US20110250631A1 - Proteoglycan degrading mutants for treatment of cns - Google Patents

Proteoglycan degrading mutants for treatment of cns Download PDF

Info

Publication number
US20110250631A1
US20110250631A1 US13/112,985 US201113112985A US2011250631A1 US 20110250631 A1 US20110250631 A1 US 20110250631A1 US 201113112985 A US201113112985 A US 201113112985A US 2011250631 A1 US2011250631 A1 US 2011250631A1
Authority
US
United States
Prior art keywords
seq
chondroitinase
mutant
composition
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/112,985
Inventor
Elliott A. Gruskin
Rohini D'Souza
Gargi Roy
Anthony G. Caggiano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acorda Therapeutics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/112,985 priority Critical patent/US20110250631A1/en
Assigned to ACORDA THERAPEUTICS, INC. reassignment ACORDA THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROY, GARGI, CAGGIANO, ANTHONY O., D'SOUZA, ROHINI, GRUSKIN, ELLIOTT A.
Publication of US20110250631A1 publication Critical patent/US20110250631A1/en
Priority to US14/188,679 priority patent/US9528102B2/en
Priority to US15/355,663 priority patent/US20170137799A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/51Lyases (4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01035Hyaluronoglucosaminidase (3.2.1.35), i.e. hyaluronidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01036Hyaluronoglucuronidase (3.2.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02001Hyaluronate lyase (4.2.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02004Chondroitin ABC lyase (4.2.2.4), i.e. chondroitinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02005Chondroitin AC lyase (4.2.2.5)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22

Definitions

  • Chondroitinases are enzymes of bacterial origin that act on chondroitin sulfate, a component of the proteoglycans that are components of the extracellular matrix of a wide variety of tissues such as the central nervous system and for example they can mediate the attachment between the retina and the vitreous body of the human eye.
  • chondroitinase enzymes are chondroitinase ABC I, SEQ ID NO: 37, which is produced by the bacterium Proteus vulgaris ( P. vulgaris ), and chondroitinase AC, SEQ ID NO: 5, which is produced by Flavobacterium heparinum.
  • Chondroitinases ABC I SEQ ID NO: 37, and chondroitinase AC SEQ ID NO: 5 function by degrading polysaccharide side chains in protein-polysaccharide complexes, without degrading the protein core.
  • chondroitinases like ABC I SEQ ID NO: 37 from extracts of P. vulgaris.
  • This enzyme selectively degrades the glycosaminoglycans chondroitin-4-sulfate, dermatan sulfate, and chondroitin-6-sulfate (also referred to respectively as chondroitin sulfates A, B, and C which are side chains of proteoglycans) at pH 8 at higher rates than it degrades chondroitin or hyaluronic acid.
  • the products of the degradation are high molecular weight unsaturated oligosaccharides and an unsaturated disaccharide.
  • chondroitinase ABC I SEQ ID NO: 37, does not act on keratosulfate, heparin or heparitin sulfate.
  • chondroitinases include rapid, specific and non-surgical disruption of the attachment of the vitreous body to the neural retina of the eye, thereby facilitating removal of the vitreous body.
  • P. vulgaris chondroitinase ABC I SEQ ID NO: 1 migrates with an apparent molecular mass of about 110 kDa when resolved by SDS-PAGE.
  • the appearance of a doublet in SDS-PAGE resolution of chondroitinase ABC has been reported (Sato et al., Agric. Biol. Chem. 50:4, 1057-1059, 1986). However, this doublet represents intact chondroitinase ABC and a 90 kDa degradation product.
  • Commercial chondroitinase ABC protein preparations contain variable amounts of this 90 kDa degradation product and an additional 18 kDa degradation product also derived from chondroitinase ABC I, SEQ ID NO: 1.
  • Chondroitinase ABC II, SEQ ID NO: 26 has also been isolated and purified from P. vulgaris, Chondroitinase ABC II, SEQ ID NO: 26, is a polypeptide of 990 amino acids with an apparent molecular mass by SDS-PAGE of about 112 kDa. Its molecular mass as determined by electrospray and laser desorption mass spectrometry is about 111,772 daltons. Chondroitinase ABC II, SEQ ID NO: 26, has an isoelectric point of 8.4-8.45. Its enzymatic activity is distinct from, but complementary to, that of chondroitinase ABC I SEQ ID NO: 1.
  • Chondroitinase ABC I SEQ ID NO: 1, endolytically cleaves proteoglycans to produce end-product disaccharides, as well as at least two other products which are thought to be tetrasaccharides, Chondroitinase ABC II, SEQ ID NO: 26, digests at least one of these tetrasaccharide products from the chondroitinase ABC I (SEQ ID NO: 1) digestion of proteoglycan.
  • CSPGs chondroitin sulfate proteoglycans
  • neurite refers to both axon and dendrite structures. This process of spouting neurites is essential in neural development and regeneration, especially after physical injury or disease has damaged neuronal cells. Neurites elongate profusely during development both in the central and peripheral nervous systems of all animal species. This phenomenon pertains to both axons and dendrites. However, neurite regrowth in the CNS decreases as the animal's age increases.
  • Chondroitinase enzymes have shown efficacy in improving functional outcomes in several in vivo models of spinal cord injury.
  • Recombinantly produced chondroitinases AC (SEQ ID NO: 5) and chondroitinase B (SEQ ID NO: 12) polypeptides have shown efficacy in vitro by overcoming the barrier of an inhibitory substrate border, such as aggrecan, resulting in neurite extension for rat cortical neurons.
  • the inventors have discovered through a deletion analysis based on the available crystal structures, the minimally sized polypeptides capable of degrading chondroitin sulfate proteoglycans (CSPGs).
  • the cleavage activity of all these mutants have been screened in vitro by zymographic assay using aggrecan as a substrate.
  • chondroitinase B (n ⁇ 120-c ⁇ 120), (SEQ ID NO: 17), lacking 120 amino acids from each of the amino and carboxy termini and having a molecular weight of 26 kDa compared to 52 kDa of the full length protein, was shown to retain activity as well in a zymographic assay. Reduction in the size and complexity of the molecule may facilitate diffusion to the site of action and potentially reduce immunogenicity for prolonged therapeutic use. These smaller chondroitinases could be potential therapeutics for spinal cord injury.
  • the present disclosure relates to mutants of chondroitinase genes, polypeptides and proteins derived therefrom, and their use in methods for promoting neurological functional recovery after central nervous system (“CNS”) injury or disease.
  • the mutant genes, polypeptides and proteins derived from them preferably include deletion, substitution, or a combination of these from the structural units the mature gene or polypeptide; more preferably the mutant genes or polypeptides are deletion mutants of the mature gene or polypeptide.
  • These mutant genes or polypeptides, preferably biologically active may be used in various pharmaceutical compositions.
  • Polypeptide mutants of chondroitinase ABC Type I, SEQ ID NO: 1, Chondroitinase ABC Type II, SEQ ID NO: 26, Chondroitinase AC, SEQ ID NO: 5, and Chondroitinase B, SEQ ID NO: 12, are provided.
  • Other mammalian enzymes mutants with chondroitinase-like activity may independently include such enzymes as hyaluronidase 1, SEQ ID NO: 30, hyaluronidase 2, SEQ ID NO: 31, hyaluronidase 3, SEQ ID NO: 32, hyaluronidase 4, SEQ ID NO: 33, and optionally PH-20, SEQ ID NO: 34.
  • deletion or substitution mutant may be used alone or in combination with chondroitinases or their deletion or substitution mutants as therapeutic compositions and mixtures. Further provided is the use of these mutants, and preferably the chondroitinase deletion or substitution mutants to promote neurological functional recovery in mammals following injury to the CNS, including but not limited to contusion injury.
  • nucleic acid molecules of the present invention are isolated nucleic acid molecules consisting of, and preferably comprising, a nucleotide sequence encoding the amino acid sequence of polypeptides that are deletion and or substitution mutants of proteoglycan degrading molecules.
  • nucleic acid molecules of the present invention may encode for mutant proteoglycan degrading polypeptides of chondroitinase ABC Type I, SEQ ID NO: 1, Chondroitinase ABC Type II, SEQ ID NO: 26, Chondroitinase AC, SEQ ID NO: 5, and Chondroitinase B, SEQ ID NO: 12, hyaluronidase 1, SEQ ID NO: 30, hyaluronidase 2, SEQ ID NO: 31, hyaluronidase 3, SEQ ID NO: 32, hyaluronidase 4, SEQ ID NO: 33, or optionally PH-20, SEQ ID NO: 34 and combinations of these.
  • nucleic acids encode for chondroitinase deletion and or substitution mutants.
  • the invention is also directed to nucleic acid molecules consisting of, and preferably comprising, a nucleotide sequence complementary to the above-described nucleic acid sequences. Also provided for are nucleic acid molecules at least 80%, preferably 85% or 90%, still more preferably 95%, 96%, 97%, 98%, or 99% identical to any of the above-described nucleic acid molecules. Also provided for are nucleic acid molecules which hybridize under stringent conditions to any of the above-described nucleic acid molecules. The present invention also provides for recombinant vectors comprising these nucleic acid molecules, and host cells transformed with such vectors.
  • proteoglycan degrading polypeptides consisting of, and preferably comprising, the amino acid sequence of deletion and or substitution mutants of proteoglycan degrading polypeptides.
  • proteoglycan degrading polypeptides can include chondroitinase ABC Type I, SEQ ID NO: 1, Chondroitinase ABC Type II, SEQ ID NO: 26, Chondroitinase AC, SEQ ID NO: 5, and Chondroitinase B, SEQ ID NO: 12, hyaluronidase 1, SEQ ID NO: 30, hyaluronidase 2, SEQ ID NO: 31, hyaluronidase 3, SEQ ID NO: 32, hyaluronidase 4, SEQ ID NO: 33, optionally PH-20, SEQ ID NO: 34.
  • the polypeptides are deletion mutants of chondroitinases.
  • Pharmaceutical compositions may be prepared from the mutant proteoglycan degrading molecules such as chondroitinases and or hyaluronidases; the composition may include one or more of the deletion and substitution mutants from different proteoglycan degrading polypeptides.
  • biologically active proteoglycan degrading polypeptide having a deletion or substitution of at least one amino acid.
  • the mutant proteoglycan degrading polypeptides include those having the minimal size yet retain a degree of activity as determined by the enzyme assays described in the specification.
  • Preferred deletion or substitution mutants of the proteoglycan degrading molecule are those which degrade chondroitin and have one or more amino acid deletions from the N-terminus, about 1-120 amino acids and/or the C-terminus, about 1-275 amino acids, more preferably the deletions are from a chondroitinase.
  • One aspect of this invention are deletion and or substitution mutants of proteoglycan degrading polypeptides, preferably deletion mutants of chondroitinase polypeptides, that promote neurite regeneration and or plasticity in the CNS and or promote or inhibit the diffusion of therapeutic molecules into tissues by degradation of proteoglycans.
  • mutant proteoglycan degrading polypeptides may promote neurite regeneration in the CNS and or promote or inhibit the diffusion of therapeutic molecules into tissues by degradation of proteoglycans and can be obtained through expression of suitably modified DNA sequences.
  • the present invention also provides suitable expression vectors and host cells compatible therewith.
  • the invention comprises pharmaceutical compositions that include biologically active polypeptide of deletion and or substitution mutants of proteoglycan degrading molecules, and preferably deletion or substitution mutants of chondroitin degrading polypeptides as described above, in combination with a pharmaceutically acceptable carrier.
  • the deletion mutants and or substitution mutants of the proteoglycan degrading polypeptides of the present invention may be used to promote the regeneration of neurites in nerve tissue. These mutants might also be useful in the treatment of other CNS disorders in which plasticity, regeneration, or both might be beneficial.
  • CNS injuries and disorders may include but not limited to contusion injury, traumatic brain injury, stroke, multiple sclerosis, brachial plexus injury, amblioplia. Because of their proteoglycan degrading properties, they may be used to promote the delivery of therapeutic compositions and diagnostics to tissues and cells that are normally impermeable to them. Alternatively, they may be used to inhibit penetration of therapeutic compositions, diagnostics or cells to tissues that use part of the extracellular matrix to enter tissues.
  • deletion and or substitution mutants are easier to make and easier to deliver to target cells and tissues.
  • deletion or substitution mutants of proteoglycan degrading molecules could be used as potential therapeutics with lesser immunogenicity and similar or higher tissue penetration ability for the treatment of CNS injury.
  • the deletion mutants may offer significant advantages over the full length proteins in the therapeutic development process.
  • the tissue penetration of the enzymes may be significantly effected by the protein size.
  • the effect of protein size on tissue penetration is difficult to predict, but dependent on size and charge.
  • the rate of penetration depends on tissue composition, charge interactions and hydration effects. Having active enzymes of widely ranging size may allow selection of an enzyme based on optimal tissue penetration properties, perhaps maximizing effective concentrations or limiting peripheral exposure to the enzyme.
  • the immune response of a mammal to a bacterial protein may or may not limit the ability to use the protein or polypeptide as a therapeutic.
  • the generation of antibodies to the protein can restrict repeated exposures, as well as potentially inactivate the protein therapeutic making it ineffective.
  • the smaller mutant proteoglycan degrading enzymes, preferably mutant chondroitinase enzymes, may limit the antigenic sites, limit an immune response or at least simplify the process of engineering an enzyme with reduced immunogenicity.
  • the release rate of proteins from matrices often used in sustained release formulations can be dependent upon size and cross-linking.
  • the effective release rate of deletion mutants of proteoglycan degrading polypeptide from the matrix can be engineered through the manipulation of the size of the enzyme. Having a repertoire of chondroitinase enzymes of various size and charge will give an significant advantage for the development of a sustained release formulations.
  • FIG. 1(A) shows Anti-His-tag Western Blot (top) and zymogram (bottom) demonstrating chondroitinase B deletion N ⁇ 120 C ⁇ 120 mutant (SEQ ID NO: 17) expression activity
  • FIG. 1(B) shows Anti-His-tag Western Blot (top) and zymogram (bottom) demonstrating chondroitinase AC deletion N ⁇ 50 C ⁇ 275 mutant (SEQ ID NO: 11) expression activity;
  • FIG. 2 shows illustrates the relative substrate degrading activity of various deletion mutant polypeptides of Chondroitinase AC (SEQ ID NO: 6-11) relative to the full length Chondroitinase AC SEQ ID NO: 5;
  • FIG. 3(A) shows a schematic of deletion mutant polypeptides of chondroitinase AC (SEQ ID NO: 6-11);
  • FIG. 3(B) shows confirmation of chondroitinase AC deletion mutants by Western blotting;
  • FIG. 4 shows confirmation of protein expression and catalytic activity of Chondroitinase AC deletion mutants (SEQ ID NO: 6-11) by (A) Western Blotting and (B) zymography;
  • FIG. 5 shows a schematic of deletion mutant polypeptides (SEQ ID NO: 13-17) of chondroitinase B (SEQ ID NO: 12);
  • FIG. 6 shows confirmation of protein expression and catalytic activity of Chondroitinase B and deletion mutants (SEQ ID NO: 12-17) by (A) Western Blotting and (B) zymography;
  • FIG. 7 shows a schematic of Chondroitinase ABC I deletion mutant polypeptides (SEQ ID NO: 2-4) of Chondroitinase ABC I SEQ ID NO: 1;
  • One aspect of the present disclosure relates to a series of deletion and or substitution mutants of chonchoitinase genes that can be used to generate deletion mutant enzymes with substantially lower molecular weight, but modified, and preferably equivalent or superior proteoglycan degrading catalytic activity compared to the wild type enzymes.
  • the deletion and or substitution mutants can be generated by polymerase chain reaction. The resulting mutants are expressed and then enzymatic activity of the mutant polypeptide can be confirmed by using zymography.
  • the mutants of the proteoglycan degrading molecules can be used to treat mammalian CNS injuries, typically caused by trauma or disease.
  • a deletion mutant of a proteoglycan degrading molecule like chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: II), Chondroitinase AC, (SEQ ID NO: 5), and Chondroitinase B, (SEQ ID NO: 12), or mammalian enzymes with chondroitinase-like activity such as hyaluronidase 1, (SEQ ID NO: 30), hyaluronidase 2, (SEQ ID NO: 31), hyaluronidase 3, (SEQ ID NO: 32), hyaluronidase 4, (SEQ ID NO: 33), and optionally PH-20, (SEQ ID NO: 34), or mixtures of any of these may be used to provide a therapeutic treatment for CNS injuries and disorders which may
  • Spinal cord injuries includes disease and traumatic injuries, such as the crushing of neurons brought about by an auto accident, fall, contusion, or bullet wound, as well as other injuries.
  • Practice of the present methods can confer clinical benefits to the treated mammal, providing clinically relevant improvements in at least one of the subject's motor coordination functions and sensory perception.
  • Clinically relevant improvements can range from a detectable improvement to a complete restoration of an impaired or lost function of the CNS.
  • Mutants of proteoglycan degrading molecules may have their enzyme activity stabilized by the addition of excipients or by lyophilization.
  • Stabilizers may include carbohydrates, amino acids, fatty acids, and surfactants and are known to those skilled in the art. Examples include carbohydrates such as sucrose, lactose, mannitol, and dextran, proteins such as albumin and protamine, amino acids such as arginine, glycine, and threonine, surfactants such as TWEEN® and PLURONIC® salts such as calcium chloride and sodium phosphate, and lipids such as fatty acids, phospholipids, and bile salts.
  • the stabilizers may be added to the proteoglycan degrading polypeptide deletion mutants in a ratio of 1:10 to 4:1, carbohydrate to polypeptide, amino acids polypeptide, protein stabilizer to polypeptide, and salts to polypeptide 1:1000 to 1:20; surfactant to polypeptide; and 1:20 to 4:1, lipids to polypeptide.
  • Other stabilizers include high concentrations of ammonium sulfate, sodium acetate or sodium sulfate, based on comparative studies with heparinase activity.
  • the stabilizing agents preferably the ammonium sulfate or other similar salt, are added to the enzyme in a ratio of 0.1 to 4.0 mg ammonium sulfate/IU enzyme.
  • the proteoglycan degrading mutant polypeptides may be formulated as compositions and can be administered topically, locally or systemically to a subject or patient.
  • the subject is a mammal and even more preferably a human in need of a proteoglycan degrading composition such as one of the chondroitinases.
  • Topical or local administration is can be used for greater control of application.
  • One or more proteoglycan degrading mutant polypeptides, singularly or in combination can be mixed with an appropriate pharmaceutical carrier prior to administration. Examples of generally used pharmaceutical carriers and additives are conventional diluents, binders, lubricants, coloring agents, disintegrating agents, buffer agents, isotonizing agents, preservants, anesthetics and the like.
  • Specifically pharmaceutical carriers that may be used are dextran, serum albumin, gelatin, creatinine, polyethylene glycol, non-ionic surfactants (e.g. polyoxyethylene sorbitan fatty acid esters, polyoxyethylene hardened castor oil, sucrose fatty acid esters, polyoxyethylene polyoxypropylene glycol) and similar compounds.
  • non-ionic surfactants e.g. polyoxyethylene sorbitan fatty acid esters, polyoxyethylene hardened castor oil, sucrose fatty acid esters, polyoxyethylene polyoxypropylene glycol
  • compositions of the present invention having a proteoglycan degrading polypeptide or a nucleic acid for expressing it may also include therapeutic molecules, diagnostics, and agents for promoting neurite growth and regeneration.
  • diagnostic molecules may include but are not limited to fluorescent probes, radioisotopes, dyes, or magnetic contrast agents.
  • Compounds that facilitate plasticity, neurite growth, and regeneration can include but are not limited to molecules that over come neurite out growth inhibition, or promote nerve growth such as soluble NOGO antagonists like NgR 27-311 , neural cell adhesion molecules like L1, neurotrophic factors, growth factors, phosphodiesterase inhibitors, and inhibitors of MAG or MOG. Additionally, deletion mutants may be combined with other compounds that promote remyelination such as neuregulins (GGF2) and antibodies that promote remyelination.
  • GGF2 neuregulins
  • Plasticity of the nervous system refers to any type of functional reorganization. This reorganization occurs with development, learning and memory and brain repair. The structural changes that occur with plasticity may include synapse formation, synapse removal, neurite sprouting and may even include strengthening or weakening existing synapses. Regeneration is generally differentiated from plasticity by the long range growth of axons in disrupted tracts that is characteristic of regeneration.
  • the biological activity of the proteoglycan degrading molecules of the present invention may be used to control the degradation rate of proteoglycans in a tissue, and for example be chosen to have a slower degradation activity for sensitive tissues and a higher degradation rate for degrading potions of tissue which are thicker.
  • the activity may be controlled by one of more amino acid substitutions or deletions in the polypeptide or vectors used to express them; the activity may be controlled by the concentration or combination of proteoglycan degrading polypeptides in a composition.
  • the proteoglycan degrading activity may be made to be greater or less than that of the full length polypeptide.
  • the proteoglycan degrading activity can be made to be greater than the full length Chondroitinase AC (SEQ ID NO: 5), it can be made more active than the full length polypeptide by a factor of 1.5 or more; it can be more active than the full length polypeptide by a factor of 2.5 or more.
  • Native or wild-type P. vulgaris bacterial strains typically can be used to produce chondroitinases ABC I, (SEQ ID NO: 1), and chondroitinase ABC II, (SEQ ID NO: 27), and mutants of these full length polypeptide under ordinary growth conditions.
  • Wild-type strains of P. vulgaris can be induced to produce detectable levels of chondroitinase ABCI and its mutants by providing an inducing substrate, such as chondroitin sulfate, as the sole carbon source.
  • coli can be expressed using a heterologous expression system with an artificial inducer. Chondroitinase AC (SEQ ID NO: 22), and chondroitinase B (SEQ ID NO: 26), and their mutants may be cloned from F. heparinum and expressed in E. coli.
  • the full length proteoglycan degrading molecules like Chondroitinase AC (SEQ ID NO: 5), as well as the deletion and or substitution mutants of the proteoglycan degrading polypeptides may be cloned in a number of bacterial as well as mammalian expression vectors.
  • Non-limiting of these vectors include pET15b, pET14b, pGEX 6P1, pDNA4HisMax, or pSECTag2b.
  • the deletion mutants and substituted polypeptides of the present invention exhibit the ability to degrade proteoglycans such as chondroitin CS and DS, and have a smaller size and molecular weight than the mature enzyme polypeptides which is expected to facilitate their diffusion into cells, tissues and across membranes.
  • Expression vectors can include the nucleic acid sequence that expresses a mutant proteoglycan degrading polypeptide operably linked to an expression control sequence. Operably linked can refer to a linkage between an expression control sequence and coding sequence, where the linkage permits the expression control sequence to control the expression of the coding sequence.
  • the properties of the naturally occurring, substituted and or deletion mutants of the proteoglycan degrading molecules may be altered by introducing a variety of mutations in the protein. Such alterations are suitably introduced using the mutagenesis techniques, for example but not limited to PRC mutagenesis, and the mutated polypeptides molecules suitably synthesized using the expression vectors.
  • Mutant proteoglycan degrading polypeptides of the present invention include deletions and or substitutions of amino acids from mature proteoglycan degrading polypeptides.
  • the deletions or substitutions include any two consecutive or separated amino acids, N or C terminal amino acid deletions or substitutions, and internal amino acid deletions or substitutions in the polypeptide.
  • the deletions and or substitutions can start with any amino acid in the molecule and it is possible to have two separated deletions in the molecule.
  • the deletion or substitution results in mutant proteoglycan degrading polypeptide that are smaller than the mature enzyme and retain proteoglycan degrading ability.
  • Mutant proteoglycan degrading polypeptides can be fused or linked to another polypeptide.
  • Polypeptide is used to unambiguously encompasses amino acid sequences for mutants of any length which have proteoglycan degrading activity and improve plasticity including those minus the signal sequence that is initially part of polypeptide when it is translated and that is cleaved off by a host-translational modification.
  • Mutant nucleic acids of the present invention include deletions and or substitutions of nucleotides from genes which express the mature proteoglycan degrading polypeptides.
  • the deletion and substitution mutations at the DNA level are used to introduce amino acid substitutions and or deletions into the encoded protein. These nucleotide deletions and substitutions can be used to introduce deletions and or substitutions into important conformational or active regions of the polypeptide.
  • a nucleic acid fragment is a nucleic acid having fewer nucleotides than the nucleotide sequence encoding the entire amino acid sequence of a mature proteoglycan degrading polypeptide, yet which preferably encodes a mutant polypeptide which retains some biological activity of the full length protein, e.g., the expressed polypeptide fragment retains the ability to induce degradation of proteoglycans, promote diffusion of therapeutics into cells and tissue, or promote regeneration of neurites.
  • Genes encoding either N or C terminal mutants of proteoglycan degrading polypeptide domains linked to other polypeptides can also be used in constructs for expression of fusion proteins linked to mutant proteoglycan degrading polypeptides.
  • the deletion and or substitution mutant proteoglycan degrading polypeptides of the present invention may also include derivatives of these polypeptides which have been chemically or enzymatically modified, but which retain their biological activity to degrade proteoglycans.
  • the proteoglycan degrading activity of these mutants may be controlled depending upon the deletion and or substitution made to the polypeptide or the nucleic acid used to express the polypeptide.
  • variants, fragments, or analogs of the mature proteoglycan degrading polypeptides or nucleic acids and vectors used to express them include mutant polypeptides and nucleic acids having a sequence which differs from the mature polypeptide or nucleic acid sequence by one or more deletions, substitutions, or a combination of both such that the mutant proteoglycan degrading polypeptides retain their biological activity and can degrade proteoglycans, and preferably degrade chondroitin sulfate proteoglycans.
  • nucleic acid molecules having a sequence at least 80%, preferably 85% or 90%, still more preferably 95%, 96%, 97%, 98%, or 99% identical to a nucleic acid sequence encoding for a mutant proteoglycan degrading molecule will encode a mutant polypeptide having proteoglycan degrading activity and preferably chondroitin degrading ability. It will be further recognized that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a mutant polypeptide having proteoglycan degrading activity.
  • amino acid substitutions that are either less likely or not likely to significantly effect polypeptide activity (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid) to degrade proteoglycans and preferably to degrade chondroitin.
  • Variants included in the invention may contain individual substitutions, deletions or additions to the nucleic acid or polypeptide sequences. Such changes will alter, add or delete a single amino acid or a small percentage of amino acids in the encoded sequence. Variants are referred to as “conservatively modified variants” where the alteration results in the substitution of an amino acid with a chemically similar amino acid.
  • proteoglycan degrading activity of the deletion and substitution mutant polypeptides of the present invention can be controlled to be less, about the same, or greater than the full length proteoglycan degrading molecule has another potential advantage.
  • a pharmaceutical composition containing the proteoglycan degrading molecules may be administered parenterally, intravenously or subcutaneously.
  • the use of a hydrogel composed of biodegradable polymer enclosing the polypeptide and continuously releasing the polypeptide is limited by the amount of polypeptide that can be enclosed in the hydrogel.
  • Using a deletion mutant of the polypeptide with higher specific activity implies that, on a molar basis, more of the active substance can be enclosed in the same volume, thereby increasing the time between successive administrations or possibly avoiding repeated administrations.
  • Purification of the polypeptide obtained after expression is dependent on the host cell and the expression construct used. Generally, the purification of proteoglycan deletion or substitution mutants can be performed in the same way as the purification of native full length polypeptides including the use of histidine-tags.
  • the deletion or substitution mutant proteoglycan degrading polypeptides and proteins are administered in an amount effective to degrade CSPGs.
  • the polypeptides may be used to aid the diffusion of therapeutic and diagnostic compositions to tissues and can be used to promote the recovery of neurological function and neurite outgrowth.
  • the mutant proteoglycan degrading proteins or polypeptides in the compositions may be suspended or diluted in an appropriate physiological carrier or excipient for SCI treatment or for screening assays of compositions promoting neurite growth in vitro on suitable substrates like aggrecan.
  • effective intrathecal doses of chondroitinases in rats have been about 0.06 units on alternate days for 14 days.
  • compositions may include a proteoglycan degrading mutant polypeptide, preferably mutant chondroitinase polypeptides, and more preferably still deletion mutant chondroitinase polypeptides. These compositions may also include other proteoglycan degrading molecules and deletion and or substitution mutants of them, molecules which block the action of neurite growth inhibitors, molecules which promote neurite or axon adhesion, diagnostic, therapeutic, or the proteoglycan degrading molecule mutant as part of a fusion protein.
  • the mixture or fusion protein may be added to a carrier or pharmaceutically acceptable excipient can be injected, generally at concentrations in the range of 1 ug to 500 mg/kg of subject.
  • Administering the agent can be by bolus injection, intravenous delivery, continuous infusion, sustained release from implants, or sustained release pharmaceuticals.
  • Administration by injection can be intramuscularly, peritoneally, subcutaneously, intravenously, intrathecally.
  • Oral administration may include tablets or capsules, preferably the oral dosage is a sustained release formulation for once or twice daily administration.
  • Percutneous administration can be once per day, and is preferably less than once per day administration.
  • Administration to the human patient or other mammalian subject may be continued until a measurable improvement in autonomic or motor function in the patient is achieved.
  • mutant proteoglycan degrading polypeptides or fusion polypeptides that include them may also be expressed or secreted by genetically modified cells.
  • the expressed deletion or substitution proteoglycan degrading polypeptide or fusion polypeptides may be harvested and purified for a therapeutic composition, or the genetically modified cells can be implanted, either free or in a capsule, at or near the site of CNS injury or a tissue into which the controlled diffusion of therapeutic or diagnostic molecule is desired.
  • Mutant nucleic acids for expressing mutant proteoglycan degrading polypeptides are illustrated by non-limiting examples of chondroitinase B nucleic acid mutant (SEQ ID NO: 21) which encodes for mutant polypeptide N ⁇ 120 C ⁇ 120 of chondroitinase B (SEQ ID NO: 21) and chondroitinase AC nucleic acid mutant (SEQ ID NO: 19) which encodes for mutant polypeptide N ⁇ 50 C ⁇ 275 of chondroitinase AC (SEQ ID NO: 11).
  • a non-limiting example of a fusion nucleic acid includes a TAT-deletion mutant chondroitinase ABCI fusion DNA construct (SEQ ID NO: 23). Another example would be a nucleic acid for TAT-chondroitinase ABCI-N ⁇ 60 SEQ ID NO: 37) and a peptide sequence for the expressed polypeptide (SEQ ID NO: 38).
  • CSPGs chondroitinase AC
  • SEQ ID NO: 12 the full length polypeptides of chondroitinase AC
  • SEQ ID NO: 12 the full length polypeptides of chondroitinase B
  • SEQ ID NO: 12 degrade CS and DS, respectively, resulting in unsaturated sulfated disaccharides.
  • Chondroitinase AC (SEQ ID NO: 5), cleaves CS at 1,4 glycosidic linkages between N-acetylgalactosamine and glucuronic acid in the polysaccharide backbone of CS. Cleavage occurs through beta-elimination in a random endolytic action pattern.
  • Chondroitinase B (SEQ ID NO: 12) cleaves the 1,4 galactosamine iduronic acid linkage in the polysaccharide backbone of DS. The cleavage of both CS and DS occurs through a beta-elimination process which differentiates these enzymatic mechanisms from mammalian GAG degrading enzymes.
  • Chondroitinase ABC I SEQ ID NO: 1
  • chondroitinase ABC II SEQ ID NO: 27
  • the removal of CS and DS from a glial scar permits the regeneration of neurite outgrowths into the injured area and promotes plasticity.
  • the proteoglycan degrading molecules illustrated in FIG. 2 Chondroitinase AC (SEQ ID NO: 5) and various mutant Chondroitinase AC (SEQ ID NO: 6-11) degrade a model proteoglycan substrate at by various amounts.
  • the regeneration of the nerve cells and restoration of plasticity in the affected CNS area allows the return of motor and sensory function.
  • Clinically relevant improvement will range from a detectable improvement to a complete restoration of an impaired or lost nervous function, varying with the individual patients and injuries.
  • the degree of functional recovery can be demonstrated by improved corticospinal tract conduction, improved tape removal, beam walking, grid walking and paw placement following chondroitinase treatment of a dorsal column lesion.
  • Motor skill improvement as well as autonomic function: bowel, bladder, sensory and sexual function may also be used as measures of function improvement and related to molecular structure and components in the compositions of the present invention.
  • a series of polynucleotides that include coding for deletion or substitution mutants of proteoglycan degrading polypeptides may be generated by PCR using the full length cDNAs for the proteoglycans as templates and cloned into an expression vector such as pET15b at the NdeI and BamHI sites for expression in E. Coli. After induction of gene expression with isopropyl- ⁇ -D-thiogalactopyranoside (IPTG), the bacteria can lysed by sonication with the concomitant extraction of the mutant polypeptide with a surfactant such as Triton X-114/PBS.
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • the majority of recombinant proteoglycan degrading polypeptide may be found in the cytosolic fraction of the bacterial cell lysate and chondroitinase purification protocols can be used to obtain the mutant proteoglycan degrading enzyme with high activity at high yields.
  • This protocol may include purification by a column having anti-His antibody to selectively bind His-tagged mutant proteoglycan degrading polypeptides and may also includes cation-exchange chromatography as a capture step and gel filtration as a polishing step. After these steps, anion exchange membrane filtration, for example Intercept Q, Millipore, can be used for endotoxin and host DNA removal.
  • the proteoglycan degrading mutant polypeptides can be dialyzed into volatile buffer, pH 8.0 and lyophilized to dryness. The final product is expected to be stable at ⁇ 70° C. for long term storage.
  • the pI of the purified basic proteoglycan degrading mutant polypeptide may be determined by IEF-PAGE analysis of the samples from the crude cell lysate.
  • a variety of analytical methods can be used to compare the enzymatic activity of the recombinant version the deletion or substitution mutants of proteoglycan degrading polypeptides with those of full length proteoglycan degrading molecules like chondroitinase ABC I (SEQ ID NO: 1) or a commercially available form of the enzyme.
  • the methods may also be adapted to evaluate the activity of fusion proteins including a mutant proteoglycan degrading polypeptide portion. Specific activity measurements may be obtained using an accepted spectrophotometric assay that measures the change in absorbance due to the production of reaction products from the degradation of proteoglycans. Size exclusion chromatography can be used to compare the hydrodynamic properties of the mutant enzymes.
  • a form of zymography can be used to characterize the mature proteoglycan degrading enzyme and may be adapted for characterization of the mutants proteoglycan degrading polypeptides.
  • Polyacrylamide gels can be polymerized in the presence of aggrecan, a substrate for proteoglycan degrading molecules like chondroitinase ABCI.
  • the mutant proteoglycan degrading polypeptides, enzyme samples may be resolved on the aggrecan-impregnated gels by electrophoresis in the presence of SDS. The gels can then be subjected to a renaturation step wherein the SDS can be extracted and the enzymes allowed to refold.
  • the refolded enzyme regains activity then digests aggrecan within the gel and the resulting loss of carbohydrate in that region of the gel that can be visualized by a carbohydrate-specific stain. A similar loss of carbohydrate in the gel would be expected for equally active forms and concentration of the mutant proteoglycan degrading molecules.
  • Chondroitinase ABCI its activity can be visualized as a clear spot in the zymogram. The zymography results are consistent with the spectrophotometric analysis.
  • HPLC methods may be used for detecting the four and six sulphated disaccharides ( ⁇ 4DS and ⁇ 6DS, respectively) liberated as a result of mutant proteoglycan degrading polypeptide digestion of CSPG.
  • the two disaccharides can be effectively resolved by anion exchange chromatography.
  • the HPLC assay for the quantitation of ⁇ 4DS and ⁇ 6DS from chromatograms is expected to yield a linear relationship proportional to the amounts injected into the HPLC. Production of ⁇ 4DS and ⁇ 6DS from CSPG digestion is directly related to the amount of chondroitinase specific activity as determined by the spectrophotometric assay.
  • This assay may be used as a sensitive and accurate method to independently quantitate ⁇ 4DS and ⁇ 6DS released by mutant proteoglycan degrading polypeptide digestion of a variety of substrates and may also be used to determine the activity of mutant proteoglycan degrading polypeptides and fusion proteins including them.
  • Another functional assay that can be performed to characterize mutant proteoglycan polypeptide activity is where dorsal root ganglian (DRG) neurons are plated on aggrecan or aggrecan treated with a deletion or substitution mutant proteoglycan degrading polypeptide. It is expected that neurons plated on aggrecan will fail to adhere to the plate and extend axons. In contrast, neurons plated on aggrecan treated with a mutant proteoglycan degrading polypeptide in a composition or as part of a fusion polypeptide would be expected to adhere to the surface and extend axons. The extensive axon growth, which is observed for chondroitinase ABC I (SEQ ID NO:1) is believed to be due to the digestion of the carbohydrates on the aggrecan core protein which creates a more permissive substrate for axon growth.
  • DRG dorsal root ganglian
  • This phrophetic example illustrates the diffusion of molecules into cells and tissue using a deletion or substitution mutant of a proteoglycan degrading polypeptide in a composition.
  • a brain from an adult Sprague Dawley rat may be removed from the skull and hemispheres may be soaked in buffer alone or containing about 33 U/ml of a mutant proteoglycan degrading polypeptide such as (SEQ ID NO: 9) N ⁇ 50 C ⁇ 200 AC (T 74 -T 500 ) protein for 2 hours at 37° C. Hemispheres can be rinsed and immediately placed in dye such as Eosin Y (Sigma) or a saturated solution of Congo Red (Sigma) in 70% ethanol. Slabs of tissue may be cut and images acquired on a scanner. The penetration of the dyes into the brain tissue may be used as an indication of the proteoglycan degrading activity of a mutant proteoglycan degrading molecule and expectant penetration or diffusion of therapeutic and diagnostic molecules into the same type of tissue.
  • a mutant proteoglycan degrading polypeptide such as (SEQ ID NO: 9) N ⁇ 50 C ⁇ 200 AC (T 74 -T 500 )
  • This prophetic example illustrates a Chondroitinase ABC I Assay Protocol which may be modified to measure the activity of a mutant proteoglycan degrading molecule, for example a Chondroitinase ABCI deletion mutant or a fusion proteins including a deletion and or substitution mutant of a proteoglycan degrading polypeptide.
  • reaction products from the catalytic activity of a proteoglycan degrading molecule or fusion protein can be determined by a measurement of the absorbance of the proteoglycan degradation product at a wavelength of 232 nm.
  • a typical reaction mixture consisted of 120 ⁇ l of reaction mixture (40 mM Tris, pH 8.0, 40 mM NaAcetate, 0.002% casein) combined with a substrate (5 ⁇ l of 50 mM chondroitin C (MW 521), chondroitin 6 SO 4 , or dermatan sulfate) and 1.5 ⁇ l of chondroitinase ABCI (SEQ ID NO:1) or a mutant of chondroitinase like (SEQ ID NO:2).
  • Reaction mixture aliquots of about 120 ⁇ l can be prepared at 30-37° C. for 3 min or longer.
  • the product formation is monitored as an increase in absorbance at 232 nm as a function of time at a wavelength of 232 nm using a spectrometer.
  • the reaction may be stopped by addition of 0.1% SDS followed by boiling for 5 minutes.
  • the observed activity may be converted to units ( ⁇ moles of product formed per minute) using the molar absorption coefficient for the C 4 -C 5 double bond formed in the reaction (3800 cm ⁇ 1 min ⁇ 1 ).
  • Chondroitinase ABC I (SEQ ID NO:1), digests axon growth inhibiting chondroitin present in CNS tissue and improves functional recovery in rats having contusion spinal cord injuries. It is reasonable to expect that mutants of proteoglycan degrading molecules, such as (SEQ ID NO: 11) N ⁇ 50 C ⁇ 275 AC (T 74 T 426 ) polypeptide that show proteoglycan degrading activity may also show some regeneration of nerves, stimulate plasticity and be useful for diffusion of agents into tissues.
  • the mode of administration, the timing of administration and the dosage are carried out such that the functional recovery from impairment of the CNS is enhanced by the promotion of neurite outgrowth and plasticity.
  • proteoglycan degrading molecules such as (SEQ ID NO: 11) N ⁇ 50 C ⁇ 275 AC (T 74 -T 426 ) protein
  • the degradation of CSPGs can remove the inhibitory molecules in tissue that block drug diffusion, block neurite outgrowth, and promote the regeneration of neurites or other therapeutics into the affected area.
  • the regeneration and plasticity of the nerve cells into the affected CNS area may allow the return of motor and sensory function.
  • Clinically relevant improvements will range from a detectable improvement to a complete restoration of an impaired or lost nervous function, varying with the individual patients and injuries.
  • chondroitinases AC and B have shown efficacy in vitro by overcoming the barrier of an inhibitory substrate border, such as aggrecan and result in neurite extension for rat cortical neurons.
  • an inhibitory substrate border such as aggrecan
  • deletion mutants of these chondroitinases were prepared to determine the minimally-sized polypeptides capable of degrading CSPGs. The cleavage activity of all these mutants have been screened in vitro by zymographic assay using aggrecan as substrate.
  • a truncated polypeptide of chondroitinase AC (N ⁇ 50-C ⁇ 275) (SEQ ID NO:11) lacking 50 and 275 amino acids from the amino and carboxy termini respectively having a molecular weight of 38 kDa compared to 75 kDa of the full length protein was found to be about the minimal size mutant chondroitinase AC that retains activity as tested by zymography assay FIG. 4(B) .
  • deletion mutant of chondroitinase B (n ⁇ 120-c ⁇ 120) (SEQ ID NO:17) lacking 120 amino acids from each of the amino and carboxy termini, having a molecular weight of 26 kDa compared to 52 kDa of the full length protein has also shown to retain activity as well in zymography assay FIG. 6(B) .
  • These and other even smaller deletion mutants could be used as potential therapeutics with lesser immunogenicity and similar or higher tissue penetration ability compared to the mature enzyme and may be used for treatment of spinal cord injury.
  • FIG. 3(A) shows various non-limiting deletion mutants schematically
  • FIG. 3(A) shows various non-limiting deletion mutants schematically
  • FIGS. 5 and 6 show the same information for chondroitinase B deletions.
  • Western blots demonstrate proteins of predicted size.
  • Zymographic PAGE of deletion mutants show intense bands of substrate digestion (light) and negative carbohydrate staining.
  • This example describes the linking of a His tag to a mutant proteoglycan degrading polypeptide.
  • Catalytically active deletion mutants of chondroitinase ABC I can be prepared for example but not limited to deleting 20, and 60 amino acids respectively from the N-terminus of the mature ABC I protein as shown for ILLUSTRATIVE PURPOSES ONLY in FIG. 7 .
  • deletion of 80 amino acids from the C-terminal end yields a mutant of chondroitinase ABC I which has proteoglycan degrading activity as tested in a zymography assay.
  • a deletion mutant such as ABCI-N ⁇ 20-C ⁇ 80 with a predicted molecular weight of 89 kDa can also be made (SEQ ID NO:39).
  • chondroitinase deletion mutants and mutants of other proteoglycan degrading molecules may be used for construction of N-terminal fusion chimeric protein.
  • Assay tests with these fusion polypeptides for chondroitin degradation may be used to determine the efficacy of mature ABCI versus various deletion mutant in compositions and fusion proteins with respect to the substrate specificity, substrate binding and tissue penetration.
  • Functional assay that can be performed to characterize the activity of mutant proteoglycan polypeptide or fusion polypeptides including them.
  • dorsal root ganglian (DRG) neurons can be plated on aggrecan or aggrecan treated with a mutant proteoglycan degrading polypeptide or a fusion polypeptide including the mutant.
  • neurons plated on aggrecan will failed to adhere to the plate and extend axons.
  • neurons plated on aggrecan treated with a mutant proteoglycan degrading polypeptide or a fusion polypeptide including the mutant in a composition or as part of a fusion polypeptide would be expected to adhere to the surface and extend axons.
  • the extensive axon growth, which is observed for chondroitinase ABC I (SEQ ID NO:1) treated aggrecan substrate is believed to be due to the digestion of the carbohydrates on the aggrecan core protein which creates a more permissive substrate for axon growth.
  • This phrophetic example describes a mutant of chondroitinase ABC I that has native protein structure, but lacks proteoglycan degrading catalytic activity.
  • This mutant may be prepared as a null or a negative control for bioassays and SCI studies. Based on the crystal structure of chondroitinase ABC I a site-specific mutant designated H501a and Y508a (SEQ ID NO: 36) to knock out catalytic activity in the putative active site can be prepared. Such mutants can be tested for inactivation of catalytic activity and SEC to compare to the wild-type enzyme.
  • the null activity mutant can also be used to provide a negative control for the various proteoglycan degrading fusion proteins for use in bioassays and ultimately in SCI animal studies.
  • This example illustrates examples of mutant proteoglycan degrading polypeptides that include both substitution and deletions from polypeptides of the present invention.
  • the chondroitinase ABC I sequence (SEQ ID NO: 37) is a published sequence for a mature chondroitinase ABC I peptide and includes the leader sequence. Chondroitinase ABC I sequence (SEQ ID NO: 37) is similar to (SEQ ID NO: 1), however (SEQ ID NO: 1) does not have the first 25 amino acids of (SEQ ID NO: 37), and amino acids at positions 154 and 195 of (SEQ ID NO: 37) differ from those (substitutions) found in similar positions when (SEQ ID NO: 1) and (SEQ ID NO: 37) are aligned.
  • SEQ ID NO: 38-40 illustrate deletions from either the N or C terminal of the (SEQ ID NO: 37) polypeptide and substitutions relative to (SEQ ID NO: 1). These mutant polypeptides are N ⁇ 20 (SEQ ID NO: 38), N ⁇ 60 (SEQ ID NO: 39) and N ⁇ 60 C ⁇ 80 (SEQ ID NO: 40).
  • mutant polypeptides of the present invention fused with a membrane transduction polypeptide such as but not limited to a polypeptide portion of a HIV TAT protein.
  • a membrane transduction polypeptide such as but not limited to a polypeptide portion of a HIV TAT protein.
  • Full sequence listings for the mutants fusion polypeptides are provided in the Sequence listing included in the specification.
  • a nucleotide sequence for TAT-chondroitinase ABCI-n ⁇ 20 (SEQ ID NO. 41), a portion of which is illustrated below, shows the TAT sequence nucleotides highlighted by underlining linked to chondroitinase nucleotides.
  • the underlined nucleotides in this portion of the nucleic acid sequence denote a TAT sequence attached to the 5′ of chondroitinase ABC I-N ⁇ 20 nucleic acid (SEQ ID NO. 47).
  • TAT-chondroitinase ABCI-n ⁇ 20 SEQ ID NO. 42
  • SEQ ID NO. 42 An amino acid sequence for TAT-chondroitinase ABCI-n ⁇ 20 (SEQ ID NO. 42), a portion of which is shown below, illustrates the TAT sequence amino acids highlighted by underlining at the N-terminus of chondroitinase ABCI-N ⁇ 20 (SEQ ID NO. 2).
  • a nucleotide sequence for TAT-ABCI-N ⁇ 60 (SEQ ID NO. 43), a portion of which is illustrated below, shows the N-terminal TAT (SEQ ID NO. 49) nucleotides highlighted by underlining.
  • TAT-ABCI-n ⁇ 60 (SEQ ID NO. 44) a portion of which is shown below, illustrates the TAT sequence (SEQ ID NO. 50) highlighted by underlining at the N-terminus of chondroitinase ABC I-N ⁇ 60 (SEQ ID NO. 3).
  • Nucleotide sequence for ABCI-TAT-C (SEQ ID NO. 45), a portion of which is illustrated below, shows the C-terminal TAT sequence nucleotides highlighted by underlining.
  • the stop codon from chondroitinase ABC I (SEQ ID NO. 28) was replaced by the TAT sequence and was placed at the 3′end of the TAT sequence.
  • Amino acid sequence for ABCI-TAT-C (SEQ ID NO. 46), a portion of which is shown below, illustrates the TAT sequence highlighted by underlining at the C-terminus of the mature chondroitinase ABC I (SEQ ID NO. 1).
  • This example illustrates the sequence of chondroitinase polypeptides which may be used for deletions or substitutions in mutants of the present invention.
  • SEQ ID NO. 42 II. Amino acid sequence for TAT-ABCI-n ⁇ 20: grkkrrqrrrppqcaqnnpladfssdknsiltlsdkrsimgnqsllwkwkggssftlhkklivptdkea skawgrsstpvfsfwlynekpidgyltidfgeklistseaqagfkvkldftgwrtvgvslnndlenrem tlnatntssdgtqdsigrslgakvdsirfkapsnvsqgeiyidrimfsvddaryqwsdyqvktrlsepe iqfhnvkpqlpvtpenlaaidlirqrlinefvggeketnlaleenisklksdfdalnthtlanggtqgr hlitdkqiiiy

Abstract

The present disclosure relates to the preparation and deletion mutants of chondroitinase proteins and their use in methods for promoting the diffusion of therapeutic composition into tissues and their use for neurological functional recovery after central nervous system (“CNS”) injury or disease.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 12/167,573, filed Jul. 3, 2008, which is a continuation application of U.S. patent application Ser. No. 10/848,561, filed May 17, 2004, which claims the benefit and priority of U.S. Provisional Application Ser. No. 60/471,240, filed May 16, 2003; U.S. Provisional Application Ser. No. 60/471,239, filed May 16, 2003; U.S. Provisional Application Ser. No. 60/471,300, filed May 16, 2003; U.S. Provisional Application Ser. No. 60/474,372 filed May 16, 2003; and is related to U.S. patent application Ser. No. 10/848,564 filed May 17, 2004. The contents of each of these applications is incorporated herein by reference in their entirety.
  • BACKGROUND AND SUMMARY
  • Chondroitinases are enzymes of bacterial origin that act on chondroitin sulfate, a component of the proteoglycans that are components of the extracellular matrix of a wide variety of tissues such as the central nervous system and for example they can mediate the attachment between the retina and the vitreous body of the human eye. Examples of chondroitinase enzymes are chondroitinase ABC I, SEQ ID NO: 37, which is produced by the bacterium Proteus vulgaris (P. vulgaris), and chondroitinase AC, SEQ ID NO: 5, which is produced by Flavobacterium heparinum. Chondroitinases ABC I SEQ ID NO: 37, and chondroitinase AC SEQ ID NO: 5, function by degrading polysaccharide side chains in protein-polysaccharide complexes, without degrading the protein core.
  • Yarnagata et al. (J. Biol. Chem. 243:1523-1535, 1968) describe the purification of the chondroitinases like ABC I SEQ ID NO: 37 from extracts of P. vulgaris. This enzyme selectively degrades the glycosaminoglycans chondroitin-4-sulfate, dermatan sulfate, and chondroitin-6-sulfate (also referred to respectively as chondroitin sulfates A, B, and C which are side chains of proteoglycans) at pH 8 at higher rates than it degrades chondroitin or hyaluronic acid. The products of the degradation are high molecular weight unsaturated oligosaccharides and an unsaturated disaccharide. However, chondroitinase ABC I, SEQ ID NO: 37, does not act on keratosulfate, heparin or heparitin sulfate.
  • Uses of chondroitinases include rapid, specific and non-surgical disruption of the attachment of the vitreous body to the neural retina of the eye, thereby facilitating removal of the vitreous body.
  • P. vulgaris chondroitinase ABC I SEQ ID NO: 1 migrates with an apparent molecular mass of about 110 kDa when resolved by SDS-PAGE. The appearance of a doublet in SDS-PAGE resolution of chondroitinase ABC has been reported (Sato et al., Agric. Biol. Chem. 50:4, 1057-1059, 1986). However, this doublet represents intact chondroitinase ABC and a 90 kDa degradation product. Commercial chondroitinase ABC protein preparations contain variable amounts of this 90 kDa degradation product and an additional 18 kDa degradation product also derived from chondroitinase ABC I, SEQ ID NO: 1.
  • Chondroitinase ABC II, SEQ ID NO: 26, has also been isolated and purified from P. vulgaris, Chondroitinase ABC II, SEQ ID NO: 26, is a polypeptide of 990 amino acids with an apparent molecular mass by SDS-PAGE of about 112 kDa. Its molecular mass as determined by electrospray and laser desorption mass spectrometry is about 111,772 daltons. Chondroitinase ABC II, SEQ ID NO: 26, has an isoelectric point of 8.4-8.45. Its enzymatic activity is distinct from, but complementary to, that of chondroitinase ABC I SEQ ID NO: 1. Chondroitinase ABC I, SEQ ID NO: 1, endolytically cleaves proteoglycans to produce end-product disaccharides, as well as at least two other products which are thought to be tetrasaccharides, Chondroitinase ABC II, SEQ ID NO: 26, digests at least one of these tetrasaccharide products from the chondroitinase ABC I (SEQ ID NO: 1) digestion of proteoglycan.
  • After a injury in the adult mammalian central nervous system (CNS), the inability of axons to regenerate may lead to permanent paralysis. An injury-caused lesion will develop glial scarring, which contains extracellular matrix molecules including chondroitin sulfate proteoglycans (CSPGs). CSPGs inhibit nerve tissue growth in vitro, and nerve tissue regeneration fails at CSPGs rich regions in vivo.
  • A number of molecules, and specified regions of them, have been implicated in the ability to support the sprouting of neurites from a neuronal cell, a process also referred to as neurite outgrowth. The term neurite refers to both axon and dendrite structures. This process of spouting neurites is essential in neural development and regeneration, especially after physical injury or disease has damaged neuronal cells. Neurites elongate profusely during development both in the central and peripheral nervous systems of all animal species. This phenomenon pertains to both axons and dendrites. However, neurite regrowth in the CNS decreases as the animal's age increases.
  • Chondroitinase enzymes have shown efficacy in improving functional outcomes in several in vivo models of spinal cord injury. Recombinantly produced chondroitinases AC (SEQ ID NO: 5) and chondroitinase B (SEQ ID NO: 12) polypeptides have shown efficacy in vitro by overcoming the barrier of an inhibitory substrate border, such as aggrecan, resulting in neurite extension for rat cortical neurons.
  • The inventors have discovered through a deletion analysis based on the available crystal structures, the minimally sized polypeptides capable of degrading chondroitin sulfate proteoglycans (CSPGs). The cleavage activity of all these mutants have been screened in vitro by zymographic assay using aggrecan as a substrate. A truncated polypeptide of chondroitinase AC (nΔ50-cΔ275), (SEQ ID NO: 11), lacking 50 and 275 amino acids from the amino and carboxy termini respectively and having a molecular weight of 38 kDa compared to 75 kDa of the full length protein, was found to be the minimal size that retained activity as tested by a zymographic assay. The deletion mutant of chondroitinase B (nΔ120-cΔ120), (SEQ ID NO: 17), lacking 120 amino acids from each of the amino and carboxy termini and having a molecular weight of 26 kDa compared to 52 kDa of the full length protein, was shown to retain activity as well in a zymographic assay. Reduction in the size and complexity of the molecule may facilitate diffusion to the site of action and potentially reduce immunogenicity for prolonged therapeutic use. These smaller chondroitinases could be potential therapeutics for spinal cord injury.
  • The present disclosure relates to mutants of chondroitinase genes, polypeptides and proteins derived therefrom, and their use in methods for promoting neurological functional recovery after central nervous system (“CNS”) injury or disease. The mutant genes, polypeptides and proteins derived from them preferably include deletion, substitution, or a combination of these from the structural units the mature gene or polypeptide; more preferably the mutant genes or polypeptides are deletion mutants of the mature gene or polypeptide. These mutant genes or polypeptides, preferably biologically active, may be used in various pharmaceutical compositions.
  • Polypeptide mutants of chondroitinase ABC Type I, SEQ ID NO: 1, Chondroitinase ABC Type II, SEQ ID NO: 26, Chondroitinase AC, SEQ ID NO: 5, and Chondroitinase B, SEQ ID NO: 12, are provided. Other mammalian enzymes mutants with chondroitinase-like activity may independently include such enzymes as hyaluronidase 1, SEQ ID NO: 30, hyaluronidase 2, SEQ ID NO: 31, hyaluronidase 3, SEQ ID NO: 32, hyaluronidase 4, SEQ ID NO: 33, and optionally PH-20, SEQ ID NO: 34. These deletion or substitution mutant may be used alone or in combination with chondroitinases or their deletion or substitution mutants as therapeutic compositions and mixtures. Further provided is the use of these mutants, and preferably the chondroitinase deletion or substitution mutants to promote neurological functional recovery in mammals following injury to the CNS, including but not limited to contusion injury.
  • One embodiment of the present invention are isolated nucleic acid molecules consisting of, and preferably comprising, a nucleotide sequence encoding the amino acid sequence of polypeptides that are deletion and or substitution mutants of proteoglycan degrading molecules. Independently, nucleic acid molecules of the present invention may encode for mutant proteoglycan degrading polypeptides of chondroitinase ABC Type I, SEQ ID NO: 1, Chondroitinase ABC Type II, SEQ ID NO: 26, Chondroitinase AC, SEQ ID NO: 5, and Chondroitinase B, SEQ ID NO: 12, hyaluronidase 1, SEQ ID NO: 30, hyaluronidase 2, SEQ ID NO: 31, hyaluronidase 3, SEQ ID NO: 32, hyaluronidase 4, SEQ ID NO: 33, or optionally PH-20, SEQ ID NO: 34 and combinations of these. Preferably the nucleic acids encode for chondroitinase deletion and or substitution mutants. The invention is also directed to nucleic acid molecules consisting of, and preferably comprising, a nucleotide sequence complementary to the above-described nucleic acid sequences. Also provided for are nucleic acid molecules at least 80%, preferably 85% or 90%, still more preferably 95%, 96%, 97%, 98%, or 99% identical to any of the above-described nucleic acid molecules. Also provided for are nucleic acid molecules which hybridize under stringent conditions to any of the above-described nucleic acid molecules. The present invention also provides for recombinant vectors comprising these nucleic acid molecules, and host cells transformed with such vectors.
  • Also provided are isolated polypeptides consisting of, and preferably comprising, the amino acid sequence of deletion and or substitution mutants of proteoglycan degrading polypeptides. Independently, proteoglycan degrading polypeptides can include chondroitinase ABC Type I, SEQ ID NO: 1, Chondroitinase ABC Type II, SEQ ID NO: 26, Chondroitinase AC, SEQ ID NO: 5, and Chondroitinase B, SEQ ID NO: 12, hyaluronidase 1, SEQ ID NO: 30, hyaluronidase 2, SEQ ID NO: 31, hyaluronidase 3, SEQ ID NO: 32, hyaluronidase 4, SEQ ID NO: 33, optionally PH-20, SEQ ID NO: 34. Preferably the polypeptides are deletion mutants of chondroitinases. Pharmaceutical compositions may be prepared from the mutant proteoglycan degrading molecules such as chondroitinases and or hyaluronidases; the composition may include one or more of the deletion and substitution mutants from different proteoglycan degrading polypeptides.
  • In one aspect of the invention, biologically active proteoglycan degrading polypeptide are provided having a deletion or substitution of at least one amino acid. The mutant proteoglycan degrading polypeptides include those having the minimal size yet retain a degree of activity as determined by the enzyme assays described in the specification. Preferred deletion or substitution mutants of the proteoglycan degrading molecule are those which degrade chondroitin and have one or more amino acid deletions from the N-terminus, about 1-120 amino acids and/or the C-terminus, about 1-275 amino acids, more preferably the deletions are from a chondroitinase.
  • One aspect of this invention are deletion and or substitution mutants of proteoglycan degrading polypeptides, preferably deletion mutants of chondroitinase polypeptides, that promote neurite regeneration and or plasticity in the CNS and or promote or inhibit the diffusion of therapeutic molecules into tissues by degradation of proteoglycans.
  • The mutant proteoglycan degrading polypeptides, preferably deletion and or substitution mutants of chondroitinases, may promote neurite regeneration in the CNS and or promote or inhibit the diffusion of therapeutic molecules into tissues by degradation of proteoglycans and can be obtained through expression of suitably modified DNA sequences. Thus, the present invention also provides suitable expression vectors and host cells compatible therewith.
  • In yet other aspects, the invention comprises pharmaceutical compositions that include biologically active polypeptide of deletion and or substitution mutants of proteoglycan degrading molecules, and preferably deletion or substitution mutants of chondroitin degrading polypeptides as described above, in combination with a pharmaceutically acceptable carrier.
  • The deletion mutants and or substitution mutants of the proteoglycan degrading polypeptides of the present invention may be used to promote the regeneration of neurites in nerve tissue. These mutants might also be useful in the treatment of other CNS disorders in which plasticity, regeneration, or both might be beneficial. For example CNS injuries and disorders may include but not limited to contusion injury, traumatic brain injury, stroke, multiple sclerosis, brachial plexus injury, amblioplia. Because of their proteoglycan degrading properties, they may be used to promote the delivery of therapeutic compositions and diagnostics to tissues and cells that are normally impermeable to them. Alternatively, they may be used to inhibit penetration of therapeutic compositions, diagnostics or cells to tissues that use part of the extracellular matrix to enter tissues. Because of their smaller size compared to the full length enzyme, the deletion and or substitution mutants are easier to make and easier to deliver to target cells and tissues. These and other even smaller deletion or substitution mutants of proteoglycan degrading molecules could be used as potential therapeutics with lesser immunogenicity and similar or higher tissue penetration ability for the treatment of CNS injury.
  • The deletion mutants may offer significant advantages over the full length proteins in the therapeutic development process. The tissue penetration of the enzymes may be significantly effected by the protein size. The effect of protein size on tissue penetration is difficult to predict, but dependent on size and charge. The rate of penetration depends on tissue composition, charge interactions and hydration effects. Having active enzymes of widely ranging size may allow selection of an enzyme based on optimal tissue penetration properties, perhaps maximizing effective concentrations or limiting peripheral exposure to the enzyme.
  • The immune response of a mammal to a bacterial protein may or may not limit the ability to use the protein or polypeptide as a therapeutic. The generation of antibodies to the protein can restrict repeated exposures, as well as potentially inactivate the protein therapeutic making it ineffective. The smaller mutant proteoglycan degrading enzymes, preferably mutant chondroitinase enzymes, may limit the antigenic sites, limit an immune response or at least simplify the process of engineering an enzyme with reduced immunogenicity.
  • The release rate of proteins from matrices often used in sustained release formulations can be dependent upon size and cross-linking. The effective release rate of deletion mutants of proteoglycan degrading polypeptide from the matrix can be engineered through the manipulation of the size of the enzyme. Having a repertoire of chondroitinase enzymes of various size and charge will give an significant advantage for the development of a sustained release formulations.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1(A) shows Anti-His-tag Western Blot (top) and zymogram (bottom) demonstrating chondroitinase B deletion NΔ120 CΔ120 mutant (SEQ ID NO: 17) expression activity; FIG. 1(B) shows Anti-His-tag Western Blot (top) and zymogram (bottom) demonstrating chondroitinase AC deletion NΔ50 CΔ275 mutant (SEQ ID NO: 11) expression activity;
  • FIG. 2 shows illustrates the relative substrate degrading activity of various deletion mutant polypeptides of Chondroitinase AC (SEQ ID NO: 6-11) relative to the full length Chondroitinase AC SEQ ID NO: 5;
  • FIG. 3(A) shows a schematic of deletion mutant polypeptides of chondroitinase AC (SEQ ID NO: 6-11); FIG. 3(B) shows confirmation of chondroitinase AC deletion mutants by Western blotting;
  • FIG. 4 shows confirmation of protein expression and catalytic activity of Chondroitinase AC deletion mutants (SEQ ID NO: 6-11) by (A) Western Blotting and (B) zymography;
  • FIG. 5 shows a schematic of deletion mutant polypeptides (SEQ ID NO: 13-17) of chondroitinase B (SEQ ID NO: 12);
  • FIG. 6 shows confirmation of protein expression and catalytic activity of Chondroitinase B and deletion mutants (SEQ ID NO: 12-17) by (A) Western Blotting and (B) zymography;
  • FIG. 7 shows a schematic of Chondroitinase ABC I deletion mutant polypeptides (SEQ ID NO: 2-4) of Chondroitinase ABC I SEQ ID NO: 1;
  • DETAILED DESCRIPTION
  • Before the present compositions and methods are described, it is to be understood that this invention is not limited to the particular molecules, compositions, methodologies or protocols described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
  • It must also be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to a “cell” is a reference to one or more cells and equivalents thereof known to those skilled in the art, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated by reference. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
  • “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs or material is present and instances where the event does not occur or where the material is not present.
  • One aspect of the present disclosure relates to a series of deletion and or substitution mutants of chonchoitinase genes that can be used to generate deletion mutant enzymes with substantially lower molecular weight, but modified, and preferably equivalent or superior proteoglycan degrading catalytic activity compared to the wild type enzymes. The deletion and or substitution mutants can be generated by polymerase chain reaction. The resulting mutants are expressed and then enzymatic activity of the mutant polypeptide can be confirmed by using zymography.
  • The mutants of the proteoglycan degrading molecules can be used to treat mammalian CNS injuries, typically caused by trauma or disease. In particular, a deletion mutant of a proteoglycan degrading molecule like chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: II), Chondroitinase AC, (SEQ ID NO: 5), and Chondroitinase B, (SEQ ID NO: 12), or mammalian enzymes with chondroitinase-like activity such as hyaluronidase 1, (SEQ ID NO: 30), hyaluronidase 2, (SEQ ID NO: 31), hyaluronidase 3, (SEQ ID NO: 32), hyaluronidase 4, (SEQ ID NO: 33), and optionally PH-20, (SEQ ID NO: 34), or mixtures of any of these may be used to provide a therapeutic treatment for CNS injuries and disorders which may include but not limited to contusion injury, traumatic brain injury, stroke, multiple sclerosis, brachial plexus injury, amblioplia, spinal cord injuries. Spinal cord injuries includes disease and traumatic injuries, such as the crushing of neurons brought about by an auto accident, fall, contusion, or bullet wound, as well as other injuries. Practice of the present methods can confer clinical benefits to the treated mammal, providing clinically relevant improvements in at least one of the subject's motor coordination functions and sensory perception. Clinically relevant improvements can range from a detectable improvement to a complete restoration of an impaired or lost function of the CNS.
  • Mutants of proteoglycan degrading molecules, for example the deletion mutants of Chondroitinase AC (SEQ ID NO: 5), may have their enzyme activity stabilized by the addition of excipients or by lyophilization. Stabilizers may include carbohydrates, amino acids, fatty acids, and surfactants and are known to those skilled in the art. Examples include carbohydrates such as sucrose, lactose, mannitol, and dextran, proteins such as albumin and protamine, amino acids such as arginine, glycine, and threonine, surfactants such as TWEEN® and PLURONIC® salts such as calcium chloride and sodium phosphate, and lipids such as fatty acids, phospholipids, and bile salts. The stabilizers may be added to the proteoglycan degrading polypeptide deletion mutants in a ratio of 1:10 to 4:1, carbohydrate to polypeptide, amino acids polypeptide, protein stabilizer to polypeptide, and salts to polypeptide 1:1000 to 1:20; surfactant to polypeptide; and 1:20 to 4:1, lipids to polypeptide. Other stabilizers include high concentrations of ammonium sulfate, sodium acetate or sodium sulfate, based on comparative studies with heparinase activity. The stabilizing agents, preferably the ammonium sulfate or other similar salt, are added to the enzyme in a ratio of 0.1 to 4.0 mg ammonium sulfate/IU enzyme.
  • The proteoglycan degrading mutant polypeptides may be formulated as compositions and can be administered topically, locally or systemically to a subject or patient. Preferably the subject is a mammal and even more preferably a human in need of a proteoglycan degrading composition such as one of the chondroitinases. Topical or local administration is can be used for greater control of application. One or more proteoglycan degrading mutant polypeptides, singularly or in combination, can be mixed with an appropriate pharmaceutical carrier prior to administration. Examples of generally used pharmaceutical carriers and additives are conventional diluents, binders, lubricants, coloring agents, disintegrating agents, buffer agents, isotonizing agents, preservants, anesthetics and the like. Specifically pharmaceutical carriers that may be used are dextran, serum albumin, gelatin, creatinine, polyethylene glycol, non-ionic surfactants (e.g. polyoxyethylene sorbitan fatty acid esters, polyoxyethylene hardened castor oil, sucrose fatty acid esters, polyoxyethylene polyoxypropylene glycol) and similar compounds.
  • Compositions of the present invention having a proteoglycan degrading polypeptide or a nucleic acid for expressing it may also include therapeutic molecules, diagnostics, and agents for promoting neurite growth and regeneration. Examples of diagnostic molecules may include but are not limited to fluorescent probes, radioisotopes, dyes, or magnetic contrast agents. Compounds that facilitate plasticity, neurite growth, and regeneration can include but are not limited to molecules that over come neurite out growth inhibition, or promote nerve growth such as soluble NOGO antagonists like NgR27-311, neural cell adhesion molecules like L1, neurotrophic factors, growth factors, phosphodiesterase inhibitors, and inhibitors of MAG or MOG. Additionally, deletion mutants may be combined with other compounds that promote remyelination such as neuregulins (GGF2) and antibodies that promote remyelination.
  • Plasticity of the nervous system refers to any type of functional reorganization. This reorganization occurs with development, learning and memory and brain repair. The structural changes that occur with plasticity may include synapse formation, synapse removal, neurite sprouting and may even include strengthening or weakening existing synapses. Regeneration is generally differentiated from plasticity by the long range growth of axons in disrupted tracts that is characteristic of regeneration.
  • The biological activity of the proteoglycan degrading molecules of the present invention may be used to control the degradation rate of proteoglycans in a tissue, and for example be chosen to have a slower degradation activity for sensitive tissues and a higher degradation rate for degrading potions of tissue which are thicker. The activity may be controlled by one of more amino acid substitutions or deletions in the polypeptide or vectors used to express them; the activity may be controlled by the concentration or combination of proteoglycan degrading polypeptides in a composition. The proteoglycan degrading activity may be made to be greater or less than that of the full length polypeptide. For example, it can be made to be less than that of the full length Chondroitinase AC (SEQ ID NO: 5), and can be made to be less than half as active as the full length polypeptide as shown in FIG. 2. Also, as further illustrated in FIG. 2, the proteoglycan degrading activity can be made to be greater than the full length Chondroitinase AC (SEQ ID NO: 5), it can be made more active than the full length polypeptide by a factor of 1.5 or more; it can be more active than the full length polypeptide by a factor of 2.5 or more.
  • Native or wild-type P. vulgaris bacterial strains typically can be used to produce chondroitinases ABC I, (SEQ ID NO: 1), and chondroitinase ABC II, (SEQ ID NO: 27), and mutants of these full length polypeptide under ordinary growth conditions. Wild-type strains of P. vulgaris can be induced to produce detectable levels of chondroitinase ABCI and its mutants by providing an inducing substrate, such as chondroitin sulfate, as the sole carbon source. Cloned chondroitinase ABC I, (SEQ ID NO: 22), chondroitinase ABC II, (SEQ ID NO: 26), and mutants of these genes in E. coli can be expressed using a heterologous expression system with an artificial inducer. Chondroitinase AC (SEQ ID NO: 22), and chondroitinase B (SEQ ID NO: 26), and their mutants may be cloned from F. heparinum and expressed in E. coli.
  • The full length proteoglycan degrading molecules like Chondroitinase AC (SEQ ID NO: 5), as well as the deletion and or substitution mutants of the proteoglycan degrading polypeptides may be cloned in a number of bacterial as well as mammalian expression vectors. Non-limiting of these vectors include pET15b, pET14b, pGEX 6P1, pDNA4HisMax, or pSECTag2b. The deletion mutants and substituted polypeptides of the present invention exhibit the ability to degrade proteoglycans such as chondroitin CS and DS, and have a smaller size and molecular weight than the mature enzyme polypeptides which is expected to facilitate their diffusion into cells, tissues and across membranes. Expression vectors can include the nucleic acid sequence that expresses a mutant proteoglycan degrading polypeptide operably linked to an expression control sequence. Operably linked can refer to a linkage between an expression control sequence and coding sequence, where the linkage permits the expression control sequence to control the expression of the coding sequence.
  • The properties of the naturally occurring, substituted and or deletion mutants of the proteoglycan degrading molecules may be altered by introducing a variety of mutations in the protein. Such alterations are suitably introduced using the mutagenesis techniques, for example but not limited to PRC mutagenesis, and the mutated polypeptides molecules suitably synthesized using the expression vectors.
  • Mutant proteoglycan degrading polypeptides of the present invention include deletions and or substitutions of amino acids from mature proteoglycan degrading polypeptides. Preferably the deletions or substitutions include any two consecutive or separated amino acids, N or C terminal amino acid deletions or substitutions, and internal amino acid deletions or substitutions in the polypeptide. The deletions and or substitutions can start with any amino acid in the molecule and it is possible to have two separated deletions in the molecule. The deletion or substitution results in mutant proteoglycan degrading polypeptide that are smaller than the mature enzyme and retain proteoglycan degrading ability. Mutant proteoglycan degrading polypeptides can be fused or linked to another polypeptide. Polypeptide is used to unambiguously encompasses amino acid sequences for mutants of any length which have proteoglycan degrading activity and improve plasticity including those minus the signal sequence that is initially part of polypeptide when it is translated and that is cleaved off by a host-translational modification.
  • Mutant nucleic acids of the present invention include deletions and or substitutions of nucleotides from genes which express the mature proteoglycan degrading polypeptides. The deletion and substitution mutations at the DNA level are used to introduce amino acid substitutions and or deletions into the encoded protein. These nucleotide deletions and substitutions can be used to introduce deletions and or substitutions into important conformational or active regions of the polypeptide. A nucleic acid fragment is a nucleic acid having fewer nucleotides than the nucleotide sequence encoding the entire amino acid sequence of a mature proteoglycan degrading polypeptide, yet which preferably encodes a mutant polypeptide which retains some biological activity of the full length protein, e.g., the expressed polypeptide fragment retains the ability to induce degradation of proteoglycans, promote diffusion of therapeutics into cells and tissue, or promote regeneration of neurites. Genes encoding either N or C terminal mutants of proteoglycan degrading polypeptide domains linked to other polypeptides can also be used in constructs for expression of fusion proteins linked to mutant proteoglycan degrading polypeptides.
  • The deletion and or substitution mutant proteoglycan degrading polypeptides of the present invention may also include derivatives of these polypeptides which have been chemically or enzymatically modified, but which retain their biological activity to degrade proteoglycans. The proteoglycan degrading activity of these mutants may be controlled depending upon the deletion and or substitution made to the polypeptide or the nucleic acid used to express the polypeptide. Variants, fragments, or analogs of the mature proteoglycan degrading polypeptides or nucleic acids and vectors used to express them include mutant polypeptides and nucleic acids having a sequence which differs from the mature polypeptide or nucleic acid sequence by one or more deletions, substitutions, or a combination of both such that the mutant proteoglycan degrading polypeptides retain their biological activity and can degrade proteoglycans, and preferably degrade chondroitin sulfate proteoglycans.
  • Due to the degeneracy of the genetic code, one of ordinary skill in the art will recognize that a large number of the nucleic acid molecules having a sequence at least 80%, preferably 85% or 90%, still more preferably 95%, 96%, 97%, 98%, or 99% identical to a nucleic acid sequence encoding for a mutant proteoglycan degrading molecule will encode a mutant polypeptide having proteoglycan degrading activity and preferably chondroitin degrading ability. It will be further recognized that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a mutant polypeptide having proteoglycan degrading activity. This is because amino acid substitutions that are either less likely or not likely to significantly effect polypeptide activity (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid) to degrade proteoglycans and preferably to degrade chondroitin.
  • Variants included in the invention may contain individual substitutions, deletions or additions to the nucleic acid or polypeptide sequences. Such changes will alter, add or delete a single amino acid or a small percentage of amino acids in the encoded sequence. Variants are referred to as “conservatively modified variants” where the alteration results in the substitution of an amino acid with a chemically similar amino acid.
  • The discovery that the proteoglycan degrading activity of the deletion and substitution mutant polypeptides of the present invention can be controlled to be less, about the same, or greater than the full length proteoglycan degrading molecule has another potential advantage. A pharmaceutical composition containing the proteoglycan degrading molecules may be administered parenterally, intravenously or subcutaneously. The use of a hydrogel composed of biodegradable polymer enclosing the polypeptide and continuously releasing the polypeptide is limited by the amount of polypeptide that can be enclosed in the hydrogel. Using a deletion mutant of the polypeptide with higher specific activity implies that, on a molar basis, more of the active substance can be enclosed in the same volume, thereby increasing the time between successive administrations or possibly avoiding repeated administrations.
  • Purification of the polypeptide obtained after expression is dependent on the host cell and the expression construct used. Generally, the purification of proteoglycan deletion or substitution mutants can be performed in the same way as the purification of native full length polypeptides including the use of histidine-tags.
  • The deletion or substitution mutant proteoglycan degrading polypeptides and proteins are administered in an amount effective to degrade CSPGs. The polypeptides may be used to aid the diffusion of therapeutic and diagnostic compositions to tissues and can be used to promote the recovery of neurological function and neurite outgrowth. Once the mutant proteoglycan degrading proteins or polypeptides in the compositions have been purified to the extent desired, they may be suspended or diluted in an appropriate physiological carrier or excipient for SCI treatment or for screening assays of compositions promoting neurite growth in vitro on suitable substrates like aggrecan. In models of SCI, effective intrathecal doses of chondroitinases in rats have been about 0.06 units on alternate days for 14 days. A dose for a 70 kilogram human may be about 17 Units. At about 100 Units/milligram, this would equal about 170 micrograms. Doses of up to 20 Units appear safe in mammalian subjects like rats. Compositions may include a proteoglycan degrading mutant polypeptide, preferably mutant chondroitinase polypeptides, and more preferably still deletion mutant chondroitinase polypeptides. These compositions may also include other proteoglycan degrading molecules and deletion and or substitution mutants of them, molecules which block the action of neurite growth inhibitors, molecules which promote neurite or axon adhesion, diagnostic, therapeutic, or the proteoglycan degrading molecule mutant as part of a fusion protein. The mixture or fusion protein may be added to a carrier or pharmaceutically acceptable excipient can be injected, generally at concentrations in the range of 1 ug to 500 mg/kg of subject. Administering the agent can be by bolus injection, intravenous delivery, continuous infusion, sustained release from implants, or sustained release pharmaceuticals. Administration by injection, can be intramuscularly, peritoneally, subcutaneously, intravenously, intrathecally. Oral administration may include tablets or capsules, preferably the oral dosage is a sustained release formulation for once or twice daily administration. Percutneous administration can be once per day, and is preferably less than once per day administration. Administration to the human patient or other mammalian subject may be continued until a measurable improvement in autonomic or motor function in the patient is achieved.
  • The mutant proteoglycan degrading polypeptides or fusion polypeptides that include them may also be expressed or secreted by genetically modified cells. The expressed deletion or substitution proteoglycan degrading polypeptide or fusion polypeptides may be harvested and purified for a therapeutic composition, or the genetically modified cells can be implanted, either free or in a capsule, at or near the site of CNS injury or a tissue into which the controlled diffusion of therapeutic or diagnostic molecule is desired. Mutant nucleic acids for expressing mutant proteoglycan degrading polypeptides are illustrated by non-limiting examples of chondroitinase B nucleic acid mutant (SEQ ID NO: 21) which encodes for mutant polypeptide NΔ120 CΔ120 of chondroitinase B (SEQ ID NO: 21) and chondroitinase AC nucleic acid mutant (SEQ ID NO: 19) which encodes for mutant polypeptide NΔ50 CΔ275 of chondroitinase AC (SEQ ID NO: 11). A non-limiting example of a fusion nucleic acid includes a TAT-deletion mutant chondroitinase ABCI fusion DNA construct (SEQ ID NO: 23). Another example would be a nucleic acid for TAT-chondroitinase ABCI-NΔ60 SEQ ID NO: 37) and a peptide sequence for the expressed polypeptide (SEQ ID NO: 38).
  • Once the mutant proteoglycan degrading polypeptide are administered to cells or a tissue with CSPGs, degradation of CSPGs removes the inhibitory molecules that block neurite outgrowth, and allow the regeneration of neurites into the affected area. The removal of CSPG also promotes plasticity in the CNS. For example, the full length polypeptides of chondroitinase AC (SEQ ID NO: 5), and chondroitinase B, (SEQ ID NO: 12), degrade CS and DS, respectively, resulting in unsaturated sulfated disaccharides. Chondroitinase AC (SEQ ID NO: 5), cleaves CS at 1,4 glycosidic linkages between N-acetylgalactosamine and glucuronic acid in the polysaccharide backbone of CS. Cleavage occurs through beta-elimination in a random endolytic action pattern. Chondroitinase B (SEQ ID NO: 12) cleaves the 1,4 galactosamine iduronic acid linkage in the polysaccharide backbone of DS. The cleavage of both CS and DS occurs through a beta-elimination process which differentiates these enzymatic mechanisms from mammalian GAG degrading enzymes. Chondroitinase ABC I (SEQ ID NO: 1), chondroitinase ABC II (SEQ ID NO: 27), are exo and endo lyases that cleave both CS and DS. The removal of CS and DS from a glial scar permits the regeneration of neurite outgrowths into the injured area and promotes plasticity. For example, the proteoglycan degrading molecules illustrated in FIG. 2, Chondroitinase AC (SEQ ID NO: 5) and various mutant Chondroitinase AC (SEQ ID NO: 6-11) degrade a model proteoglycan substrate at by various amounts. Similar results are shown by in vitro zymograph for chondroitinase B (SEQ ID NO: 12) and illustrative mutants (SEQ ID NO: 13-17) in FIG. 6. It is reasonable to expect that since a proteoglycan degrading molecule like Chondroitinase ABC I (SEQ ID NO: 1) improves functional recovery in rats with contusive spinal cord injury and also facilitates the diffusion of model compounds into brain tissue, that mutant proteoglycan degrading polypeptides and compositions containing them can also improve functional recovery in mammalian subjects like rats with contusive spinal cord injury and may also facilitates the diffusion of model compounds into brain tissue.
  • The regeneration of the nerve cells and restoration of plasticity in the affected CNS area allows the return of motor and sensory function. Clinically relevant improvement will range from a detectable improvement to a complete restoration of an impaired or lost nervous function, varying with the individual patients and injuries. The degree of functional recovery can be demonstrated by improved corticospinal tract conduction, improved tape removal, beam walking, grid walking and paw placement following chondroitinase treatment of a dorsal column lesion. Motor skill improvement as well as autonomic function: bowel, bladder, sensory and sexual function may also be used as measures of function improvement and related to molecular structure and components in the compositions of the present invention.
  • A series of polynucleotides that include coding for deletion or substitution mutants of proteoglycan degrading polypeptides may be generated by PCR using the full length cDNAs for the proteoglycans as templates and cloned into an expression vector such as pET15b at the NdeI and BamHI sites for expression in E. Coli. After induction of gene expression with isopropyl-β-D-thiogalactopyranoside (IPTG), the bacteria can lysed by sonication with the concomitant extraction of the mutant polypeptide with a surfactant such as Triton X-114/PBS. The majority of recombinant proteoglycan degrading polypeptide may be found in the cytosolic fraction of the bacterial cell lysate and chondroitinase purification protocols can be used to obtain the mutant proteoglycan degrading enzyme with high activity at high yields. This protocol may include purification by a column having anti-His antibody to selectively bind His-tagged mutant proteoglycan degrading polypeptides and may also includes cation-exchange chromatography as a capture step and gel filtration as a polishing step. After these steps, anion exchange membrane filtration, for example Intercept Q, Millipore, can be used for endotoxin and host DNA removal. Following filtration, the proteoglycan degrading mutant polypeptides can be dialyzed into volatile buffer, pH 8.0 and lyophilized to dryness. The final product is expected to be stable at −70° C. for long term storage. The pI of the purified basic proteoglycan degrading mutant polypeptide may be determined by IEF-PAGE analysis of the samples from the crude cell lysate.
  • A variety of analytical methods can be used to compare the enzymatic activity of the recombinant version the deletion or substitution mutants of proteoglycan degrading polypeptides with those of full length proteoglycan degrading molecules like chondroitinase ABC I (SEQ ID NO: 1) or a commercially available form of the enzyme. The methods may also be adapted to evaluate the activity of fusion proteins including a mutant proteoglycan degrading polypeptide portion. Specific activity measurements may be obtained using an accepted spectrophotometric assay that measures the change in absorbance due to the production of reaction products from the degradation of proteoglycans. Size exclusion chromatography can be used to compare the hydrodynamic properties of the mutant enzymes.
  • A form of zymography can used to characterize the mature proteoglycan degrading enzyme and may be adapted for characterization of the mutants proteoglycan degrading polypeptides. Polyacrylamide gels can be polymerized in the presence of aggrecan, a substrate for proteoglycan degrading molecules like chondroitinase ABCI. The mutant proteoglycan degrading polypeptides, enzyme samples, may be resolved on the aggrecan-impregnated gels by electrophoresis in the presence of SDS. The gels can then be subjected to a renaturation step wherein the SDS can be extracted and the enzymes allowed to refold. The refolded enzyme regains activity then digests aggrecan within the gel and the resulting loss of carbohydrate in that region of the gel that can be visualized by a carbohydrate-specific stain. A similar loss of carbohydrate in the gel would be expected for equally active forms and concentration of the mutant proteoglycan degrading molecules. In the case of recombinant Chondroitinase ABCI, its activity can be visualized as a clear spot in the zymogram. The zymography results are consistent with the spectrophotometric analysis.
  • HPLC methods may be used for detecting the four and six sulphated disaccharides (Δ4DS and Δ6DS, respectively) liberated as a result of mutant proteoglycan degrading polypeptide digestion of CSPG. The two disaccharides can be effectively resolved by anion exchange chromatography. The HPLC assay for the quantitation of Δ4DS and Δ6DS from chromatograms is expected to yield a linear relationship proportional to the amounts injected into the HPLC. Production of Δ4DS and Δ6DS from CSPG digestion is directly related to the amount of chondroitinase specific activity as determined by the spectrophotometric assay. This assay may be used as a sensitive and accurate method to independently quantitate Δ4DS and Δ6DS released by mutant proteoglycan degrading polypeptide digestion of a variety of substrates and may also be used to determine the activity of mutant proteoglycan degrading polypeptides and fusion proteins including them.
  • Another functional assay that can be performed to characterize mutant proteoglycan polypeptide activity is where dorsal root ganglian (DRG) neurons are plated on aggrecan or aggrecan treated with a deletion or substitution mutant proteoglycan degrading polypeptide. It is expected that neurons plated on aggrecan will fail to adhere to the plate and extend axons. In contrast, neurons plated on aggrecan treated with a mutant proteoglycan degrading polypeptide in a composition or as part of a fusion polypeptide would be expected to adhere to the surface and extend axons. The extensive axon growth, which is observed for chondroitinase ABC I (SEQ ID NO:1) is believed to be due to the digestion of the carbohydrates on the aggrecan core protein which creates a more permissive substrate for axon growth.
  • Various aspects of the invention may be understood with reference to the following non-limiting examples.
  • EXAMPLE 1
  • This phrophetic example illustrates the diffusion of molecules into cells and tissue using a deletion or substitution mutant of a proteoglycan degrading polypeptide in a composition.
  • A brain from an adult Sprague Dawley rat may be removed from the skull and hemispheres may be soaked in buffer alone or containing about 33 U/ml of a mutant proteoglycan degrading polypeptide such as (SEQ ID NO: 9) NΔ50 CΔ200 AC (T74-T500) protein for 2 hours at 37° C. Hemispheres can be rinsed and immediately placed in dye such as Eosin Y (Sigma) or a saturated solution of Congo Red (Sigma) in 70% ethanol. Slabs of tissue may be cut and images acquired on a scanner. The penetration of the dyes into the brain tissue may be used as an indication of the proteoglycan degrading activity of a mutant proteoglycan degrading molecule and expectant penetration or diffusion of therapeutic and diagnostic molecules into the same type of tissue.
  • EXAMPLE 2
  • This prophetic example illustrates a Chondroitinase ABC I Assay Protocol which may be modified to measure the activity of a mutant proteoglycan degrading molecule, for example a Chondroitinase ABCI deletion mutant or a fusion proteins including a deletion and or substitution mutant of a proteoglycan degrading polypeptide.
  • The production of reaction products from the catalytic activity of a proteoglycan degrading molecule or fusion protein can be determined by a measurement of the absorbance of the proteoglycan degradation product at a wavelength of 232 nm. A typical reaction mixture consisted of 120 μl of reaction mixture (40 mM Tris, pH 8.0, 40 mM NaAcetate, 0.002% casein) combined with a substrate (5 μl of 50 mM chondroitin C (MW 521), chondroitin 6 SO4, or dermatan sulfate) and 1.5 μl of chondroitinase ABCI (SEQ ID NO:1) or a mutant of chondroitinase like (SEQ ID NO:2). Reaction mixture aliquots of about 120 μl can be prepared at 30-37° C. for 3 min or longer. The product formation is monitored as an increase in absorbance at 232 nm as a function of time at a wavelength of 232 nm using a spectrometer. The reaction may be stopped by addition of 0.1% SDS followed by boiling for 5 minutes. The observed activity may be converted to units (μmoles of product formed per minute) using the molar absorption coefficient for the C4-C5 double bond formed in the reaction (3800 cm−1min−1).
  • Knowing the molar absorption coefficient for the reaction product, measuring the change in the absorbance of the reaction product at 232 nm reading over time upon addition of a known amount of the Chondroitinase ABCI (SEQ ID NO:1) or other mutant proteoglycan degrading polypeptide to the 120 μl reaction mixture with 0002% casein and a chondroitin substrate added, the specific activity in umol/min/mg of the mutant proteoglycan degrading polypeptide can be determined. Seikagaku Chondroitinase ABC I has a specific activity under these assay conditions of about 450 μmole/min/mg.
  • Chondroitinase ABC I (SEQ ID NO:1), digests axon growth inhibiting chondroitin present in CNS tissue and improves functional recovery in rats having contusion spinal cord injuries. It is reasonable to expect that mutants of proteoglycan degrading molecules, such as (SEQ ID NO: 11) NΔ50 CΔ275 AC (T74T426) polypeptide that show proteoglycan degrading activity may also show some regeneration of nerves, stimulate plasticity and be useful for diffusion of agents into tissues. The mode of administration, the timing of administration and the dosage are carried out such that the functional recovery from impairment of the CNS is enhanced by the promotion of neurite outgrowth and plasticity. It is reasonable to expect that once the deletion or substitution mutants of proteoglycan degrading molecules such as (SEQ ID NO: 11) NΔ50 CΔ275 AC (T74-T426) protein are administered, the degradation of CSPGs can remove the inhibitory molecules in tissue that block drug diffusion, block neurite outgrowth, and promote the regeneration of neurites or other therapeutics into the affected area. The regeneration and plasticity of the nerve cells into the affected CNS area may allow the return of motor and sensory function. Clinically relevant improvements will range from a detectable improvement to a complete restoration of an impaired or lost nervous function, varying with the individual patients and injuries.
  • EXAMPLE 3
  • This example shows that deletion mutants of chondroitinase are biologically active.
  • Recombinantly produced chondroitinases AC and B have shown efficacy in vitro by overcoming the barrier of an inhibitory substrate border, such as aggrecan and result in neurite extension for rat cortical neurons. To facilitate effective transport of the above enzymes to the injury site, deletion mutants of these chondroitinases were prepared to determine the minimally-sized polypeptides capable of degrading CSPGs. The cleavage activity of all these mutants have been screened in vitro by zymographic assay using aggrecan as substrate. A truncated polypeptide of chondroitinase AC (NΔ50-CΔ275) (SEQ ID NO:11) lacking 50 and 275 amino acids from the amino and carboxy termini respectively having a molecular weight of 38 kDa compared to 75 kDa of the full length protein was found to be about the minimal size mutant chondroitinase AC that retains activity as tested by zymography assay FIG. 4(B). However, an even smaller mutant, the deletion mutant of chondroitinase B (nΔ120-cΔ120) (SEQ ID NO:17) lacking 120 amino acids from each of the amino and carboxy termini, having a molecular weight of 26 kDa compared to 52 kDa of the full length protein has also shown to retain activity as well in zymography assay FIG. 6(B). These and other even smaller deletion mutants could be used as potential therapeutics with lesser immunogenicity and similar or higher tissue penetration ability compared to the mature enzyme and may be used for treatment of spinal cord injury.
  • A series of chondroitinase AC and B deletion mutants were generated by PCR using the full-length cDNAs for chondroitinases AC and B as templates and cloned in the pET15b expression vector at the NdeI and BamHI sites. Full length and deletion mutants were constructed with Histidine-tags for ease of detection and purification. Each of these cDNAs was induced by Isopropyl-β-D-Thiogalactopyranoside (IPTG,) and the expression was confirmed by Western blotting using anti-His antibody (Novagen). FIG. 3(A) shows various non-limiting deletion mutants schematically, and FIG. 3(B) shows confirmation of expression of these chondroitinase AC mutant polypeptides by anti-histidine tag Western blotting. FIGS. 5 and 6 show the same information for chondroitinase B deletions. Western blots demonstrate proteins of predicted size. Zymographic PAGE of deletion mutants show intense bands of substrate digestion (light) and negative carbohydrate staining.
  • Zymography assay. SDS-polyacrylamide gels were poured with aggrecan (85 μg/ml) polymerized into it. Crude extracts of deletion mutants of chondroitinases AC and B were run and renatured at 37° C. overnight. After separation the gel is incubated in 0.2% Cetylpyridinium for 90 minutes at room temperature. The digestion of the proteoglycans by the chondroitinases is visualized by staining the gel with 0.2% Toludene Blue in ethanol-H2O -acetic acid (50:49:1 v/v/v) for 30 minutes and destained with ethanol-H2O-acetic acid (50:49:1 v/v/v). Following destaining the gel is incubated overnight in a 50 μg/ml solution of Stains-all in 50% ethanol in the dark and destained with H2O. Appearance of clear bands on the gel shows the digestion of carboyhydrates by the chondroitinases of the CSPG leaving the core protein which remains unstained (FIG. 4. and FIG. 6).
  • EXAMPLE 4
  • This example describes the linking of a His tag to a mutant proteoglycan degrading polypeptide.
  • Deletion mutants of the chondroitinase ABC I enzyme where the mutant is missing a certain number of amino acids from the N-terminal and maintains proteoglycan degrading activity were generated (SEQ ID NO:2-4). These N-terminal deletion maintain a histidine-tag that is attached to the N-terminus; however similarly tagged full length chondroitinase ABC I (SEQ ID NO:1) did not maintain the histidine-tag after expression.
  • Catalytically active deletion mutants of chondroitinase ABC I can be prepared for example but not limited to deleting 20, and 60 amino acids respectively from the N-terminus of the mature ABC I protein as shown for ILLUSTRATIVE PURPOSES ONLY in FIG. 7. In addition, deletion of 80 amino acids from the C-terminal end (SEQ ID NO:38) yields a mutant of chondroitinase ABC I which has proteoglycan degrading activity as tested in a zymography assay. As a potential alternative to the full-length chondroitinase ABC I, a deletion mutant such as ABCI-NΔ20-CΔ80 with a predicted molecular weight of 89 kDa can also be made (SEQ ID NO:39).
  • These chondroitinase deletion mutants and mutants of other proteoglycan degrading molecules may used for construction of N-terminal fusion chimeric protein. Assay tests with these fusion polypeptides for chondroitin degradation and may be used to determine the efficacy of mature ABCI versus various deletion mutant in compositions and fusion proteins with respect to the substrate specificity, substrate binding and tissue penetration. Functional assay that can be performed to characterize the activity of mutant proteoglycan polypeptide or fusion polypeptides including them. In this functional assay, dorsal root ganglian (DRG) neurons can be plated on aggrecan or aggrecan treated with a mutant proteoglycan degrading polypeptide or a fusion polypeptide including the mutant. It is expected that neurons plated on aggrecan will failed to adhere to the plate and extend axons. In contrast, neurons plated on aggrecan treated with a mutant proteoglycan degrading polypeptide or a fusion polypeptide including the mutant in a composition or as part of a fusion polypeptide would be expected to adhere to the surface and extend axons. The extensive axon growth, which is observed for chondroitinase ABC I (SEQ ID NO:1) treated aggrecan substrate is believed to be due to the digestion of the carbohydrates on the aggrecan core protein which creates a more permissive substrate for axon growth.
  • EXAMPLE 5
  • This phrophetic example describes a mutant of chondroitinase ABC I that has native protein structure, but lacks proteoglycan degrading catalytic activity.
  • This mutant may be prepared as a null or a negative control for bioassays and SCI studies. Based on the crystal structure of chondroitinase ABC I a site-specific mutant designated H501a and Y508a (SEQ ID NO: 36) to knock out catalytic activity in the putative active site can be prepared. Such mutants can be tested for inactivation of catalytic activity and SEC to compare to the wild-type enzyme. The null activity mutant can also be used to provide a negative control for the various proteoglycan degrading fusion proteins for use in bioassays and ultimately in SCI animal studies.
  • EXAMPLE 6
  • This example illustrates examples of mutant proteoglycan degrading polypeptides that include both substitution and deletions from polypeptides of the present invention.
  • The chondroitinase ABC I sequence (SEQ ID NO: 37) is a published sequence for a mature chondroitinase ABC I peptide and includes the leader sequence. Chondroitinase ABC I sequence (SEQ ID NO: 37) is similar to (SEQ ID NO: 1), however (SEQ ID NO: 1) does not have the first 25 amino acids of (SEQ ID NO: 37), and amino acids at positions 154 and 195 of (SEQ ID NO: 37) differ from those (substitutions) found in similar positions when (SEQ ID NO: 1) and (SEQ ID NO: 37) are aligned.
  • (SEQ ID NO: 38-40) illustrate deletions from either the N or C terminal of the (SEQ ID NO: 37) polypeptide and substitutions relative to (SEQ ID NO: 1). These mutant polypeptides are NΔ20 (SEQ ID NO: 38), NΔ60 (SEQ ID NO: 39) and NΔ60 CΔ80 (SEQ ID NO: 40).
  • EXAMPLE 7
  • This example illustrates non-limiting illustrations of mutant polypeptides of the present invention fused with a membrane transduction polypeptide such as but not limited to a polypeptide portion of a HIV TAT protein. Full sequence listings for the mutants fusion polypeptides are provided in the Sequence listing included in the specification.
  • A nucleotide sequence for TAT-chondroitinase ABCI-nΔ20 (SEQ ID NO. 41), a portion of which is illustrated below, shows the TAT sequence nucleotides highlighted by underlining linked to chondroitinase nucleotides.
  •  1 ggtc gtaaaaagcg tcgtcaacgt cgtcgtcctc ctcaatgcgc acaaaataac
    61 ccattagcag acttctcatc agataaaaac tcaatactaa cgttatctga taaacgtagc
  • The underlined nucleotides in this portion of the nucleic acid sequence denote a TAT sequence attached to the 5′ of chondroitinase ABC I-NΔ20 nucleic acid (SEQ ID NO. 47).
  • An amino acid sequence for TAT-chondroitinase ABCI-nΔ20 (SEQ ID NO. 42), a portion of which is shown below, illustrates the TAT sequence amino acids highlighted by underlining at the N-terminus of chondroitinase ABCI-NΔ20 (SEQ ID NO. 2).
  • grkkrrqrrrppqcaqnnpladfssdknsiltlsdkrsimgnqsllwkwk
    ggssftlhkklivptdkeaskawgrsstpvfsfwlynekpidgyltidfg
    eklistseaqagfkvkldftgwrtvgvslnndlenremtlnatntssdgt
    qdsigrslgakvdsirfkapsnvsqgeiy
  • A nucleotide sequence for TAT-ABCI-NΔ60 (SEQ ID NO. 43), a portion of which is illustrated below, shows the N-terminal TAT (SEQ ID NO. 49) nucleotides highlighted by underlining.
  • ggtcgtaaaaagcgtcgtcaacgtcgtcgtcctcctcaatgctttacttt
    acataaaaaactgattgtccccaccgataaagaagcatctaaagcatggg
    gacgctcatccacccccgttttctcattttggctttacaatgaaaaaccg
    attgatggttatcttactatcgatttcgg . . .
  • Amino acid sequence for TAT-ABCI-nΔ60 (SEQ ID NO. 44) a portion of which is shown below, illustrates the TAT sequence (SEQ ID NO. 50) highlighted by underlining at the N-terminus of chondroitinase ABC I-NΔ60 (SEQ ID NO. 3).
  • grkkrrqrrrppqcftlkkklivptdkeaskawgrsstpvfsfwlynekp
    idgyltidfgeklistseaqagfkvkldftgwrtvgvslnndlenremtl
    natntssdgtqdsigrslgakvdsirfkapsnvsqgeiyidrimfsvdda
    ryqwsdyqvktrlseqeiqf . . .
  • Nucleotide sequence for ABCI-TAT-C (SEQ ID NO. 45), a portion of which is illustrated below, shows the C-terminal TAT sequence nucleotides highlighted by underlining. The stop codon from chondroitinase ABC I (SEQ ID NO. 28) was replaced by the TAT sequence and was placed at the 3′end of the TAT sequence.
  • . . . gattaatggcaaatggcaatctgctgataaaaatagtgaagtga
    aatatcaggtttctggtgataacactgaactgacgtttacgagttacttt
    ggtattccacaagaaatcaaactctcgccactccct
    ggtcgtaaaaagcgtcgtcaacgtcgtcgtcctcctcaatgctag
  • Amino acid sequence for ABCI-TAT-C (SEQ ID NO. 46), a portion of which is shown below, illustrates the TAT sequence highlighted by underlining at the C-terminus of the mature chondroitinase ABC I (SEQ ID NO. 1).
  • . . . aekvnvsrqhqvsaenknrqptegnfssawidhstrpkdasy
    eymvfldatpekmgemaqkfrennglyqvlrkdkdvhiildklsnvtg
    yafyqpasiedkwikkvnkpaivmthrqkdtlivsavtpdlnmtrqka
    atpvtinvtingkwqsadknsevkyqvsgdnteltftsyfgipqeikl
    splpgrkkrrqrrrppqc
  • EXAMPLE 8
  • This example illustrates the sequence of chondroitinase polypeptides which may be used for deletions or substitutions in mutants of the present invention.
  • SEQ ID NO: 26
    Present invention Chondroitinase ABC II Nucleic acid
    >_ ABC II mature 2973 nt vs.
    >_ ABC II (present invention) 2974 nt
    scoring matrix:, gap penalties: −12/−2
    99.0% identity; Global alignment score: 11684
            10        20        30        40        50        60
    806559 TTACCCACTCTGTCTCATGAAGCTTTCGGCGATATTTATCTTTTTGAAGGTGAATTACCC
    :::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::
    _ TTACCCACTCTGTCTCATGAAGCTTTCGGCGATATTTATCTTTTTGAAGGCGAATTACCC
            10        20        30        40        50        60
            70        80        90       100       110       120
    806559 AATACCCTTACCACTTCAAATAATAATCAATTATCGCTAAGCAAACAGCATGCTAAAGAT
    :::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AATATCCTTACCACTTCAAATAATAATCAATTATCGCTAAGCAAACAGCATGCTAAAGAT
            70        80        90       100       110       120
           130       140       150       160       170       180
    806559 GGTGAACAATCACTCAAATGGCAATATCAACCACAAGCAACATTAACACTAAATAATATT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GGTGAACAATCACTCAAATGGCAATATCAACCACAAGCAACATTAACACTAAATAATATT
           130       140       150       160       170       180
           190       200       210       220       230       240
    806559 GTTAATTACCAAGATGATAAAAATACAGCCACACCACTCACTTTTATGATGTGGATTTAT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GTTAATTACCAAGATGATAAAAATACAGCCACACCACTCACTTTTATGATGTGGATTTAT
           190       200       210       220       230       240
           250       260       270       280       290       300
    806559 AATGAAAAACCTCAATCTTCCCCATTAACGTTAGCATTTAAACAAAATAATAAAATTGCA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AATGAAAAACCTCAATCTTCCCCATTAACGTTAGCATTTAAACAAAATAATAAAATTGCA
           250       260       270       280       290       300
           310       320       330       340       350       360
    806559 CTAAGTTTTAATGCTGAACTTAATTTTACGGGGTGGCGAGGTATTGCTGTTCCTTTTCGT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CTAAGTTTTAATGCTGAACTTAATTTTACGGGGTGGCGAGGTATTGCTGTTCCTTTTCGT
           310       320       330       340       350       360
           370       380       390       400       410       420
    806559 GATATGCAAGGCTCTGTGACAGGTCAACTTGATCAATTAGTGATCACCGCTCCAAACCAA
    :::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::
    _ GATATGCAAGGCTCTGCGACAGGTCAACTTGATCAATTAGTGATCACCGCTCCAAACCAA
           370       380       390       400       410       420
           430       440       450       460       470       480
    806559 GCCGGAACACTCTTTTTTGATCAAATCATCATGAGTGTACCGTTAGACAATCGTTGGGCA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GCCGGAACACTCTTTTTTGATCAAATCATCATGAGTGTACCGTTAGACAATCGTTGGGCA
           430       440       450       460       470       480
           490       500       510       520       530       540
    806559 GTACCTGACTATCAAACACCTTACGTAAATAACGCAGTAAACACGATGGTTAGTAAAAAC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GTACCTGACTATCAAACACCTTACGTAAATAACGCAGTAAACACGATGGTTAGTAAAAAC
           490       500       510       520       530       540
           550       560       570       580       590       600
    806559 TGGAGTGCATTATTGATGTACGATCAGATGTTTCAAGCCCATTACCCTACTTTAAACTTC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TGGAGTGCATTATTGATGTACGATCAGATGTTTCAAGCCCATTACCCTACTTTAAACTTC
           550       560       570       580       590       600
           610       620       630       640       650       660
    806559 GATACTGAATTTCGCGATGACCAAACAGAAATGGCTTCGAGGTATCAGCGCTTTGAATAT
    ::::::::::::::::::::::::::::::::::::::::  ::::::::::::::::::
    _ GATACTGAATTTCGCGATGACCAAACAGAAATGGCTTCGATTTATCAGCGCTTTGAATAT
           610       620       630       640       650       660
           670       680       690       700       710       720
    806559 TATCAAGGAATTCGTAGTGATAAAAAAATTACTCCAGATATGCTAGATAAACATTTAGCA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TATCAAGGAATTCGTAGTGATAAAAAAATTACTCCAGATATGCTAGATAAACATTTAGCG
           670       680       690       700       710       720
           730       740       750       760       770       780
    806559 TTATGGGAAAAATTGGTGTTAACACAACACGCTGATGGTTCAATCACAGGAAAAGCCCTT
    :::::::::::::::: ::::::::::::::::::::: :::::::::::::::::::::
    _ TTATGGGAAAAATTGGGGTTAACACAACACGCTGATGGCTCAATCACAGGAAAAGCCCTT
           730       740       750       760       770       780
           790       800       810       820       830       840
    806559 GATCACCCTAACCGGCAACATTTTATGAAAGTCGAAGGTGTATTTAGTGAGGGGACTCAA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GATCACCCTAACCGGCAACATTTTATGAAAGTCGAAGGTGTATTTAGTGAGGGGACTCAA
           790       800       810       820       830       840
           850       860       870       880       890       900
    806559 AAAGCATTACTTGATGCCAATATGCTAAGAGATGTGGGCAAAACGCTTCTTCAAACTGCT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AAAGCATTACTTGATGCCAATATGCTAAGAGATGTGGGCAAAACGCTTCTTCAAACTGCT
           850       860       870       880       890       900
           910       920       930       940       950       960
    806559 ATTTACTTGCGTAGCGATTCATTATCAGCAACTGATAGAAAAAAATTAGAAGAGCGCTAT
    :::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::
    _ ATTTACTTGCGTAGCGATTCATTATCAGCAACTGGTAGAAAAAAATTAGAAGAGCGCTAT
           910       920       930       940       950       960
           970       980       990      1000      1010      1020
    806559 TTATTAGGTACTCGTTATGTCCTTGAACAAGGTTTTCACCGAGGAAGTGGTTATCAAATT
    ::::::::::::::::::::::::::::::::::::   :::::::::::::::::::::
    _ TTATTAGGTACTCGTTATGTCCTTGAACAAGGTTTTACACGAGGAAGTGGTTATCAAATT
           970       980       990      1000      1010      1020
          1030      1040      1050      1060      1070      1080
    806559 ATTAGCCATGTTGGTTACCAAACCAGAGAACTTTTTGATGCATGGTTTATTGGTCGTCAT
    ::::  ::::::::::::::::::::::::::::::::::::::::::::::: ::::::
    _ ATTACTCATGTTGGTTACCAAACCAGAGAACTTTTTGATGCATGGTTTATTGGCCGTCAT
          1030      1040      1050      1060      1070      1080
          1090      1100      1110      1120      1130      1140
    806559 GTTCTTGCAAAAAATAACCTTTTAGCCCCCACTCAACAAGCTATGATGTGGTACAACGCC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GTTCTTGCAAAAAATAACCTTTTAGCCCCCACTCAACAAGCTATGATGTGGTACAACGCC
          1090      1100      1110      1120      1130      1140
          1150      1160      1170      1180      1190      1200
    806559 ACAGGACGTATTTTTGAAAAAAATAATGAAATTGTTGATGCAAATGTCGATATTCTCAAT
    ::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::
    _ ACAGGACGTATTTTTGAAAAAGATAATGAAATTGTTGATGCAAATGTCGATATTCTCAAT
          1150      1160      1170      1180      1190      1200
          1210      1220      1230      1240      1250      1260
    806559 ACTCAATTGCAATGGATGATAAAAAGCTTATTGATGCTACCGGATTATCAACAACGTCAA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ACTCAATTGCAATGGATGATAAAAAGCTTATTGATGCTACCGGATTATCAACAACGTCAA
          1210      1220      1230      1240      1250      1260
          1270      1280      1290      1300      1310      1320
    806559 CAAGCCTTAGCGCAACTGCAACGTTGGCTAAATAAAACCATTCTAAGCTCAAAAGGTGTT
    ::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::
    _ CAAGCCTTAGCGCAACTGCAAAGTTGGCTAAATAAAACCATTCTAAGCTCAAAAGGTGTT
          1270      1280      1290      1300      1310      1320
          1330      1340      1350      1360      1370      1380
    806559 GCTGGCGGTTTCAAATCTGATGGTTCTATTTTTCACCATTCACAACATTACCCCGCTTAT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GCTGGCGGTTTCAAATCTGATGGTTCTATTTTTCACCATTCACAACATTACCCCGCTTAT
          1330      1340      1350      1360      1370      1380
          1390      1400      1410      1420      1430      1440
    806559 GCTAAAGATGCATTTGGTGGTTTAGCACCCAGTGTTTATGCATTAAGTGATTCACCTTTT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GCTAAAGATGCATTTGGTGGTTTAGCACCCAGTGTTTATGCATTAAGTGATTCACCTTTT
          1390      1400      1410      1420      1430      1440
          1450      1460      1470      1480      1490      1500
    806559 CGCTTATCTACTTCAGCACATGAGCGTTTAAAAGATGTTTTGTTAAAAATGCGGATCTAC
    ::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::
    _ CGCTTATCTACTTCAGCACATGAGCATTTAAAAGATGTTTTGTTAAAAATGCGGATCTAC
          1450      1460      1470      1480      1490      1500
          1510      1520      1530      1540      1550      1560
    806559 ACCAAAGAGACACAAATTCCTGCTGTATTAAGTGGTCGTCATCCAACTGGGTTGCATAAA
    ::::::::::::::::::::::  ::::::::::::::::::::::::::::::::::::
    _ ACCAAAGAGACACAAATTCCTGTGGTATTAAGTGGTCGTCATCCAACTGGGTTGCATAAA
          1510      1520      1530      1540      1550      1560
          1570      1580      1590      1600      1610      1620
    806559 ATAGGGATCGCGCCATTTAAATGGATGGCATTAGCAGGAACCCCAGATGGCAAACAAAAG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ATAGGGATCGCGCCATTTAAATGGATGGCATTAGCAGGAACCCCAGATGGCAAACAAAAG
          1570      1580      1590      1600      1610      1620
          1630      1640      1650      1660      1670      1680
    806559 TTAGATACCACATTATCCGCCGCTTATGCAAAATTAGACAACAAAACGCATTTTGAAGGC
    :::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::
    _ TTAGATACCACATTATCCGCCGCTTATGCAAACTTAGACAACAAAACGCATTTTGAAGGC
          1630      1640      1650      1660      1670      1680
          1690      1700      1710      1720      1730      1740
    806559 ATTAAGGCTGAAAGTGAGCCAGTCGGCGCATGGGCAATGAATTATGCATCAATGGCAATA
    ::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ATTAACGCTGAAAGTGAGCCAGTCGGCGCATGGGCAATGAATTATGCATCAATGGCAATA
          1690      1700      1710      1720      1730      1740
          1750      1760      1770      1780      1790      1800
    806559 CAACGAAGAGCATCGACCCAATCACCACAACAAAGCTGGCTCGCCATAGCGCGCGGTTTT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CAACGAAGAGCATCGACCCAATCACCACAACAAAGCTGGCTCGCCATAGCGCGCGGTTTT
          1750      1760      1770      1780      1790      1800
          1810      1820      1830      1840      1850      1860
    806559 AGCCGTTATCTTGTTGGTAATGAAAGCTATGAAAATAACAACCGTTATGGTCGTTATTTA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AGCCGTTATCTTGTTGGTAATGAAAGCTATGAAAATAACAACCGTTATGGTCGTTATTTA
          1810      1820      1830      1840      1850      1860
          1870      1880      1890      1900      1910      1920
    806559 CAATATGGACAATTGGAAATTATTCCAGCTGATTTAACTCAATCAGGGTTTAGCCATGCT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CAATATGGACAATTGGAAATTATTCCAGCTGATTTAACTCAATCAGGGTTTAGCCATGCT
          1870      1880      1890      1900      1910      1920
          1930      1940      1950      1960      1970      1980
    806559 GGATGGGATTGGAATAGATATCCAGGTACAACAACTATTCATCTTCCCTATAACGAACTT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GGATGGGATTGGAATAGATATCCAGGTACAACAACTATTCATCTTCCCTATAACGAACTT
          1930      1940      1950      1960      1970      1980
          1990      2000      2010      2020      2030      2040
    806559 GAAGCAAAACTTAATCAATTACCTGCTGCAGGTATTGAAGAAATGTTGCTTTCAACAGAA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GAAGCAAAACTTAATCAATTACCTGCTGCAGGTATTGAAGAAATGTTGCTTTCAACAGAA
          1990      2000      2010      2020      2030      2040
          2050      2060      2070      2080      2090      2100
    806559 AGTTACTCTGGTGCAAATACCCTTAATAATAACAGTATGTTTGCCATGAAATTACACGGT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AGTTACTCTGGTGCAAATACCCTTAATAATAACAGTATGTTTGCCATGAAATTACACGGT
          2050      2060      2070      2080      2090      2100
          2110      2120      2130      2140      2150      2160
    806559 CCAAGTAAATATCAACAACAAAGCTTAAGGGCAAATAAATCCTATTTCTTATTTGATAAT
    :  :::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CACAGTAAATATCAACAACAAAGCTTAAGGGCAAATAAATCCTATTTCTTATTTGATAAT
          2110      2120      2130      2140      2150      2160
          2170      2180      2190      2200      2210      2220
    806559 AGAGTTATTGCTTTAGGCTCAGGTATTGAAAATGATGATAAACAACATACGACCGAAACA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AGAGTTATTGCTTTAGGCTCAGGTATTGAAAATGATGATAAACAACATACGACCGAAACA
          2170      2180      2190      2200      2210      2220
          2230      2240      2250      2260      2270      2280
    806559 ACACTATTCCAGTTTGCCGTCCCTAAATTACAGTCAGTGATCATTAATGGCAAAAAGGTA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ACACTATTCCAGTTTGCCGTCCCTAAATTACAGTCAGTGATCATTAATGGCAAAAAGGTA
          2230      2240      2250      2260      2270      2280
          2290      2300      2310      2320      2330      2340
    806559 AATCAATTAGATACTCAATTAACTTTAAATAATGCAGATACATTAATTGATCCTGCCGGC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AATCAATTAGATACTCAATTAACTTTAAATAATGCAGATACATTAATTGATCCTGCCGGC
          2290      2300      2310      2320      2330      2340
          2350      2360      2370      2380      2390      2400
    806559 AATTTATATAAGCTCACTAAAGGACAAACTGTAAAATTTAGTTATCAAAAACAACATTCA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AATTTATATAAGCTCACTAAAGGACAAACTGTAAAATTTAGTTATCAAAAACAACATTCA
          2350      2360      2370      2380      2390      2400
          2410      2420      2430      2440      2450      2460
    806559 CTTGATGATAGAAATTCAAAACCAACAGAACAATTATTTGCAACAGCTGTTATTTCTCAT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CTTGATGATAGAAATTCAAAACCAACAGAACAATTATTTGCAACAGCTGTTATTTCTCAT
          2410      2420      2430      2440      2450      2460
          2470      2480      2490      2500      2510      2520
    806559 GGTAAGGCACCGAGTAATGAAAATTATGAATATGCAATAGCTATCGAAGCACAAAATAAT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GGTAAGGCACCGAGTAATGAAAATTATGAATATGCAATAGCTATCGAAGCACAAAATAAT
          2470      2480      2490      2500      2510      2520
          2530      2540      2550      2560      2570      2580
    806559 AAAGCTCCCGAATACACAGTATTACAACATAATGATCAGCCCCATGCGGTAAAAGATAAA
    ::::::::: :::::::::::::::::::::::::::::: :::::::::::::::::::
    _ AAAGCTCCCAAATACACAGTATTACAACATAATGATCAGCTCCATGCGGTAAAAGATAAA
          2530      2540      2550      2560      2570      2580
          2590      2600      2610      2620      2630
    806559 ATAACCCAAGAAGAGGGATATGCTTTTTTTGAAGCCACTAAGTTAAAATCAGCGGATGC
    :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ATAACCCAAGAAGAGGGATATGGTTTTTTTGAAGCCACTAAGTTAAAATCAGCGGATGC
          2590      2600      2610      2620      2630      2640
          2640      2650      2660      2670      2680      2690
    806559 AACATTATTATCCAGTGATGCGCCGGTTATGGTCATGGCTAAAATACAAAATCAGCAATT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AACATTATTATCCAGTGATGCGCCGGTTATGGTCATGGCTAAAATACAAAATCAGCAATT
          2650      2660      2670      2680      2690      2700
          2700      2710      2720      2730      2740      2750
    806559 AACATTAAGTATTGTTAATCCTGATTTAAATTTATATCAAGGTAGAGAAAAAGATCAATT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AACATTAAGTATTGTTAATCCTGATTTAAATTTATATCAAGGTAGAGAAAAAGATCAATT
          2710      2720      2730      2740      2750      2760
          2760      2770      2780      2790      2800      2810
    806559 TGATGATAAAGGTAATCAAATCGAAGTTAGTGTTTATTCTCGTCATTGGCTTACAGCAGA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TGATGATAAAGGTAATCAAATCGAAGTTAGTGTTTATTCTCGTCATTGGCTTACAGCAGA
          2770      2780      2790      2800      2810      2820
          2820      2830      2840      2850      2860      2870
    806559 ATCGCAATCAACAAATAGTACTATTACCGTAAAAGGAATATGGAAATTAACGACACCTCA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ATCGCAATCAACAAATAGTACTATTACCGTAAAAGGAATATGGAAATTAACGACACCTCA
          2830      2840      2850      2860      2870      2880
          2880      2890      2900      2910      2920      2930
    806559 ACCCGGTGTTATTATTAAGCACCACAATAACAACACTCTTATTACGACAACAACCATACA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ACCCGGTGTTATTATTAAGCACCACAATAACAACACTCTTATTACGACAACAACCATACA
          2890      2900      2910      2920      2930      2940
          2940      2950      2960      2970
    806559 GGCAACACCTACTGTTATTAATTTAGTTAAGTAA
    ::::::::::::::::::::::::::::::::::
    _ GGCAACACCTACTGTTATTAATTTAGTTAAGTAA
          2950      2960      2970

    The above discrepancies, bold text, at the nucleotide level resulted in 98.3% identity at the amino acid level and the substituted residues are marked in bold text in the following.
  • SEQ ID NO: 27
    Present Invention Chondroitinase ABC II protein
    >_ ABC (present invention) 990 aa vs.
    >_ ABC (mature) 990 aa
    scoring matrix:, gap penalties: −12/−2
    98.3% identity; Global alignment score: 6393
            10        20        30        40        50        60
    457676 LPTLSHEAFGDIYLFEGELPNILTTSNNNQLSLSKQHAKDGEQSLKWQYQPQATLTLNNI
    ::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::
    _ LPTLSHEAFGDIYLFEGELPNTLTTSNNNQLSLSKQHAKDGEQSLKWQYQPQATLTLNNI
            10        20        30        40        50        60
            70        80        90       100       110       120
    457676 VNYQDDKNTATPLTFMMWIYNEKPQSSPLTLAFKQNNKIALSFNAELNFTGWRGIAVPFR
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ VNYQDDKNTATPLTFMMWIYNEKPQSSPLTLAFKQNNKIALSFNAELNFTGWRGIAVPFR
            70        80        90       100       110       120
           130       140       150       160       170       180
    457676 DMQGSATGQLDQLVITAPNQAGTLFFDQIIMSVPLDNRWAVPDYQTPYVNNAVNTMVSKN
    :::::.::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ DMQGSVTGQLDQLVITAPNQAGTLFFDQIIMSVPLDNRWAVPDYQTPYVNNAVNTMVSKN
           130       140       150       160       170       180
           190       200       210       220       230       240
    457676 WSALLMYDQMFQAHYPTLNFDTEFRDDQTEMASIYQRFEYYQGIRSDKKITPDMLDKHLA
    ::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::
    _ WSALLMYDQMFQAHYPTLNFDTEFRDDQTEMASRYQRFEYYQGIRSDKKITPDMLDKHLA
           190       200       210       220       230       240
           250       260       270       280       290       300
    457676 LWEKLGLTQHADGSITGKALDHPNRQHFMKVEGVFSEGTQKALLDANMLRDVGKTLLQTA
    ::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ LWEKLVLTQHADGSITGKALDHPNRQHFMKVEGVFSEGTQKALLDANMLRDVGKTLLQTA
           250       260       270       280       290       300
           310       320       330       340       350       360
    457676 IYLRSDSLSATGRKKLEERYLLGTRYVLEQGFTRGSGYQIITHVGYQTRELFDAWFIGRH
    ::::::::::: :::::::::::::::::::: ::::::::.::::::::::::::::::
    _ IYLRSDSLSATDRKKLEERYLLGTRYVLEQGFHRGSGYQIISHVGYQTRELFDAWFIGRH
           310       320       330       340       350       360
           370       380       390       400       410       420
    457676 VLAKNNLLAPTQQAMMWYNATGRIFEKDNEIVDANVDILNTQLQWMIKSLLMLPDYQQRQ
    :::::::::::::::::::::::::::.::::::::::::::::::::::::::::::::
    _ VLAKNNLLAPTQQAMMWYNATGRIFEKNNEIVDANVDILNTQLQWMIKSLLMLPDYQQRQ
           370       380       390       400       410       420
           430       440       450       460       470       480
    457676 QALAQLQSWLNKTILSSKGVAGGFKSDGSIFHHSQHYPAYAKDAFGGLAPSVYALSDSPF
    ::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ QALAQLQRWLNKTILSSKGVAGGFKSDGSIFHHSQHYPAYAKDAFGGLAPSVYALSDSPF
           430       440       450       460       470       480
           490       500       510       520       530       540
    457676 RLSTSAHEHLKDVLLKMRIYTKETQIPVVLSGRHPTGLHKIGIAPFKWMALAGTPDGKQK
    ::::::::.::::::::::::::::::.::::::::::::::::::::::::::::::::
    _ RLSTSAHERLKDVLLKMRIYTKETQIPAVLSGRHPTGLHKIGIAPFKWMALAGTPDGKQK
           490       500       510       520       530       540
           550       560       570       580       590       600
    457676 LDTTLSAAYANLDNKTHFEGINAESEPVGAWAMNYASMAIQRRASTQSPQQSWLAIARGF
    ::::::::::.::::::::::.::::::::::::::::::::::::::::::::::::::
    _ LDTTLSAAYAKLDNKTHFEGIKAESEPVGAWAMNYASMAIQRRASTQSPQQSWLAIARGF
           550       560       570       580       590       600
           610       620       630       640       650       660
    457676 SRYLVGNESYENNNRYGRYLQYGQLEIIPADLTQSGFSHAGWDWNRYPGTTTIHLPYNEL
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ SRYLVGNESYENNNRYGRYLQYGQLEIIPADLTQSGFSHAGWDWNRYPGTTTIHLPYNEL
           610       620       630       640       650       660
           670       680       690       700       710       720
    457676 EAKLNQLPAAGIEEMLLSTESYSGANTLNNNSMFAMKLHGHSKYQQQSLRANKSYFLFDN
    :::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::
    _ EAKLNQLPAAGIEEMLLSTESYSGANTLNNNSMFAMKLHGPSKYQQQSLRANKSYFLFDN
           670       680       690       700       710       720
           730       740       750       760       770       780
    457676 RVIALGSGIENDDKQHTTETTLFQFAVPKLQSVIINGKKVNQLDTQLTLNNADTLIDPAG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ RVIALGSGIENDDKQHTTETTLFQFAVPKLQSVIINGKKVNQLDTQLTLNNADTLIDPAG
           730       740       750       760       770       780
           790       800       810       820       830       840
    457676 NLYKLTKGQTVKFSYQKQHSLDDRNSKPTEQLFATAVISHGKAPSNENYEYAIAIEAQNN
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ NLYKLTKGQTVKFSYQKQHSLDDRNSKPTEQLFATAVISHGKAPSNENYEYAIAIEAQNN
           790       800       810       820       830       840
           850       860       870       880       890       900
    457676 KAPKYTVLQHNDQLHAVKDKITQEEGYGFFEATKLKSADATLLSSDAPVMVMAKIQNQQL
    :::.::::::::: :::::::::::::.::::::::::::::::::::::::::::::::
    _ KAPEYTVLQHNDQPHAVKDKITQEEGYAFFEATKLKSADATLLSSDAPVMVMAKIQNQQL
           850       860       870       880       890       900
           910       920       930       940       950       960
    457676 TLSIVNPDLNLYQGREKDQFDDKGNQIEVSVYSRHWLTAESQSTNSTITVKGIWKLTTPQ
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TLSIVNPDLNLYQGREKDQFDDKGNQIEVSVYSRHWLTAESQSTNSTITVKGIWKLTTPQ
           910       920       930       940       950       960
           970       980       990
    457676 PGVIIKHHNNNTLITTTTIQATPTVINLVK
    ::::::::::::::::::::::::::::::
    _ PGVIIKHHNNNTLITTTTIQATPTVINLVK
           970       980       990
    SEQ ID NO: 28
    Present Invention Chondroitinase ABC I nucleic acid
    >_ ABCI present invention 2994 nt vs.
    >_ ABCI mature 2994 nt
    scoring matrix:, gap penalties: −12/−2
    99.7% identity; Global alignment score: 11909
            10        20        30        40        50        60
    806559 GCCACCAGCAATCCTGCATTTGATCCTAAAAATCTGATGCAGTCAGAAATTTACCATTTT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GCCACCAGCAATCCTGCATTTGATCCTAAAAATCTGATGCAGTCAGAAATTTACCATTTT
            10        20        30        40        50        60
            70        80        90       100       110       120
    806559 GCACAAAATAACCCATTAGCAGACTTCTCATCAGATAAAAACTCAATACTAACGTTATCT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GCACAAAATAACCCATTAGCAGACTTCTCATCAGATAAAAACTCAATACTAACGTTATCT
            70        80        90       100       110       120
           130       140       150       160       170       180
    806559 GATAAACGTAGCATTATGGGAAACCAATCTCTTTTATGGAAATGGAAAGGTGGTAGTAGC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GATAAACGTAGCATTATGGGAAACCAATCTCTTTTATGGAAATGGAAAGGTGGTAGTAGC
           130       140       150       160       170       180
           190       200       210       220       230       240
    806559 TTTACTTTACATAAAAAACTGATTGTCCCCACCGATAAAGAAGCATCTAAAGCATGGGGA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TTTACTTTACATAAAAAACTGATTGTCCCCACCGATAAAGAAGCATCTAAAGCATGGGGA
           190       200       210       220       230       240
           250       260       270       280       290       300
    806559 CGCTCATCCACCCCCGTTTTCTCATTTTGGCTTTACAATGAAAAACCGATTGATGGTTAT
    :::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CGCTCATCTACCCCCGTTTTCTCATTTTGGCTTTACAATGAAAAACCGATTGATGGTTAT
           250       260       270       280       290       300
           310       320       330       340       350       360
    806559 CTTACTATCGATTTCGGAGAAAAACTCATTTCAACCAGTGAGGCTCAGGCAGGCTTTAAA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CTTACTATCGATTTCGGAGAAAAACTCATTTCAACCAGTGAGGCTCAGGCAGGCTTTAAA
           310       320       330       340       350       360
           370       380       390       400       410       420
    806559 GTAAAATTAGATTTCACTGGCTGGCGTACTGTGGGAGTCTCTTTAAATAACGATCTTGAA
    ::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::
    _ GTAAAATTAGATTTCACTGGCTGGCGTGCTGTGGGAGTCTCTTTAAATAACGATCTTGAA
           370       380       390       400       410       420
           430       440       450       460       470       480
    806559 AATCGAGAGATGACCTTAAATGCAACCAATACCTCCTCTGATGGTACTCAAGACAGCATT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AATCGAGAGATGACCTTAAATGCAACCAATACCTCCTCTGATGGTACTCAAGACAGCATT
           430       440       450       460       470       480
           490       500       510       520       530       540
    806559 GGGCGTTCTTTAGGTGCTAAAGTCGATAGTATTCGTTTTAAAGCGCCTTCTAATGTGAGT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GGGCGTTCTTTAGGTGCTAAAGTCGATAGTATTCGTTTTAAAGCGCCTTCTAATGTGAGT
           490       500       510       520       530       540
           550       560       570       580       590       600
    806559 CAGGGTGAAATCTATATCGACCGTATTATGTTTTCTGTCGATGATGCTCGCTACCAATGG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CAGGGTGAAATCTATATCGACCGTATTATGTTTTCTGTCGATGATGCTCGCTACCAATGG
           550       560       570       580       590       600
           610       620       630       640       650       660
    806559 TCTGATTATCAAGTAAAAACTCGCTTATCAGAACCTGAAATTCAATTTCACAACGTAAAG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TCTGATTATCAAGTAAAAACTCGCTTATCAGAACCTGAAATTCAATTTCACAACGTAAAG
           610       620       630       640       650       660
           670       680       690       700       710       720
    806559 CCACAACTACCTGTAACACCTGAAAATTTAGCGGCCATTGATCTTATTCGCCAACGTCTA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CCACAACTACCTGTAACACCTGAAAATTTAGCGGCCATTGATCTTATTCGCCAACGTCTA
           670       680       690       700       710       720
           730       740       750       760       770       780
    806559 ATTAATGAATTTGTCGGAGGTGAAAAAGAGACAAACCTCGCATTAGAAGAGAATATCAGC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ATTAATGAATTTGTCGGAGGTGAAAAAGAGACAAACCTCGCATTAGAAGAGAATATCAGC
           730       740       750       760       770       780
           790       800       810       820       830       840
    806559 AAATTAAAAAGTGATTTCGATGCTCTTAATACTCACACTTTAGCAAATGGTGGAACGCAA
    ::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::
    _ AAATTAAAAAGTGATTTCGATGCTCTTAATATTCACACTTTAGCAAATGGTGGAACGCAA
           790       800       810       820       830       840
           850       860       870       880       890       900
    806559 GGCAGACATCTGATCACTGATAAACAAATCATTATTTATCAACCAGAGAATCTTAACTCT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
    _ GGCAGACATCTGATCACTGATAAACAAATCATTATTTATCAACCAGAGAATCTTAACTCC
           850       860       870       880       890       900
           910       920       930       940       950       960
    806559 CAAGATAAACAACTATTTGATAATTATGTTATTTTAGGTAATTACACGACATTAATGTTT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CAAGATAAACAACTATTTGATAATTATGTTATTTTAGGTAATTACACGACATTAATGTTT
           910       920       930       940       950       960
           970       980       990      1000      1010      1020
    806559 AATATTAGCCGTGCTTATGTGCTGGAAAAAGATCCCACACAAAAGGCGCAACTAAAGCAG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AATATTAGCCGTGCTTATGTGCTGGAAAAAGATCCCACACAAAAGGCGCAACTAAAGCAG
           970       980       990      1000      1010      1020
          1030      1040      1050      1060      1070      1080
    806559 ATGTACTTATTAATGACAAAGCATTTATTAGATCAAGGCTTTGTTAAAGGGAGTGCTTTA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ATGTACTTATTAATGACAAAGCATTTATTAGATCAAGGCTTTGTTAAAGGGAGTGCTTTA
          1030      1040      1050      1060      1070      1080
          1090      1100      1110      1120      1130      1140
    806559 GTGACAACCCATCACTGGGGATACAGTTCTCGTTGGTGGTATATTTCCACGTTATTAATG
    :::::.::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GTGACAACCCATCACTGGGGATACAGTTCTCGTTGGTGGTATATTTCCACGTTATTAATG
          1090      1100      1110      1120      1130      1140
          1150      1160      1170      1180      1190      1200
    806559 TCTGATGCACTAAAAGAAGCGAACCTACAAACTCAAGTTTATGATTCATTACTGTGGTAT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TCTGATGCACTAAAAGAAGCGAACCTACAAACTCAAGTTTATGATTCATTACTGTGGTAT
          1150      1160      1170      1180      1190      1200
          1210      1220      1230      1240      1250      1260
    806559 TCACGTGAGTTTAAAAGTAGTTTTGATATGAAAGTAAGTGCTGATAGCTCTGATCTAGAT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TCACGTGAGTTTAAAAGTAGTTTTGATATGAAAGTAAGTGCTGATAGCTCTGATCTAGAT
          1210      1220      1230      1240      1250      1260
          1270      1280      1290      1300      1310      1320
    806559 TATTTCAATACCTTATCTCGCCAACATTTAGCCTTATTACTACTAGAGCCTGATGATCAA
    ::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::
    _ TATTTCAATACCTTATCTCGCCAACATTTAGCCTTATTATTACTAGAGCCTGATGATCAA
          1270      1280      1290      1300      1310      1320
          1330      1340      1350      1360      1370      1380
    806559 AAGCGTATCAACTTAGTTAATACTTTCAGCCATTATATCACTGGCGCATTAACGCAAGTG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AAGCGTATCAACTTAGTTAATACTTTCAGCCATTATATCACTGGCGCATTAACGCAAGTG
          1330      1340      1350      1360      1370      1380
          1390      1400      1410      1420      1430      1440
    806559 CCACCGGGTGGTAAAGATGGTTTACGCCCTGATGGTACAGCATGGCGACATGAAGGCAAC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CCACCGGGTGGTAAAGATGGTTTACGCCCTGATGGTACAGCATGGCGACATGAAGGCAAC
          1390      1400      1410      1420      1430      1440
          1450      1460      1470      1480      1490      1500
    806559 TATCCGGGCTACTCTTTCCCAGCCTTTAAAAATGCCTCTCAGCTTATTTATTTATTACGC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TATCCGGGCTACTCTTTCCCAGCCTTTAAAAATGCCTCTCAGCTTATTTATTTATTACGC
          1450      1460      1470      1480      1490      1500
          1510      1520      1530      1540      1550      1560
    806559 GATACACCATTTTCAGTGGGTGAAAGTGGTTGGAATAGCCTGAAAAAAGCGATGGTTTCA
    ::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::
    _ GATACACCATTTTCAGTGGGTGAAAGTGGTTGGAATAACCTGAAAAAAGCGATGGTTTCA
          1510      1520      1530      1540      1550      1560
          1570      1580      1590      1600      1610      1620
    806559 GCGTGGATCTACAGTAATCCAGAAGTTGGATTACCGCTTGCAGGAAGACACCCTCTTAAC
    :::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::
    _ GCGTGGATCTACAGTAATCCAGAAGTTGGATTACCGCTTGCAGGAAGACACCCTTTTAAC
          1570      1580      1590      1600      1610      1620
          1630      1640      1650      1660      1670      1680
    806559 TCACCTTCGTTAAAATCAGTCGCTCAAGGCTATTACTGGCTTGCCATGTCTGCAAAATCA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TCACCTTCGTTAAAATCAGTCGCTCAAGGCTATTACTGGCTTGCCATGTCTGCAAAATCA
          1630      1640      1650      1660      1670      1680
          1690      1700      1710      1720      1730      1740
    806559 TCGCCTGATAAAACACTTGCATCTATTTATCTTGCGATTAGTGATAAAACACAAAATGAA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TCGCCTGATAAAACACTTGCATCTATTTATCTTGCGATTAGTGATAAAACACAAAATGAA
          1690      1700      1710      1720      1730      1740
          1750      1760      1770      1780      1790      1800
    806559 TCAACTGCTATTTTTGGAGAAACTATTACACCAGCGTCTTTACCTCAAGGTTTCTATGCC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TCAACTGCTATTTTTGGAGAAACTATTACACCAGCGTCTTTACCTCAAGGTTTCTATGCC
          1750      1760      1770      1780      1790      1800
          1810      1820      1830      1840      1850      1860
    806559 TTTAATGGCGGTGCTTTTGGTATTCATCGTTGGCAAGATAAAATGGTGACACTGAAAGCT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TTTAATGGCGGTGCTTTTGGTATTCATCGTTGGCAAGATAAAATGGTGACACTGAAAGCT
          1810      1820      1830      1840      1850      1860
          1870      1880      1890      1900      1910      1920
    806559 TATAACACCAATGTTTGGTCATCTGAAATTTATAACAAAGATAACCGTTATGGCCGTTAC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TATAACACCAATGTTTGGTCATCTGAAATTTATAACAAAGATAACCGTTATGGCCGTTAC
          1870      1880      1890      1900      1910      1920
          1930      1940      1950      1960      1970      1980
    806559 CAAAGTCATGGTGTCGCTCAAATAGTGAGTAATGGCTCGCAGCTTTCACAGGGCTATCAG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CAAAGTCATGGTGTCGCTCAAATAGTGAGTAATGGCTCGCAGCTTTCACAGGGCTATCAG
          1930      1940      1950      1960      1970      1980
          1990      2000      2010      2020      2030      2040
    806559 CAAGAAGGTTGGGATTGGAATAGAATGCCAGGGGCAACCACTATCCACCTTCCTCTTAAA
    :::::::::::::::::::::::::::: ::::::::::::::: :::::::::::::::
    _ CAAGAAGGTTGGGATTGGAATAGAATGCAAGGGGCAACCACTATTCACCTTCCTCTTAAA
          1990      2000      2010      2020      2030      2040
          2050      2060      2070      2080      2090      2100
    806559 GACTTAGACAGTCCTAAACCTCATACCTTAATGCAACGTGGAGAGCGTGGATTTAGCGGA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GACTTAGACAGTCCTAAACCTCATACCTTAATGCAACGTGGAGAGCGTGGATTTAGCGGA
          2050      2060      2070      2080      2090      2100
          2110      2120      2130      2140      2150      2160
    806559 ACATCATCCCTTGAAGGTCAATATGGCATGATGGCATTCGATCTTATTTATCCCGCCAAT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ACATCATCCCTTGAAGGTCAATATGGCATGATGGCATTCGATCTTATTTATCCCGCCAAT
          2110      2120      2130      2140      2150      2160
          2170      2180      2190      2200      2210      2220
    806559 CTTGAGCGTTTTGATCCTAATTTCACTGCGAAAAAGAGTGTATTAGCCGCTGATAATCAC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ CTTGAGCGTTTTGATCCTAATTTCACTGCGAAAAAGAGTGTATTAGCCGCTGATAATCAC
          2170      2180      2190      2200      2210      2220
          2230      2240      2250      2260      2270      2280
    806559 TTAATTTTTATTGGTAGCAATATAAATAGTAGTGATAAAAATAAAAATGTTGAAACGACC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TTAATTTTTATTGGTAGCAATATAAATAGTAGTGATAAAAATAAAAATGTTGAAACGACC
          2230      2240      2250      2260      2270      2280
          2290      2300      2310      2320      2330      2340
    806559 TTATTCCAACATGCCATTACTCCAACATTAAATACCCTTTGGATTAATGGACAAAAGATA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TTATTCCAACATGCCATTACTCCAACATTAAATACCCTTTGGATTAATGGACAAAAGATA
          2290      2300      2310      2320      2330      2340
          2350      2360      2370      2380      2390      2400
    806559 GAAAACATGCCTTATCAAACAACACTTCAACAAGGTGATTGGTTAATTGATAGCAATGGC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GAAAACATGCCTTATCAAACAACACTTCAACAAGGTGATTGGTTAATTGATAGCAATGGC
          2350      2360      2370      2380      2390      2400
          2410      2420      2430      2440      2450      2460
    806559 AATGGTTACTTAATTACTCAAGCAGAAAAAGTAAATGTAAGTCGCCAACATCAGGTTTCA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AATGGTTACTTAATTACTCAAGCAGAAAAAGTAAATGTAAGTCGCCAACATCAGGTTTCA
          2410      2420      2430      2440      2450      2460
          2470      2480      2490      2500      2510      2520
    806559 GCGGAAAATAAAAATCGCCAACCGACAGAAGGAAACTTTAGCTCGGCATGGATCGATCAC
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ GCGGAAAATAAAAATCGCCAACCGACAGAAGGAAACTTTAGCTCGGCATGGATCGATCAC
          2470      2480      2490      2500      2510      2520
          2530      2540      2550      2560      2570      2580
    806559 AGCACTCGCCCCAAAGATGCCAGTTATGAGTATATGGTCTTTTTAGATGCGACACCTGAA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AGCACTCGCCCCAAAGATGCCAGTTATGAGTATATGGTCTTTTTAGATGCGACACCTGAA
          2530      2540      2550      2560      2570      2580
          2590      2600      2610      2620      2630      2640
    806559 AAAATGGGAGAGATGGCACAAAAATTCCGTGAAAATAATGGGTTATATCAGGTTCTTCGT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AAAATGGGAGAGATGGCACAAAAATTCCGTGAAAATAATGGGTTATATCAGGTTCTTCGT
          2590      2600      2610      2620      2630      2640
          2650      2660      2670      2680      2690      2700
    806559 AAGGATAAAGACGTTCATATTATTCTCGATAAACTCAGCAATGTAACGGGATATGCCTTT
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ AAGGATAAAGACGTTCATATTATTCTCGATAAACTCAGCAATGTAACGGGATATGCCTTT
          2650      2660      2670      2680      2690      2700
          2710      2720      2730      2740      2750      2760
    806559 TATCAGCCAGCATCAATTGAAGACAAATGGATCAAAAAGGTTAATAAACCTGCAATTGTG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TATCAGCCAGCATCAATTGAAGACAAATGGATCAAAAAGGTTAATAAACCTGCAATTGTG
          2710      2720      2730      2740      2750      2760
          2770      2780      2790      2800      2810      2820
    806559 ATGACTCATCGACAAAAAGACACTCTTATTGTCAGTGCAGTTACACCTGATTTAAATATG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ATGACTCATCGACAAAAAGACACTCTTATTGTCAGTGCAGTTACACCTGATTTAAATATG
          2770      2780      2790      2800      2810      2820
          2830      2840      2850      2860      2870      2880
    806559 ACTCGCCAAAAAGCAGCAACTCCTGTCACCATCAATGTCACGATTAATGGCAAATGGCAA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ACTCGCCAAAAAGCAGCAACTCCTGTCACCATCAATGTCACGATTAATGGCAAATGGCAA
          2830      2840      2850      2860      2870      2880
          2890      2900      2910      2920      2930      2940
    806559 TCTGCTGATAAAAATAGTGAAGTGAAATATCAGGTTTCTGGTGATAACACTGAACTGACG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TCTGCTGATAAAAATAGTGAAGTGAAATATCAGGTTTCTGGTGATAACACTGAACTGACG
          2890      2900      2910      2920      2930      2940
          2950      2960      2970      2980      2990
    806559 TTTACGAGTTACTTTGGTATTCCACAAGAAATCAAACTCTCGCCACTCCCTTGA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TTTACGAGTTACTTTGGTATTCCACAAGAAATCAAACTCTCGCCACTCCCTTGA
          2950      2960      2970      2980      2990

    The sequence identity at the amino acid level is shown below:
  • SEQ ID NO: 29
    Present Invention Chondroitinase ABC I protein
    >_ ABCI Present invention 997 aa vs.
    >_ ABCI mature 997 aa
    scoring matrix:, gap penalties: −12/−2
    99.5% identity; Global alignment score: 6595
            10        20        30        40        50        60
    365019 ATSNPAFDPKNLMQSEIYHFAQNNPLADFSSDKNSILTLSDKRSIMGNQSLLWKWKGGSS
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ATSNPAFDPKNLMQSEIYHFAQNNPLADFSSDKNSILTLSDKRSIMGNQSLLWKWKGGSS
            10        20        30        40        50        60
            70        80        90       100       110       120
    365019 FTLHKKLIVPTDKEASKAWGRSSTPVFSFWLYNEKPIDGYLTIDFGEKLISTSEAQAGFK
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ FTLHKKLIVPTDKEASKAWGRSSTPVFSFWLYNEKPIDGYLTIDFGEKLISTSEAQAGFK
            70        80        90       100       110       120
           130       140       150       160       170       180
    365019 VKLDFTGWRTVGVSLNNDLENREMTLNATNTSSDGTQDSIGRSLGAKVDSIRFKAPSNVS
    :::::::::.::::::::::::::::::::::::::::::::::::::::::::::::::
    _ VKLDFTGWRAVGVSLNNDLENREMTLNATNTSSDGTQDSIGRSLGAKVDSIRFKAPSNVS
           130       140       150       160       170       180
           190       200       210       220       230       240
    365019 QGEIYIDRIMFSVDDARYQWSDYQVKTRLSEPEIQFHNVKPQLPVTPENLAAIDLIRQRL
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ QGEIYIDRIMFSVDDARYQWSDYQVKTRLSEPEIQFHNVKPQLPVTPENLAAIDLIRQRL
           190       200       210       220       230       240
           250       260       270       280       290       300
    365019 INEFVGGEKETNLALEENISKLKSDFDALNTHTLANGGTQGRHLITDKQIIIYQPENLNS
    :::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::
    _ INEFVGGEKETNLALEENISKLKSDFDALNIHTLANGGTQGRHLITDKQIIIYQPENLNS
           250       260       270       280       290       300
           310       320       330       340       350       360
    365019 QDKQLFDNYVILGNYTTLMFNISRAYVLEKDPTQKAQLKQMYLLMTKHLLDQGFVKGSAL
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ QDKQLFDNYVILGNYTTLMFNISRAYVLEKDPTQKAQLKQMYLLMTKHLLDQGFVKGSAL
           310       320       330       340       350       360
           370       380       390       400       410       420
    365019 VTTHHWGYSSRWWYISTLLMSDALKEANLQTQVYDSLLWYSREFKSSFDMKVSADSSDLD
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ VTTHHWGYSSRWWYISTLLMSDALKEANLQTQVYDSLLWYSREFKSSFDMKVSADSSDLD
           370       380       390       400       410       420
           430       440       450       460       470       480
    365019 YFNTLSRQHLALLLLEPDDQKRINLVNTFSHYITGALTQVPPGGKDGLRPDGTAWRHEGN
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ YFNTLSRQHLALLLLEPDDQKRINLVNTFSHYITGALTQVPPGGKDGLRPDGTAWRHEGN
           430       440       450       460       470       480
           490       500       510       520       530       540
    365019 YPGYSFPAFKNASQLIYLLRDTPFSVGESGWNSLKKAMVSAWIYSNPEVGLPLAGRHPLN
    ::::::::::::::::::::::::::::::::.:::::::::::::::::::::::::.:
    _ YPGYSFPAFKNASQLIYLLRDTPFSVGESGWNNLKKAMVSAWIYSNPEVGLPLAGRHPFN
           490       500       510       520       530       540
           550       560       570       580       590       600
    365019 SPSLKSVAQGYYWLAMSAKSSPDKTLASIYLAISDKTQNESTAIFGETITPASLPQGFYA
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ SPSLKSVAQGYYWLAMSAKSSPDKTLASIYLAISDKTQNESTAIFGETITPASLPQGFYA
           550       560       570       580       590       600
           610       620       630       640       650       660
    365019 FNGGAFGIHRWQDKMVTLKAYNTNVWSSEIYNKDNRYGRYQSHGVAQIVSNGSQLSQGYQ
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ FNGGAFGIHRWQDKMVTLKAYNTNVWSSEIYNKDNRYGRYQSHGVAQIVSNGSQLSQGYQ
           610       620       630       640       650       660
           670       680       690       700       710       720
    365019 QEGWDWNRMPGATTIHLPLKDLDSPKPHTLMQRGERGFSGTSSLEGQYGMMAFDLIYPAN
    ::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::
    _ QEGWDWNRMQGATTIHLPLKDLDSPKPHTLMQRGERGFSGTSSLEGQYGMMAFDLIYPAN
           670       680       690       700       710       720
           730       740       750       760       770       780
    365019 LERFDPNFTAKKSVLAADNHLIFIGSNINSSDKNKNVETTLFQHAITPTLNTLWINGQKI
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ LERFDPNFTAKKSVLAADNHLIFIGSNINSSDKNKNVETTLFQHAITPTLNTLWINGQKI
           730       740       750       760       770       780
           790       800       810       820       830       840
    365019 ENMPYQTTLQQGDWLIDSNGNGYLITQAEKVNVSRQHQVSAENKNRQPTEGNFSSAWIDH
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ ENMPYQTTLQQGDWLIDSNGNGYLITQAEKVNVSRQHQVSAENKNRQPTEGNFSSAWIDH
           790       800       810       820       830       840
           850       860       870       880       890       900
    365019 STRPKDASYEYMVFLDATPEKMGEMAQKFRENNGLYQVLRKDKDVHIILDKLSNVTGYAF
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ STRPKDASYEYMVFLDATPEKMGEMAQKFRENNGLYQVLRKDKDVHIILDKLSNVTGYAF
           850       860       870       880       890       900
           910       920       930       940       950       960
    365019 YQPASIEDKWIKKVNKPAIVMTHRQKDTLIVSAVTPDLNMTRQKAATPVTINVTINGKWQ
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ YQPASIEDKWIKKVNKPAIVMTHRQKDTLIVSAVTPDLNMTRQKAATPVTINVTINGKWQ
           910       920       930       940       950       960
           970       980       990
    365019 SADKNSEVKYQVSGDNTELTFTSYFGIPQEIKLSPLP
    :::::::::::::::::::::::::::::::::::::
    _ SADKNSEVKYQVSGDNTELTFTSYFGIPQEIKLSPLP
           970       980       990
  • REFERENCES
    • 1. Fethiere J, Eggimann B, Cygler M (1999) Crystal structure of chondroitin AC lyase, a representative of a family of glycosaminoglycan degrading enzymes. J Mol. Biol. 288:635-47.
    • 2. Pojasek K, Shriver Z, Kiley, P Venkataraman G and Sasisekharan R. (2001) Biochem Biophys Res Commun. 286:343-51.
    • 3. Huang W, Matte A, Li Y, Kim Y S, Linhardt R J, Su H, Cygler M. (1999) Crystal structure of chondroitinase B from Flavobacterium heparinum and its complex with a disaccharide product at 1.7 A resolution. J Mol. Biol. 294:1257-69.
    • 4. Miura R O, Yamagata S, Miura Y, Harada T and Yamagata T. (1995) Anal Biochem. 225:333-40.
    • 5. Yamagata T, Saito H, Habuchi O and Suzuki S. (1968) J Biol. Chem. 243:1536-42.
  • Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other versions are possible. Therefore the spirit and scope of the appended claims should not be limited to the description and the preferred versions contain within this specification.
  • SEQUENCE LISTING
    SEQ ID NO: 1
    Chondroitinase ABC I protein
    ORIGIN
                              atsnpa fdpknlmqse iyhfaqnnpl adfssdknsi
      61 ltlsdkrsim gnqsllwkwk ggssftlhkk livptdkeas kawgrsstpv fsfwlynekp
     121 idgyltidfg eklistseaq agfkvkldft gwr
    Figure US20110250631A1-20111013-P00001
    vgvsln ndlenremtl natntssdgt
     181 qdsigrslga kvdsirfkap snvsqgeiyi drimfsvdda ryqwsdyqvk trlsepeiqf
     241 hnvkpqlpvt penlaaidli rqrlinefvg geketnlale enisklksdf daln
    Figure US20110250631A1-20111013-P00002
    htlan
     301 ggtqgrhlit dkqiiiyqpe nlnsqdkqlf dnyvilgnyt tlmfnisray vlekdptqka
     361 qlkqmyllmt khlldqgfvk gsalvtthhw gyssrwwyis tllmsdalke anlqtqvyds
     421 llwysrefks sfdmkvsads sdldyfntls rqhlalllle pddqkrinlv ntfshyitga
     481 ltqvppggkd glrpdgtawr hegnypgysf pafknasqli yllrdtpfsv gesgwnnlkk
     541 amvsawiysn pevglplagr hpfnspslks vaqgyywlam saksspdktl asiylaisdk
     601 tqnestaifg etitpaslpq gfyafnggaf gihrwqdkmv tlkayntnvw sseiynkdnr
     661 ygryqshgva qivsngsqls qgyqqegwdw nrmegattih lplkdldspk phtlmqrger
     721 gfsgtssleg qygmmafnli ypanlerfdp nftakksvla adnhlifigs ninssdknkn
     781 vettlfqhai tptlntlwin gqkienmpyq ttlqqgdwli dsngngylit qaekvnvsrq
     841 hqvsaenknr qptegnfssa widhstrpkd asyeymvfld atpekmgema qkfrenngly
     901 qvlrkdkdvh iildklsnvt gyafyqpasi edkwikkvnk paivmthrqk dtlivsavtp
     961 dlnmtrqkaa tpvtinvtin gkwqsadkns evkyqvsgdn teltftsyfg ipqeildspl
    1021 p
    SEQ ID NO: 2
    NΔ20 ABCI (A45-N1023), protein
                                                    aqnnpl adfssdknsi
      61 ltlsdkrsim gnqsllwkwk ggssftlhkk livptdkeas kawgrsstpv fsfwlynekp
     121 idgyltidfg eklistseaq agfkvkldft gwrtvgvsln ndlenremtl natntssdgt
     181 qdsigrslga kvdsirfkap snvsqgeiyi drimfsvdda ryqwsdyqvk trlsepeiqf
     241 hnvkpqlpvt penlaaidli rqrlinefvg geketnlale enisklksdf dalnthtlan
     301 ggtqgrhlit dkqiiiyqpe nlnsqdkqlf dnyvilgnyt tlmfnisray vlekdptqka
     361 qlkqmyllmt khlldqgfvk gsalvtthhw gyssrwwyis tllmsdalke anlqtqvyds
     421 llwysrefks sfdmkvsads sdldyfntls rqhlalllle pddqkrinlv ntfshyitga
     481 ltqvppggkd glrpdgtawr hegnypgysf pafknasqli yllrdtpfsv gesgwnnlkk
     541 amvsawiysn pevglplagr hpfnspslks vaqgyywlam saksspdktl asiylaisdk
     601 tqnestaifg etitpaslpq gfyafnggaf gihrwqdkmv tlkayntnvw sseiynkdnr
     661 ygryqshgva qivsngsqls qgyqqegwdw nrmegattih lplkdldspk phtlmqrger
     721 gfsgtssleg qygmmafnli ypanlerfdp nftakksvla adnhlifigs ninssdknkn
     781 vettlfqhai tptlntlwin gqkienmpyq ttlqqgdwli dsngngylit qaekvnvsrq
     841 hqvsaenknr qptegnfssa widhstrpkd asyeymvfld atpekmgema qkfrenngly
     901 qvlrkdkdvh iildklsnvt gyafyqpasi edkwikkvnk paivmthrqk dtlivsavtp
     961 dlnmtrqkaa tpvtinvtin gkwqsadkns evkyqvsgdn teltftsyfg ipqeiklspl
    1021 p
    SEQ ID NO: 3
    NΔ60 ABCI (F85-N1023) protein
                              ftlhkk livptdkeas kawgrsstpv fsfwlynekp
     121 idgyltidfg eklistseaq agfkvkldft gwrtvgvsln ndlenremtl natntssdgt
     181 qdsigrslga kvdsirfkap snvsqgeiyi drimfsvdda ryqwsdyqvk trlsepeiqf
     241 hnvkpqlpvt penlaaidli rqrlinefvg geketnlale enisklksdf dalnthtlan
     301 ggtqgrhlit dkqiiiyqpe nlnsqdkqlf dnyvilgnyt tlmfnisray vlekdptqka
     361 qlkqmyllmt khlldqgfvk gsalvtthhw gyssrwwyis tllmsdalke anlqtqvyds
     421 llwysrefks sfdmkvsads sdldyfntls rqhlalllle pddqkrinlv ntfshyitga
     481 ltqvppggkd glrpdgtawr hegnypgysf pafknasqli yllrdtpfsv gesgwnnlkk
     541 amvsawiysn pevglplagr hpfnspslks vaqgyywlam saksspdktl asiylaisdk
     601 tqnestaifg etitpaslpq gfyafnggaf gihrwqdkmv tlkayntnvw sseiynkdnr
     661 ygryqshgva qivsngsqls qgyqqegwdw nrmegattih lplkdldspk phtlmqrger
     721 gfsgtssleg qygmmafnli ypanlerfdp nftakksvla adnhlifigs ninssdknkn
     781 vettlfqhai tptlntlwin gqkienmpyq ttlqqgdwli dsngngylit qaekvnvsrq
     841 hqvsaenknr qptegnfssa widhstrpkd asyeymvfld atpekmgema qkfrenngly
     901 qvlrkdkdvh iildklsnvt gyafyqpasi edkwikkvnk paivmthrqk dtlivsavtp
     961 dlnmtrqkaa tpvtinvtin gkwqsadkns evkyqvsgdn teltftsyfg ipqeiklspl
    1021 p
    SEQ ID No. 4: 
    NΔ60 CΔ80 ABCI (F85-A942) protein
                              ftlhkk livptdkeas kawgrsstpv fsfwlynekp
     121 idgyltidfg eklistseaq agfkvkldft gwrtvgvsln ndlenremtl natntssdgt
     181 qdsigrslga kvdsirfkap snvsqgeiyi drimfsvdda ryqwsdyqvk trlsepeiqf
     241 hnvkpqlpvt penlaaidli rqrlinefvg geketnlale enisklksdf dalnthtlan
     301 ggtqgrhlit dkqiiiyqpe nlnsqdkqlf dnyvilgnyt tlmfnisray vlekdptqka
     361 qlkqmyllmt khlldqgfvk gsalvtthhw gyssrwwyis tllmsdalke anlqtqvyds
     421 llwysrefks sfdmkvsads sdldyfntls rqhlalllle pddqkrinlv ntfshyitga
     481 ltqvppggkd glrpdgtawr hegnypgysf pafknasqli yllrdtpfsv gesgwnnlkk
     541 amvsawiysn pevglplagr hpfnspslks vaqgyywlam saksspdktl asiylaisdk
     601 tqnestaifg etitpaslpq gfyafnggaf gihrwqdkmv tlkayntnvw sseiynkdnr
     661 ygryqshgva qivsngsqls qgyqqegwdw nrmegattih lplkdldspk phtlmqrger
     721 gfsgtssleg qygmmafnli ypanlerfdp nftakksvla adnhlifigs ninssdknkn
     781 vettlfqhai tptlntlwin gqkienmpyq ttlqqgdwli dsngngylit qaekvnvsrq
     841 hqvsaenknr qptegnfssa widhstrpkd asyeymvfld atpekmgema qkfrenngly
     901 qvlrkdkdvh iildklsnvt gyafyqpasi edkwikkvnk pa
    SEQ ID NO: 5
    Chondroitinase AC protein Locus 1HMW_A
    ORIGIN
       1 mkklfvtciv ffsilspall iaqqtgtael imkrvmldlk kplrnmdkva eknlntlqpd
      61 gswkdvpykd damtnwlpnn hllqletiiq ayiekdshyy gddkvfdqis kafkywydsd
     121 pksrnwwhne iatpqalgem lilmrygkkp ldealvhklt ermkrgepek ktganktdia
     181 lhyfyrallt sdeallsfav kelfypvqfv hyeeglqydy sylqhgpqlq issygavfit
     241 gvlklanyvr dtpyalstek laifskyyrd sylkairgsy mdfnvegrgv srpdilnkka
     301 ekkrllvakm idlkhteewa daiartdstv aagykiepyh hqfwngdyvq hlrpaysfnv
     361 rmvskrtrrs esgnkenllg rylsdgatni qlrgpeyyni mpvwewdkip gitsrdyltd
     421 rpltklwgeq gsndfaggvs dgvygasaya ldydslqakk awfffdkeiv clgaginsna
     481 penitttlnq swlngpvist agktgrgkit tflaqgqfwl lhdaigyyfp eganlslstq
     541 sqkgnwfhin nshskdevsg dvfklwinhg arpenaqyay ivlpginkpe eikkyngtap
     601 kvlantnqlq avyhqqldmv qaifytagkl svagieietd kpcavlikhi ngkqviwaad
     661 plqkektavl sirdlktgkt nrvkidfpqq efagatvelk
    SEQ ID NO: 6
    CΔ200 AC (Q23-T500) protein
                            qqtgtael imkrvmldlk kplrnmdkva eknlntlqpd
      61 gswkdvpykd damtnwlpnn hllqletiiq ayiekdshyy gddkvfdqis kafkywydsd
     121 pksrnwwhne iatpqalgem lilmrygkkp ldealvhklt ermkrgepek ktganktdia
     181 lhyfyrallt sdeallsfav kelfypvqfv hyeeglqydy sylqhgpqlq issygavfit
     241 gvlklanyvr dtpyalstek laifskyyrd sylkairgsy mdfnvegrgv srpdilnkka
     301 ekkrllvakm idlkhteewa daiartdstv aagykiepyh hqfwngdyvq hlrpaysfnv
     361 rmvskrtrrs esgnkenllg rylsdgatni qlrgpeyyni mpvwewdkip gitsrdyltd
     421 rpltkiwgeq gsndfaggvs dgvygasaya ldydslqakk awfffdkeiv clgaginsna
     481 penitttlnq swlngpvist
    SEQ ID NO: 7
    CΔ20 AC (Q23-A480) protein
                            qqtgtael imkrvmldlk kplrnmdkva eknlntlqpd
      61 gswkdvpykd damtnwlpnn hllqletiiq ayiekdshyy gddkvfdqis kafkywydsd
     121 pksrnwwhne iatpqalgem lilmrygkkp ldealvhklt ermkrgepek ktganktdia
     181 lhyfyrallt sdeallsfav kelfypvqfv hyeeglqydy sylqhgpqlq issygavfit
     241 gvlklanyvr dtpyalstek laifskyyrd sylkairgsy mdfnvegrgv srpdilnkka
     301 ekkrllvakm idlkhteewa daiartdstv aagykiepyh hqfwngdyvq hlrpaysfnv
     361 rmvskrtrrs esgnkenllg rylsdgatni qlrgpeyyni mpvwewdkip gitsrdyltd
     421 rpltklwgeq gsndfaggvs dgvygasaya ldydslqakk awfffdkeiv clgaginsna
    SEQ ID NO: 8
    NΔ20 CΔ200 AC (L43-T500) protein
                                                  lrnmdkva eknlntlqpd
      61 gswkdvpykd damtnwlpnn hllqletiiq ayiekdshyy gddkvfdqis kafkywydsd
     121 pksrnwwhne iatpqalgem lilmrygkkp ldealvhklt ermkrgepek ktganktdia
     181 lhyfyrallt sdeallsfav kelfypvqfv hyeeglqydy sylqhgpqlq issygavfit
     241 gvlklanyvr dtpyalstek laifskyyrd sylkairgsy mdfnvegrgv srpdilnkka
     301 ekkrllvakm idlkhteewa daiartdstv aagykiepyh hqfwngdyvq hlrpaysfnv
     361 rmvskrtrrs esgnkenllg rylsdgatni qlrgpeyyni mpvwewdkip gitsrdyltd
     421 rpltklwgeq gsndfaggvs dgvygasaya ldydslqakk awfffdkeiv clgaginsna
     481 penitttlnq swlngpvist
    SEQ ID NO: 9
    NΔ50 CΔ200 AC (T74-T500) protein
                  tnwlpnn hllqletiiq ayiekdshyy gddkvfdqis kafkywydsd
     121 pksrnwwhne iatpqalgem lilmrygkkp ldealvhklt ermkrgepek ktganktdia
     181 lhyfyrallt sdeallsfav kelfypvqfv hyeeglqydy sylqhgpqlq issygavfit
     241 gvlklanyvr dtpyalstek laifskyyrd sylkairgsy mdfnvegrgv srpdilnkka
     301 ekkrllvakm idlkhteewa daiartdstv aagykiepyh hqfwngdyvq hlrpaysfnv
     361 rmvskrtrrs esgnkenllg rylsdgatni qlrgpeyyni mpvwewdkip gitsrdyltd
     421 rpltklwgeq gsndfaggvs dgvygasaya ldydslqakk awfffdkeiv clgaginsna
     481 penitttlnq swlngpvist
    SEQ ID NO: 10
    NΔ100 CΔ200 AC (S123-T500) protein
      srnwwhne iatpqalgem lilmrygkkp ldealvhklt ermkrgepek ktganktdia
     181 lhyfyrallt sdeallsfav kelfypvqfv hyeeglqydy sylqhgpqlq issygavfit
     241 gvlklanyvr dtpyalstek laifskyyrd sylkairgsy mdfnvegrgv srpdilnkka
     301 ekkrllvakm idlkhteewa daiartdstv aagykiepyh hqfwngdyvq hlrpaysfnv
     361 rmvskrtrrs esgnkenllg rylsdgatni qlrgpeyyni mpvwewdkip gitsrdyltd
     421 rpltklwgeq gsndfaggvs dgvygasaya ldydslqakk awfffdkeiv clgaginsna
     481 penitttlnq swlngpvist
    SEQ ID NO: 11
    NΔ50 CΔ275 AC (T74-L426) protein
                  tnwlpnn hllqletiiq ayiekdshyy gddkvfdqis kafkywydsd
     121 pksrnwwhne iatpqalgem lilmrygkkp ldealvhklt ermkrgepek ktganktdia
     181 lhyfyrallt sdeallsfav kelfypvqfv hyeeglqydy sylqhgpqlq issygavfit
     241 gvlklanyvr dtpyalstek laifskyyrd sylkairgsy mdfnvegrgv srpdilnkka
     301 ekkrllvakm idlkhteewa daiartdstv aagykiepyh hqfwngdyvq hlrpaysfnv
     361 rmvskrtrrs esgnkenllg rylsdgatni qlrgpeyyni mpvwewdkip gitsrdyltd
     421 rpltkl
    SEQ ID NO: 12
    Chondroitinase B Locus Q46079 protein
    ORIGIN
       1 mkmlnklagy llpimvllnv apclgqvvas netlyqvvke vkpgglvqia dgtykdvqli
      61 vsnsgksglp itikalnpgk vfftgdakve lrgehlileg iwfkdgnrai qawkshgpgl
     121 vaiygsynri tacvfdcfde ansayittsl tedgkvpqhc ridhcsftdk itfdqvinln
     181 ntaraikdgs vggpgmyhrv dhcffsnpqk pgnagggiri gyyrndigrc lvdsnlfmrq
     241 dseaeiitsk sqenvyygnt ylncqgtmnf rhgdhqvain nfyigndqrf gyggmfvwgs
     301 rhviacnyfe lsetiksrgn aalylnpgam asehalafdm liannafinv ngyaihfnpl
     361 derrkeycaa nrlkfetphq lmlkgnlffk dkpyvypffk ddyfiagkns wtgnvalgve
     421 kgipvnisan rsaykpvkik diqpiegial dlnaliskgi tgkplswdev rpywlkempg
     481 tyaltarlsa draakfkavi krnkeh
    SEQ ID NO: 13
    NΔ80 Chase B (G106-H506) protein
                                                     gnrai qawkshgpgl
     121 vaiygsynri tacvfdcfde ansayittsl tedgkvpqhc ridhcsftdk itfdqvinln
     181 ntaraikdgs vggpgmyhrv dhcffsnpqk pgnagggiri gyyrndigrc lvdsnlfmrq
     241 dseaeiitsk sqenvyygnt ylncqgtmnf rhgdhqvain nfyigndqrf gyggmfvwgs
     301 rhviacnyfe lsetiksrgn aalylnpgam asehalafdm liannafinv ngyaihfnpl
     361 derrkeycaa nrlkfetphq lmlkgnlffk dkpyvypffk ddyfiagkns wtgnvalgve
     421 kgipvnisan rsaykpvkik diqpiegial dlnaliskgi tgkplswdev rpywlkempg
     481 tyaltarlsa draakfkavi krnkeh
    SEQ ID NO: 14
    NΔ120 Chase B (I146-H506) protein
                               ittsl tedgkvpqhc ridhcsftdk itfdqvinln
     181 ntaraikdgs vggpgmyhrv dhcffsnpqk pgnagggiri gyyrndigrc lvdsnlfmrq
     241 dseaeiitsk sqenvyygnt ylncqgtmnf rhgdhqvain nfyigndqrf gyggmfvwgs
     301 rhviacnyfe lsetiksrgn aalylnpgam asehalafdm liannafinv ngyaihfnpl
     361 derrkeycaa nrlkfetphq lmlkgnlffk dkpyvypffk ddyfiagkns wtgnvalgve
     421 kgipvnisan rsaykpvkik diqpiegial dlnaliskgi tgkplswdev rpywlkempg
     481 tyaltarlsa draakfkavi krnkeh
    SEQ ID NO: 15
    CΔ19 Chase B (Q26-L488) protein
                               qvvas netlyqvvke vkpgglvqia dgtykdvqli
      61 vsnsgksglp itikalnpgk vfftgdakve lrgehlileg iwfkdgnrai qawkshgpgl
     121 vaiygsynri tacvfdcfde ansayittsl tedgkvpqhc ridhcsftdk itfdqvinln
     181 ntaraikdgs vggpgmyhrv dhcffsnpqk pgnagggiri gyyrndigrc lvdsnlfmrq
     241 dseaeiitsk sqenvyygnt ylncqgtmnf rhgdhqvain nfyigndqrf gyggmfvwgs
     301 rhviacnyfe lsetiksrgn aalylnpgam asehalafdm liannafinv ngyaihfnpl
     361 derrkeycaa nrlkfetphq lmlkgnlffk dkpyvypffk ddyfiagkns wtgnvalgve
     421 kgipvnisan rsaykpvkik diqpiegial dlnaliskgi tgkplswdev rpywlkempg
     481 tyaltarl
    SEQ ID NO: 16
    CΔ120 Chase B (Q26-K390) protein
                               qvvas netlyqvvke vkpgglvqia dgtykdvqli
      61 vsnsgksglp itikalnpgk vfftgdakve lrgehlileg iwfkdgnrai qawkshgpgl
     121 vaiygsynri tacvfdcfde ansayittsl tedgkvpqhc ridhcsftdk itfdqvinln
     181 ntaraikdgs vggpgmyhrv dhcffsnpqk pgnagggiri gyyrndigrc lvdsnlfmrq
     241 dseaeiitsk sqenvyygnt ylncqgtmnf rhgdhqvain nfyigndqrf gyggmfvwgs
     301 rhviacnyfe lsetiksrgn aalylnpgam asehalafdm liannafinv ngyaihfnpl
     361 derrkeycaa nrlkfetphq lmlkgnlffk
    SEQ ID NO: 17
    NΔ120 CΔ120 Chase B (I146-K390) protein
                               ittsl tedgkvpqhc ridhcsftdk itfdqvinln
     181 ntaraikdgs vggpgmyhrv dhcffsnpqk pgnagggiri gyyrndigrc lvdsnlfmrq
     241 dseaeiitsk sqenvyygnt ylncqgtmnf rhgdhqvain nfyigndqrf gyggmfvwgs
     301 rhviacnyfe lsetiksrgn aalylnpgam asehalafdm liannafinv ngyaihfnpl
     361 derrkeycaa nrlkfetphq lmlkgmlffk
    SEQ ID NO: 18
    Choindroitinase AC nucleotide locus CHU27583
    ORIGIN
       1 atgaagaaat tatttgtaac ctgtatagtc tttttctcta ttttaagtcc tgctctgctt
      61 attgcacagc agaccggtac tgcagaactg attatgaagc gggtgatgct ggaccttaaa
     121 aagcctttgc gcaatatgga taaggtggcg gaaaagaacc tgaatacgct gcagcctgac
     181 ggtagctgga aggatgtgcc ttataaagat gatgccatga ccaattggtt gccaaacaac
     241 cacctgctac aattggaaac tattatacag gcttatattg aaaaagatag tcactattat
     301 ggcgacgata aagtgtttga ccagatttcc aaagctttta agtattggta tgacagcgac
     361 ccgaaaagcc gcaactggtg gcacaatgaa attgccactc cgcaggccct tggtgaaatg
     421 ctgatcctga tgcgttacgg taaaaagccg cttgatgaag cattggtgca taaattgacc
     481 gaaagaatga agcggggcga accggagaag aaaacggggg ccaacaaaac agatatcgcc
     541 ctgcattact tttatcgtgc tttgttaacg tctgatgagg ctttgctttc cttcgccgta
     601 aaagaattgt tttatcccgt acagtttgta cactatgagg aaggcctgca atacgattat
     661 tcctacctgc agcacggtcc gcaattacag atatcgagct acggtgccgt atttattacc
     721 ggggtactga aacttgccaa ttacgttagg gatacccctt atgctttaag taccgagaaa
     781 ctggctatat tttcaaagta ttaccgcgac agttatctga aagctatccg tggaagttat
     841 atggatttta acgtagaagg ccgcggagta agccggccag acattctaaa taaaaaggca
     901 gaaaaaaaga ggttgctggt ggcgaagatg atcgatctta agcatactga agaatgggct
     961 gatgcgatag ccaggacaga tagcacagtt gcggccggct ataagattga gccctatcac
    1021 catcagttct ggaatggtga ttatgtgcaa catttaagac ctgcctattc ttttaatgtt
    1081 cgtatggtga gtaagcggac ccgacgcagt gaatccggca ataaagaaaa cctgctgggc
    1141 aggtatttat ctgatggggc tactaacata caattgcgcg gaccagaata ctataacatt
    1201 atgccggtat gggaatggga caagattcct ggcataacca gccgtgatta tttaaccgac
    1261 agacctttga cgaagctttg gggagagcag gggagcaatg actttgcagg aggggtgtct
    1321 gatggtgtat acggggccag tgcctacgca ttggattacg atagcttaca ggcaaagaaa
    1381 gcctggttct tttttgacaa agagattgta tgtcttggtg ccggtatcaa cagcaatgcc
    1441 cctgaaaaca ttaccactac ccttaaccag agctggttaa atggcccggt tataagtact
    1501 gcaggtaaaa ccggccgggg taaaataaca acgtttaaag cacagggaca gttctggttg
    1561 ttgcacgatg cgattggtta ttactttcct gaaggggcca accttagtct gagtacccag
    1621 tcgcaaaaag gcaattggtt ccacatcaac aattcacatt caaaagatga agtttctggt
    1681 gatgtattta agctttggat caaccatggt gccaggccag aaaatgcgca gtatgcttat
    1741 atcgttttgc cgggaataaa caagccggaa gaaattaaaa aatataatgg aacggcaccg
    1801 aaagtccttg ccaataccaa ccagctgcag gcagtttatc atcagcagtt agatatggta
    1861 caggctatct tctatacagc tggaaaatta agcgtagcgg gcatagaaat tgaaacagat
    1921 aagccatgtg cagtgctgat caagcacatc aatggcaagc aggtaatttg ggctgccgat
    1981 ccattgcaaa aagaaaagac tgcagtgttg agcatcaggg atttaaaaac aggaaaaaca
    2041 aatcgggtaa aaattgattt tccgcaacag gaatttgcag gtgcaacggt tgaactgaaa
    2101 tag
    //
    SEQ ID NO: 19
    Chondriotinase AC nucleic acid deletion NΔ50 C Δ275 (a220-t1278)
                                      atgccatga ccaattggtt gccaaacaac
     241 cacctgctac aattggaaac tattatacag gcttatattg aaaaagatag tcactattat
     301 ggcgacgata aagtgtttga ccagatttcc aaagctttta agtattggta tgacagcgac
     361 ccgaaaagcc gcaactggtg gcacaatgaa attgccactc cgcaggccct tggtgaaatg
     421 ctgatcctga tgcgttacgg taaaaagccg cttgatgaag cattggtgca taaattgacc
     481 gaaagaatga agcggggcga accggagaag aaaacggggg ccaacaaaac agatatcgcc
     541 ctgcattact tttatcgtgc tttgttaacg tctgatgagg ctttgctttc cttcgccgta
     601 aaagaattgt tttatcccgt acagtttgta cactatgagg aaggcctgca atacgattat
     661 tcctacctgc agcacggtcc gcaattacag atatcgagct acggtgccgt atttattacc
     721 ggggtactga aacttgccaa ttacgttagg gatacccctt atgctttaag taccgagaaa
     781 ctggctatat tttcaaagta ttaccgcgac agttatctga aagctatccg tggaagttat
     841 atggatttta acgtagaagg ccgcggagta agccggccag acattctaaa taaaaaggca
     901 gaaaaaaaga ggttgctggt ggcgaagatg atcgatctta agcatactga agaatgggct
     961 gatgcgatag ccaggacaga tagcacagtt gcggccggct ataagattga gccctatcac
    1021 catcagttct ggaatggtga ttatgtgcaa catttaagac ctgcctattc ttttaatgtt
    1081 cgtatggtga gtaagcggac ccgacgcagt gaatccggca ataaagaaaa cctgctgggc
    1141 aggtatttat ctgatggggc tactaacata caattgcgcg gaccagaata ctataacatt
    1201 atgccggtat gggaatggga caagattcct ggcataacca gccgtgatta tttaaccgac
    1261 agacctttga cgaagctt
    SEQ ID NO: 20
    Chondroitinase B nuclei acid Locus CHU27584
    ORIGIN
       1 atgaagatgc tgaataaact agccggatac ttattgccga tcatggtgct gctgaatgtg
      61 gcaccatgct taggtcaggt tgttgcttca aatgaaactt tataccaggt tgtaaaggag
     121 gtaaaacccg gtggtctggt acagattgcc gatgggactt ataaagatgt tcagctgatt
     181 gtcagcaatt caggaaaatc tggtttgccc atcactatta aagccctgaa cccgggtaag
     241 gtttttttta ccggagatgc taaagtagag ctgaggggcg agcacctgat actggaaggc
     301 atctggttta aagacgggaa cagagctatt caggcatgga aatcacatgg acccggattg
     361 gtggctatat atggtagcta taaccgcatt accgcatgtg tatttgattg ttttgatgaa
     421 gccaattctg cttacattac tacttcgctt accgaagacg gaaaggtacc tcaacattgc
     481 cgcatagacc attgcagttt taccgataag atcacttttg accaggtaat taacctgaac
     541 aatacagcca gagctattaa agacggttcg gtgggaggac cggggatgta ccatcgtgtt
     601 gatcactgtt ttttttccaa tccgcaaaaa ccgggtaatg ccggaggggg aatcaggatt
     661 ggctattacc gtaatgatat aggccgttgt ctggtagact ctaacctgtt tatgcgtcag
     721 gattcggaag cagagatcat caccagcaaa tcgcaggaaa atgtttatta tggtaatact
     781 tacctgaatt gccagggcac catgaacttt cgtcacggtg atcatcaggt ggccattaac
     841 aatttttata taggcaatga ccagcgattt ggatacgggg gaatgtttgt ttggggaagc
     901 aggcatgtca tagcctgtaa ttattttgag ctgtccgaaa ccataaagtc gagggggaac
     961 gccgcattgt atttaaaccc cggtgctatg gcttcggagc atgctcttgc tttcgatatg
    1021 ttgatagcca acaacgcttt catcaatgta aatgggtatg ccatccattt taatccattg
    1081 gatgagcgca gaaaagaata ttgtgcagcc aataggctta agttcgaaac cccgcaccag
    1141 ctaatgttaa aaggcaatct tttctttaag garaaacctt atgtttaccc attttttaaa
    1201 gatgattatt ttatagcagg gaaaaatagc tggactggta atgtagcctt aggtgtggaa
    1261 aagggaatcc ctgttaacat ttcggccaat aggtctgcct ataagccggt aaaaattaaa
    1321 gatatccagc ccatagaagg aatcgctctt gatctcaatg cgctgatcag caaaggcatt
    1381 acaggaaagc cccttagctg ggatgaagta aggccctact ggttaaaaga aatgcccggg
    1441 acgtatgctt taacggccag gctttctgca gatagggctg caaagtttaa agccgtaatt
    1501 aaaagaaata aagagcactg a
    SEQ ID NO: 21
    Chondriotinase B nucleic acid deletion NΔ120 CΔ120 (a436-g1170)
                    attac tacttcgctt accgaagacg gaaaggtacc tcaacattgc
     481 cgcatagacc attgcagttt taccgataag atcacttttg accaggtaat taacctgaac
     541 aatacagcca gagctattaa agacggttcg gtgggaggac cggggatgta ccatcgtgtt
     601 gatcactgtt ttttttccaa tccgcaaaaa ccgggtaatg ccggaggggg aatcaggatt
     661 ggctattacc gtaatgatat aggccgttgt ctggtagact ctaacctgtt tatgcgtcag
     721 gattcggaag cagagatcat caccagcaaa tcgcaggaaa atgtttatta tggtaatact
     781 tacctgaatt gccagggcac catgaacttt cgtcacggtg atcatcaggt ggccattaac
     841 aatttttata taggcaatga ccagcgattt ggatacgggg gaatgtttgt ttggggaagc
     901 aggcatgtca tagcctgtaa ttattttgag ctgtccgaaa ccataaagtc gagggggaac
     961 gccgcattgt atttaaaccc cggtgctatg gcttcggagc atgctcttgc tttcgatatg
    1021 ttgatagcca acaacgcttt catcaatgta aatgggtatg ccatccattt taatccattg
    1081 gatgagcgca gaaaagaata ttgtgcagcc aataggctta agttcgaaac cccgcaccag
    1141 ctaatgttaa aaggcaatct tttctttaag
    SEQ ID NO: 22
    Chondroitinase ABCI nucleic acid Locus I29953
    ORIGIN
       1 ggaattccat cactcaatca ttaaatttag gcacaacgat gggctatcag cgttatgaca
      61 aatttaatga aggacgcatt ggtttcactg ttagccagcg tttctaagga gaaaaataat
     121 gccgatattt cgttttactg cacttgcaat gacattgggg ctattatcag cgccttataa
     181 cgcgatggca gccaccagca atcctgcatt tgatcctaaa aatctgatgc agtcagaaat
     241 ttaccatttt gcacaaaata acccattagc agacttctca tcagataaaa actcaatact
     301 aacgttatct gataaacgta gcattatggg aaaccaatct cttttatgga aatggaaagg
     361 tggtagtagc tttactttac ataaaaaact gattgtcccc accgataaag aagcatctaa
     421 agcatgggga cgctcatcta cccccgtttt ctcattttgg ctttacaatg aaaaaccgat
     481 tgatggttat cttactatcg atttcggaga aaaactcatt tcaaccagtg aggctcaggc
     541 aggctttaaa gtaaaattag atttcactgg ctggcgtgct gtgggagtct ctttaaataa
     601 cgatcttgaa aatcgagaga tgaccttaaa tgcaaccaat acctcctctg atggtactca
     661 agacagcatt gggcgttctt taggtgctaa agtcgatagt attcgtttta aagcgccttc
     721 taatgtgagt cagggtgaaa tctatatcga ccgtattatg ttttctgtcg atgatgctcg
     781 ctaccaatgg tctgattatc aagtaaaaac tcgcttatca gaacctgaaa ttcaatttca
     841 caacgtaaag ccacaactac ctgtaacacc tgaaaattta gcggccattg atcttattcg
     901 ccaacgicta attaatgaat ttgtcggagg tgaaaaagag acaaacctcg cattagaaga
     961 gaatatcagc aaattaaaaa gtgatttcga tgctcttaat attcacactt tagcaaatgg
    1021 tggaacgcaa ggcagacatc tgatcactga taaacaaatc attatttatc aaccagagaa
    1081 tcttaactcc caagataaac aactatttga taattatgtt attttaggta attacacgac
    1141 attaatgttt aatattagcc gtgcttatgt gctggaaaaa gatcccacac aaaaggcgca
    1201 actaaagcag atgtacttat taatgacaaa gcatttatta gatcaaggct ttgttaaagg
    1261 gagtgcttta gtgacaaccc atcactgggg atacagttct cgttggtggt atatttccac
    1321 gttattaatg tctgatgcac taaaagaagc gaacctacaa actcaagttt atgattcatt
    1381 actgtggtat tcacgtgagt ttaaaagtag ttttgatatg aaagtaagtg ctgatagctc
    1441 tgatctagat tatttcaata ccttatctcg ccaacattta gccttattat tactagagcc
    1501 tgatgatcaa aagcgtatca acttagttaa tactttcagc cattatatca ctggcgcatt
    1561 aacgcaagtg ccaccgggtg gtaaagatgg tttacgccct gatggtacag catggcgaca
    1621 tgaaggcaac tatccgggct actctttccc agcctttaaa aatgcctctc agcttattta
    1681 tttattacgc gatacaccat tttcagtggg tgaaagtggt tggaataacc tgaaaaaagc
    1741 gatggtttca gcgtggatct acagtaatcc agaagttgga ttaccgcttg caggaagaca
    1801 cccttttaac tcaccttcgt taaaatcagt cgctcaaggc tattactggc ttgccatgtc
    1861 tgcaaaatca tcgcctgata aaacacttgc atctatttat cttgcgatta gtgataaaac
    1921 acaaaatgaa tcaactgcta tttttggaga aactattaca ccagcgtctt tacctcaagg
    1981 tttctatgcc tttaatggcg gtgcttttgg tattcatcgt tggcaagata aaatggtgac
    2041 actgaaagct tataacacca atgtttggtc atctgaaatt tataacaaag ataaccgtta
    2101 tggccgttac caaagtcatg gtgtcgctca aatagtgagt aatggctcgc agctttcaca
    2161 gggctatcag caagaaggtt gggattggaa tagaatgcaa ggggcaacca ctattcacct
    2221 tcctcttaaa gacttagaca gtcctaaacc tcatacctta atgcaacgtg gagagcgtgg
    2281 atttagcgga acatcatccc ttgaaggtca atatggcatg atggcattcg atcttattta
    2341 tcccgccaat cttgagcgtt ttgatcctaa tttcactgcg aaaaagagtg tattagccgc
    2401 tgataatcac ttaattttta ttggtagcaa tataaatagt agtgataaaa ataaaaatgt
    2461 tgaaacgacc ttattccaac atgccattac tccaacatta aatacccttt ggattaatgg
    2521 acaaaagata gaaaacatgc cttatcaaac aacacttcaa caaggtgatt ggttaattga
    2581 tagcaatggc aatggttact taattactca agcagaaaaa gtaaatgtaa gtcgccaaca
    2641 tcaggtttca gcggaaaata aaaatcgcca accgacagaa ggaaacttta gctcggcatg
    2701 gatcgatcac agcactcgcc ccaaagatgc cagttatgag tatatggtct ttttagatgc
    2761 gacacctgaa aaaatgggag agatggcaca aaaattccgt gaaaataatg ggttatatca
    2821 ggttcttcgt aaggataaag acgttcatat tattctcgat aaactcagca atgtaacggg
    2881 atatgccttt tatcagccag catcaattga agacaaatgg atcaaaaagg ttaataaacc
    2941 tgcaattgtg atgactcatc gacaaaaaga cactcttatt gtcagtgcag ttacacctga
    3001 tttaaatatg actcgccaaa aagcagcaac tcctgtcacc atcaatgtca cgattaatgg
    3061 caaatggcaa tctgctgata aaaatagtga agtgaaatat caggtttctg gtgataacac
    3121 tgaactgacg tttacgagtt actttggtat tccacaagaa atcaaactct cgccactccc
    3181 ttgatttaat caaaagaacg ctcttgcgtt ccttttttat ttgcaggaaa tctgattatg
    3241 ctaataaaaa accctttagc ccacgcggtt acattaagcc tctgtttatc attacccgca
    3301 caagcattac ccactctgtc tcatgaagct ttcggcgata tttatctttt tgaaggtgaa
    3361 ttacccaata cccttaccac ttcaaataat aatcaattat cgctaagcaa acagcatgct
    3421 aaagatggtg aacaatcact caaatggcaa tatcaaccac aagcaacatt aacactaaat
    3481 aatattgtta attaccaaga tgataaaaat acagccacac cactcacttt tatgatgtgg
    3541 atttataatg aaaaacctca atcttcccca ttaacgttag catttaaaca aaataataaa
    3601 attgcactaa gttttaatgc tgaacttaat tttacggggt ggcgaggtat tgctgttcct
    3661 tttcgtgata tgcaaggctc tgcgacaggt caacttgatc aattagtgat caccgctcca
    3721 aaccaagccg gaacactctt ttttgatcaa atcatcatga gtgtaccgtt agacaatcgt
    3781 tgggcagtac ctgactatca aacaccttac gtaaataacg cagtaaacac gatggttagt
    3841 aaaaactgga gtgcattatt gatgtacgat cagatgtttc aagcccatta ccctacttta
    3901 aacttcgata ctgaatttcg cgatgaccaa acagaaatgg cttcgattta tcagcgcttt
    3961 gaatattatc aaggaattcc
    //
    SEQ ID NO: 23
    TAT fusion chondroitinase ABCI nucleic acid
                                        ggtcgtaaaaagcgtcgtcaacgtcgtcg
    tggtggtggtggtggtgccaccagca atcctgcatt tgatcctaaa aatctgatgc agtcagaaat
     241 ttaccatttt gcacaaaata acccattagc agacttctca tcagataaaa actcaatact
     301 aacgttatct gataaacgta gcattatggg aaaccaatct cttttatgga aatggaaagg
     361 tggtagtagc tttactttac ataaaaaact gattgtcccc accgataaag aagcatctaa
     421 agcatgggga cgctcatcta cccccgtttt ctcattttgg ctttacaatg aaaaaccgat
     481 tgatggttat cttactatcg atttcggaga aaaactcatt tcaaccagtg aggctcaggc
     541 aggctttaaa gtaaaattag atttcactgg ctggcgtgct gtgggagtct ctttaaataa
     601 cgatcttgaa aatcgagaga tgaccttaaa tgcaaccaat acctcctctg atggtactca
     661 agacagcatt gggcgttctt taggtgctaa agtcgatagt attcgtttta aagcgccttc
     721 taatgtgagt cagggtgaaa tctatatcga ccgtattatg ttttctgtcg atgatgctcg
     781 ctaccaatgg tctgattatc aagtaaaaac tcgcttatca gaacctgaaa ttcaatttca
     841 caacgtaaag ccacaactac ctgtaacacc tgaaaattta gcggccattg atcttattcg
     901 ccaacgtcta attaatgaat ttgtcggagg tgaaaaagag acaaacctcg cattagaaga
     961 gaatatcagc aaattaaaaa gtgatttcga tgctcttaat attcacactt tagcaaatgg
    1021 tggaacgcaa ggcagacatc tgatcactga taaacaaatc attatttatc aaccagagaa
    1081 tcttaactcc caagataaac aactatttga taattatgtt attttaggta attacacgac
    1141 attaatgttt aatattagcc gtgcttatgt gctggaaaaa gatcccacac aaaaggcgca
    1201 actaaagcag atgtacttat taatgacaaa gcatttatta gatcaaggct ttgttaaagg
    1261 gagtgcttta gtgacaaccc atcactgggg atacagttct cgttggtggt atatttccac
    1321 gttattaatg tctgatgcac taaaagaagc gaacctacaa actcaagttt atgattcatt
    1381 actgtggtat tcacgtgagt ttaaaagtag ttttgatatg aaagtaagtg ctgatagctc
    1441 tgatctagat tatttcaata ccttatctcg ccaacattta gccttattat tactagagcc
    1501 tgatgatcaa aagcgtatca acttagttaa tactttcagc cattatatca ctggcgcatt
    1561 aacgcaagtg ccaccgggtg gtaaagatgg tttacgccct gatggtacag catggcgaca
    1621 tgaaggcaac tatccgggct actctttccc agcctttaaa aatgcctctc agcttattta
    1681 tttattacgc gatacaccat tttcagtggg tgaaagtggt tggaataacc tgaaaaaagc
    1741 gatggtttca gcgtggatct acagtaatcc agaagttgga ttaccgcttg caggaagaca
    1801 cccttttaac tcaccttcgt taaaatcagt cgctcaaggc tattactggc ttgccatgtc
    1861 tgcaaaatca tcgcctgata aaacacttgc atctatttat cttgcgatta gtgataaaac
    1921 acaaaatgaa tcaactgcta tttttggaga aactattaca ccagcgtctt tacctcaagg
    1981 tttctatgcc tttaatggcg gtgcttttgg tattcatcgt tggcaagata aaatggtgac
    2041 actgaaagct tataacacca atgtttggtc atctgaaatt tataacaaag ataaccgtta
    2101 tggccgttac caaagtcatg gtgtcgctca aatagtgagt aatggctcgc agctttcaca
    2161 gggctatcag caagaaggtt gggattggaa tagaatgcaa ggggcaacca ctattcacct
    2221 tcctcttaaa gacttagaca gtcctaaacc tcatacctta atgcaacgtg gagagcgtgg
    2281 atttagcgga acatcatccc ttgaaggtca atatggcatg atggcattcg atcttattta
    2341 tcccgccaat cttgagcgtt ttgatcctaa tttcactgcg aaaaagagtg tattagccgc
    2401 tgataatcac ttaattttta ttggtagcaa tataaatagt agtgataaaa ataaaaatgt
    2461 tgaaacgacc ttattccaac atgccattac tccaacatta aatacccttt ggattaatgg
    2521 acaaaagata gaaaacatgc cttatcaaac aacacttcaa caaggtgatt ggttaattga
    2581 tagcaatggc aatggttact taattactca agcagaaaaa gtaaatgtaa gtcgccaaca
    2641 tcaggtttca gcggaaaata aaaatcgcca accgacagaa ggaaacttta gctcggcatg
    2701 gatcgatcac agcactcgcc ccaaagatgc cagttatgag tatatggict ttttagatgc
    2761 gacacctgaa aaaatgggag agatggcaca aaaattccgt gaaaataatg ggttatatca
    2821 ggttcttcgt aaggataaag acgttcatat tattctcgat aaactcagca atgtaacggg
    2881 atatgccttt tatcagccag catcaattga agacaaatgg atcaaaaagg ttaataaacc
    2941 tgcaattgtg atgactcatc gacaaaaaga cactcttatt gtcaglgcag ttacacctga
    3001 tttaaatatg actcgccaaa aagcagcaac tcctgtcacc atcaatgtca cgattaatgg
    3061 caaatggcaa tctgctgata aaaatagtga agtgaaatat caggtttctg gtgataacac
    3121 tgaactgacg tttacgagtt actttggtat tccacaagaa atcaaactct cgccactccc
    3181 ttgatttaat caaaagaacg ctcttgcgtt ccttttttat ttgcaggaaa tctgattatg
    3241 ctaataaaaa accctttagc ccacgcggtt acattaagcc tctgtttatc attacccgca
    3301 caagcattac ccactctgtc tcatgaagct ttcggcgata tttatctttt tgaaggtgaa
    3361 ttacccaata cccttaccac ttcaaataat aatcaattat cgctaagcaa acagcatgct
    3421 aaagatggtg aacaatcact caaatggcaa tatcaaccac aagcaacatt aacactaaat
    3481 aatattgtta attaccaaga tgataaaaat acagccacac cactcacttt tatgatgtgg
    3541 atttataatg aaaaacctca atcttcccca ttaacgttag catttaaaca aaataataaa
    3601 attgcactaa gttttaatgc tgaacttaat tttacggggt ggcgaggtat tgctgttcct
    3661 tttcgtgata tgcaaggctc tgcgacaggt caacttgatc aattagtgat caccgctcca
    3721 aaccaagccg gaacactctt ttttgatcaa atcatcatga gtgtaccgtt agacaatcgt
    3781 tgggcagtac ctgactatca aacaccttac gtaaataacg cagtaaacac gatggttagt
    3841 aaaaactgga gtgcattatt gatgtacgat cagatgtttc aagcccatta ccctacttta
    3901 aacttcgata ctgaatttcg cgatgaccaa acagaaatgg cttcgattta tcagcgcttt
    3961 gaatattatc aaggaattcc
    SEQ ID NO: 24
    An HIV TAT sequence and Gly penta linker protein
    G R K K R R Q R R R G G G G G
    SEQ ID NO: 25
    Tat sequence and Gly penta linker nucleic acid
    ggt cgt aaa aag cgt cgt caa cgt cgt cgt ggt ggt ggt ggt ggt
    SEQ ID NO: 26
    Present Invention Chondroitinase ABC II Nucleic acid
    ttacccactctgtctcqtgaagctttcggcgatatttatctttttgaaggcgaattacccaatatcctt
    accacttcaaataataatcaattatcgctaagcaaacagcatgctaaagatggtgaacaatcactcaaa
    tggcaatatcaaccacaagcaacattaacactaaataatattgttaattaccaagatgataaaaataca
    gccacaccactcacttttatgatgtggatttataatgaaaaacctcaatcttccccattaacgttagca
    tttaaacaaaataataaaattgcactaagttttaatgctgaacttaattttacggggtggcgaggtatt
    gctgttccttttcgtgatatgcaaggctctgcgacaggtcaacttgatcaattagtgatcaccgctcca
    aaccaagccggaacactcttttttgatcaaatcatcatgagtgtaccgttagacaatcgttgggcagta
    cctgactatcaaacaccttacgtaaataacgcagtaaacacgatggttagtaaaaactggagtgcatta
    ttgatgtacgatcagatgtttcaagcccattaccctactttaaacttcgatactgaatttcgcgatgac
    caaacagaaatggcttcgatttatcagcgctttgaatattatcaaggaattcgtagtgataaaaaaatt
    actccagatatgctagataaacatttagcgttatgggaaaaattggggttaacacaacacgctgatggc
    tcaatcacaggaaaagcