1-2 alkoxy is selected from F and Cl, and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms and 0-1 oxygen atom, said ring being optionally substituted with 1-2 C 1-4 alkyl groups.
  • each R 3 represents H, F, Cl, Br, CN, OH, CH 3 , OCH 3 , OCH 2 CH 3 , CHF 2 , CF 3 , SCH 3 , SO 2 CH 3 , OCHF 2 , OCF 3 and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms, 0-1 oxygen atom and being optionally substituted with 1 C 1-2 alkyl group.
  • each R 4 represents H, halo selected from F and Cl, OH, C 1-2 alkyl, C 1-2 alkoxy, haloC 1-2 alkyl and haloC 1-2 alkoxy wherein the halo portion of haloC 1-2 alkyl and haloC 1-2 alkoxy is selected from F and Cl.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each R 4 represents H, F, Cl, OH, CH 3 , OCH 3 , CF 3 , and OCF 3 .
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each R 4 represents H, F, CH 3 or OH.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein m represents 0 or 1 and Z represents tetrazolyl.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein m is 2 and Z represents CO 2 H.
  • Another aspect of the invention that is of interest relates to compound in accordance with formula 1 or a pharmaceutically acceptable salt or solvate thereof wherein:
  • each R 1 represents H or is selected from the group consisting of halo, CN, C 1-6 alkyl, C 1-6 alkoxy, haloC 1-6 alkyl and haloC 1-6 alkoxy;
  • R 2 represents a member selected from the group consisting of: C 1-6 alkyl and C 3-4 alkenyl, each optionally substituted with 1-3 halo atoms;
  • each R 3 represents H or is selected from the group consisting of halo, CN, OH, SCH 3 , SO 2 CH 3 , C 1-6 alkyl, C 1-6 alkoxy, haloC 1-6 alkyl, haloC 1-6 alkoxy and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms and 0-1 oxygen atom, said ring being optionally substituted with 1-2 C 1-4 alkyl groups;
  • each R 4 represents H, halo selected from F and Cl, OH, C 1-2 alkyl, C 1-2 alkoxy, haloC 1-2 alkyl and haloC 1-2 alkoxy wherein the halo portion of haloC 1-2 alkyl and haloC 1-2 alkoxy is selected from F and Cl;
  • n 0 or 1 and Z is tetrazolyl, or m is 2 and Z represents CO 2 H.
  • Another aspect of the invention that is of interest relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound as described above with respect to formula I or a pharmaceutically acceptable salt or solvate thereof in combination with a pharmaceutically acceptable carrier.
  • Another aspect of the invention that is of interest relates to a method of treating type 2 diabetes mellitus in a mammalian patient in need of such treatment comprising administering to said patient a compound as described above with respect to formula I or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat type 2 diabetes mellitus.
  • Another aspect of the invention that is of interest relates to a method of delaying the onset of type 2 diabetes mellitus in a mammalian patient in need thereof, comprising administering to the patient a compound as described above in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to delay the onset of type 2 diabetes mellitus.
  • Another aspect of the invention that is of interest relates to a method of treating hyperglycemia, diabetes or insulin resistance in a mammalian patient in need of such treatment which comprises administering to said patient a compound as described above in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat hyperglycemia, diabetes or insulin resistance.
  • Another aspect of the invention that is of interest relates to a method of treating non-insulin dependent diabetes mellitus in a mammalian patient in need of such treatment comprising administering to the patient an anti-diabetic effective amount of a compound in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof as described above.
  • Another aspect of the invention that is of interest relates to a method of treating obesity in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat obesity.
  • Another aspect of the invention that is of interest relates to a method of treating Syndrome X in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat Syndrome X.
  • Another aspect of the invention that is of interest relates to a method of treating a lipid disorder selected from the group consisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL in a mammalian patient in need of such treatment, comprising administering to said patient a compound as described above with respect to formula I or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat said lipid disorder.
  • Another aspect of the invention that is of interest relates to a method of treating atherosclerosis in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount effective to treat atherosclerosis.
  • Another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of: (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component, in a mammalian patient in need of such treatment, comprising administering to the patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat said condition.
  • a condition selected from the group consisting of: (1) hyperglycemia, (2)
  • Another aspect of the invention that is of interest relates to a method of delaying the onset of a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component in a mammalian patient in need of such treatment, comprising administering to the patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to delay the onset of said condition.
  • a condition selected from the group consisting of (1) hyper
  • Another aspect of the invention that is of interest relates to a method of reducing the risk of developing a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component in a mammalian patient in need of such treatment, comprising administering to the patient a compound of foimula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to reduce the risk of developing said condition.
  • Another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of:
  • hyperglycemia (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (1.3) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component, in a mammalian patient in need of such treatment,
  • growth hormone secretagogues growth hon none secretagogue receptor agonists/antagonists, such as NN703, hexarelin, MK-0677, SM-130686, CP-424,391, L-692,429, and L-163,255, and such as those disclosed in U.S. Pat. Nos. 5,536,716, and 6,358,951, U.S. Patent Application Nos. 2002/049196 and 2002/022637, and PCT Application Nos.
  • WO 01/56592 and WO 02/32888 (2) protein tyrosine phosphatase-1B (PTP-1B) inhibitors; (3) cannabinoid receptor ligands, such as cannabinoid CB 1 receptor antagonists or inverse agonists, such as rirnonaba.nt (Sanofi Synthelabo), AMT-251, and SR-14778 and SR 141716A (Sandi Synthelabo), SLY-319 (Solvay), BAY 65-2520 (Bayer), and those disclosed in U.S. Pat. Nos.
  • PTP-1B protein tyrosine phosphatase-1B
  • cannabinoid receptor ligands such as cannabinoid CB 1 receptor antagonists or inverse agonists, such as rirnonaba.nt (Sanofi Synthelabo), AMT-251, and SR-14778 and SR 141716A (Sandi Synthelabo), SLY-319 (So
  • pancreatic lipase inhibitors such as orlistat (Xenical®), cetilistat, Triton WR1339, RHC80267, lipstatin, tetrahydrolipstatin, teasaponin, diethylumbelliferyl phosphate, and those disclosed in PCT Application No.
  • WO 01/77094 (7) neuropeptide Y1 antagonists, such as B1BP3226, J-115814, BIBO 3304, LY-357897, CP-671906, GI-264879A, and those disclosed in U.S. Pat. No. 6,001,836, and PCT Patent Publication Nos.
  • neuropeptide Y5 antagonists such as GW-569180A, GW-594884A, GW-587081X, GW-548118X, FR226928, FR 240662, FR252384, 1229U91, GI-264879A, CGP71683A, LY-377897, PD-160170, SR-120562A, SR-120819A and JCF-104, and those disclosed in U.S. Pat. Nos.
  • WO 97/19682 WO 97/20820, WO 97/20821, WO 97/20822, WO 97/20823, WO 98/24768; WO 98/25907; WO 98/25908; WO 98/27063, WO 98/47505; WO 98/40356; WO 99/15516; WO 99127965; WO 00/64880, WO 00/68197, WO 00/69849, WO 01/09120, WO 01/14376; WO 01/85714, WO 01/85730, WO 01/07409, WO 01/02379, WO 01/02379, WO 01/23388, WO 01/23389, WO 01/44201, WO 01/62737, WO 01/62738, WO 01/09120, WO 02/22592, WO 0248152, and WO 02/49648; WO 02/094825; WO 03/0140
  • WO 01/96302 WO 01/68609, WO 02/51232, and WO 02/51838; (13) serotonin reuptake inhibitors such as fluoxetine, paroxetine, and sertraline, and those disclosed in U.S. Patent Application No. 6,365,633, and PCT Patent Application Nos.
  • melanocortin agonists such as Melanotan II, CFI1R86036 (Chiron), ME-10142, and ME-10145 (Melacure), CH1R86036 (Chiron); PT-141, and PT-14 (Palatin);
  • other MC4R (melanocortin 4 receptor) agonists such as those disclosed in: U.S. Pat. Nos. 6,410,548; 6,294,534; 6,350,760; 6,458,790; 6,472,398; 6,376,509; and 6,818,658; US Patent Publication No.
  • leptin including recombinant human leptin (PEG-OB, Hoffman La Roche) and recombinant methionyl human leptin (Amgen); (31) leptin derivatives, such as those disclosed in U.S. Pat. Nos. 5,552,524, 5,552,523, 5,552,522, 5,521,283, and PCT International Publication Nos.
  • CNTF Central neurotrophic factors
  • GI-181771 Gaxo-SmithKline
  • SR146131 Sanofi Synthelabo
  • butabindide PD170,292, and PD 149164 (Pfizer)
  • CNTF derivatives such as axokine (Regeneron), and those disclosed in PCT Application Nos. WO 94/09134, WO 98/22128, and WO 99/43813
  • monoamine reuptake inhibitors such as sibutrarnine, and those disclosed in U.S. Pat. Nos. 4,746,680, 4,806,570, and 5,436,272, U.S.
  • UCP-1 uncoupling protein-1
  • 2, or 3 activators such as phytanic acid, 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1-propenyl]benz
  • FAS fatty acid synthase inhibitors, such as Cerulenin and C75
  • DGAT1 diacylglycerol acyltransferase 1 inhibitors
  • DGAT2 diacylglycerol acyltransferase 2 inhibitors
  • ACC2 acetyl-CoA carboxylase-2
  • glucocorticoid antagonists 43) acyl-estrogens, such as oleoyl-estrone, disclosed in del Mar-Grasa, M.
  • dipeptidyl peptidase IV (DP-IV) inhibitors such as isoleucine thiazolidide, valine pyrrolidide, NVP-DPP728, LAF237, P93/01, TSL 225, TMC-2A/2B/2C, FE 999011, P9310/K364, VIP 0177, SDZ 274-444 and sitagliptin; and the compounds disclosed in US Patent No. U.S. Pat. No. 6,699,871, which is incorporated herein by reference; and International Patent Application Nos.
  • DP-IV dipeptidyl peptidase IV
  • Neuropeptide Y2 (NPY2) receptor agonists such NPY3-36, N acetyl [Leu(28,31)] NPY 24-36, TASP-V, and cyclo-(28/32)-Ac-[Lys28-Glu32]-(25-36)-pNPY;
  • Neuropeptide Y4 (NPY4) agonists such as pancreatic peptide (PP) as described in Batterham et al., J.
  • Y4 agonists such as 1229U91
  • cyclooxygenase-2 inhibitors such as etoricoxib, celecoxib, valdecoxib, parecoxib, lumiracoxib, BMS347070, tiracoxib or JTE522, ABT963, CS502 and GW406381, and pharmaceutically acceptable salts thereof
  • Neuropeptide Y1 (NPY1) antagonists such as B1BP3226, J-I 15814, BIBO 3304, LY-357897, CP-671906, GI-264879A and those disclosed in U.S. Pat. No.
  • WO 00/21509 (57) 11 ⁇ HSD-1 (11-beta hydroxy steroid dehydrogenase type 1) inhibitors such as BVT 3498, BVT 2733, and those disclosed in WO 01/90091, WO 01/90090, WO 01/90092, and U.S. Pat. No. 6,730,690 and US Publication No.
  • HSD-1 11-beta hydroxy steroid dehydrogenase type 1
  • Specific compounds of use in combination with a compound of the present invention include: simvastatin, mevastatin, ezetimibe, atorvastatin, sitagliptin, metformin, sibutramine, orlistat, Qnexa, topiramate, naltrexone, bupriopion, phentermine, and losartan, losartan with hydrochlorothiazide.
  • Specific CB1 antagonists/inverse agonists of use in combination with a compound of the present invention include: those described in WO03/077847, including: N-[3-(4-chlorophenyl)-2(S)-phenyl-1(S)-methylpropyl]-2-(4-trifluoromethyl-2-pyrimidyloxy)-2-methylpropanamide, N-[3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-(5-trifluoromethyl-2-pyridyloxy)-2-methylpropanamide, N-[3-(4-chlorophenyl)-2-(5-chloro-3-pyridyl)-1-methylpropyl]-2-(5-trifluoromethyl-2-pyridyloxy)-2-methylpropanamide, and pharmaceutically acceptable salts thereof; as well as those in WO05/000809, which includes the following: 3- ⁇ 1-[bis(4
  • NPY5 antagonists of use in combination with a compound of the present invention include: 3-oxo-N-(5-phenyl-2-pyrazinyl)-spiro[isobenzofiiran-1(3H),4′-piperidine]-1′-carboxamide, 3-oxo-N-(7-trifluoromethylpyrido[3,2-b]pyridin-2-yl)spiro-[isobenzofuran-1(3H),4′-piperidine]-1′-carboxamide, N-[5-(3-fluorophenyl)-2-pyrimidinyl]-3-oxospiro-[isobenzofuran-1(3H),4′-piperidine]-1′-carboxamide, trans-3′-oxo-N-(5-phenyl-2-pyrimidinyl)spiro[cyclohexane-1,1′(3′H)-isobenzofuran]-4-carboxamide, trans-3′-o
  • Specific ACC-1/2 inhibitors of use in combination with a compound of the present invention include: 1′-[(4,8-dimethoxyquinolin-2-yl)carbonyl]-6-(1H-tetrazol-5-yl)spiro[chroman-2,4′-piperidin]-4-one; (5- ⁇ 1′-[(4,8-dimethoxyquinolin-2-yl)carbonyl]-4-oxospiro[chroman-2,4′-piperidin]-6-yl ⁇ -2H-tetrazol-2-yl)methyl pivalate; 5- ⁇ 1′-[(8-cyclopropyl-4-methoxyquinolin-2-yl)carbonyl]-4-oxospiro[chroman-2,4′-piperidin]-6-yl ⁇ nicotinic acid; 1′-(8-methoxy-4-morpholin-4-yl-2-naphthoyl)-6-(1H-tetrazol-5-yl)
  • Specific MCHIR antagonist compounds of use in combination with a compound of the persent invention include: 1- ⁇ 4-[(1-ethylazetidin-3-yl)oxy]phenyl ⁇ -4-[(4-fluorobenzyl)oxy]pyridin-2(1H)-one, 4-[(4-fluorobenzyl)oxy]-1- ⁇ 4-[(1-isopropylazetidin-3-yl)oxy]phenyl ⁇ pyridin-2(1H)-one, 1-[4-(azetidin-3-yloxy)phenyl]-4-[(5-chloropyridin-2-yl)methoxy]pyridin-2(1H)-one, 4-[(5-chloropyridin-2-yl)methoxy]-1- ⁇ 4-[(1-ethylazetidin-3-yl)oxy]phenyl ⁇ pyridin-2(1H)-one, 4-[(5-chloropyridin-2-yl
  • Specific DP-IV inhibitors of use in combination with a compound of the present invention are selected from 7-[(3R)-3-amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(trifluoromethyl)-5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyrazine.
  • the compound of formula I is favorably combined with 7-[(3R)-3-amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(trifluoromethyl)-5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyrazine, and pharmaceutically acceptable salts thereof.
  • Specific 113 (histamine H3) antagonists/inverse agonists of use in combination with a compound of the present invention include: those described in WO05/077905, including:3- ⁇ 4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl ⁇ -2-ethylpyrido[2,3-d]-pyrimidin-4(3H)-one, 3- ⁇ 4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl ⁇ -2-methylpyrido[4,3-d]pyrimidin-4(3H)-one, 2-ethyl-3-(4- ⁇ 3-[(3S)-3-methylpiperidin-1-yl]propoxy ⁇ phenyl)pyrido[2,3-d]pyrimidin-4(3H)-one 2-methyl-3-(4- ⁇ 3-[(3S)-3-methylpiperidin-1-yl]propoxy ⁇ phenyl)pyrido[4,3-d]pyrimidin-4(
  • Specific CCK1R agonists of use in combination with a compound of the present invention include: 3-(4- ⁇ [1-(3-ethoxyphenyl)-2-(4-methylphenyl)-1H -imidazol-4-yl]carbonyl ⁇ -1-piperazinyl)-1-naphthoic acid; 3-(4- ⁇ [1-(3-ethoxyphenyl)-2-(2-fluoro-4-methylphenyl)-1H-imidazol-4-yl]carbonyl ⁇ -1-piperazinyl)-1-naphthoic acid; 3-(4- ⁇ [1-(3-ethoxyphenyl)-2-(4-fluorophenyl)-1H -imidazol-4-yl]carbonyl ⁇ -1-piperazinyl)-1-naphthoic acid; 3-(4- ⁇ [1-(3-ethoxyphenyl)-2-(2,4-difluorophenyl)-1H
  • Specific MC4R agonists of use in combination with a compound of the present invention include: 1) (5S)-1′- ⁇ [(3R,4R)-1-tert-butyl-3-(2,3,4-trifluorophenyl)piperidin-4-yl]carbonyl ⁇ -3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidine]; 2) (5R)-1′- ⁇ [(3R,4R)-1-tert-butyl-3-(2,3,4-trifluorophenyl)-piperidin-4-yl]carbonyl ⁇ -3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-5H-spiro[furo[3,4-b]pyridine-7,4′-
  • neurokinin-1 (NK-1) receptor antagonists may be favorably employed in combination with a compound of the present invention.
  • NK-1 receptor antagonists of use in the present invention are fully described in the art.
  • Specific neurokinin-1 receptor antagonists of use in the present invention include: ( ⁇ )-(2R3R,2S3S)-N- ⁇ [2-cyclopropoxy-5-(trifluoromethoxy)-phenyl]methyl ⁇ -2-phenylpiperidin-3-amine ; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(3-(5-oxo-1H,4H-1,2,4-triazolo)methyl)morpholine; aperpitant; C.117493; GW597599; GW679769; R673; RO67319; R1124; R1204; SSR146977; SSR240600; T
  • anti-obesity agents examples include “Patent focus on new anti-obesity agents,” Exp. Opin. Ther. Patents, 10: 819-831 (2000); “Novel anti-obesity drugs,” Exp. Opin. Invest. Drugs, 9: 1317-1326 (2000); and “Recent advances in feeding suppressing agents: potential therapeutic strategy for the treatment of obesity, Exp. Opin. Ther. Patents, 11: 1677-1692 (2001).
  • the role of neuropeptide Y in obesity is discussed in Exp. Opin. Invest. Drugs, 9: 1327-1346 (2000).
  • Cannabinoid receptor ligands are discussed in Exp. Opin. Invest. Drugs, 9: 1553-1571 (2000).
  • Another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor.
  • another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor wherein the HMG-CoA reductase inhibitor is a statin.
  • another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor, wherein the HMG CoA reductase inhibitor is a statin selected from the group consisting of lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, rosuvastatin and rivastatin.
  • Another aspect of the invention that is of interest relates to a method of reducing the risk of developing a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, and the sequelae of such conditions, delaying the onset or reducing the risk of developing said condition, comprising administering to a mammalian patient in need of such treatment therapeutically effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor.
  • another aspect of the invention that is of interest relates to a method for delaying the onset of, or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor wherein the HMG-CoA reductase inhibitor is a statin, and even more particularly, a statin selected from the group consisting of: lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, rosuvastatin and rivastatin.
  • another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of foiinula I as described above and an HMG-CoA reductase inhibitor wherein the HMG-CoA reductase inhibitor is simvastatin, atorvastatin or rosuvastatin.
  • Another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula as described above and a cholesterol absorption inhibitor. More particularly, another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula I as described above and a cholesterol absorption inhibitor wherein the cholesterol absorption inhibitor is ezetimibe.
  • Another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing the other diseases and conditions mentioned above, in a mammalian patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula I as described above, and a cholesterol absorption inhibitor.
  • another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing the other diseases and conditions mentioned above, in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula I as described above, and a cholesterol absorption inhibitor, wherein the cholesterol absorption inhibitor is ezetimibe.
  • Another aspect of the invention that is of interest relates to a method of treating, delaying the onset, or preventing a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I or a pharmaceutically acceptable salt or solvate thereof, and a CETP inhibiting. compound.
  • an aspect of the invention that is of interest relates to a method of treating, delaying the onset, or preventing a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I or a pharmaceutically acceptable salt or solvate thereof, and a CETP inhibiting compound selected from torcetrapib and anacetrapib.
  • Another aspect of the invention that is of interest relates to a pharmaceutical composition
  • a pharmaceutical composition comprising (1) a compound of formula I as described above; (2) a compound selected from the list provide above in combination with a pharmaceutically acceptable carrier.
  • compositions that is of interest are comprised of a compound of formula I as described herein, or a pharmaceutically acceptable salt or solvate thereof, in combination with a DPP-IV inhibitor selected from the group consisting of:
  • tautomers Some of the compounds described herein may exist with different points of attachment of hydrogen, referred to as tautomers. Such an example may be a ketone and its enol form known as keto-enol tautomers. The individual tautomers as well as mixtures thereof are encompassed with the compounds of Formula I.
  • Salts and solvates of compounds of formula I are included in the present invention.
  • pharmaceutically acceptable salts refers to salts prepared from pharmaceutically acceptable substantially non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids, as well as salts that can be converted into pharmaceutically acceptable salts.
  • Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts.
  • Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, NN-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like.
  • basic ion exchange resins such as argin
  • salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids.
  • acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonie, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like.
  • Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
  • Solvates as used herein refers to the compound of formula I or a salt thereof, in association with a solvent, such as water. Representative examples include hydrates, hemihydrates, trihydrates and the like.
  • references to the compounds of Formula I are intended to include the pharmaceutically acceptable salts and solvates.
  • the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature.
  • the present invention is meant to include all suitable isotopic variations of the compounds of the formulas described herein.
  • different isotopic forms of hydrogen (H) include protium ( 1 H) and deuterium ( 2 H).
  • Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
  • Isotopically-enriched compounds within the formulas described herein can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
  • This invention relates to a method of inhibiting the activity of glucagon by antagonizing the glucagon receptor, thereby reducing the rate of gluconeogenesis and glycogenolysis, and the concentration of glucose in plasma.
  • the compounds of formula I can be used in the manufacture of a medicament for the prophylactic or therapeutic treatment of disease states in mammals associated with elevated levels of glucose, comprised of combining the compound of formula I with the carrier materials to provide the medicament.
  • the prophylactic or therapeutic dose of a compound of formula I will, of course, vary with the nature or severity of the condition to be treated, the particular compound selected and its route of administration. It will also vary according to the age, weight and response of the individual patient. In general, the daily dose range lies within the range of from about 0.001 mg to about 100 mg per kg body weight, preferably about 0.01 mg to about 50 mg per kg, and more preferably 0.1 to 10 mg per kg, in single or divided doses. It may be necessary to use dosages outside of these limits in some cases.
  • Representative dosages of compounds of formula I, as well as the pharmaceutically acceptable salts and solvates thereof, for adults range from about 0.1 mg to about 1.0 g per day, preferably about 1 mg to about 500 mg, in single or divided doses.
  • suitable dosages include 0.1mg, 1 mg, 2 mg, 5 mg, 10 mg, 20 mg, 40 mg, 50 mg, 75 mg, 100 mg, 150 mg, 200 mg, 250 mg, 500 mg, 1000 mg and similar such doses.
  • a representative dosage range is from about 0.001 mg to about 100 mg (preferably from 0.01 mg to about 10 mg) of a compound of Formula I per kg of body weight per day, and more preferably, about 0.1 mg to about 10 mg of a compound of formula I per kg of body weight per day.
  • the pharmaceutical composition comprises a compound of Formula I or a pharmaceutically acceptable salt or solvate thereof and a pharmaceutically acceptable carrier.
  • composition encompasses a product comprising the active and inert ingredient(s), (pharmaceutically acceptable excipients) that make up the carrier, as well as any product which results, directly or indirectly, from the combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions between ingredients.
  • the composition is comprised of a compound of formula I in an amount that is effective to treat, prevent or delay the onset of type 2 diabetes mellitus, in combination with the pharmaceutically acceptable carrier.
  • Any suitable route of administration may be employed for providing a mammal, especially a human, with an effective dosage of a compound of the present invention.
  • oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed.
  • dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols and the like, with oral tablets being preferred.
  • any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like, in the case of oral liquids, e.g., suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solids, e.g., powders, capsules and tablets.
  • Solid oral preparations are preferred. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit forms. If desired, tablets may be coated by standard aqueous or nonaqueous techniques.
  • the compounds of Formula I may also be administered by controlled release means and/or delivery devices such as those described in U.S. Pat. Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; 3,630,200 and 4,008,719.
  • compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion.
  • Such compositions may be prepared by any acceptable pharmaceutical process. All such methods include the step of combining the active ingredient(s) with the carrier components.
  • the compositions are prepared by uniformly and intimately admixing the active ingredient(s) with a liquid or finely divided solid carrier component, and then, if necessary, manipulating the blend into the desired product form.
  • a tablet may be prepared by compression or molding.
  • Compressed tablets may be prepared by compressing free-flowing powder or granules, containing the active(s) optionally mixed with one or more excipients, e.g., binders, lubricants, diluents, surfactants and dispersants.
  • Molded tablets may be made by molding a mixture of the powdered compound moistened with an inert liquid.
  • each tablet may contain, for example, from about 0.1 mg to about 1.0 g of the active ingredient and each cachet or capsule contains from about 0.1 mg to about 500 mg of the active ingredient.
  • Injectable Suspension (im.) mg/mL Tablet Mg/tablet Compound of 10.0 Compound of Formula 1 25.0 Formula 1 Methylcellulose 5.0 Microcrystalline 415 Cellulose Tween 80 0.5 Povidone 14.0 Benzyl alcohol 9.0 Pregelatinized Starch 4.0 Benzalkonium 1.0 Magnesium Stearate 2.5 chloride Water for injection t.d. 1.0 mL Total (approx.) 460 mg
  • the compounds of Formula I may be used in combination with other drugs that are used in the treatment/prevention/delaying the onset of type 2 diabetes mellitus, as well as other diseases and conditions described herein, for which compounds of Formula I are useful.
  • Other drugs may be administered, by a route and in an amount commonly used, contemporaneously or sequentially with a compound of Formula I.
  • a combination pharmaceutical composition containing such other drugs in addition to the compound of Formula I is preferred.
  • the pharmaceutical compositions of the present invention include those that alternatively contain one or more other active ingredients, in addition to a compound of Formula I.
  • Examples of other active ingredients that may be combined with a compound of Formula I, either administered separately or in the same pharmaceutical compositions include, but are not limited to: (a) biguanides (e g., buformin, metformin, phenformin), (b) PPAR agonists (e.g., troglitazone, pioglitazone, rosiglitazone), (c) insulin, (d) somatostatin, (e) alpha-glucosidase inhibitors (e.g., voglibose, miglitol, acarbose), (f) DPP-IV inhibitors, such as sitagliptin, vildagliptin, saxagliptin, and the like, such as those disclosed in U.S.
  • biguanides e g., buformin, metformin, phenformin
  • PPAR agonists e.g., troglitazone, pioglitazone,
  • An aspect of the invention that is particular interest relates to a pharmaceutical composition that is comprised of a compound of formula 1, or a pharmaceutically acceptable salt thereof, and a member selected from the group consisting of: simvastatin, mevastatin, ezetimibe, atorvastatin, metformin, sibutramine, orlistat, Qnexa, topiramate, naltrexone, bupriopion, phentermine, losartan, hydrochlorothiazide, buformin, phenformin, troglitazone, pioglitazone, rosiglitazone, insulin, somatostatin, voglibose, miglitol, acarbose, sitagliptin, vildagliptin, saxagliptin, alogliptin, acetohexamide, carbutamide, chlorpropamide, glibomuride, gliclazide, glimerpiride, glipizide
  • the weight ratio of the compound of the Formula I to the second active ingredient may be varied within wide limits and depends upon the effective dose of each active ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the Formula I is combined with a PPAR agonist the weight ratio of the compound of the Formula I to the PPAR agonist will generally range from about 1000:1 to about 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the Formula I and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used.
  • the dosages noted above for the glucagon antagonist are provided along with the usual dose for the other medication.
  • the DPP-IV inhibitor can be used in an amount ranging from about 1.0 mg to as high as about 1000mg, preferably about 2.5 mg to about 250 mg, and in particular, about 50 mg or about 100 mg administered in single daily doses or in divided doses as appropriate.
  • the CB1 antagonist/inverse agonist can be used in an amount ranging from as low as about 0.1 mg to as high as about 1000 mg, more particularly, in an amout ranging from about 1.0 mg to about 100 mg, and even more particularly, in an amount from about 1.0 mg to about 10 mg, administered in single daily doses or in divided doses as appropriate.
  • doses of CB1 antagonist/inverse agonist include ling, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg and 20 mg.
  • novel compounds of the present invention can be readily synthesized using techniques known to those skilled in the art, such as those described, for example, in Advanced Organic Chemistry , March, 5 th Ed., John Wiley and Sons, New York, N.Y., 2001; Advanced Organic Chemistry , Carey and Sundberg, Vol.
  • the procedures described herein for synthesizing the compounds may include one or more steps of protecting group manipulations and of purification, such as, re-crystallization, distillation, column chromatography, flash chromatography, thin-layer chromatography (TLC), and high-pressure chromatography (HPLC).
  • the products can be characterized using various techniques well known in the chemical arts, including proton and carbon-13 nuclear magnetic resonance ( 1 H and 13 C NMR), infrared and ultraviolet spectroscopy OR and UV), X-ray crystallography, elemental analysis and HPLC and mass spectrometry (HPLC-MS).
  • Methods of protecting group manipulation, purification, structure identification and quantification are well known to one skilled in the art of chemical synthesis.
  • solvents are those which will at least partially dissolve one or all of the reactants and will not adversely interact with either the reactants or the product.
  • Suitable solvents are aromatic hydrocarbons (e.g, toluene, xylenes), halogenated solvents (e.g, methylene chloride, chloroform, carbontetrachloride, chlorobenzenes), ethers (e.g, diethyl ether, diisopropylether, tert-butyl methyl ether, diglyme, tetrahydrofuran, dioxane, anisole), nitriles (e.g, acetonitrile, propionitrile), ketones (e.g, 2-butanone, dithyl ketone, Cert-butyl methyl ketone), alcohols (e.g, methanol, ethanol, n-propanol, iso-propanol, n-butanol, t-butanol),
  • Suitable bases are, generally, alkali metal hydroxides, alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, barium hydroxide, and calcium hydroxide; alkali metal hydrides and alkaline earth metal hydrides such as lithium hydride, sodium hydride, potassium hydride and calcium hydride; alkali metal amides such as lithium amide, sodium amide and potassium amide; alkali metal carbonates and alkaline earth metal carbonates such as lithium carbonate, sodium carbonate, cesium carbonate, sodium hydrogen carbonate, and cesium hydrogen carbonate; alkali metal alkoxides and alkaline earth metal alkoxides such as sodium methoxide, sodium ethoxide, potassium tert-butoxide and magnesium ethoxide; alkali metal alkyls such as methyllithium, n-butyllithium, sec-butyllithium, t-bultyllithium, phenyllithium, alky
  • BINAP 2,2′-bis(diphenylphosphino)-
  • Bn benzyl 1,1′-binaphthalene
  • Boc t-butyloxycarbonyl
  • Cbz Benzyloxycarbonyl
  • CDI 1,1′-carbonyldiimidazole
  • S)-DAIPEN (S)-1,1-di(4-anisyl)-2-
  • Scheme 1 depicts the preparation of compounds Ia, Ib, and Ic from the acid 1. It is noted that the benzothiophene can be substituted with R 3 at any available point of attachment. Moreover, the benzothiophene can be attached to the remainder of the molecule at position 2 or 3.
  • the carboxylic acid intermediate I is coupled with substituted or unsubstituted beta alanine ester (either methyl, ethyl or t-butyl ester) using benzotriazol-1-yloxy-tris(dimethylamino)-phosphonium hexafluorophosphate (BOP) and a base, generally N,N-diisopropylethylamine (DIEA), in a solvent such as N,N-dimethylformamide (DMF) or acetonitrile at ambient temperature to yield compound 2.
  • BOP benzotriazol-1-yloxy-tris(dimethylamino)-phosphonium hexafluorophosphate
  • DIEA N,N-diisopropylethylamine
  • DMF N,N-dimethylformamide
  • the conversion of 1 to 2 may be carried out with EDC, HOBt, and a base such as DIEA in similar solvents as those used with B
  • ester 2 methyl, ethyl
  • Saponification of ester 2 (methyl, ethyl) to give compound Ia is achieved with a base such as aqueous lithium hydroxide (LiOH) or aqueous sodium hydroxide in a polar solvent such as tetrahydrofuran, methanol, ethanol or a mixture of similar solvents.
  • compound 2, containing a t-butyl ester can be converted to compound Ia using acid such as acetic acid or trifluoroacetic acid (TFA).
  • compounds Ib and Ic may be prepared directly from acid 1 by coupling with the appropriately substituted amine using the peptide coupling methods described for the preparation of amide 2.
  • Scheme 2 summarizes the preparation of acid intermediate 1 using procedures adapted from Organic Letters , Chung, et. al., 2008, 10, 3037-3040.
  • Coupling of aryl alkyl ketones 3 and aryl bromide 4 may be achieved under transition-metal mediated conditions such as those described in J. Am. Chem. Soc ., Buchwald, S. L., et. al., 2000, 122, 1360-1370.
  • Ketone 5 may be prepared, for instance, by heating 3 and 4 in the presence of a palladium source such as Pd 2 (dba) 3 , a ligand such as BINAP, a base such as NaOtBu, and a solvent such as THF.
  • Reduction of ketone 5 to alcohol 6 can be accomplished with various achiral reductants, for instance NaBH 4 .
  • dynamic kinetic resolution of ketone 5 can afford highly enantio- and diastereoenriched alcohol 6 using catalysts such as those reviewed extensively in Angew. Chem., Int. Ed ., Noyori, R., et. al., 2001, 40, 40-73.
  • this reaction can be performed using a ruthenium catalyst such as RuCl 2 [(S)-xyl-SEGPHOS][(S)-DAIPEN] and a base such as KOtBu in a solvent such as 2-propanol under an atmosphere of hydrogen.
  • Acid 1 may then be accessed by treatment of 7 with a benzothiophene 8 in dichloromethane solvent at ambient temperature or 60° C. followed by the addition of a Bronsted acid such as trifluoroacetic acid (TFA) or a Lewis acid such as boron trifluoride-diethyl etherate.
  • a Bronsted acid such as trifluoroacetic acid (TFA) or a Lewis acid such as boron trifluoride-diethyl etherate.
  • TFA trifluoroacetic acid
  • Lewis acid such as boron trifluoride-diethyl etherate
  • R 3 substituents are typically present in the starting material benzothiophene 8, it is also possible to alter the R 3 substituents on advanced intermediates as shown in Scheme 3.
  • a bromide substituent may be further functionalized using a variety of metal-mediated cross-coupling reactions obvious to those skilled in the art.
  • the bromide substituent of intermediate 2a may be converted to nitrile 2b in the presence of a palladium catalyst such as Pd(PPh 3 ) 4 and a cyanide source such as Zn(CN) 2 in a polar aprotic solvent such as DMF at a temperature of 80° C. based on the chemistry described by Kubota and Rice, Tetrahedron Letters, 1998, 39, 2907-2910.
  • intermediate 2a can be functionalized under Suzuki coupling conditions with an aryl or heteroaryl boronic acid 9, palladium catalyst such as PdCl 2 (dppf), base such as LiOH, in a mixed solvent system such as dioxane and water, at elevated temperatures such as 80° C. Under these conditions, the ethyl ester of intermediate 2a can also be hydrolyzed to afford compound la directly.
  • palladium catalyst such as PdCl 2 (dppf)
  • base such as LiOH
  • a mixed solvent system such as dioxane and water
  • Aryl fluorides such as 12 may be lithiated at the position adjacent to fluorine by a strong base such as lithium diisopropylamide in a solvent such as THF at low temperatures such as -70° C.
  • the resulting intermediate can then react with a formyl electrophile such as DMF to afford the 2-fluorobenzaldehyde 13.
  • Nucleophilic aromatic substitution of the fluorine substituent of 13 with methyl thioglycolate and subsequent cyclocondensation to benzothiophene 8a can be accomplished in a single vessel by heating the reactants in the presence of a base such as potassium carbonate in a solvent such as acetonitrile.
  • the 2-carbomethoxy substituent of benzothiophene 8a may be removed to afford benzothiophene 81).
  • Saponification of the ester as described for the conversion of 2 to Ia yields an acid which may be decarboxylated using a variety of procedures known to those skilled in the art. For instance, the acid may be treated with copper powder in quinoline at a temperature of 200° C.
  • Separation of diastereomers and regioisomers can be carried out at various stages in the preparation of compounds I, however, it is typically carried out on compound I using reverse-phase HPLC or on the amide 2 using silica gel chromatography or preparative HPLC with a chiral stationary phase.
  • PTLC thin layer chromatography
  • the mixture was diluted with heptane (100 mL) and poured into a solution of saturated NaHCO 3 (aq) (60 mL) and ice (40 g). The resulting layers were separated, and the aqueous phase was back-extracted with methyl tert-butyl ether (50 mL). The combined organics were washed with saturated NaHCO 3 (aq) then 10% NaCl(aq). The organic solution was filtered through a bed of silica 60 (84 g, wetted with 1:1 methyl tert-butyl ether/heptane), and washed with 1:1 methyl tert-butyl ether/heptane (600 mL).
  • Step B tert-Butyl 4-[(1R,2R)-2-(4-chlorophenyl)-1-propylethan-2-hydroxyl-1-yl]benzoate
  • Orthophosphoric acid (85 wt %, 11.4 g, 99 mmol) was added to a slurry of tert-butyl 4-[(1R,2R)-2-(4-chlorophenyl)-1-propylethan-2-hydroxyl-1-yl]benzoate (7.42 g, 19.8 mmol) in acetonitrile (75 mL).
  • the mixture was purged with nitrogen, then heated at 65° C. for 3.5 hours.
  • the mixture was allowed to cool to 40° C., then water (25 mL) was added dropwise. Once crystallization began, additional water (50 mL) was added and the mixture was allowed to cool to room temperature.
  • Step A Ethyl N-(4- ⁇ (1S)-1-[(7-bromo-5-chloro-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl ⁇ benzoyl)- ⁇ -alaninate
  • Step B Ethyl N-(4- ⁇ (1S)-1-[(5-chloro-7-cyano-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl ⁇ benzoyl)- ⁇ -alaninate
  • Step C N-(4- ⁇ (1S)-1-[(5-Chloro-7-cyano-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl ⁇ benzoyl)- ⁇ -alanine
  • Step A Ethyl N-(4- ⁇ (1S)-1-[(7-bromo-5-fluoro-1-benzothien-3-yl)(4-chlorophenyl)methyl]pentyl ⁇ benzoyl)- ⁇ -alaninate
  • Step B N-[4-((1S)-1- ⁇ (4-Chlorophenyl)[5-fluoro-7-(1-methyl-1H-pyrazol-5-yl)-1-benzothien-3-yl]methyl ⁇ pentyl)benzoyl]- ⁇ -alanine
  • the mixture was degassed then irradiated in a microwave reactor at 80° C. for 15 minutes.
  • the mixture was acidified with acetic acid then extracted with ethyl acetate.
  • the organic layer was dried over Na 2 SO 4 , filtered, then concentrated.
  • the resulting residue was purified by preparative reverse-phase HPLC eluting with acetonitrile/water+0.1% TFA.
  • the resulting material was further purified by silica gel chromatography eluting with 5% MeOH/DCM+0.5% acetic acid to afford the title compound.
  • Step A 4- ⁇ (1S)-1-[(7-Bromo-5-methyl-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl ⁇ benzoic Acid
  • Step B 4- ⁇ (1S)-1-[(7-Bromo-5-methyl-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl ⁇ -N-1H-tetrazol-5-ylbenzamide
  • IC 50 values for the compounds of the invention are generally in the range of as low as about 1 nM to as high as about 500 nM, and thus have utility as glucagon antagonists.
  • the IC 50 values are shown below in TABLE 4 for the more active isomer of indicated compounds.
  • Exponentially growing CHO cells expressing human glucagon receptor were harvested with the aid of enzyme-free dissociation media (Specialty Media), pelleted at low speed, and re-suspended in the Cell Stimulation Buffer included in the Flash Plate cAMP kit (New England Nuclear, SMP0004A).
  • the adenylate cyclase assay was conducted as per manufacturer instructions. Briefly, compounds were diluted from stocks in DMSO and added to cells at a final DMSO concentration of 5%. Cells prepared as above were preincubated in flash plates coated with anti-cAMP antibodies (NEN) in the presence of compounds or DMSO controls for 30 minutes, then stimulated with glucagon (250 pM) for an additional 30 minutes.
  • the cell stimulation was stopped by addition of equal amounts of a detection buffer containing lysis buffer as well as 125 I-labeled cAMP tracer (NEN). After 3 hours of incubation at room temperature the bound radioactivity was determined in a liquid scintillation counter (TopCount-Packard Instruments). Basal activity (100% inhibition) was determined using the DMSO control while 0% inhibition was defined at the amount of pmol cAMP produced by 250 pM glucagon. The resulting amount of cAMP generated per compound dose was back-calculated from a cAMP standard curve based on the percent inhibition achieved at each dose. The calculated cAMP levels were plotted versus compound dose to obtain IC 50 values using non-linear four-parameter curve fitting with Assay Data Analyzer software (Merck & Co., Inc.).

Abstract

Glucagon receptor antagonist compounds are disclosed. The compounds are useful for treating type 2 diabetes and related conditions. Pharmaceutical compositions and methods of treatment are also included.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to glucagon receptor antagonist compounds, compositions containing such compounds and various methods of treatment relating to type 2 diabetes mellitus and related conditions.
  • Diabetes refers to a disease process derived from multiple causative factors and is characterized by elevated levels of plasma glucose (hyperglycemia) in the fasting state or following glucose administration during an oral glucose tolerance test. Frank diabetes mellitus (e.g., a blood glucose level >126 mg/dL in a fasting state) is associated with increased and premature cardiovascular morbidity and mortality, and is related directly and indirectly to various metabolic conditions, including alterations of lipid, lipoprotein and apolipoprotein metabolism.
  • Patients with non-insulin dependent diabetes mellitus (type 2 diabetes mellitus), approximately 95% of patients with diabetes mellitus, frequently display elevated levels of serum lipids, such as cholesterol and triglycerides, and have poor blood-lipid profiles, with high levels of LDLcholesterol and low levels of HDL-cholesterol. Those suffering from Type 2 diabetes mellitus are thus at an increased risk of developing macrovascular and microvascular complications, including coronary heart disease, stroke, peripheral vascular disease, hypertension (for example, blood pressure >130/80 mmHg in a resting state), nephropathy, neuropathy and retinopathy.
  • Patients having type 2 diabetes mellitus characteristically exhibit elevated plasma insulin levels compared with nondiabetic patients; these patients have developed a resistance to insulin stimulation of glucose and lipid metabolism in the main insulin-sensitive tissues (muscle, liver and adipose tissues). Thus, Type 2 diabetes, at least early in the natural progression of the disease is characterized primarily by insulin resistance rather than by a decrease in insulin production, resulting in insufficient uptake, oxidation and storage of glucose in muscle, inadequate repression of lipolysis in adipose tissue, and excess glucose production and secretion by the liver. The net effect of decreased sensitivity to insulin is high levels of insulin circulating in the blood without appropriate reduction in plasma glucose (hyperglycemia). Hyperinsulinemia is a risk factor for developing hypertension and may also contribute to vascular disease.
  • Glucagon serves as the major regulatory hormone attenuating the effect of insulin in its inhibition of liver gluconeogenesis and is normally secreted by alpha cells in pancreatic islets in response to falling blood glucose levels. The hormone binds to specific receptors in liver cells that trigger glycogenolysis and an increase in gluconeogenesis through cAMP-mediated events. These responses generate glucose (e.g. hepatic glucose production) to help maintain euglyeemia by preventing blood glucose levels from falling significantly. In addition to elevated levels of circulating insulin, type 2 diabetics have elevated levels of plasma glucagon and increased rates of hepatic glucose production. Antagonists of the glucagon receptor are useful in improving insulin responsiveness in the liver, decreasing the rate of gluconeogenesis and glycogenolysis, and lowering the rate of hepatic glucose output resulting in a decrease in the levels of plasma glucose.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a compound represented by formula I:
  • Figure US20110281795A1-20111117-C00001
  • or a pharmaceutically acceptable salt or solvate thereof wherein:
  • each R1 represents H or is selected from the group consisting of halo, CN, OH, NO2, CO2Ra, NRaRb, S(O)pRa, C1-10alkyl, C2-10alkenyl or C1-10alkoxy, the alkyl and alkenyl portions of C1-10alkyl, C2-10alkenyl and C1-10alkoxy being optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C1-6alkoxY;
  • p represents 0, 1 or 2;
  • each Ra and Rb independently represents H or C1-4alkyl optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C1-6alkoxy;
  • R2 represents C1-6alkyl or C2-6alkenyl, each optionally substituted with 1-5 halo atoms up to perhalo, and further optionally substituted with 1 group selected from OH, oxo and C1-6alkoxy;
      • each R3 represents H or is selected from the group consisting of halo; CN; OH; NO2; CO2Ra; NRaRb; S(O)pRa; a 5-membered heteroaryl ring containing 1-3 nitrogen atoms, 0-1 oxygen or sulfur atom, and optionally substituted with 1-2 C1-4alkyl groups; C1-10alkyl; C2-10 alkenyl and C1-10alkoxy, the alkyl and alkenyl portions of C1-10alkyl, C2-10alkenyl and C1-10alkoxy being optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo, NRaRb and C1-6alkoxy;
  • each R4 independently represents H or is selected from the group consisting of halo, OH, C1-4alkyl, OC1-4alkyl, haloC1-4alkyl and haloOC1-4alkyl;
  • m represents 0, 1 or 2; such that when m represents 0 or 1, Z represents tetrazolyl; and when m represents 2, Z represents a member selected from the group consisting of CO2H, SO3H and C(O)NH2.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention is described herein in detail using the terms defined below unless otherwise specified.
  • “Alkyl”, as well as other groups having the prefix “alk”, such as alkoxy, alkanoyl and the like, means carbon chains which may be linear, branched, or cyclic, or combinations thereof, containing the indicated number of carbon atoms. If no number is specified, 1-10 carbon atoms are intended for linear or branched alkyl groups. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec- and tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl and the like. Cycloalkyl is a subset of alkyl; if no number of atoms is specified, 3-10 carbon atoms are intended, forming 1-3 carbocyclic rings that are fused. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, decahydronaphthyl and the like.
  • “Alkenyl” means carbon chains which contain at least one carbon-carbon double bond, and which may be linear or branched or combinations thereof. Examples of alkenyl include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, and the like. Cycloalkenyl is a subset of alkenyl. If no number is specified, 4-8 carbon atoms are included. Examples include cyclopentenyl, cyclohexenyl and the like.
  • “Aryl” (Ar) means mono- and bicyclic aromatic rings containing 6-12 carbon atoms. Examples of aryl include phenyl, naphthyl, indenyl and the like. “Aryl” also includes monocyclic rings fused to an aryl group. Examples include tetrahydronaphthyl, indanyl and the like.
  • “Heteroaryl” (HAR) means a mono- or bicyclic aromatic ring or ring system containing at least one heteroatom selected from 0, S and N, with each ring containing 5 to 6 atoms. Examples include pyrrolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyridyl, oxazolyl, oxadiazolyl, thiadiazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, furanyl, triazinyl, thienyl, pyrimidyl, pyridazinyl, pyrazinyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, benzofuranyl, benzothiophenyl, furo(2,3-b)pyridyl, quinolyl, indolyl, isoquinolyl and the like. Heteroaryl also includes aromatic heterocyclic groups fused to heterocycles that are non-aromatic or partially aromatic, and aromatic heterocyclic groups fused to cycloalkyl rings. Heteroaryl also includes such groups in charged form, e.g., pyridinium.
  • “Halogen” (Halo) includes fluorine, chlorine, bromine and iodine. Haloalkyl and haloalkoxy refer to halogenated alkyl and alkoxy groups having the indicated number of carbon atoms, substituted with one to five halo atoms, up to perhalo, and preferably one to three halo atoms selected from fluoro and chloro. Thus, for example, haloC1-6alkyl refers to a C1-6alkyl group substituted with halo atoms, up to perhalo.
  • Numbering around the benzothiophene is conventional, as shown below:
  • Figure US20110281795A1-20111117-C00002
  • It is also noted that while structures I, I-1 and I-2 depict the R3 groups on the benzene ring of the benzothiophene moiety, the R3 groups can be attached at any available point on the thiophene portion as well.
  • One aspect of the invention relates to a compound represented by formula I:
  • Figure US20110281795A1-20111117-C00003
  • or a pharmaceutically acceptable salt or solvate thereof wherein:
  • each R1 represents H or is selected from the group consisting of halo, CN, OH, NO2, CO2Ra, NRaRb, S(O)pRa, C1-10alkyl, C2-10alkenyl or C1-10alkoxy, the alkyl and alkenyl portions of C1-10alkyl, C2-10alkenyl and C1-10alkoxy being optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C1-6aikoxY;
  • p represents 0, 1 or 2;
  • each Ra and Rb independently represents H or C1-4alkyl optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C1-6alkoxy ;
  • R2 represents C1-6alkyl or C2-6alkenyl, each optionally substituted with 1-5 halo atoms up to perhalo, and further optionally substituted with 1 group selected from OH, oxo and C1-6alkoxy ;
  • each R3 represents H or is selected from the group consisting of halo; CN; OH; NO2; CO2Ra; NRaRb; S(O)pRa; a 5-membered heteroaryl ring containing 1-3 nitrogen atoms, 0-1 oxygen or sulfur atom, and optionally substituted with 1-2 C1-4alkyl groups; C1-10alkyl; C2-10alkenyl and Cmoalkoxy, the alkyl and alkenyl portions of C1-10alkyl, C2-10alkenyl and C1-10 alkoxy being optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo, NRaRb and C1-6alkoxy;
  • each R4 independently represents H or is selected from the group consisting of halo, OH, C1-4alkyl, OC1-4alkyl, haloC1-4alkyl and haloOC1-4alkyl;
  • m represents 0, 1 or 2; such that when m represents 0 or 1, Z represents tetrazolyl; and when m represents 2, Z represents a member selected from the group consisting of CO2H, SO3H and C(O)NH2.
  • An aspect of the invention that is of interest relates to a compound of formula I-1:
  • Figure US20110281795A1-20111117-C00004
  • or a pharmaceutically acceptable salt or solvate thereof . The variables are as defined with respect to formula I.
  • Another aspect of the invention that is of interest relates to a compound of formula I-2:
  • Figure US20110281795A1-20111117-C00005
  • or a pharmaceutically acceptable salt or solvate thereof. The variables are as defined with respect to formula I.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each R1 represents H or is selected from the group consisting of halo, CN, C1-6alkyl, C1-6alkoxy, haloC1-6alkyl and haloC1-6alkoxy.
  • In particular, another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each R1 represents H or is selected from the group consisting of: halo selected from fluoro and chloro; CN; CH3; OCH3; CF3 and OCF3.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein R2 represents a member selected from the group consisting of: C1-6alkyl and C3-4alkenyl, each optionally substituted with 1-3 halo atoms.
  • In particular, another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein R2 represents C2-5alkyl optionally substituted with 1-3 halo atoms.
  • Even more particularly, another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein R2 is selected from the group consisting of ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and 3-methylbutyl, each optionally substituted with 1-3 halo atoms selected from fluoro and chloro.
  • Even more particularly, another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein R2 is selected from the group consisting of ethyl, n-propyl, n-butyl, CH2CH(CH3)2, CH2CH2CH(CH3)2 and CH2CH2CF3.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each
  • R3 represents H or is selected from the group consisting of halo, CN, OH, SCH3, SO2CH3, C1-6alkyl, C1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms and 0-1 oxygen atom, said ring being optionally substituted with 1-2 C1-4alkyl groups.
  • More particularly, another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each R3 represents H or is selected from the group consisting of halo which is selected from F, Cl and Br, CN, OH, SCH3, SO2CH3, C1-2alkyl, C1-2alkoxy, haloC1-2alkyl and haloC1-2alkoxy wherein the halo portion of haloC1-2alkyl and haloC1-2alkoxy is selected from F and Cl, and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms and 0-1 oxygen atom, said ring being optionally substituted with 1-2 C1-4alkyl groups.
  • Even more particularly, another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each R3 represents H, F, Cl, Br, CN, OH, CH3, OCH3, OCH2CH3, CHF2, CF3, SCH3, SO2CH3, OCHF2, OCF3 and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms, 0-1 oxygen atom and being optionally substituted with 1 C1-2alkyl group.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each R4 represents H, halo selected from F and Cl, OH, C1-2alkyl, C1-2alkoxy, haloC1-2alkyl and haloC1-2alkoxy wherein the halo portion of haloC1-2alkyl and haloC1-2alkoxy is selected from F and Cl.
  • In particular, another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each R4 represents H, F, Cl, OH, CH3, OCH3, CF3, and OCF3.
  • More particularly, another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein each R4 represents H, F, CH3 or OH.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein m represents 0 or 1 and Z represents tetrazolyl.
  • Another aspect of the invention that is of interest relates to compounds in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof wherein m is 2 and Z represents CO2H.
  • Another aspect of the invention that is of interest relates to compound in accordance with formula 1 or a pharmaceutically acceptable salt or solvate thereof wherein:
  • each R1 represents H or is selected from the group consisting of halo, CN, C1-6alkyl, C1-6alkoxy, haloC1-6alkyl and haloC1-6alkoxy;
  • R2 represents a member selected from the group consisting of: C1-6alkyl and C3-4alkenyl, each optionally substituted with 1-3 halo atoms;
  • each R3 represents H or is selected from the group consisting of halo, CN, OH, SCH3, SO2CH3, C1-6alkyl, C1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms and 0-1 oxygen atom, said ring being optionally substituted with 1-2 C1-4alkyl groups;
  • each R4 represents H, halo selected from F and Cl, OH, C1-2alkyl, C1-2alkoxy, haloC1-2alkyl and haloC1-2alkoxy wherein the halo portion of haloC1-2alkyl and haloC1-2alkoxy is selected from F and Cl;
  • m is 0 or 1 and Z is tetrazolyl, or m is 2 and Z represents CO2H.
  • Examples of compounds that fall within the invention described herein are in the tables and examples contained herein. Pharmaceutically acceptable salts and solvates of the compounds disclosed in the tables are included as well.
  • Another aspect of the invention that is of interest relates to a pharmaceutical composition comprising a compound as described above with respect to formula I or a pharmaceutically acceptable salt or solvate thereof in combination with a pharmaceutically acceptable carrier.
  • Another aspect of the invention that is of interest relates to a method of treating type 2 diabetes mellitus in a mammalian patient in need of such treatment comprising administering to said patient a compound as described above with respect to formula I or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat type 2 diabetes mellitus.
  • Another aspect of the invention that is of interest relates to a method of delaying the onset of type 2 diabetes mellitus in a mammalian patient in need thereof, comprising administering to the patient a compound as described above in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to delay the onset of type 2 diabetes mellitus.
  • Another aspect of the invention that is of interest relates to a method of treating hyperglycemia, diabetes or insulin resistance in a mammalian patient in need of such treatment which comprises administering to said patient a compound as described above in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat hyperglycemia, diabetes or insulin resistance.
  • Another aspect of the invention that is of interest relates to a method of treating non-insulin dependent diabetes mellitus in a mammalian patient in need of such treatment comprising administering to the patient an anti-diabetic effective amount of a compound in accordance with formula I or a pharmaceutically acceptable salt or solvate thereof as described above.
  • Another aspect of the invention that is of interest relates to a method of treating obesity in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat obesity.
  • Another aspect of the invention that is of interest relates to a method of treating Syndrome X in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat Syndrome X.
  • Another aspect of the invention that is of interest relates to a method of treating a lipid disorder selected from the group consisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL in a mammalian patient in need of such treatment, comprising administering to said patient a compound as described above with respect to formula I or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat said lipid disorder.
  • Another aspect of the invention that is of interest relates to a method of treating atherosclerosis in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount effective to treat atherosclerosis.
  • Another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of: (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component, in a mammalian patient in need of such treatment, comprising administering to the patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to treat said condition.
  • Another aspect of the invention that is of interest relates to a method of delaying the onset of a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component in a mammalian patient in need of such treatment, comprising administering to the patient a compound in accordance with formula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to delay the onset of said condition.
  • Another aspect of the invention that is of interest relates to a method of reducing the risk of developing a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component in a mammalian patient in need of such treatment, comprising administering to the patient a compound of foimula I as described above or a pharmaceutically acceptable salt or solvate thereof in an amount that is effective to reduce the risk of developing said condition.
  • Another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of:
  • (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (1.3) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component, in a mammalian patient in need of such treatment,
  • comprising administering to the patient effective amounts of a compound of formula I as described above, or a pharmaceutically acceptable salt or solvate thereof, and a another compound that is selected from the list provided below.
  • (1) growth hormone secretagogues, growth hon none secretagogue receptor agonists/antagonists, such as NN703, hexarelin, MK-0677, SM-130686, CP-424,391, L-692,429, and L-163,255, and such as those disclosed in U.S. Pat. Nos. 5,536,716, and 6,358,951, U.S. Patent Application Nos. 2002/049196 and 2002/022637, and PCT Application Nos. WO 01/56592 and WO 02/32888; (2) protein tyrosine phosphatase-1B (PTP-1B) inhibitors; (3) cannabinoid receptor ligands, such as cannabinoid CB1 receptor antagonists or inverse agonists, such as rirnonaba.nt (Sanofi Synthelabo), AMT-251, and SR-14778 and SR 141716A (Sandi Synthelabo), SLY-319 (Solvay), BAY 65-2520 (Bayer), and those disclosed in U.S. Pat. Nos. 5,532,237, 4,973,587, 5,013,837, 5,081,122, 5,112,820, 5,292,736, 5,624,941, 6,028,084, PCT Application Nos. WO 96/33159, WO 98/33765, W098/43636, W098/43635, WO 01/09120, WO98/31227, WO98/41519, WO98/37061, WO00/10967, WO00/10968, WO97/29079, WO99/02499, WO 01/58869, WO 01/64632, WO 01/64633, WO 01/64634, W002/076949, WO 03/007887, WO 04/048317, and WO 05/000809; and EPO Application No. EP-658546, EP-656354, EP-576357; (4) anti-obesity serotonergic agents, such as fenfluramine, dexfenfluramine, phentemiine, and sibutramine; (5)133-adrenoreceptor agonists, such as AD9677/TAK677 (Dainippon!Takeda), CL-316,243, SB 418790, BRL-37344, L-796568, BMS-196085, BRL-35135A, CGP12177A, BTA-243, Trecadrine, Zeneca D7114, SR 59119A, and such as those disclosed in U.S. Patent Application Nos. 5,705,515, and U.S. Pat. No. 5,451,677 and PCT Patent Publications WO94/18161, WO95/29159, WO97/46556, WO98/04526 and W098/32753, WO 01/74782, and WO 02/32897; (6) pancreatic lipase inhibitors, such as orlistat (Xenical®), cetilistat, Triton WR1339, RHC80267, lipstatin, tetrahydrolipstatin, teasaponin, diethylumbelliferyl phosphate, and those disclosed in PCT Application No. WO 01/77094; (7) neuropeptide Y1 antagonists, such as B1BP3226, J-115814, BIBO 3304, LY-357897, CP-671906, GI-264879A, and those disclosed in U.S. Pat. No. 6,001,836, and PCT Patent Publication Nos. WO 96/14307, WO 01/23387, WO 99/51600, WO 01/85690, WO 01/85098, WO 01/85173, and WO 01/89528; (8) neuropeptide Y5 antagonists, such as GW-569180A, GW-594884A, GW-587081X, GW-548118X, FR226928, FR 240662, FR252384, 1229U91, GI-264879A, CGP71683A, LY-377897, PD-160170, SR-120562A, SR-120819A and JCF-104, and those disclosed in U.S. Pat. Nos. 6,057,335; 6,043,246; 6,140,354; 6,166,038; 6,180,653; 6,191,160; 6,313,298; 6,335,345; 6,337,332; 6,326,375; 6,329,395; 6,340,683; 6,388,077; 6,462,053; 6,649,624; and 6,723,847, hereby incorporated by reference in their entirety; European Patent Nos. EP-01010691, and EP-01044970; and PCT International Patent Publication Nos. WO 97/19682, WO 97/20820, WO 97/20821, WO 97/20822, WO 97/20823, WO 98/24768; WO 98/25907; WO 98/25908; WO 98/27063, WO 98/47505; WO 98/40356; WO 99/15516; WO 99127965; WO 00/64880, WO 00/68197, WO 00/69849, WO 01/09120, WO 01/14376; WO 01/85714, WO 01/85730, WO 01/07409, WO 01/02379, WO 01/02379, WO 01/23388, WO 01/23389, WO 01/44201, WO 01/62737, WO 01/62738, WO 01/09120, WO 02/22592, WO 0248152, and WO 02/49648; WO 02/094825; WO 03/014083; WO 03/10191; WO 03/092889; WO 04/002986; and WO 04/031175; (9) melanin-concentrating hormone (MCH) receptor antagonists, such as those disclosed in WO 01/21577 and WO 01/21169; (10) melanin-concentrating hormone 1 receptor (MCH1R) antagonists, such as T-226296 (Takeda), and those disclosed in PCT Patent Application Nos. WO 01/82925, WO 01/87834, WO 02/051809, WO 02/06245, WO 02/076929, WO 02/076947, WO 02/04433, WO 02/51809, WO 02/083134, WO 02/094799, WO 03/004027, and Japanese Patent Application Nos. JP 13226269, and JP 2004-139909; (11) melanin-concentrating hormone 2 receptor (MCH2R) agonist/antagonists; (12) orexin-1 receptor antagonists, such as SB-334867-A, and those disclosed in PCT Patent Application Nos. WO 01/96302, WO 01/68609, WO 02/51232, and WO 02/51838; (13) serotonin reuptake inhibitors such as fluoxetine, paroxetine, and sertraline, and those disclosed in U.S. Patent Application No. 6,365,633, and PCT Patent Application Nos. WO 01/27060 and WO 01/162341; (14) melanocortin agonists, such as Melanotan II, CFI1R86036 (Chiron), ME-10142, and ME-10145 (Melacure), CH1R86036 (Chiron); PT-141, and PT-14 (Palatin); (15) other MC4R (melanocortin 4 receptor) agonists, such as those disclosed in: U.S. Pat. Nos. 6,410,548; 6,294,534; 6,350,760; 6,458,790; 6,472,398; 6,376,509; and 6,818,658; US Patent Publication No. US2002/0137664; US2003/0236262; US2004/009751; US2004/0092501; and PCT Application Nos. WO 99/64002; WO 00/74679; WO 01/70708; WO 01/70337; WO 01/74844; WO 01/91752; WO 01/991752; WO 02/15909; WO 02/059095; WO 02/059107; WO 02/059108; WO 02/059117; WO 02/067869; WO 02/068387; WO 02/068388; WO 02/067869; WO 02/11715; WO 02/12166; WO 02/12178; WO 03/007949; WO 03/009847; WO 04/024720; WO 04/078716; WO 04/078717; WO 04/087159; WO 04/089307; and WO 05/009950; (16) 5HT-2 agonists; (17) 5HT2C (serotonin receptor 2C) agonists, such as BVT933, DPCA37215, WAY161503, R-1065, and those disclosed in U.S. Pat. No. 3,914,250, and PCT Application Nos, WO 02/36596, WO 02/48124, WO 02/10169, WO 01/66548, WO 02/44152, WO 02/51844, WO 02/40456, and WO 02/40457; (18) galanin antagonists; (19) CCK agonists; (20) CCK-1 agonists (cholecystokinin -A) agonists, such as AR-R 15849, GI 181771, JMV-180, A-71378, A-71623 and SR146131, and those discribed in U.S. Pat. No. 5,739,106; (21) GLP-1 agonists; (22) corticotropin-releasing hormone agonists; (23) histamine receptor-3 (H3) modulators; (24) histamine receptor-3 (H3) antagonists/inverse agonists, such as hioperamide, 3-(1H-imidazol-4-yl)propyl N-(4-pentenyl)carbamate, clobenpropit, iodophenpropit, imoproxifan, GT2394 (Gliatech), and those described and disclosed in PCT Application No. WO 02/15905, and O-[3-(1H-imidazol-4-yl)propanol]-carbamates (Kiec-Kononowicz, K. et al., Pharmazie, 55:349-55 (2000)), piperidine-containing histamine H3-receptor antagonists (Lazewska, D. et al., Pharmazie, 56:927-32 (2001), benzophenone derivatives and related compounds (Sasse, A. et al., Arch. Pharm. (Weinheim) 334:45-52 (2001)), substituted N-phenylcarbamates (Reidemeister, S. et al., Pharmazie, 55:83-6 (2000)), and proxifan derivatives (Sasse, A. et al., J. Med. Chem. 43:3335-43 (2000)); (25) β-hydroxy steroid dehydrogenase-1 inhibitors (β-HSD-1); (26) PD (phosphodiesterase) inhibitors, such as theophylline, pentoxifylline, zaprinast, amrinone, milrinone, cilostamide, rolipram, and cilomilast; (27) phosphodiesterase-3B (PDE3B) inhibitors; (28) NE (norepinephrine) transport inhibitors, such as GW 320659, despiramine, talsupram, and nomifensine; (29) ghrelin receptor antagonists, such as those disclosed in PCT Application Nos. WO 01/87335, and WO 02/08250; (30) leptin, including recombinant human leptin (PEG-OB, Hoffman La Roche) and recombinant methionyl human leptin (Amgen); (31) leptin derivatives, such as those disclosed in U.S. Pat. Nos. 5,552,524, 5,552,523, 5,552,522, 5,521,283, and PCT International Publication Nos. WO 96/23513, WO 96/23514, WO 96/23515, WO 96/23516, WO 96/23517, WO 96/23518, WO 96/23519, and WO 96/23520; (32) other BRS3 (bombesin receptor subtype 3) agonists such as [D-Phe6,beta-Ala11,Phe13,Nle14]Bn(6-14) and [D-Phe6,Phe13]Bn(6-13)propylamide, and those compounds disclosed in Pept. Sci. 2002 August; 8(8): 461-75); (33) CNTF (Ciliary neurotrophic factors), such as GI-181771 (Glaxo-SmithKline), SR146131 (Sanofi Synthelabo), butabindide, PD170,292, and PD 149164 (Pfizer); (34) CNTF derivatives, such as axokine (Regeneron), and those disclosed in PCT Application Nos. WO 94/09134, WO 98/22128, and WO 99/43813; (35) monoamine reuptake inhibitors, such as sibutrarnine, and those disclosed in U.S. Pat. Nos. 4,746,680, 4,806,570, and 5,436,272, U.S. Patent Publication No. 2002/0006964 and PCT Application Nos. WO 01/27068, and WO 01/62341; (36) UCP-1 (uncoupling protein-1), 2, or 3 activators, such as phytanic acid, 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1-propenyl]benzoic acid (TTNPB), retinoic acid, and those disclosed in PCT Patent Application No. WO 99/00123; (37) thyroid hormone β agonists, such as KB-2611 (KaroBioBMS), and those disclosed in PCT Application No. WO 02/15845, and Japanese Patent Application No. JP 2000256190; (38) FAS (fatty acid synthase) inhibitors, such as Cerulenin and C75; (39) DGAT1 (diacylglycerol acyltransferase 1) inhibitors; (40) DGAT2 (diacylglycerol acyltransferase 2) inhibitors; (41) ACC2 (acetyl-CoA carboxylase-2) inhibitors; (42) glucocorticoid antagonists; (43) acyl-estrogens, such as oleoyl-estrone, disclosed in del Mar-Grasa, M. et al., Obesity Research, 9:202-9 (2001); (44) dipeptidyl peptidase IV (DP-IV) inhibitors, such as isoleucine thiazolidide, valine pyrrolidide, NVP-DPP728, LAF237, P93/01, TSL 225, TMC-2A/2B/2C, FE 999011, P9310/K364, VIP 0177, SDZ 274-444 and sitagliptin; and the compounds disclosed in US Patent No. U.S. Pat. No. 6,699,871, which is incorporated herein by reference; and International Patent Application Nos. WO 03/004498; WO 03/004496; EP 1 258 476; WO 02/083128; WO 02/062764; WO 03/000250; WO 03/002530; WO 03/002531; WO 03/002553; WO 03/002593; WO 03/000180; and WO 03/000181; (45) dicarboxylate transporter inhibitors; (46) glucose transporter inhibitors; (47) phosphate transporter inhibitors; (48) Metformin (Glucophage®); (49) Topiramate (Topimax®); (50) peptide YY, PYY 3-36, peptide YY analogs, derivatives, and fragments such as BTM-43073D, BTM-43004C (Olitvak, D. A. et al., Dig. Dis. Sci. 44(3):643-48 (1999)), and those disclosed in U.S. Pat. No. 5,026,685, U.S. Pat. No. 5,604,203, U.S. Pat. No. 5,574,010, U.S. Pat. No. 5, 696,093, U.S. Pat. No. 5,936,092, U.S. Pat. No. 6,046, 162, U.S. Pat. No. 6,046,167, U.S. Pat. No. 6,093,692, U.S. Pat. No. 6,225,445, U.S. Pat. No. 5,604,203, U.S. Pat. No. 4,002,531, U.S. Pat. No. 4, 179,337, U.S. Pat. No. 5,122,614, U.S. Pat. NO. 5,349,052, U.S. Pat. No. 5,552,520, U.S. Pat. No. 6, 127,355, WO 95/06058, WO 98/32466, WO 03/026591, WO 03/057235, WO 03/027637, and WO 2004/066966; (51) Neuropeptide Y2 (NPY2) receptor agonists such NPY3-36, N acetyl [Leu(28,31)] NPY 24-36, TASP-V, and cyclo-(28/32)-Ac-[Lys28-Glu32]-(25-36)-pNPY; (52) Neuropeptide Y4 (NPY4) agonists such as pancreatic peptide (PP) as described in Batterham et al., J. Clin. Endocrinol. Metab. 88:3989-3992 (2003), and other Y4 agonists such as 1229U91; (53) cyclooxygenase-2 inhibitors such as etoricoxib, celecoxib, valdecoxib, parecoxib, lumiracoxib, BMS347070, tiracoxib or JTE522, ABT963, CS502 and GW406381, and pharmaceutically acceptable salts thereof; (54) Neuropeptide Y1 (NPY1) antagonists such as B1BP3226, J-I 15814, BIBO 3304, LY-357897, CP-671906, GI-264879A and those disclosed in U.S. Pat. No. 6,001,836; and PCT Application Nos. WO 96/14307, WO 01/23387, WO 99/51600, WO 01/85690, WO 01/85098, WO 01/85173, and WO 01/89528; (55) Opioid antagonists such as nalmefene (Revex®), 3-methoxynaltrexone, naloxone, naltrexone, and those disclosed in: PCT Application No. WO 00/21509; (57) 11β HSD-1 (11-beta hydroxy steroid dehydrogenase type 1) inhibitors such as BVT 3498, BVT 2733, and those disclosed in WO 01/90091, WO 01/90090, WO 01/90092, and U.S. Pat. No. 6,730,690 and US Publication No. US 2004-0133011, which are incorporated by reference herein in their entirety; (56) aminorex; (57) amphechloral; (58) amphetamine; (59) benzphetamine; (60) chlorphentermine; (61) clobenzorex; (62) cloforex; (63) clominorex; (64) clortermine; (65) cyclexedrine; (66) dextroamphetamine; (67) diphemethoxidine, (68) N-ethylamphetamine; (69) fenbutrazate; (70) fenisorex; (71) fenproporex; (72) fludorex; (73) fluminorex; (74) furfurylmethylamphetamine; (75) levamfetamine; (76) levophacetoperane; (77) mefenorex; (78) metamfepramone; (79) methamphetamine; (80) norpseudoephedrine; (81) pentorex; (82) phendimetrazine; (83) phenmetrazine; (84) picilorex; (85) phytopharm 57; (86) zonisamide, (87) neuromedin U and analogs or derivatives thereof, (88) oxyntomodulin and analogs or derivatives thereof, (89) Neurokinin-1 receptor antagonists (NK-1 antagonists) such as the compounds disclosed in: U.S. Pat. Nos. 5,162,339, 5,232,929, 5,242,930, 5,373,003, 5,387,595, 5,459,270, 5,494,926, 5,496,833, and 5,637,699; (90) Qnexa; (91) smoking cessation agents, such as nicotine agonists, partial nicotine agonists, such as varenicline, monoamine oxidase inhibitors (MAOIs), antidepressants such as bupropion, doxepine, and nortriptyline; and anxiolytic agents such as buspirone or clonidine.
  • Specific compounds of use in combination with a compound of the present invention include: simvastatin, mevastatin, ezetimibe, atorvastatin, sitagliptin, metformin, sibutramine, orlistat, Qnexa, topiramate, naltrexone, bupriopion, phentermine, and losartan, losartan with hydrochlorothiazide. Specific CB1 antagonists/inverse agonists of use in combination with a compound of the present invention include: those described in WO03/077847, including: N-[3-(4-chlorophenyl)-2(S)-phenyl-1(S)-methylpropyl]-2-(4-trifluoromethyl-2-pyrimidyloxy)-2-methylpropanamide, N-[3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-(5-trifluoromethyl-2-pyridyloxy)-2-methylpropanamide, N-[3-(4-chlorophenyl)-2-(5-chloro-3-pyridyl)-1-methylpropyl]-2-(5-trifluoromethyl-2-pyridyloxy)-2-methylpropanamide, and pharmaceutically acceptable salts thereof; as well as those in WO05/000809, which includes the following: 3-{1-[bis(4-chlorophenyl)methyl]azetidin-3-ylidene}-3-(3,5-difluorophenyl)-2,2-dimethylpropanenitrile, 1-{1-[1-(4-ehlorophenyl)pentyl]azetidin-3-yl}-1-(3,5-difluorophenyl)-2-methylpropan-2-ol. 3-((S)-(4-chlorophenyl){3-[(1S)-1-(3,5-difluorophenyl)-2-hydroxy-2-methylpropyl]azetidin-1-yl}methyl)benzonitrile, 3-((S)-(4-chl orophenyl){3-[(1S)-1-(3,5-difluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}methyl)benzonitrile, 3-((4-chlorophenyl){3-[1-(3,5-difluorophenyl)-2,2-dimethylpropyl]azetidin-1-yl}methyl)benzonitrile, 3-((1S)-1-{1-[(S)-(3-cyanophenyl)(4-cyanophenypmethyl]azetidin-3-yl}-2-fluoro-2-methylpropyl)-5-fluorobenzonitrile, 3-[(S)-(4-chlorophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(4H-1,2,4-triazol-4-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, and 5-((4-chlorophenyl){3-[(1S)-1-(3,5-difluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}methyl)thiophene-3-carbonitrile, and pharamecueitcally acceptable salts thereof; as well as: 3-[(S)-(4-chlorophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(S)-(4-chlorophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(1,3,4-oxadiazol-2-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(S)-(3-{(1S)-1-[3-(5-amino-1,3,4-oxadiazol-2-yl)-5-fluorophenyl]-2-fluoro-2-methylpropyl}azetidin-1-yl)(4-chlorophenyl)methyl]benzonitrile, 3-[(S)-(4-cyanophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(S)-(3-{(1S)-1-[3-(5-amino-1,3,4-oxadiazol-2-yl)-5-fluorophenyl]-2-fluoro-2-methylpropyl}azetidin-1-yl)(4-cyanophenyl)methyl]benzonitrile, 3-[(S)-(4-cyanophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(1,3,4-oxadiazol-2-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(S)-(4-chlorophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(1,2,4-oxadiazol-3-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(1S)-1-(1-{(S)-(4-cyanophenyl)[3-(1,2,4-oxadiazol-3-yl)phenyl]-methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 5-(3-{(1-[1-(diphenylmethyl)azetidin-3-yl]-2-fluoro-2-methylpropyl}-5-fluorophenyl)-1H-tetrazole, 5-(3-{1-[1-(diphenylmethyl)azetidin-3-yl]-2-fluoro-2-methylpropyl}-5-fluorophenyl)-1-methyl-1H-tetrazole, 5-(3-{1-[1-(diphenylmethyl)azetidin-3-yl]-2-fluoro-2-methylpropyl}-5-fluorophenyl)-2-methyl-2H-tetrazole, 3-[(4-chlorophenyl)(3-{2-fluoro-1-[3-fluoro-5-(2-methyl-2H-tetrazol-5-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(4-chlorophenyl)(3-{2-fluoro-1-[3-fluoro-5-(1-methyl-1H-tetrazol-5-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(4-cyanophenyl)(3-{2-fluoro-1-[3-fluoro-5-(1-methyl-1H-tetrazol-5-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(4-cyanophenyl)(3-{2-fluoro-1-[3-fluoro-5-(2-methyl-2H-tetrazol-5-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile , 5-{3-[(S)-{3-[(1S)-1-(3-bromo-5-fluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}(4-chlorophenyl)methyl]phenyl}-1,3,4-oxadiazol-2(3H)-one, 3-[(1S)-1-(1-{(S)-(4-chlorophenyl)[3-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 3-[(1S)-1-(1-{(S)-(4-cyanophenyl)[3-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 3-[(1S)-1-(1-{(S)-(4-cyanophenyl)[3-(1,3,4-oxadiazol-2-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 3-[(1S)-1-(1-{(S)-(4-chlorophenyl)[3-(1,3,4-oxadiazol-2-yl)phenyl]methyl}azetidin-3-yl)-2-fluro-2-methylpropyl]-5-fluorobenzonitrile, 3-(((1S)-1-{1-[(S)-[3-(5-amino-1,3,4-oxadidazol-2-yl)phenyl](4-chlorophenyl)methyl]azetidin-3-yl}-2-fluoro-2-methylpropyl)-5-fluorobenzonitrile, 3-((1S)-1-{1-[(S)-[3-(5-amino-1,3,4-oxadiazol-2-yl)phenyl](4-cyanophenyl)methyl]azetidin-3-yl}-2-fluoro-2-methylpropyl)-5-fluorobenzonitrile, 3-[(1S)-1-(1-{(S)-(4-cyanophenyl)[3-(1,2,3-oxadiazol-3-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 3-[(1S)-1-(1-{(S)-(4-chlorophenyl)[3-(1,2,4-oxadiazol-3-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 5-[3-((S)-(4-chlorophenyl){3-[(1S)-1-(3,5-difluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}methyl)phenyl]-1,3,4-oxadiazol-2(3H)-one, 5-[3-((S)-(4-chlorophenyl){3-[(1S)-1-(3,5-difluorophenyI)-2-fluoro-2-methylpropyl]azetidin-1-yl}methyl)phenyl]-1,3,4-oxadiazol-2(3H)-one, 4-{(S)-{3-[(1S)-1-(3,5-difluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}[3-(5-oxo-4,5-dihydro-1,3 ,4-oxadiazol-2-yl)phenyl]methyl}-benzonitrile, and pharmaceutically acceptable salts thereof.
  • Specific NPY5 antagonists of use in combination with a compound of the present invention include: 3-oxo-N-(5-phenyl-2-pyrazinyl)-spiro[isobenzofiiran-1(3H),4′-piperidine]-1′-carboxamide, 3-oxo-N-(7-trifluoromethylpyrido[3,2-b]pyridin-2-yl)spiro-[isobenzofuran-1(3H),4′-piperidine]-1′-carboxamide, N-[5-(3-fluorophenyl)-2-pyrimidinyl]-3-oxospiro-[isobenzofuran-1(3H),4′-piperidine]-1′-carboxamide, trans-3′-oxo-N-(5-phenyl-2-pyrimidinyl)spiro[cyclohexane-1,1′(3′H)-isobenzofuran]-4-carboxamide, trans-3′-oxo-N-[1-(3-quinolyl)-4-imidazolyl]spiro[cyclohexane-1,1′(3′H)-isobenzofuran]-4-carboxamide, trans-3-oxo-N-(5-phenyl-2-pyrazinyl)spiro[4-azaiso-benzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-N-[5-(3-fluorophenyl)-2-pyrimidinyl]-3-oxospiro[5-azaisobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-N-[5-(2-fluorophenyl)-2-pyrimidinyl]-3-oxospiro[5-azaisobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-N-[1-(3,5-difluorophenyl)-4-imidazolyl]-3-oxospiro[7-azaisobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-3-oxo-N-(1-phenyl-4-pyrazolyl)spiro[4-azaisobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-N-[1-(2-fluorophenyl)-3-pyrazolyl]-3-oxospiro[6-azaisobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-3-oxo-N-(1-phenyl-3-pyrazolyl)spiro[6-azaisobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-3-oxo-N-(2-phenyl-1,2,3-triazol-4-yl)spiro[6-azaisobenzofuran-1′(3H),1′-cyclohexane]-4′-carboxamide, and pharmaceutically acceptable salts and esters thereof.
  • Specific ACC-1/2 inhibitors of use in combination with a compound of the present invention include: 1′-[(4,8-dimethoxyquinolin-2-yl)carbonyl]-6-(1H-tetrazol-5-yl)spiro[chroman-2,4′-piperidin]-4-one; (5-{1′-[(4,8-dimethoxyquinolin-2-yl)carbonyl]-4-oxospiro[chroman-2,4′-piperidin]-6-yl}-2H-tetrazol-2-yl)methyl pivalate; 5-{1′-[(8-cyclopropyl-4-methoxyquinolin-2-yl)carbonyl]-4-oxospiro[chroman-2,4′-piperidin]-6-yl}nicotinic acid; 1′-(8-methoxy-4-morpholin-4-yl-2-naphthoyl)-6-(1H-tetrazol-5-yl)spiro[chroman-2,4′-piperidin]-4-one; and 1′-[(4-ethoxy-8-ethylquinolin-2-yl)carbonyl]-6-(1H-tetrazol-5-yl)spiro[chroman-2,4′-piperidin]-4-one; and pharmaceutically acceptable salts and esters thereof. Specific MCHIR antagonist compounds of use in combination with a compound of the persent invention include: 1-{4-[(1-ethylazetidin-3-yl)oxy]phenyl}-4-[(4-fluorobenzyl)oxy]pyridin-2(1H)-one, 4-[(4-fluorobenzyl)oxy]-1-{4-[(1-isopropylazetidin-3-yl)oxy]phenyl}pyridin-2(1H)-one, 1-[4-(azetidin-3-yloxy)phenyl]-4-[(5-chloropyridin-2-yl)methoxy]pyridin-2(1H)-one, 4-[(5-chloropyridin-2-yl)methoxy]-1-{4-[(1-ethylazetidin-3-yl)oxy]phenyl}pyridin-2(1H)-one, 4-[(5-chloropyridin-2-yl)methoxy]-1-{4-[(1-propylazetidin-3-yl)oxy]phenyl}pyridin-2(1H)-one, and 4-[(5-chloropyridin-2-yl)methoxy]-1-(4-{[(2S)-1-ethylazetidin-2-yl]methoxy}phenyl)pyridin-2(1H)-one, or a pharmaceutically acceptable salt thereof.
  • Specific DP-IV inhibitors of use in combination with a compound of the present invention are selected from 7-[(3R)-3-amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(trifluoromethyl)-5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyrazine. In particular, the compound of formula I is favorably combined with 7-[(3R)-3-amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(trifluoromethyl)-5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyrazine, and pharmaceutically acceptable salts thereof.
  • Specific 113 (histamine H3) antagonists/inverse agonists of use in combination with a compound of the present invention include: those described in WO05/077905, including:3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2-ethylpyrido[2,3-d]-pyrimidin-4(3H)-one, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2-methylpyrido[4,3-d]pyrimidin-4(3H)-one, 2-ethyl-3-(4-{3-[(3S)-3-methylpiperidin-1-yl]propoxy}phenyl)pyrido[2,3-d]pyrimidin-4(3H)-one 2-methyl-3-(4-{3-[(3S)-3-methylpiperidin-1-yl]propoxy}phenyl)pyrido[4,3-d]pyrimidin-4(3H)-one, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2,5-dimethyl-4(3H)-quinazoline, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2-methyl-5-trifluoromethyl-4(3H)-quinazoline, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-5-methoxy-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-5-fluoro-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-7-fluoro-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-6-methoxy-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-6-fluoro-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-8-fluoro-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclopentyl-4-piperidinyl)oxy]phenyl}-2-methylpyrido[4,3-d]pyrimidin-4(3H)-one, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-6-fluoro-2-methylpyrido[3,4-d]pyrimidin-4(3H)-one, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2-ethylpyrido[4,3-d]pyrimidin-4(3H)-one, 6-methoxy-2-methyl-3-{4-[3-(1-piperidinyl)propoxy]phenyl}pyrido[3,4-d]pyrimidin-4(3H)-one, 6-methoxy-2-methyl-3-{4-[3-(1-pyrrolidinyppropoxy]phenyl}pyrido[3,4-d]pyrimidin-4(3H)-one, 2,5-dimethyl-3-{4-[3-(1-pyrrolidinyl)propoxy]phenyl}-4(3H)-quinazolinone, 2-methyl-3-{4-[3-(1-pyrrolidinyl)propoxy]phenyl}-5-trifluoromethyl-4(3H)-quinazolinone, 5-fluoro-2-methyl-3-{4-[3-(1-piperidinyl)propoxy]phenyl}-4(3H)-quinazolinone, 6-methoxy-2-methyl-3-{4-[3-(1-piperidinyl)propoxy]phenyl}-4(3H)-quinazolinone, 5-methoxy-2-methyl-3-(4-{3-[(3S)-3-methylpiperidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, 7-methoxy-2-methyl-3-(4-{3-[(3 S)-3-methylpiperidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, 2-methyl-3-(4-{3-[(3S)-3-methylpiperidin-1-yl]propoxy}phenyl)pyrido[2,3-d]pyrimidin-4(3H)-one, 5-fluoro-2-methyl-3-(4-{3-[(2R)-2-methylpyrrolidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, 2-methyl-3-(4-{3-[(2R)-2-methylpyrrolidin-1-yl]propoxy}phenyl)pyrido[4,3-d]pyrimidin-4(3H)-one, 6-methoxy-2-methyl-3-(4-{3-[(2R)-2-methylpyrrolidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, 6-methoxy-2-methyl-3-(4-{3-[(2S)-2-methylpyrrolidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, and pharmaceutically acceptable salts thereof.
  • Specific CCK1R agonists of use in combination with a compound of the present invention include: 3-(4-{[1-(3-ethoxyphenyl)-2-(4-methylphenyl)-1H -imidazol-4-yl]carbonyl}-1-piperazinyl)-1-naphthoic acid; 3-(4-{[1-(3-ethoxyphenyl)-2-(2-fluoro-4-methylphenyl)-1H-imidazol-4-yl]carbonyl}-1-piperazinyl)-1-naphthoic acid; 3-(4-{[1-(3-ethoxyphenyl)-2-(4-fluorophenyl)-1H -imidazol-4-yl]carbonyl}-1-piperazinyl)-1-naphthoic acid; 3-(4-{[1-(3-ethoxyphenyl)-2-(2,4-difluorophenyl)-1H -imidazol-4-yl]carbonyl}-1-piperazinyl)-1-naphthoic acid; and 3-(4-{[1-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-(4-fluorophenyl)-1H-imidazol-4-yl]carbonyl1-1-piperazinyl)-1-naphthoic acid; and pharmaceutically acceptable salts thereof.
  • Specific MC4R agonists of use in combination with a compound of the present invention include: 1) (5S)-1′-{[(3R,4R)-1-tert-butyl-3-(2,3,4-trifluorophenyl)piperidin-4-yl]carbonyl}-3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidine]; 2) (5R)-1′-{[(3R,4R)-1-tert-butyl-3-(2,3,4-trifluorophenyl)-piperidin-4-yl]carbonyl}-3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidine]; 3)2-(1′-{[3S,4R)-1-tert-butyl-4-(2,4-difluorophenyl)pyrrolidin-3-yl]carbonyl}-3-chloro-2-methyl-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidin]-5-yl)-2-methylpropanenitrile; 4) 1′-{[(3,5,4R)-1-tert-butyl-4-(2,4-difluorophenyl)pyrrolidin-3-yl]carbonyl}-3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidine]; 5) N-[(3R,4R)-3-({3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-1′H,5H-spiro[furo-[3,4-b]pyridine-7,4′-piperidin]-1′-yl}carbonyl)-4-(2,4-difluorophenyl)-cyclopentyl]-N-methyltetrahydro-2H-pyran-4-amine; 6) 2-[3-chloro-1′-({(1R,2R)-2-(2,4-difluorophenyl)-4-[methyl(tetrahydro-2H-pyran-4-yl)amino]-cyclopentyl}-carbonyl}-2-methyl-5H-spiro[furo[3,4-b pyridine-7,4′-piperidin]-5-yl]-2-methyl-propane-nitrile; and pharmaceutically acceptable salts thereof. Still further, neurokinin-1 (NK-1) receptor antagonists may be favorably employed in combination with a compound of the present invention. NK-1 receptor antagonists of use in the present invention are fully described in the art. Specific neurokinin-1 receptor antagonists of use in the present invention include: (±)-(2R3R,2S3S)-N-{[2-cyclopropoxy-5-(trifluoromethoxy)-phenyl]methyl}-2-phenylpiperidin-3-amine ; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(3-(5-oxo-1H,4H-1,2,4-triazolo)methyl)morpholine; aperpitant; C.117493; GW597599; GW679769; R673; RO67319; R1124; R1204; SSR146977; SSR240600; T-2328; and T2763.; or a pharmaceutically acceptable salts thereof. Examples of other anti-obesity agents that can be employed in combination with a compound of formula I are disclosed in “Patent focus on new anti-obesity agents,” Exp. Opin. Ther. Patents, 10: 819-831 (2000); “Novel anti-obesity drugs,” Exp. Opin. Invest. Drugs, 9: 1317-1326 (2000); and “Recent advances in feeding suppressing agents: potential therapeutic strategy for the treatment of obesity, Exp. Opin. Ther. Patents, 11: 1677-1692 (2001). The role of neuropeptide Y in obesity is discussed in Exp. Opin. Invest. Drugs, 9: 1327-1346 (2000). Cannabinoid receptor ligands are discussed in Exp. Opin. Invest. Drugs, 9: 1553-1571 (2000).
  • Another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor.
  • More particularly, another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor wherein the HMG-CoA reductase inhibitor is a statin. Even more particularly, another aspect of the invention that is of interest relates to a method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor, wherein the HMG CoA reductase inhibitor is a statin selected from the group consisting of lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, rosuvastatin and rivastatin.
  • Another aspect of the invention that is of interest relates to a method of reducing the risk of developing a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, and the sequelae of such conditions, delaying the onset or reducing the risk of developing said condition, comprising administering to a mammalian patient in need of such treatment therapeutically effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor.
  • More particularly, another aspect of the invention that is of interest relates to a method for delaying the onset of, or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula I as described above and an HMG-CoA reductase inhibitor wherein the HMG-CoA reductase inhibitor is a statin, and even more particularly, a statin selected from the group consisting of: lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, rosuvastatin and rivastatin.
  • Yet even more particularly, another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of foiinula I as described above and an HMG-CoA reductase inhibitor wherein the HMG-CoA reductase inhibitor is simvastatin, atorvastatin or rosuvastatin.
  • Another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula as described above and a cholesterol absorption inhibitor. More particularly, another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula I as described above and a cholesterol absorption inhibitor wherein the cholesterol absorption inhibitor is ezetimibe.
  • Another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing the other diseases and conditions mentioned above, in a mammalian patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula I as described above, and a cholesterol absorption inhibitor.
  • More particularly, another aspect of the invention that is of interest relates to a method for delaying the onset or reducing the risk of developing the other diseases and conditions mentioned above, in a human patient in need of such treatment comprising administering to said patient effective amounts of a compound of formula I as described above, and a cholesterol absorption inhibitor, wherein the cholesterol absorption inhibitor is ezetimibe.
  • Another aspect of the invention that is of interest relates to a method of treating, delaying the onset, or preventing a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I or a pharmaceutically acceptable salt or solvate thereof, and a CETP inhibiting. compound.
  • More particularly, an aspect of the invention that is of interest relates to a method of treating, delaying the onset, or preventing a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalian patient in need of such treatment, comprising administering to the patient therapeutically effective amounts of a compound of formula I or a pharmaceutically acceptable salt or solvate thereof, and a CETP inhibiting compound selected from torcetrapib and anacetrapib.
  • Another aspect of the invention that is of interest relates to a pharmaceutical composition comprising (1) a compound of formula I as described above; (2) a compound selected from the list provide above in combination with a pharmaceutically acceptable carrier.
  • One pharmaceutical composition that is of interest is comprised of a compound of formula I as described herein, or a pharmaceutically acceptable salt or solvate thereof, in combination with a DPP-IV inhibitor selected from the group consisting of:
  • Figure US20110281795A1-20111117-C00006
  • or a pharmaceutically acceptable salt or solvate thereof in combination with a pharmaceutically acceptable carrier.
  • Optical Isomers—Diastereomers—Geometric Isomers—Tautomers
  • Many of the compounds of formula I contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers. The present invention includes all such isomeric forms of the compounds, in pure form as well as in mixtures.
  • Some of the compounds described herein contain olefinic double bonds, and unless specified otherwise, are meant to include both E and Z geometric isomers.
  • Some of the compounds described herein may exist with different points of attachment of hydrogen, referred to as tautomers. Such an example may be a ketone and its enol form known as keto-enol tautomers. The individual tautomers as well as mixtures thereof are encompassed with the compounds of Formula I.
  • Salts and Solvates
  • Salts and solvates of compounds of formula I are included in the present invention. The term “pharmaceutically acceptable salts” refers to salts prepared from pharmaceutically acceptable substantially non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids, as well as salts that can be converted into pharmaceutically acceptable salts. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, NN-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like.
  • When the compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonie, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like. Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
  • Solvates as used herein refers to the compound of formula I or a salt thereof, in association with a solvent, such as water. Representative examples include hydrates, hemihydrates, trihydrates and the like.
  • References to the compounds of Formula I are intended to include the pharmaceutically acceptable salts and solvates.
  • In the compounds described herein, the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature. The present invention is meant to include all suitable isotopic variations of the compounds of the formulas described herein. For example, different isotopic forms of hydrogen (H) include protium (1H) and deuterium (2H). Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples. Isotopically-enriched compounds within the formulas described herein can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
  • This invention relates to a method of inhibiting the activity of glucagon by antagonizing the glucagon receptor, thereby reducing the rate of gluconeogenesis and glycogenolysis, and the concentration of glucose in plasma.
  • The compounds of formula I can be used in the manufacture of a medicament for the prophylactic or therapeutic treatment of disease states in mammals associated with elevated levels of glucose, comprised of combining the compound of formula I with the carrier materials to provide the medicament.
  • Dose Ranges
  • The prophylactic or therapeutic dose of a compound of formula I will, of course, vary with the nature or severity of the condition to be treated, the particular compound selected and its route of administration. It will also vary according to the age, weight and response of the individual patient. In general, the daily dose range lies within the range of from about 0.001 mg to about 100 mg per kg body weight, preferably about 0.01 mg to about 50 mg per kg, and more preferably 0.1 to 10 mg per kg, in single or divided doses. It may be necessary to use dosages outside of these limits in some cases. The terms “effective amount”, “anti-diabetic effective amount” and the other terms appearing throughout the application addressing the amount of the compound to be used refer to the dosage ranges provided, taking into account any necessary variation outside of these ranges, as deteimined by the skilled physician.
  • Representative dosages of compounds of formula I, as well as the pharmaceutically acceptable salts and solvates thereof, for adults range from about 0.1 mg to about 1.0 g per day, preferably about 1 mg to about 500 mg, in single or divided doses. Examples of suitable dosages include 0.1mg, 1 mg, 2 mg, 5 mg, 10 mg, 20 mg, 40 mg, 50 mg, 75 mg, 100 mg, 150 mg, 200 mg, 250 mg, 500 mg, 1000 mg and similar such doses.
  • Representative dosages of compounds used in combination with the compounds of formula I are known, or the determination thereof is within the level of skill in the art, taking into account the description provided herein.
  • When intravenous or oral administration is employed, a representative dosage range is from about 0.001 mg to about 100 mg (preferably from 0.01 mg to about 10 mg) of a compound of Formula I per kg of body weight per day, and more preferably, about 0.1 mg to about 10 mg of a compound of formula I per kg of body weight per day.
  • Phaimaceutical Compositions
  • As mentioned above, the pharmaceutical composition comprises a compound of Formula I or a pharmaceutically acceptable salt or solvate thereof and a pharmaceutically acceptable carrier. The term “composition” encompasses a product comprising the active and inert ingredient(s), (pharmaceutically acceptable excipients) that make up the carrier, as well as any product which results, directly or indirectly, from the combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions between ingredients. Preferably the composition is comprised of a compound of formula I in an amount that is effective to treat, prevent or delay the onset of type 2 diabetes mellitus, in combination with the pharmaceutically acceptable carrier.
  • Any suitable route of administration may be employed for providing a mammal, especially a human, with an effective dosage of a compound of the present invention. For example, oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed. Examples of dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols and the like, with oral tablets being preferred.
  • In preparing oral compositions, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like, in the case of oral liquids, e.g., suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solids, e.g., powders, capsules and tablets. Solid oral preparations are preferred. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit forms. If desired, tablets may be coated by standard aqueous or nonaqueous techniques.
  • In addition to the common dosage forms set out above, the compounds of Formula I may also be administered by controlled release means and/or delivery devices such as those described in U.S. Pat. Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; 3,630,200 and 4,008,719.
  • Pharmaceutical compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion. Such compositions may be prepared by any acceptable pharmaceutical process. All such methods include the step of combining the active ingredient(s) with the carrier components. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient(s) with a liquid or finely divided solid carrier component, and then, if necessary, manipulating the blend into the desired product form. For example, a tablet may be prepared by compression or molding. Compressed tablets may be prepared by compressing free-flowing powder or granules, containing the active(s) optionally mixed with one or more excipients, e.g., binders, lubricants, diluents, surfactants and dispersants. Molded tablets may be made by molding a mixture of the powdered compound moistened with an inert liquid. Desirably, each tablet may contain, for example, from about 0.1 mg to about 1.0 g of the active ingredient and each cachet or capsule contains from about 0.1 mg to about 500 mg of the active ingredient.
  • The following are examples of pharmaceutical dosage forms containing a compound of Formula I:
  • Injectable
    Suspension (im.) mg/mL Tablet Mg/tablet
    Compound of 10.0 Compound of Formula 1 25.0
    Formula 1
    Methylcellulose 5.0 Microcrystalline 415
    Cellulose
    Tween 80 0.5 Povidone 14.0
    Benzyl alcohol 9.0 Pregelatinized Starch 4.0
    Benzalkonium 1.0 Magnesium Stearate 2.5
    chloride
    Water for injection t.d. 1.0 mL Total (approx.) 460 mg
  • Capsule mg/cagsule Aerosol Per Canister
    Compound of 25.0 Compound of Formula 1 250 mg
    Formula 1
    Lactose 735 Lecithin, NF Liq. Conc. 1.2 mg
    Mg Stearate 1.5 Trichloromethane, NF 4.025 g
    Total (approx.) 761.5 mg Dichlorodifluoro- 12.15 g
    methane, NF
  • Combination Therapy
  • As previously described, the compounds of Formula I may be used in combination with other drugs that are used in the treatment/prevention/delaying the onset of type 2 diabetes mellitus, as well as other diseases and conditions described herein, for which compounds of Formula I are useful. Other drugs may be administered, by a route and in an amount commonly used, contemporaneously or sequentially with a compound of Formula I. When a compound of Formula I is used contemporaneously with one or more other drugs, a combination pharmaceutical composition containing such other drugs in addition to the compound of Formula I is preferred. Accordingly, the pharmaceutical compositions of the present invention include those that alternatively contain one or more other active ingredients, in addition to a compound of Formula I. Examples of other active ingredients that may be combined with a compound of Formula I, either administered separately or in the same pharmaceutical compositions, include, but are not limited to: (a) biguanides (e g., buformin, metformin, phenformin), (b) PPAR agonists (e.g., troglitazone, pioglitazone, rosiglitazone), (c) insulin, (d) somatostatin, (e) alpha-glucosidase inhibitors (e.g., voglibose, miglitol, acarbose), (f) DPP-IV inhibitors, such as sitagliptin, vildagliptin, saxagliptin, and the like, such as those disclosed in U.S. Pat. No. 6,699,871B1 granted on Mar. 2, 2004 (g) LXR modulators and (h) insulin secretagogues (e.g., acetohexamide, carbutamide, chlorpropamide, glibomuride, gliclazide, glimerpiride, glipizide, gliquidine, glisoxepid, glyburide, glyhexamide, glypinamide, phenbutamide, tolazamide, tolbutamide, tolcyclamide, nateglinide and repaglinide), and CBI inhibitors, such as rimonabant and those compounds disclosed in WO03/077847A2 published on Sep. 25, 2003 and in WO05/000809 A1 published on Jan. 6, 2005.
  • An aspect of the invention that is particular interest relates to a pharmaceutical composition that is comprised of a compound of formula 1, or a pharmaceutically acceptable salt thereof, and a member selected from the group consisting of: simvastatin, mevastatin, ezetimibe, atorvastatin, metformin, sibutramine, orlistat, Qnexa, topiramate, naltrexone, bupriopion, phentermine, losartan, hydrochlorothiazide, buformin, phenformin, troglitazone, pioglitazone, rosiglitazone, insulin, somatostatin, voglibose, miglitol, acarbose, sitagliptin, vildagliptin, saxagliptin, alogliptin, acetohexamide, carbutamide, chlorpropamide, glibomuride, gliclazide, glimerpiride, glipizide, gliquidine, glisoxepid, glyburide, glyhexamide, glypinamide, phenbutamide, tolazamide, tolbutamide, tolcyclamide, nateglinide and repaglinide, rimonabant and taranabant, in combination with a pharmaceutically acceptable carrier.
  • The weight ratio of the compound of the Formula I to the second active ingredient may be varied within wide limits and depends upon the effective dose of each active ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the Formula I is combined with a PPAR agonist the weight ratio of the compound of the Formula I to the PPAR agonist will generally range from about 1000:1 to about 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the Formula I and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used.
  • When used in combination with other agents, the dosages noted above for the glucagon antagonist are provided along with the usual dose for the other medication. For example, when a DPP-IV inhibitor such as those disclosed in U.S. Pat. No. 6,699,871B1, is included, the DPP-IV inhibitor can be used in an amount ranging from about 1.0 mg to as high as about 1000mg, preferably about 2.5 mg to about 250 mg, and in particular, about 50 mg or about 100 mg administered in single daily doses or in divided doses as appropriate. Similarly, when the glucagon receptor antagonist is used in combination with a CB1 antagonist/inverse agonist, the CB1 antagonist/inverse agonist can be used in an amount ranging from as low as about 0.1 mg to as high as about 1000 mg, more particularly, in an amout ranging from about 1.0 mg to about 100 mg, and even more particularly, in an amount from about 1.0 mg to about 10 mg, administered in single daily doses or in divided doses as appropriate. Examples of doses of CB1 antagonist/inverse agonist include ling, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg and 20 mg.
  • Methods of Synthesis:
  • Compounds of the present invention can be prepared according to the Schemes provided below as well as the procedures provided in the Examples. The substituents are the same as in the above Formulas except where defined otherwise or otherwise apparent to the ordinary skilled artisan.
  • The novel compounds of the present invention can be readily synthesized using techniques known to those skilled in the art, such as those described, for example, in Advanced Organic Chemistry, March, 5th Ed., John Wiley and Sons, New York, N.Y., 2001; Advanced Organic Chemistry, Carey and Sundberg, Vol. A and B, 3rd Ed., Plenum Press, Inc., New York, N.Y., 1990; Protective groups in Organic Synthesis, Green and Wuts, 2nd Ed., John Wiley and Sons, New York, N.Y., 1991; Comprehensive Organic Transformations, Larock, Val Publishers, Inc., New York, N.Y., 1988; Handbook of Heterocyclic Chemistry, Katritzky and Pozharskii, 2nd Ed., Pergamon, New York, N.Y., 2000 and references cited therein. The starting materials for the present compounds may be prepared using standard synthetic transformations of chemical precursors that are readily available from commercial sources, including Aldrich Chemical Co. (Milwaukee, Wis.); Sigma Chemical Co. (St. Louis, Mo.); Lancaster Synthesis (Windham, N.H.); Ryan Scientific (Columbia, S.C.); Maybridge (Cornwall, UK); Matrix Scientific (Columbia, S. C.); Acros, (Pittsburgh, Pa.); BioBlocks, Inc. (San Diego, Calif.); and Trans World Chemicals (Rockville, Md.).
  • The procedures described herein for synthesizing the compounds may include one or more steps of protecting group manipulations and of purification, such as, re-crystallization, distillation, column chromatography, flash chromatography, thin-layer chromatography (TLC), and high-pressure chromatography (HPLC). The products can be characterized using various techniques well known in the chemical arts, including proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR), infrared and ultraviolet spectroscopy OR and UV), X-ray crystallography, elemental analysis and HPLC and mass spectrometry (HPLC-MS). Methods of protecting group manipulation, purification, structure identification and quantification are well known to one skilled in the art of chemical synthesis.
  • Appropriate solvents are those which will at least partially dissolve one or all of the reactants and will not adversely interact with either the reactants or the product. Suitable solvents are aromatic hydrocarbons (e.g, toluene, xylenes), halogenated solvents (e.g, methylene chloride, chloroform, carbontetrachloride, chlorobenzenes), ethers (e.g, diethyl ether, diisopropylether, tert-butyl methyl ether, diglyme, tetrahydrofuran, dioxane, anisole), nitriles (e.g, acetonitrile, propionitrile), ketones (e.g, 2-butanone, dithyl ketone, Cert-butyl methyl ketone), alcohols (e.g, methanol, ethanol, n-propanol, iso-propanol, n-butanol, t-butanol), N,N-dimethyl formamide (DMF), dimethylsulfoxide (DMSO) and water, Mixtures of two or more solvents can also be used. Suitable bases are, generally, alkali metal hydroxides, alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, barium hydroxide, and calcium hydroxide; alkali metal hydrides and alkaline earth metal hydrides such as lithium hydride, sodium hydride, potassium hydride and calcium hydride; alkali metal amides such as lithium amide, sodium amide and potassium amide; alkali metal carbonates and alkaline earth metal carbonates such as lithium carbonate, sodium carbonate, cesium carbonate, sodium hydrogen carbonate, and cesium hydrogen carbonate; alkali metal alkoxides and alkaline earth metal alkoxides such as sodium methoxide, sodium ethoxide, potassium tert-butoxide and magnesium ethoxide; alkali metal alkyls such as methyllithium, n-butyllithium, sec-butyllithium, t-bultyllithium, phenyllithium, alkyl magnaesium halides, organic bases such as trimethylamine, triethylamine, triisopropylamine, N,N-diisopropylethyl amine, piperidine, N-methyl piperidine, morpholine, N-methyl morpholine, pyridine, collidines, lutidines, and 4-dimethylaminopyridine; and bicyclic amines such as DBU and DABCO.
  • It is understood that the functional groups present in compounds described in the Schemes below can be further manipulated, when appropriate, using the standard functional group transformation techniques available to those skilled in the art, to provide desired compounds described in this invention.
  • Throughout the synthesis schemes, abbreviations are used with the following meanings unless otherwise indicated:
  • AIBN = azobisisobutyronitrile aq = aqueous
    BINAP = 2,2′-bis(diphenylphosphino)- Bn = benzyl
    1,1′-binaphthalene
    BOC, Boc = t-butyloxycarbonyl BOP = benzotriazol-1-yloxy-
    tris(dimethylamino)-phosphonium
    hexafluorophosphate
    Bu = butyl, t-Bu = t-butyl BuLi, n-BuLi = n-butyllithium
    CBZ, Cbz = Benzyloxycarbonyl CDI = 1,1′-carbonyldiimidazole
    (S)-DAIPEN = (S)-1,1-di(4-anisyl)-2- dba = dibenzylideneacetone = trans,trans-
    isopropyl-1,2-ethylenediamine = (S)-1,1- 1,5-diphenyl-1,4-pentadien-3-one
    bis(4-methoxyphenyl)-3-methylbutane-
    1,2-diamine
    DCM = dichloromethane 2,4-diClPh = 2,4-dichlorophenyl
    DIEA = diisopropylethylamine DMAP = 4-Dimethylaminopyridine
    DMF = N,N-dimethylformamide DMS = dimethyl sulfide
    DMSO = dimethyl sulfoxide dppf = 1,1′-bis(diphenylphosphino)ferrocene
    EDC = 1-ethyl-3-(3- eq. = equivalent(s)
    dimethylaminopropyl)-carbodiimide
    Et = ethyl EtOAc = ethyl acetate
    EtOH = ethanol g = gram(s)
    HOBT, HOBt = 1-hydroxybenzotriazole HPLC = High pressure liquid
    chromatography
    IPA = isopropanol = 2-propanol iPr = isopropyl = 2-propyl
    KHMDS = potassium KOtBu = potassium tert-butoxide
    bis(trimethylsilyl)amide
    LC/MS = liquid chromatography - mass LDA = lithium diisopropylamide
    spectrometry
    LHMDS = lithium M = molar
    bis(trimethylsilyl)amide
    mCPBA = 3-chloroperoxybenzoic acid Me = methyl
    MeCN, CH3CN = acetonitrile MeOH = methanol
    mg = milligram(s) mL = milliliter(s)
    mmol = millimole(s) N = normal
    NaOtBu = sodium tert-butoxide NBS = N-bromosuccinimide
    NCS = N-chlorosuccinimide n-Pr = n-propyl
    PCC = pyridinium chlorochromate Pd/C = palladium on activated carbon
    Ph = phenyl PyBOP = Benzotriazol-1-
    yloxytripyrrolidinophosphonium
    hexafluorophosphate
    RT, rt = room temperature TBAF = tetrabutylammonium fluoride
    Tf = triflate = trifluoromethanesulfonate TFA = Trifluoroacetic acid
    THF = tetrahydrofuran TMS = trimethylsilyl
    Tr = trityl = triphenylmethyl (S)-xyl-SEGPHOS = (S)-5,5′-Bis[di(3,5-
    xylyl)phosphino]-4,4′-bi-1,3-benzodioxole
  • Compounds of the present invention may be prepared according to the methodology outlined in the following general synthetic schemes.
  • Multiple embodiments of the present invention are summarized in Scheme 1 which depicts the preparation of compounds Ia, Ib, and Ic from the acid 1. It is noted that the benzothiophene can be substituted with R3 at any available point of attachment. Moreover, the benzothiophene can be attached to the remainder of the molecule at position 2 or 3. The carboxylic acid intermediate I is coupled with substituted or unsubstituted beta alanine ester (either methyl, ethyl or t-butyl ester) using benzotriazol-1-yloxy-tris(dimethylamino)-phosphonium hexafluorophosphate (BOP) and a base, generally N,N-diisopropylethylamine (DIEA), in a solvent such as N,N-dimethylformamide (DMF) or acetonitrile at ambient temperature to yield compound 2. Alternatively, the conversion of 1 to 2 may be carried out with EDC, HOBt, and a base such as DIEA in similar solvents as those used with BOP and DIEA. Many additional peptide coupling conditions are known and may also be used. Saponification of ester 2 (methyl, ethyl) to give compound Ia is achieved with a base such as aqueous lithium hydroxide (LiOH) or aqueous sodium hydroxide in a polar solvent such as tetrahydrofuran, methanol, ethanol or a mixture of similar solvents. In addition, compound 2, containing a t-butyl ester, can be converted to compound Ia using acid such as acetic acid or trifluoroacetic acid (TFA). In additional embodiments of the invention, compounds Ib and Ic may be prepared directly from acid 1 by coupling with the appropriately substituted amine using the peptide coupling methods described for the preparation of amide 2.
  • Figure US20110281795A1-20111117-C00007
  • Scheme 2 summarizes the preparation of acid intermediate 1 using procedures adapted from Organic Letters, Chung, et. al., 2008, 10, 3037-3040. Coupling of aryl alkyl ketones 3 and aryl bromide 4 may be achieved under transition-metal mediated conditions such as those described in J. Am. Chem. Soc., Buchwald, S. L., et. al., 2000, 122, 1360-1370. Ketone 5 may be prepared, for instance, by heating 3 and 4 in the presence of a palladium source such as Pd2(dba)3, a ligand such as BINAP, a base such as NaOtBu, and a solvent such as THF. Reduction of ketone 5 to alcohol 6 can be accomplished with various achiral reductants, for instance NaBH4. Alternatively, dynamic kinetic resolution of ketone 5 can afford highly enantio- and diastereoenriched alcohol 6 using catalysts such as those reviewed extensively in Angew. Chem., Int. Ed., Noyori, R., et. al., 2001, 40, 40-73. For instance, this reaction can be performed using a ruthenium catalyst such as RuCl2[(S)-xyl-SEGPHOS][(S)-DAIPEN] and a base such as KOtBu in a solvent such as 2-propanol under an atmosphere of hydrogen.
  • Deprotection of the t-butyl ester of alcohol 6 with an acid such as phosphoric acid in acetonitrile solvent gives the acid 7.
  • Acid 1 may then be accessed by treatment of 7 with a benzothiophene 8 in dichloromethane solvent at ambient temperature or 60° C. followed by the addition of a Bronsted acid such as trifluoroacetic acid (TFA) or a Lewis acid such as boron trifluoride-diethyl etherate. A wide range of substituents may be introduced at R1, R2, and R3 on acid 1 due to the functional group tolerance of the reactions employed in its preparation and the wide variety of starting benzothiophenes 8 and ketones 3 which are either commercially available or readily prepared by methods known to those skilled in the art.
  • Figure US20110281795A1-20111117-C00008
  • While the R3 substituents are typically present in the starting material benzothiophene 8, it is also possible to alter the R3 substituents on advanced intermediates as shown in Scheme 3. For instance, a bromide substituent may be further functionalized using a variety of metal-mediated cross-coupling reactions obvious to those skilled in the art. For instance, the bromide substituent of intermediate 2a may be converted to nitrile 2b in the presence of a palladium catalyst such as Pd(PPh3)4 and a cyanide source such as Zn(CN)2 in a polar aprotic solvent such as DMF at a temperature of 80° C. based on the chemistry described by Kubota and Rice, Tetrahedron Letters, 1998, 39, 2907-2910. Alternatively, intermediate 2a can be functionalized under Suzuki coupling conditions with an aryl or heteroaryl boronic acid 9, palladium catalyst such as PdCl2(dppf), base such as LiOH, in a mixed solvent system such as dioxane and water, at elevated temperatures such as 80° C. Under these conditions, the ethyl ester of intermediate 2a can also be hydrolyzed to afford compound la directly. Numerous other metal-mediated functionalizations of intermediates such as 2a will be obvious to those skilled in the art.
  • Figure US20110281795A1-20111117-C00009
  • While a variety of substituted benzothiophenes 8 are commercially available, two methods for synthesizing them are depicted in Scheme 4. When the appropriately substituted benzenethiol 10 is readily accessible, it may be alkylated with bromoacetaldehyde dimethyl acetal at elevated temperatures in the presence of a base such as potassium carbonate in a polar aprotic solvent such as DMF. The resulting acetal intermediate 11 can then undergo cyclocondensation to afford benzothiophene 8 upon heating in the presence of an acid such as polyphosphoric acid in a solvent such as chlorobenzene. An alternate preparation of benzothiophenes proceeds from aryl fluoride 12. Aryl fluorides such as 12 may be lithiated at the position adjacent to fluorine by a strong base such as lithium diisopropylamide in a solvent such as THF at low temperatures such as -70° C. The resulting intermediate can then react with a formyl electrophile such as DMF to afford the 2-fluorobenzaldehyde 13. Nucleophilic aromatic substitution of the fluorine substituent of 13 with methyl thioglycolate and subsequent cyclocondensation to benzothiophene 8a can be accomplished in a single vessel by heating the reactants in the presence of a base such as potassium carbonate in a solvent such as acetonitrile. If desired, the 2-carbomethoxy substituent of benzothiophene 8a may be removed to afford benzothiophene 81). Saponification of the ester as described for the conversion of 2 to Ia (Scheme 1) yields an acid which may be decarboxylated using a variety of procedures known to those skilled in the art. For instance, the acid may be treated with copper powder in quinoline at a temperature of 200° C.
  • Figure US20110281795A1-20111117-C00010
  • Separation of diastereomers and regioisomers can be carried out at various stages in the preparation of compounds I, however, it is typically carried out on compound I using reverse-phase HPLC or on the amide 2 using silica gel chromatography or preparative HPLC with a chiral stationary phase.
  • Analytical HPLC mass spectrometry conditions:
    • LC1: Column: Waters Xterra MS C18 3.5μ, 3.0×50 mm
      • Temperature: 50° C.
      • Eluent: 10:90 to 100:0 v/v acetonitrile/water+0.05% formic acid over 3.75 min.
      • Flow Rate: 1.2 mL/min, Injection 10 μL
      • Detection: PDA, 200-600 nm
      • MS: mass range 150-750 amu; positive/negative ion electrospray ionization
    • LC2: Column: Waters Xterra IS C-18, 3.5μ, 2.1×20 mm
      • Temperature: 50° C.
      • Eluent: 10:90 to 98:2 v/v acetonitrile/water+0.05% formic acid over 3.25 min.
      • Flow Rate: 1.5 mL/min, Injection 5 μL
      • Detection: PDA, 200-600 nm
      • MS: mass range 150-750 amu; positive/negative ion electrospray ionization
    • LC3: Column: Waters Xterra IS C-18, 3.5μ, 2.1×20 mm
      • Temperature: 50° C.
      • Eluent: 10:90 to 98:2 v/v acetonitrile/water+0.05% TFA over 3.25 min.
      • Flow Rate: 1.5 mL/min, Injection 5 μL
      • Detection: PDA, 200-600 nm
      • MS: mass range 150-750 amu; positive/negative ion electrospray ionization
    • LC4: Column: Waters Sunfire C18, 5μ, 4.6×50 mm
      • Temperature: 50° C.
      • Eluent: 10:90 to 100:0 v/v acetonitrile/water+0.05% TFA over 3.75 min.
      • Flow Rate: 1.2 mL/min, Injection 10 μL
      • Detection: PDA, 190-300 nm
      • MS: mass range 150-700 amu; positive ion electrospray ionization
        Preparative reverse-phase HPLC conditions:
      • Column: Kromasil 100-5-C18, 21.1×100 mm
      • Flow Rate: 20.0 mL/min
      • Fluent: 10:90 to 100:0 v/v acetonitrile/water+0.1% TFA over 10M min.
      • Temperature: ambient
      • Detection: PDA, 254 nm
  • Preparative thin layer chromatography (PTLC) was performed on 20×20 cm plates (500 μm thick silica gel). Silica gel chromatography was done on a Biotage Horizon flash chromatography system.
  • The following examples are provided so that the invention might be more fully understood. They should not be construed as limiting the invention in any way.
  • INTERMEDIATE 1 4-{(1R)-1-[(R)-(4-CHLOROPHENYL)(HYDROXY)METHYL]BUTYL}BENZOIC ACID
  • Figure US20110281795A1-20111117-C00011
  • Step A. tert-Butyl 4-[2-(4-chlorophenyl)-1-propylethan-2-one-1-yl]benzoate
  • Figure US20110281795A1-20111117-C00012
  • A 3-neck flask was charged with NaOtBu (2.85 g, 28.6 mmol) and dry THF (50 mL) under nitrogen. Tris(dibenzylideneacetone)dipalladium(0) (0.26 g, 0.28 mmol) and (S)-Tol-Binap (0.47 g, 0.69 mmol) were then added under nitrogen. After stirring for 15 min, 1-(4-chlorophenyl)pentan-1-one (4.21 g, 21.0 mmol) was added, followed by tert-butyl 4-bromobenzoate (5.0 g, 19.1 mmol) under nitrogen. The mixture was heated at 60° C. for 8 hours. The mixture was diluted with heptane (100 mL) and poured into a solution of saturated NaHCO3 (aq) (60 mL) and ice (40 g). The resulting layers were separated, and the aqueous phase was back-extracted with methyl tert-butyl ether (50 mL). The combined organics were washed with saturated NaHCO3 (aq) then 10% NaCl(aq). The organic solution was filtered through a bed of silica 60 (84 g, wetted with 1:1 methyl tert-butyl ether/heptane), and washed with 1:1 methyl tert-butyl ether/heptane (600 mL). The combined filtrate was concentrated to afford an orange oil that was used directly for the next step: 1H NMR (500 MHz, CDCl3): δ 7.91 (d, J=8.1 Hz, 2H); 7.86 (d, J=8.4 Hz, 2H); 7.35 (d, J=8.4 Hz, 2H); 7.32 (d, J=8.2 Hz, 2H); 4.53 (t, J=7.2 Hz, 1H); 2.19-2.09 (m, 1H); 1.85-1.76 (m, 1H); 1.56 (s, 9H); 1.35-1.18 (m, 2H); 0.91 (t, J=7.3 Hz, 3H); LC1: 1.35 min. (M-tBu+H)+317.
  • Step B. tert-Butyl 4-[(1R,2R)-2-(4-chlorophenyl)-1-propylethan-2-hydroxyl-1-yl]benzoate
  • Figure US20110281795A1-20111117-C00013
  • To degassed 2-propanol (5.0 mL) was added RuCl2[(S)-xyl-SEGPHOS][(S)-DAIPEN] (16.2 mg, 0.0134 mmol) and potassium t-butoxide (300 mg, 2.67 mmol). After this mixture was stirred at room temperature for 2 hours, the material obtained in Step A was added in 2-propanol (25 mL). This mixture was then treated with hydrogen (100 psi) at room temperature for 18 hours. The mixture was concentrated, then the residue was recrystallized from IPAlwater to afford the title compound. ‘H NMR (400 MHz, CDCl3) δ 7.96 (m, 2H), 7.32 (m, 2H), 7.26 (m, 2H), 7.22 (m, 2H), 4.76 (dd, J=7.7, 2.9 Hz, 1H), 2.89 (ddd, J=11.5, 7.7, 4.2 Hz, 1H), 1.84 (d, J=2.9 Hz, 1H), 1.62 (s, 9H), 1.61 (m, 1H), 1.41 (m, 1H), 1.05 (m, 2H), 0.76 (t, J=7.3 Hz, 3H); LC3: 2.38 min. (M−H2O-tBu+H)+301; Chiral SFC Method: Chiralpak AD-H 250×4.6 mm), isocratic 15% MeOH/CO2, 1.5 mL/min, 200 bar, 35° C., 215 nm, 15 minutes: desired alcohol retention time -9.8 min; enantiomeric alcohol, retention time=10.6 min; diastereomeric alcohols retention times=5.2 and 6.3 min.
  • Step C. 4-{(1R)-1-[(R)-(4-Chlorophenyl)(hydroxy)methyl]butyl}benzoic Acid
  • Figure US20110281795A1-20111117-C00014
  • Orthophosphoric acid (85 wt %, 11.4 g, 99 mmol) was added to a slurry of tert-butyl 4-[(1R,2R)-2-(4-chlorophenyl)-1-propylethan-2-hydroxyl-1-yl]benzoate (7.42 g, 19.8 mmol) in acetonitrile (75 mL). The mixture was purged with nitrogen, then heated at 65° C. for 3.5 hours. The mixture was allowed to cool to 40° C., then water (25 mL) was added dropwise. Once crystallization began, additional water (50 mL) was added and the mixture was allowed to cool to room temperature. The precipitate was collected by vacuum filtration, washed with 3:1 water:acetonitrile (35 mL), then dried in vacuo at 65° C. overnight to afford the title compound as a light green solid. 1H NMR (400 MHz, DMSO-d6) δ 12.71 (br s, 1H); 7.79 (d, J=8.3 Hz, 2 H); 7.29 (d, J=8.4 Hz, 2H); 7.19-7.25 (m, 4H); 5.32 (br s, 1H); 4.76 (d, J=6.3 Hz, 1H); 2.85 (dt, J=10.7, 5.4 Hz, 1H); 1.61 (m, 1H); 1.44 (m, 1H); 1.00 (m, 2H); 0.73 (t, J=7.3 Hz, 3H)); LC2 3.00 min. (M+H)+317.
  • INTERMEDIATE 2 7-BROMO-5-CHLORO-1-BENZOTHIOPHENE
  • Figure US20110281795A1-20111117-C00015
  • Step A. 2-Bromo-1-[(2.2-diethoxyethyl)thio]-4-chlorobenzene
  • Figure US20110281795A1-20111117-C00016
  • Potassium carbonate (0.926 g, 9.34 mmol) then bromoacetaldehyde dimethyl acetal (1.35 g, 6.85 mmol) were added to a solution of 2-bromo-4-chlorobenzenethiol (1.397 g, 6.23 mmol) in anhydrous DMF (11 mL). The mixture was heated at 70° C. for 3 hours. After being allowed to cool to room temperature, the mixture was diluted with ethyl acetate and water. The resulting layers were separated and the aqueous phase was extracted with ethyl acetate. The combined organics were washed with water then saturated NaCl (aq), dried over Na2SO4, filtered, then concentrated. The resulting light yellow oil was used directly for the following step. 1H NMR (500 MHz, CDCl3) δ 7.57(d, J=2.0 Hz, 1H); 7.33 (d, J=8.5 Hz, 1H); 7.26 (dd, J=8.5, 2.0 Hz, 1H); 4.70 (t, J=5.5 Hz, 1H); 3.75-3.68 (m, 2H); 3.61-3.55 (m, 2H); 3.15 (d, J=5.5 Hz, 2H); 1.23 (t, 7.0 Hz, 6H).
  • Step H. 7-Bromo-5-chloro-1-benzothiophene
  • Figure US20110281795A1-20111117-C00017
  • In a round-bottomed flask fitted with a reflux condenser and addition funnel, a mixture of chlorobenzene (11 mL) and polyphosphoric acid (7 g) was heated to reflux. A solution of 2-bromo-1-[(2,2-diethoxyethypthio]-4-chlorobenzene in chlorobenzene (10 mL) was added dropwise via addition funnel then the mixture was refluxed overnight. The viscous mixture was decanted while hot. Additional chlorobenzene (25 mL) was added to the flask, stirred at 120° C. for 15 minutes, then decanted. The remaining viscous mixture in the flask was treated with toluene (50 mL), water (25 mL), and saturated Na2CO3 (aq) (10 mL). The resulting layers were separated, and the aqueous phase was extracted with toluene. The toluene and chlorobenzene fractions were combined, washed with saturated Na2CO3 (aq), then saturated NaCl (aq), dried over Na2SO4, filtered, then concentrated. The residue was purified by silica gel chromatography eluting with 0-10% EtOAc/hexanes to afford the title compound as a white solid. 1H NMR (500 MHz, CDCl3) δ 7.78 (d, J=1.5 Hz, 1H); 7.59 (d, J=5.5 Hz, 1H); 7.53 (d, J=1.5 Hz, 1H); 7.39 (d, J=5.5 Hz, 1H).
  • INTERMEDIATE 3 7-BROMO-5-(TRIFLUOROMETHYL)-1-BENZOTHIOPHENE
  • Figure US20110281795A1-20111117-C00018
  • Step A. 3-Bromo-2-fluoro-5-(trifluoromethyl)benzaldehyde
  • Figure US20110281795A1-20111117-C00019
  • A solution of n-BuLi (2.5 M in hexanes, 1.98 mL, 4.94 mmol) was added to a solution of diisopropylamine (0.700 mL, 4.94 mmol) in THF (10 mL) at -30° C. After 15 minutes, the mixture was cooled to −70° C., then 3-bromo-4-fluorobenzotrifluoride (1.00 g, 4.12 mmol) was added. After 30 minutes, anhydrous DMF (0.637 mL, 8.23 mmol) was added dropwise. After 15 minutes, acetic acid (0.50 mL, 8.2 mmol) was added, then the mixture was diluted with ethyl acetate and water. The resulting layers were separated, and the aqueous phase was extracted with ethyl acetate. The combined organics were washed with saturated NaCl (aq), dried over Na2SO4, filtered, then concentrated. The resulting light yellow oil was used directly for the following step. 1H NMR (500 MHz, CDCl3) δ 10.38 (s, 1H); 8.10-8.15 (m, 2H). LC1: 3.44 min. Compound does not ionize.
  • Step B. Methyl 7-bromo-5-(trifluoromethyl)-1-benzothiophene-2-carboxylate
  • Figure US20110281795A1-20111117-C00020
  • Potassium carbonate (1.44 g, 10.42 mmol) then methyl thioglycolate (0.487 g, 4.59 mmol) were added to a degassed solution of 3-bromo-2-fluoro-5-(trifluoromethyl)benzaldehyde (1.13 g, 4.17 mmol) in CH3CN (11 mL). The mixture was stirred at room temperature for 30 minutes then refluxed at 100° C. overnight. The mixture was allowed to cool to room temperature, then water (20 mL) was added. The resulting light yellow solid was collected by vacuum filtration, washed with water, then dried in vacuo. The resulting ester was used directly for the following step. 1H NMR (500 MHz, CDCl3) δ 8.24 (br s, 1H); 8.15 (br s, 1H); 7.86 (br s,1H); 4.02(br s,3H). LC1: 4.00 min. Compound does not ionize.
  • Step C. 7-Bromo-5-(trifluoromethyl)-1-benzothiophene-2-carboxylic Acid
  • Figure US20110281795A1-20111117-C00021
  • A solution of NaOH (4.0 M in water, 5.0 mL, 20 mmol) was added to a solution of methyl 7-bromo-5-(trifluoromethyl)-1-benzothiophene-2-carboxylate (1.00 g, 2.95 mmol) in dioxane (11 mL). The mixture was heated at 70° C. overnight, allowed to cool to room temperature, then concentrated. The resulting light beige solid was partitioned between water (25 mL) and 1:1 hexanes:ethyl acetate (15 mL). The resulting layers were separated. The aqueous layer was adjusted to pH 2 with 2.0 M HCl (aq) then extracted four times with CH2Cl2. The combined CH2Cl2 layers were dried over Na2SO4, filtered, then concentrated. The resulting acid, a light yellow solid, was used directly for the following step. LC1: 3.58 min. Compound does not ionize.
  • Step D. 7-Bromo-5-(trifluoromethyl)-1-benzothiophene
  • Figure US20110281795A1-20111117-C00022
  • To a mixture of quinoline (5 mL) and copper powder (0.39 g, 6.2 mmol) in a sealed tube was added 7-bromo-5-(trifluoromethyl)-1-benzothiophene-2-carboxylic acid (1.0 g, 3.1 mmol). The mixture was heated to 200° C. for 20 minutes, then allowed to cool to room temperature. The mixture was filtered, then the collected precipitate was washed with toluene. The filtrate was concentrated, then the resulting brown oil was diluted with EtOAc and poured into 6.0 M HCl (aq). The layers were separated, then the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with 6.0 M HCl (aq), water, then saturated NaCl (aq), dried over Na2SO4, filtered, then concentrated. The residue was purified by silica gel chromatography eluting with 0-1% EtOAc/hexanes to afford the title compound as a colorless oil. 1H NMR (500 MHz, CDCl3) δ 8.10 (br s, 1H); 7.77 (br s, 1H); 7.69 (d, J=5.5 Hz, 1H); 7.57 (d, J=5.5 Hz, 1H). LC1: 4.02 min. Compound does not ionize.
  • EXAMPLE 1 N-(4-{(1S)-1-[(5-CHLORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
  • Figure US20110281795A1-20111117-C00023
  • Step A. Ethyl N-(4-{(1S)-1-[(7-bromo-5-chloro-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl}benzoyl)-β-alaninate
  • Figure US20110281795A1-20111117-C00024
  • Boron trifluoride diethyl etherate (0.88 mL, 7.0 mmol) was added dropwise to a solution of INTERMEDIATE 1 (0.400 g, 1.255 mmol) and INTERMEDIATE 2 (0.311 g, 1.255 mmol) in anhydrous dichloromethane (6.5 mL) at 0° C. The mixture was stirred at 0° C. for 5 minutes then at room temperature overnight. The mixture was diluted with EtOAc then washed with water. The aqueous phase was extracted with EtOAc. The combined organics were washed with saturated NaCl (aq), dried over Na2SO4, filtered, then concentrated. The resulting acid, a fluffy brown solid, was used directly for the following step. LC1: 4.34 min. (M−H)545.
  • To a solution of the product from the previous step in THF (7.3 mL) was added N,N′-carbonyldiimidazole (1.017 g, 6.27 mmol). The mixture was stirred at room temperature for one hour, then f3-alanine ethyl ester hydrochloride (0.964 g, 6.27 mmol) was added, and the mixture was stirred at 60° C. for 3 hours then at room temperature overnight. The mixture was concentrated, then the residue was purified by silica gel chromatography eluting with 30% EtOAc/hexanes. The resulting material was further purified by preparative HPLC (Daicel OD-H column, 2 cm×25 cm, 15% IPA/Heptane, 20 mL/min) to provide the title compound as a white solid. 1H NMR (500 MHz, CDCl3) δ 7.62 (d, J=8 Hz, 2H); 7.57 (d, J=1.5 Hz, 1H); 7.42 (d, J=1.5 Hz, 1H); 7.30-7.35 (m, 5H); 7.27 (d, J=8 Hz, 2H); 6.76 (t, J=6 Hz, 1H); 4.47 (d, J=11 Hz, 1H); 4.20 (q, J=7 Hz, 2H); 3.71 (q, J=6 Hz, 2H); 3.47 (td, J=11, 3.5 Hz, 1H); 2.64 (t, J=5.5 Hz, 2H); 1.31 (t, J=7 Hz, 3H); 1.44-1.56 (m, 2H); 0.99-1.08 (m, 2H); 0.77 (t, J=7 Hz, 3H). LC1: 4.34 min. (M+H)+646.
  • Step B. Ethyl N-(4-{(1S)-1-[(5-chloro-7-cyano-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl}benzoyl)-β-alaninate
  • Figure US20110281795A1-20111117-C00025
  • A degassed mixture of ethyl N-(4-{(1S)-1-[(7-bromo-5-chloro-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl}benzoyl)-β-alaninate (0.128 g, 0.198 mmol), zinc cyanide (0.046 g, 0.40 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.114 g, 0.099 mmol) anhydrous DMF (2.9 mL) was heated at 80° C. for 2.5 hours. After cooling to room temperature, the solution was concentrated, then the residue was purified by silica gel chromatography eluting with 35% EtOAc/hexanes. The resulting material was further purified by preparative HPLC (Daicel AD-H chiral column, 2 cm×25 cm, 16% IPA/Heptane, 20 mL/min) to provide the title compound as a white solid. LC1: 4.12 min. (M+H)+593.
  • Step C. N-(4-{(1S)-1-[(5-Chloro-7-cyano-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl}benzoyl)-β-alanine
  • Figure US20110281795A1-20111117-C00026
  • A solution of LiOH (2.0 M in water, 4.5 mL, 9.0 mmol) was added to a solution of ethyl N-(4-{(1S)-1-[(5-chloro-7-cyano-1-benzothien-3-yl)(4-chlorophenyl)methylibutyl]benzoyl)-β-alaninate (0.100 g, 0.168 mmol) in THF (9.0 mL). The mixture was stirred at room temperature for four hours then acidified with acetic acid and extracted with ethyl acetate. The organics were dried over Na2SO4, filtered, then concentrated. The resulting residue was purified by reverse-phase HPLC eluting with 20-100% acetonitrile/water containing 0.1% TFA. Following lyophilization, the material was further purified by silica gel chromatography eluting with 5% MeOH in DCM containing 0.5% acetic acid to afford the title compound as a white solid. 1H NMR (500 MHz, CDCl3) δ 7.77 (br s, 1H); 7.60 (d, J=5 Hz, 2H); 7.52 (br s, 1H); 7.42 (br s,1H); 7.31-7.35 (m, 4H); 7.25 (d, J=7 Hz, 2H); 6.78 (br s,1H); 4.49 (d, J=11 Hz, 1H); 3.67 (br s, 2H); 3.44-3.47 (m, 1H); 2.66 (br, 2H); 1.45-1.53 (m, 2H); 0.98-1.05 (m, 2H); 0.73 (t, J=7 Hz, 3H). LC1: 3.97 min. (M+H)+565.
  • EXAMPLE 2 N-[4-((1S)-1-{(4-CHLOROPHENYL)[5-FLUORO-7-(1-METHYL-1H-PYRAZOL-5-YL)-1-BENZOTHIEN-3-YL]METHYL}PENTYL)BENZOYL]-β-ALANINE
  • Figure US20110281795A1-20111117-C00027
  • Step A. Ethyl N-(4-{(1S)-1-[(7-bromo-5-fluoro-1-benzothien-3-yl)(4-chlorophenyl)methyl]pentyl}benzoyl)-β-alaninate
  • Figure US20110281795A1-20111117-C00028
  • Using the procedures from INTERMEDIATES 1 and 2 and EXAMPLE 1, 1-(4-chlorophenyl)hexan-1-one and 2-bromo-4-fluorobenzenethiol were converted to the title compound. 1NMR (500 MHz, CDCl3): δ 7.62 (d, J=8 Hz, 2H); 7.37 (br, 1H); 7.30-7.35 (m, 6H); 7.27 (d, J=8 Hz, 2H); 6.76 (t, J=6 Hz, 1H); 4.45 (d, J=11 Hz, 1H); 4.19 (q, J=7 Hz, 2H); 3.71 (q, J=6 Hz, 2H); 3.46 (t, J=10.5 Hz, 1H); 2.64 (t, J=5.5 Hz, 2H); 1.30 (t, J=7 Hz, 3H); 1.47-1.57 (m, 2H); 1.18-1.23 (m, 1H); 1.07-1.14 (m, 1H); 0.98-1.03 (m, 2H); 0.75 (t, J=7 Hz, 3H). LC1: 4.23 min. (M+H)+644 and 646.
  • Step B. N-[4-((1S)-1-{(4-Chlorophenyl)[5-fluoro-7-(1-methyl-1H-pyrazol-5-yl)-1-benzothien-3-yl]methyl}pentyl)benzoyl]-β-alanine
  • Figure US20110281795A1-20111117-C00029
  • Dioxane (1.4 mL) and LiOH (2.0 M in water, 0.68 mL, 1.36 mmol) were added to a mixture of ethyl N-(4-{(1S)-1-[(7-bromo-5-fiuoro-1-benzothien-3-yl)(4-chlorophenyl)methyl]pentyl}benzoyl)-β-alaninate (23.0 mg, 0.036 mmol), 1-methyl-1H-pyrazole-5-boronic acid pinacol ester (11.0 mg, 0.053 mmol), and PdCl2(dppf) (0.029 g, 0.036 mmol) in a sealed microwave vial under a nitrogen atmosphere. The mixture was degassed then irradiated in a microwave reactor at 80° C. for 15 minutes. The mixture was acidified with acetic acid then extracted with ethyl acetate. The organic layer was dried over Na2SO4, filtered, then concentrated. The resulting residue was purified by preparative reverse-phase HPLC eluting with acetonitrile/water+0.1% TFA. The resulting material was further purified by silica gel chromatography eluting with 5% MeOH/DCM+0.5% acetic acid to afford the title compound. 1H NMR (500 MHz, CDCl3): δ 7.57 (br, 3H); 7.29-7.37 (m, 6H); 7.23 (d, J=6 Hz, 2H); 6.94 (d, J=7 Hz, 1H); 6.86 (br, 1H); 6.40 (br, 1H); 4.47 (d, J=11 Hz, 1H); 3.71 (br, 3H); 3.62 (br, 2H); 3.43 (t, J=9.5 Hz, 1H); 2.59 (br, 2H); 1.45-1.52 (m, 2H); 1.13-1.16 (m, 1H); 1.04-1.06 (m, 1H); 0.88-1.00 (m, 2H); 0.68 (t, J=6.5 Hz, 3H). LC1: 3.99 min. (M+H)+618.
  • EXAMPLE 3 4-{(1S)-1-[(7-BROMO-5-METHYL-1-BENZOTHIEN-3-YL)(4-CHLOROPHENYL)METHYL]BUTYL}-N-1H-TETRAZOL-5-YLBENZAMIDE
  • Figure US20110281795A1-20111117-C00030
  • Step A. 4-{(1S)-1-[(7-Bromo-5-methyl-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl}benzoic Acid
  • Figure US20110281795A1-20111117-C00031
  • Using the procedures from INTERMEDIATE 2 and EXAMPLE 1, 2-bromo-4-methylbenzenethiol and INTERMEDIATE 1 were converted to the title compound. LC2: 2.82 min. Compound does not ionize.
  • Step B. 4-{(1S)-1-[(7-Bromo-5-methyl-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl}-N-1H-tetrazol-5-ylbenzamide
  • Figure US20110281795A1-20111117-C00032
  • A mixture of 4-{(1S)-1-[(7-bromo-5-methyl-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl}benzoic acid (25.0 mg, 0.047 mmol) and CDI (26 mg, 0.16 mmol) in DMF (1.0 mL) was stirred at RT for 30 minutes in a sealed tube, then 5-amino-1H-tetrazole (23.0 mg, 0.260 mmol) was added. The mixture was heated at 100° C. for 12 hours, allowed to cool to RT, then diluted with acetonitrile. The mixture was purified by preparative reverse phase HPLC eluting with 47-100% acetonitrile/water+0.1% TFA. Following lyophilization, this afforded the title compound as a white solid. 1H NMR (500 MHz, d6-DMSO) δ 7.98 (br, 1H); 7.91 (d, J=8 Hz, 2H); 7.84 (br, 1H); 7.65 (d, J=8 Hz, 2H); 7.61 (d J=8 Hz, 2H); 7.39 (d, J=8.5 Hz, 2H); 7.35 (br,1H); 4.88 (d, J=12 Hz, 1H); 3.79 (t, J=11 Hz, 1H); 2.41 (s, 3H); 1.50-1.52 (m, 1H); 1.23-1.30 (m, 1H); 0.92 (q, J=7 Hz, 2H); 0.68 (t, J=7 Hz, 3H); LC2: 2.70 min. (M+H)+594.
  • EXAMPLE 4 4-{(1S)-1-[(7-BROMO-5-METHYL-1-BENZOTHIEN-3-YL)(4-CHLOROPHENYL)METHYL]BUTYL}-N-(2H-TETRAZOL-5-YLMETHYL)BENZAMIDE
  • Figure US20110281795A1-20111117-C00033
  • A mixture of 4-{(1S)-1-[(7-bromo-5-methyl-1-benzothien-3-yl)(4-chlorophenyl)methyl]butyl}benzoic acid (EXAMPLE 3, Step A, 20.0 mg, 0.038 mmol), 1-(2H-tetrazol-5-yl)methanamine (10.9 mg, 0.110 mmol), EDC (22.0 mg, 0.110 mmol), HOBt (17.0 mg, 0.110 mmol) and DIEA (0.050 mL, 0.29 mmol) in DMF (1 mL) was heated at 65° C. for 12 hours. The mixture was allowed to cool to RT, diluted with acetonitrile, then purified by preparative reverse-phase HPLC eluting with 38-100% acetonitrile/water+0.1% TFA. Following lyophilization, this afforded the title compound as a white solid. 1H NMR (500 MHz, d6-DMSO) δ 9.04 (br, 1H); 7.96 (s, 1H); 7.84 (s, 1H); 7.67 (d, J=8 Hz, 2H); 7.64 (d, J=8 Hz, 2H); 7.52 (d, J=8 Hz, 2H); 7.39 (d, J=8.5 Hz, 2H); 7.35 (br, 1H); 4.84 (d, J=11.5 Hz, 1H); 4.67 (d, J=5.5 Hz, 2H); 3.74 (t, J=12 Hz, 1H); 2.40 (s, 3H); 1.44-1.52 (m, 1H); 1.24-1.32 (m, 1H); 0.91(q, J=7.5 Hz, 2H); 0.67 (t, J=7 Hz, 3H). LC2: 2.63 min. (M+H)+608.
  • Using the chemistry described for the preparation of INTERMEDIATES 1-3 and in EXAMPLES 1-4, the compounds in TABLES 1 and 3 were prepared as enantiopure compounds. The data listed are for the most active stereoisomer. Most compounds in TABLE 2 were also prepared as single stereoisomers, with the data listed being that for the most active stereoisomer. The only exceptions are examples 41 and 42, in which the compounds are a mixture of the two possible diastereomers at the stereocenter on the substituent labeled “Y” in the general structure. The R1 and R3 groups that are shown in TABLES 1-3 are specified when they represent a value other than a hydrogen atom. The remaining R1 and R3 groups that are unspecified are hydrogen atoms.
  • TABLE 1
    Figure US20110281795A1-20111117-C00034
    EXAMPLE R1 R2 R3 LC-MS data
     5 4-Cl n-Pr H LC1 3.87 min. (M + H)+ 506.5
    N-(4-{(1S)-1-[1-BENZOTHIEN-3-YL(4-CHLOROPHENYL)METHYL]
    BUTYL}BENZOYL)-β-ALANINE
     6 4-Cl n-Pr 5-Cl, 7-Me LC1 4.08 min. (M + H)+ 552
    N-(4-{(1S)-1-[(5-CHLORO-7-METHYL-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
     7 4-Cl n-Pr 5-Cl, 7-Br LCl 4.26 min. (M + H)+ 618.6
    N-(4-{(1S)-1-[(5-CHLORO-7-BROMO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
     8 4-Cl n-Pr 2-Me LC1 4.02 min, (M + H)+ 520.6
    N-(4-{(1S)-1-[(2-METHYL-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
     9 4-Cl n-Pr 5-F, 7-Cl LC1 4.13 min. (M + H)+ 558
    N-(4-{(1S)-1-[(5-FLUORO-7-CHLORO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    10 4-OMe n-Pr H LCl 3.62 min. (M + H)+ 502
    N-(4-{(1S)-1-[1-BENZOTHIEN-3-YL(4-METHOXYPHENYL)
    METHYL]BUTYL}BENZOYL)-β-ALANINE
    11 3,4-diCl n-Pr 5-Cl LC2 2.48 min. (M + H)+ 576
    N-(4-{(1S)-1-[(5-CHLORO-1-BENZOTHIEN-3-YL)(3,4-
    DICHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    12 3,4-diCl n-Pr 5-Cl, 7-Br LC2 2.66 min. (M + H)+ 654
    N-(4-{(1S)-1-[(5-CHLORO-7-BROMO-1-BENZOTHIEN-3-YL)(3,4-
    DICHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    13 4-Cl n-Pr 5-F, 7-CN LC1 3.95 min, (M + H)+ 549
    N-(4-{(1S)-1-[(5-FLUORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    14 4-Cl n-Pr 5-Me, 7-CN LC1 3.99 min. (M + H)+ 545
    N-(4-{(1S)-1-[(5-METHYL-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    15 4-Cl n-Pr 5-CF3, 7-CN LC1 4.01 min. (M + H)+ 599
    N-(4-{(1S)-1-[(5-TRIFLUOROMETHYL-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    16 4-Cl n-Pr 5,6-diF, 7-CN LC1 3.94 min. (M + H)+ 567
    N-(4-{(1S)-1-[(5,6-DIFLUORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    17 4-Cl n-Pr 4,5-diF, 7-CN LC1 3.99 min. (M + H)+ 567
    N-(4-{(1S)-1-[(4,5-DIFLUORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    18 4-Cl n-Pr 2-Me, 5-F, 7-CN LC1 3.99 min. (M + H)+ 563
    N-(4-{(1S)-1-[(2-METHYL-5-FLUORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    19 4-Cl n-Pr 2-Me, 5-Cl, 7-CN LC1 4.06 min. (M + H)+ 577
    N-(4-{(1S)-1-[(2-METHYL-5-CHLORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    20 3,5-diF n-Pr 5-CF3, 7-CN LC1 3.94 min. (M + H)+ 601
    N-(4-{(1S)-1-[(5-TRIFLUOROMETHYL-7-CYANO-1-BENZOTHIEN-3-YL)(3,5-
    DIFLUOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    21 3,4-diCl n-Pr 5-Cl, 7-CN LC2 2.31 min. (M + H)+ 601
    N-(4-{(1S)-1-[(5-CHLORO-7-CYANO-1-BENZOTHIEN-3-YL)(3,4-
    DICHLOROPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    22 4-OCF3 n-Pr 5-F, 7-CN LC1 3.98 min. (M + H)+ 599
    N-(4-{(1S)-1-[(5-FLUOR0-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    TRIFLUOROMETHOXYPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    23 4-OCF3 n-Pr 5-Me, 7-CN LC2 2.62 min. (M + H)+ 595
    N-(4-{(1S)-1-[(5-METHYL-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    TRIFLUOROMETHOXYPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    24 4-OCF3 n-Pr 5-CF3, 7-CN LC1 4.04 min. (M + H)+ 649
    N-(4-{(1S)-1-[(5-TRIFLUOROMETHYL-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    TRIFLUOROMETHOXYPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    25 4-OCF3 n-Pr 5-Cl, 7-CN LC2 2.67 min. (M + H)+ 615
    N-(4-{(1S)-1-[(5-CHLORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    TRIFLUOROMETHOXYPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    26 4-OCF3 n-Pr 5,6-diF, 7-CN LC2 2.65 min. (M + H)+ 617
    N-(4-{(1S)-1-[(5,6-DIFLUORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    TRIFLUOROMETHOXYPHENYL)METHYL]BUTYL}BENZOYL)-β-ALANINE
    27 4-Cl —CH2CH2CF3 5-Cl, 7-CN LC1 3.91 min. (M + H)+ 619
    N-(4-{(1S)-1-[(5-CHLORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]-4,4,4-TRIFLUOROBUTYL}BENZOYL)-β-ALANINE
    28 4-Cl —CH2CH2CF3 5-Me, 7-CN LC2 2.53 min. (M + H)+ 599
    N-(4-{(1S)-1-[(5-METHYL-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]-4,4,4-TRIFLUOROBUTYL}BENZOYL)-β-ALANINE
    29 4-Cl n-Bu 5-Cl, 7-CN LC1 4.13 min. (M + H)+ 579
    N-(4-{(1S)-1-[(5-CHLORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]PENTYL}BENZOYL)-β-ALANINE
    30 4-Cl n-Bu 5-F, 7-CN LC1 4.06 min. (M + H)+ 561
    N-(4-{(1S)-1-[(5-FLUORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]PENTYL}BENZOYL)-β-ALANINE
    31 4-Cl n-Bu 5-CF3, 7-CN LC1 4.20 min. (M + H)+ 613
    N-(4-{(1S)-1-[(5-TRIFLUOROMETHYL-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]PENTYL}BENZOYL)-β-ALANINE
    32 4-Cl —CH2CH(CH3)2 5-Cl, 7-CN LC1 4.11 min. (M + H)+ 579
    N-(4-{(1S)-1-[(5-CHLORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]-4-METHYLBUTYL}BENZOYL)-β-ALANINE
    33 4-Cl —CH2CH(CH3)2 5-F, 7-CN LC1 4.03 min. (M + H)+ 563
    N-(4-{(1S)-1-[(5-FLUORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]-4-METHYLBUTYL}BENZOYL)-β-ALANINE
    34 4-Cl Et 5-Cl, 7-CN LC1 3.90 min. (M + H)+ 551
    N-(4-{(1S)-1-[(5-CHLORO-7-CYANO-1-BENZOTHIEN-3-YL)(4-
    CHLOROPHENYL)METHYL]PROPYL}BENZOYL)-β-ALANINE
    35 4-Cl n-Pr
    Figure US20110281795A1-20111117-C00035
    LC1 3.93 min. (M + H)+ 620
    N-[4-((1S)-1-{(4-CHLOROPHENYL)[5-CHLORO-7-(1-METHYL-1H-PYRAZOL-4-YL)-1-
    BENZOTHIEN-3-YL]METHYL}BUTYL)BENZOYL]-β-ALANINE
    36 4-OCF3 n-Pr
    Figure US20110281795A1-20111117-C00036
    LC1 3.86 min. (M + H)+ 640
    N-[4-((1S)-1-{(4-TRIFLUOROMETHOXYPHENYL)[5-FLUORO-7-(1H-PYRAZOL-3-YL)-1-
    BENZOTHIEN-3-YL]METHYL}BUTYL)BENZOYL]-β-ALANINE
    37 4-Cl n-Bu
    Figure US20110281795A1-20111117-C00037
    LC1 3.93 min. (M + H)+ 604
    N-[4-((1S)-1-{(4-CHLOROPHENYL)[5-FLUORO-7-(1H-PYRAZOL-3-YL)-1-BENZOTHIEN-3-
    YL]METHYL}PENTYL)BENZOYL]-β-ALANINE
    38 4-Cl n-Pr
    Figure US20110281795A1-20111117-C00038
    LC2 2.56 min. (M + H)+ 607
    N-[4-((1S)-1-{(4-CHLOROPHENYL)[5-CHLORO-7-(1H-ISOXAZOL-4-YL)-1-BENZOTHIEN-
    3-YL]METHYL}BUTYL)BENZOYL]-β-ALANINE
  • TABLE 2
    Figure US20110281795A1-20111117-C00039
    EXAMPLE Y LC-MS data
    39
    Figure US20110281795A1-20111117-C00040
    LC3 2.59 min. (M + H)+ 614
    (2S)-3-[(4-{(1S)-1-[(5-METHYL-7-BROMO-1-BENZOTHIOPHEN-3-
    YL)(4-CHLOROPHENYL)METHYL]BUTYL}BENZOYL)AMINO]-2-
    HYDROXYPROPANOIC ACID
    40
    Figure US20110281795A1-20111117-C00041
    LC3 2.63 min. (M + H)+ 634
    3-[(4-{(1S)-1-[(5-METHYL-7-BROMO-1-BENZOTHIOPHEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)AMINO]-2,2-
    DIFLUOROPROPANOIC ACID
    41
    Figure US20110281795A1-20111117-C00042
    LC3 2.70 min. (M + H)+ 612
    3-[(4-{(1S)-1-[(5-METHYL-7-BROMO-1-BENZOTHIOPHEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)AMINO]-2-
    METHYLPROPANOIC ACID
    42
    Figure US20110281795A1-20111117-C00043
    LC3 2.69 min. (M + H)+ 612
    3-[(4-{(1S)-1-[(5-METHYL-7-BROMO-1-BENZOTHIOPHEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)AMINO]-3-
    METHYLPROPANOIC ACID
    43
    Figure US20110281795A1-20111117-C00044
    LC3 2.36 min. (M + H)+ 634
    2-[(4-{(1S)-1-[(5-METHYL-7-BROMO-1-BENZOTHIOPHEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)AMINO]ETHANE
    SULFONIC ACID
    44
    Figure US20110281795A1-20111117-C00045
    LC3 2.57 min. (M + H)+ 597
    3-[(4-{(1S)-1-[(5-METHYL-7-BROMO-1-BENZOTHIOPHEN-3-YL)(4-
    CHLOROPHENYL)METHYL]BUTYL}BENZOYL)AMINO]PROPANOIC
    AMIDE
  • TABLE 3
    Figure US20110281795A1-20111117-C00046
    EXAMPLE R1 R2 R3 LC-MS data
    45 4-Cl n-Pr H LC1 4.07 min.
    (M + H)+ 520.6
    N-[4-((1S)-1-{(4-CHLOROPHENYL)[3-METHYL-1-
    BENZOTHIEN-2-YL]METHYL}BUTYL)BENZOYL]-
    β-ALANINE
    46 4-Cl n-Pr 5-Cl LC1 4.19 min.
    (M + H)+ 554.6
    N-[4-((1S)-1-{(4-CHLOROPHENYL)[3-METHYL-5-
    CHLORO-1-BENZOTHIEN-2-YL]METHYL}BUTYL)
    BENZOYL]-β-ALANINE
    47 4-Cl n-Pr 7-Cl LC1 4.22 min.
    (M + H)+ 554.5
    N-[4((1S)-1-{(4-CHLOROPHENYL)[3-METHYL-7-
    CHLORO-1-BENZOTHIEN-2-YL]METHYL}BUTYL)
    BENZOYL]-β-ALANINE
    48 4-OMe n-Pr 5-Cl LC1 3.91 min.
    (M + H)+ 550.6
    N-[4((1S)-1-{(4-METHOXYPHENYL)[3-METHYL-5-
    CHLORO-1-BENZOTHIEN-2-YL]METHYL}BUTYL)
    BENZOYL]-β-ALANINE
  • Biological Assays
  • The ability of the compounds of the present invention to inhibit the binding of glucagon and their utility in treating or preventing type 2 diabetes mellitus and the related conditions can be demonstrated by the following in vitro assays.
  • Glucagon Receptor Binding Assay
  • A stable CHO (Chinese hamster ovary) cell line expressing cloned human glucagon receptor was maintained as described (Chicchi, et. al. J Biol Chem 272, 7765-9(1997); Cascieri, et. al. J Biol Chem 274, 8694-7(1999)). To deteiinine antagonistic binding affinity of compounds, 0.001-0.003 mg of cell membranes from these cells were pre-incubated with 0.100 mg WGA-coated PVT SPA beads (Amersham) for 20 minutes at room temperature in 25 μL of a buffer containing 50 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 2 mM EDTA, 0.1% BSA and 3% glycerol in Costar 384 well plates with clear bottoms (#3706). Next, 25 μL of 1251-Glucagon (New England Nuclear, Mass.) (1×1044 mol per well) and either 1 μL solutions of test compounds or 0.001 mM unlabeled glucagon or DMSO were added and mixed. After 4-12 hours incubation at room temperature, the radioactivity bound to the cell membranes was determined in a radioactive emission detection counter (Wallac-Microbeta). Data were analyzed using the Data Analyzer software program of Merck & Co., Inc. The IC50 values were calculated using non-linear regression analysis assuming single-site competition. IC50 values for the compounds of the invention are generally in the range of as low as about 1 nM to as high as about 500 nM, and thus have utility as glucagon antagonists. The IC50 values are shown below in TABLE 4 for the more active isomer of indicated compounds.
  • TABLE 4
    Example IC50 (nM)
    1 6.2
    2 4.7
    3 2.3
    4 2.5
    6 28
    8 2.2
    13 1.1
    14 1.3
    15 1.7
    19 7.8
    21 0.7
    23 0.2
    25 0.1
    27 0.2
    29 0.4
    32 1.0
    40 11.8
    43 3.4
    45 1.8

    Inhibition of Glucagon-Stimulated Intracellular cAMP Formation
  • Exponentially growing CHO cells expressing human glucagon receptor were harvested with the aid of enzyme-free dissociation media (Specialty Media), pelleted at low speed, and re-suspended in the Cell Stimulation Buffer included in the Flash Plate cAMP kit (New England Nuclear, SMP0004A). The adenylate cyclase assay was conducted as per manufacturer instructions. Briefly, compounds were diluted from stocks in DMSO and added to cells at a final DMSO concentration of 5%. Cells prepared as above were preincubated in flash plates coated with anti-cAMP antibodies (NEN) in the presence of compounds or DMSO controls for 30 minutes, then stimulated with glucagon (250 pM) for an additional 30 minutes. The cell stimulation was stopped by addition of equal amounts of a detection buffer containing lysis buffer as well as 125I-labeled cAMP tracer (NEN). After 3 hours of incubation at room temperature the bound radioactivity was determined in a liquid scintillation counter (TopCount-Packard Instruments). Basal activity (100% inhibition) was determined using the DMSO control while 0% inhibition was defined at the amount of pmol cAMP produced by 250 pM glucagon. The resulting amount of cAMP generated per compound dose was back-calculated from a cAMP standard curve based on the percent inhibition achieved at each dose. The calculated cAMP levels were plotted versus compound dose to obtain IC50 values using non-linear four-parameter curve fitting with Assay Data Analyzer software (Merck & Co., Inc.).
  • Certain embodiments of the invention have been described in detail; however, numerous other embodiments are contemplated as falling within the invention. Thus, the claims are not limited to the specific embodiments described herein. All patents, patent applications and publications that are cited herein are hereby incorporated by reference in their entirety.

Claims (21)

1. A compound represented by formula I:
Figure US20110281795A1-20111117-C00047
or a pharmaceutically acceptable salt thereof wherein:
each R1 represents H or is selected from the group consisting of halo, CN, OH, NO2, CO2Ra, NRaRb, S(O)pRa, C1-10alkyl, C2-10alkenyl or C1-10alkoxy, the alkyl amd alkenyl portions of C1-10alkyl, C2-10alkenyl and C1-10alkoxy being optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C1-6alkoxy;
p represents 0, 1 or 2;
each Ra and Rb independently represents H or C1-4alkyl optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo and C1-6alkoxy;
R2 represents C1-6alkyl or C2-6alkenyl, each optionally substituted with 1-5 halo atoms up to perhalo, and further optionally substituted with 1 group selected from OH, oxo and C1-6alkoxy;
each R3 represents H or is selected from the group consisting of halo; CN; OH; NO2; CO2Ra; NRaRb; S(O)pRa; a 5-membered heteroaryl ring containing 1-3 nitrogen atoms, 0-1 oxygen or sulfur atom, and optionally substituted with 1-2 C1-4alkyl groups; C1-10alkyl; C2-10alkenyl and C1-10alkoxy, the alkyl and alkenyl portions of C1-10alkyl, C2-10alkenyl and C1-10alkoxy being optionally substituted with 1-5 halo atoms up to perhalo; and further optionally substituted with 1 group selected from OH, oxo, NRaRb and C1-6alkoxy;
each R4 independently represents H or is selected from the group consisting of halo, OH, C1-4alkyl, OC1-4alkyl, haloC1-4alkyl and haloOC1-4alkyl;
m represents 0, 1 or 2; such that when m represents 0 or 1, Z represents tetrazolyl; and when m represents 2, Z represents a member selected from the group consisting of CO2H, SO3H and C(O)NH2.
2. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein each R1 represents H or is selected from the group consisting of halo, CN, C1-6 alkyl, C1-6 alkoxy, haloC1-6 alkyl and haloC1-6 alkoxy.
3. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein each R1 represents H or is selected from the group consisting of: halo selected from fluoro and chloro; CN; CH3; OCH3; CF3 and OCF3.
4. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein R2 represents a member selected from the group consisting of: C1-6alkyl and C3-4alkenyl, each optionally substituted with 1-3 halo atoms.
5. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein R2 represents C2-5alkyl optionally substituted with 1-3 halo atoms.
6. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein R2 is selected from the group consisting of ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and 3-methylbutyl, each optionally substituted with 1-3 halo atoms selected from fluoro and chloro.
7. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein R2 is selected from the group consisting of ethyl, n-propyl, n-butyl, CH2CH(CH3)2, CH2CH2CH(CH3)2 and CH2CH2CF3.
8. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein each R3 represents H or is selected from the group consisting of halo, CN, OH, SCH3 , SO2CH3, C1-6 alkyl, C1-6 alkoxy, haloC1-6 alkyl, haloC1-6alkoxy and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms and 0-1 oxygen atom, said ring being optionally substituted with 1-2 C1-4alkyl groups.
9. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein each R3 represents H or is selected from the group consisting of halo which is selected from F, Cl and Br, CN, OH, SCH3, SO2CH3, C1-2alkyl, C1-2alkoxy, haloC1-2alkyl and haloC1-2alkoxy wherein the halo portion of haloC1-2alkyl and haloC1-2alkoxy is selected from F and Cl, and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms and 0-1 oxygen atom, said ring being optionally substituted with 1-2 C1-4alkyl groups.
10. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein each R3 represents H, F, Cl, Br, CN, OH, CH3, OCH3, OCH2CH3, CHF2, CF3, SCH3, SO2CH3, OCHF2, OCF3 and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms, 0-1 oxygen atom and being optionally substituted with 1 C1-2alkyl group.
11. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein each R4 represents H, halo selected from F and Cl, OH, C1-2alkyl, C1-2alkoxy, haloC1-2alkyl and haloC1-2alkoxy wherein the halo portion of haloC1-2alkyl and haloC1-2alkoxy is selected from F and Cl.
12. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein each R4 represents H, F, Cl, OH, CH3, OCH3, CF3, and OCF3.
13. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein each R4 represents H, F, CH3 or OH.
14. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein m represents 0 or 1 and Z represents tetrazolyl.
15. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein m is 2 and Z represents CO2H.
16. A compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof wherein:
each R1 represents H or is selected from the group consisting of halo, CN, C1-6alkyl, C1-6alkoxy, haloC1-6alkyl and haloC1-6alkoxy;
R2 represents a member selected from the group consisting of: C1-6alkyl and C3-4alkenyl, each optionally substituted with 1-3 halo atoms;
each R3 represents H or is selected from the group consisting of halo, CN, OH, SCH3, SO2CH3, C1-6alkyl, C1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy and a 5-membered heteroaryl ring containing 1-2 nitrogen atoms and 0-1 oxygen atom, said ring being optionally substituted with 1-2 C1-4alkyl groups;
each R4 represents H, halo selected from F and Cl, OH, C1-2alkyl, C1-2alkoxy, haloC1-2alkyl and haloC1-2alkoxy wherein the halo portion of haloC1-2alkyl and haloC1-2alkoxy is selected from F and Cl; and
m is 0 or 1 and Z is tetrazolyl, or m is 2 and Z represents CO2H.
17. A compound in accordance with claim 1 selected from the group consisting of:
Figure US20110281795A1-20111117-C00048
TABLE 1
Figure US20110281795A1-20111117-C00049
EXAMPLE R1 R2 R3  5 4-Cl n-Pr H  6 4-Cl n-Pr 5-Cl, 7-Me  7 4-Cl n-Pr 5-Cl, 7-Br  8 4-Cl n-Pr 2-Me  9 4-Cl n-Pr 5-F, 7-Cl 10 4-OMe n-Pr H 11 3,4-diCl n-Pr 5-Cl 12 3,4-diCl n-Pr 5-Cl, 7-Br 13 4-Cl n-Pr 5-F, 7-CN 14 4-Cl n-Pr 5-Me, 7-CN 15 4-Cl n-Pr 5-CF3, 7-CN 16 4-Cl n-Pr 5,6-diF, 7-CN 17 4-Cl n-Pr 4,5-diF, 7-CN 18 4-Cl n-Pr 2-Me, 5-F, 7-CN 19 4-Cl n-Pr 2-Me, 5-Cl, 7-CN 20 3,5-diF n-Pr 5-CF3, 7-CN 21 3,4-diCl n-Pr 5-Cl, 7-CN 22 4-OCF3 n-Pr 5-F, 7-CN 23 4-OCF3 n-Pr 5-Me, 7-CN 24 4-OCF3 n-Pr 5-CF3, 7-CN 25 4-OCF3 n-Pr 5-Cl, 7-CN 26 4-OCF3 n-Pr 5,6-diF, 7-CN 27 4-Cl —CH2CH2CF3 5-Cl, 7-CN 28 4-Cl —CH2CH2CF3 5-Me, 7-CN 29 4-Cl n-Bu 5-Cl, 7-CN 30 4-Cl n-Bu 5-F, 7-CN 31 4-Cl n-Bu 5-CF3, 7-CN 32 4-Cl —CH2CH(CH3)2 5-Cl, 7-CN 33 4-Cl —CH2CH(CH3)2 5-F, 7-CN 34 4-Cl Et 5-Cl, 7-CN 35 4-Cl n-Pr
Figure US20110281795A1-20111117-C00050
36 4-OCF3 n-Pr
Figure US20110281795A1-20111117-C00051
37 4-Cl n-Bu
Figure US20110281795A1-20111117-C00052
38 4-Cl n-Pr
Figure US20110281795A1-20111117-C00053
TABLE 2
Figure US20110281795A1-20111117-C00054
EXAMPLE Y 39
Figure US20110281795A1-20111117-C00055
40
Figure US20110281795A1-20111117-C00056
41
Figure US20110281795A1-20111117-C00057
42
Figure US20110281795A1-20111117-C00058
43
Figure US20110281795A1-20111117-C00059
44
Figure US20110281795A1-20111117-C00060
TABLE 3
Figure US20110281795A1-20111117-C00061
EXAMPLE R1 R2 R3 45 4-Cl n-Pr H 46 4-Cl n-Pr 5-Cl 47 4-Cl n-Pr 7-Cl 48 4-OMe n-Pr 5-Cl
or a pharmaceutically acceptable salt thereof.
18. A pharmaceutical composition comprising a compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof in combination with a pharmaceutically acceptable carrier.
19. A pharmaceutical composition in accordance with claim 18 further comprised of a member selected from the group consisting of: simvastatin, mevastatin, ezetimibe, atorvastatin, metformin, sibutramine, orlistat, Qnexa, topiramate, naltrexone, bupriopion, phentermine, losartan, hydrochlorothiazide, buformin, phenformin, troglitazone, pioglitazone, rosiglitazone, insulin, somatostatin, voglibose, miglitol, acarbose, sitagliptin, vildagliptin, saxagliptin, alogliptin, acetohexamide, carbutamide, chlorpropamide, glibornuride, gliclazide, glimerpiride, glipizide, gliquidine, glisoxepid, glyburide, glyhexamide, glypinamide, phenbutamide, tolazamide, tolbutamide, tolcyclamide, nateglinide, repaglinide, rimonabant and taranabant.
20. A method of treating type 2 diabetes mellitus in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with claim 1 or a pharmaceutically acceptable salt thereof in an amount that is effective to treat said type 2 diabetes mellitus.
21-29. (canceled)
US13/146,220 2009-01-28 2010-01-15 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use Abandoned US20110281795A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/146,220 US20110281795A1 (en) 2009-01-28 2010-01-15 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US14/452,143 US9359339B2 (en) 2009-01-28 2014-08-05 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US20614209P 2009-01-28 2009-01-28
US13/146,220 US20110281795A1 (en) 2009-01-28 2010-01-15 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
PCT/US2010/021098 WO2010088061A1 (en) 2009-01-28 2010-01-15 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/021098 A-371-Of-International WO2010088061A1 (en) 2009-01-28 2010-01-15 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/452,143 Continuation US9359339B2 (en) 2009-01-28 2014-08-05 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use

Publications (1)

Publication Number Publication Date
US20110281795A1 true US20110281795A1 (en) 2011-11-17

Family

ID=42395952

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/146,220 Abandoned US20110281795A1 (en) 2009-01-28 2010-01-15 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US14/452,143 Active US9359339B2 (en) 2009-01-28 2014-08-05 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/452,143 Active US9359339B2 (en) 2009-01-28 2014-08-05 Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use

Country Status (2)

Country Link
US (2) US20110281795A1 (en)
WO (1) WO2010088061A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110065634A1 (en) * 2008-05-16 2011-03-17 Greenlee William J Glucagon receptor antagonists, compositions, and methods for their use
US20110172256A1 (en) * 2008-09-15 2011-07-14 Songnian Lin Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US20110178007A1 (en) * 2008-10-03 2011-07-21 Schering Corporation Spiro-imidazolone derivatives as glucagon receptor antagonists
US8318667B2 (en) 2009-02-25 2012-11-27 Merck Sharp & Dohme Corp. Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8324384B2 (en) 2009-02-12 2012-12-04 Merck Sharp & Dohme Corp. Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8652527B1 (en) 2013-03-13 2014-02-18 Upsher-Smith Laboratories, Inc Extended-release topiramate capsules
US8735604B2 (en) 2009-09-22 2014-05-27 Merck Sharp & Dohme Corp. Pyrrolidines as glucagon receptor antagonists, compositions, and methods for their use
US9101545B2 (en) 2013-03-15 2015-08-11 Upsher-Smith Laboratories, Inc. Extended-release topiramate capsules
US9649294B2 (en) 2013-11-04 2017-05-16 Merck Sharp & Dohme Corp. Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ611529A (en) 2010-12-23 2015-06-26 Pfizer Glucagon receptor modulators
HUE030364T2 (en) 2011-02-08 2017-04-28 Pfizer Glucagon receptor modulator
KR20140023441A (en) 2011-07-22 2014-02-26 화이자 인코포레이티드 Quinolinyl glucagon receptor modulators
TW201427658A (en) 2012-12-10 2014-07-16 Merck Sharp & Dohme Methods of treating diabetes by administering a glucagon receptor antagonist in combination with a cholesterol absorption inhibitor
CN107254142A (en) * 2016-07-21 2017-10-17 广东广山新材料股份有限公司 A kind of fire-proof resin composition, compositions of thermosetting resin, composite metal substrate and flame-resistant electronic material
JP7173962B2 (en) 2016-08-30 2022-11-16 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Methods of treating severe insulin resistance by interfering with glucagon receptor signaling
US20190248888A1 (en) 2016-10-20 2019-08-15 Regeneron Pharmaceuticals, Inc. Methods of lowering blood glucose levels
EP3672620A1 (en) 2017-08-22 2020-07-01 Regeneron Pharmaceuticals, Inc. Methods of treating urea cycle disorders by interfering with glucagon receptor signaling
TWI802674B (en) * 2018-04-12 2023-05-21 德商拜耳廠股份有限公司 Novel heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030109570A1 (en) * 2000-03-22 2003-06-12 Hidetoshi Tsunoda Benzothiophene derivatives and medicinal use thereof
US6762318B2 (en) * 2001-12-03 2004-07-13 Novo Nordisk A/S Glucagon antagonists
US20080085926A1 (en) * 2006-10-03 2008-04-10 Stelmach John E Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US20080125468A1 (en) * 2004-05-28 2008-05-29 Mark Donald Chappell Glucagon Receptor Antagonists, Preparation and Therapeutic Uses

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1183229B1 (en) 1999-05-17 2005-10-26 Novo Nordisk A/S Glucagon antagonists/inverse agonists
EP1463715A1 (en) 2001-12-03 2004-10-06 Novo Nordisk A/S Novel glucagon antagonists
CN101146762A (en) 2005-03-21 2008-03-19 默克公司 Substituted aryl and heteroaryl derivatives
ES2720430T3 (en) 2007-02-09 2019-07-22 Metabasis Therapeutics Inc Novel glucagon receptor antagonists
US8436015B2 (en) 2008-09-15 2013-05-07 Merck Sharp & Dohme Corp. Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8445538B2 (en) 2008-12-19 2013-05-21 Merck Sharp & Dohme Corp. Glucagon receptor antagonist compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030109570A1 (en) * 2000-03-22 2003-06-12 Hidetoshi Tsunoda Benzothiophene derivatives and medicinal use thereof
US6762318B2 (en) * 2001-12-03 2004-07-13 Novo Nordisk A/S Glucagon antagonists
US20080125468A1 (en) * 2004-05-28 2008-05-29 Mark Donald Chappell Glucagon Receptor Antagonists, Preparation and Therapeutic Uses
US20080085926A1 (en) * 2006-10-03 2008-04-10 Stelmach John E Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623818B2 (en) 2008-05-16 2014-01-07 Merck Sharp & Dohme Corp. Glucagon receptor antagonists, compositions, and methods for their use
US20110065634A1 (en) * 2008-05-16 2011-03-17 Greenlee William J Glucagon receptor antagonists, compositions, and methods for their use
US20110172256A1 (en) * 2008-09-15 2011-07-14 Songnian Lin Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8436015B2 (en) 2008-09-15 2013-05-07 Merck Sharp & Dohme Corp. Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US20110178007A1 (en) * 2008-10-03 2011-07-21 Schering Corporation Spiro-imidazolone derivatives as glucagon receptor antagonists
US8361959B2 (en) 2008-10-03 2013-01-29 Merck Sharp & Dohme Corp. Spiro-imidazolone derivatives as glucagon receptor antagonists
US8324384B2 (en) 2009-02-12 2012-12-04 Merck Sharp & Dohme Corp. Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8318667B2 (en) 2009-02-25 2012-11-27 Merck Sharp & Dohme Corp. Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8735604B2 (en) 2009-09-22 2014-05-27 Merck Sharp & Dohme Corp. Pyrrolidines as glucagon receptor antagonists, compositions, and methods for their use
US8652527B1 (en) 2013-03-13 2014-02-18 Upsher-Smith Laboratories, Inc Extended-release topiramate capsules
US8889190B2 (en) 2013-03-13 2014-11-18 Upsher-Smith Laboratories, Inc. Extended-release topiramate capsules
US10363224B2 (en) 2013-03-13 2019-07-30 Upsher-Smith Laboratories, Llc Extended-release topiramate capsules
US9101545B2 (en) 2013-03-15 2015-08-11 Upsher-Smith Laboratories, Inc. Extended-release topiramate capsules
US9555005B2 (en) 2013-03-15 2017-01-31 Upsher-Smith Laboratories, Inc. Extended-release topiramate capsules
US10172878B2 (en) 2013-03-15 2019-01-08 Upsher-Smith Laboratories, Llc Extended-release topiramate capsules
US9649294B2 (en) 2013-11-04 2017-05-16 Merck Sharp & Dohme Corp. Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use

Also Published As

Publication number Publication date
WO2010088061A1 (en) 2010-08-05
US9359339B2 (en) 2016-06-07
US20150018399A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
US9359339B2 (en) Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8445538B2 (en) Glucagon receptor antagonist compounds
US8318667B2 (en) Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US7687534B2 (en) Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8809579B2 (en) Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8436015B2 (en) Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US8324384B2 (en) Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US7977339B2 (en) Substituted imidazole 4-carboxamides as cholecystokinin-1 receptor modulators
US7759352B2 (en) Substituted imidazole-4-carboxamides as cholecystokinin-1 receptor modulators
US7858629B2 (en) Substituted imidazole 4-carboxamides as cholecystokinin-1 receptor modulators
US20100113492A1 (en) Substituted Aminopyrimidines as Cholecystokinin-1 Receptor Modulators

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, SONGNIAN;ZHANG, FENGQI;PARMEE, EMMA R.;AND OTHERS;SIGNING DATES FROM 20100114 TO 20100119;REEL/FRAME:026647/0224

AS Assignment

Owner name: SCHERING CORPORATION, NEW JERSEY

Free format text: MERGER;ASSIGNOR:MERCK SHARP & DOHME CORP.;REEL/FRAME:028850/0515

Effective date: 20120426

AS Assignment

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:SCHERING CORPORATION;REEL/FRAME:028866/0511

Effective date: 20120502

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION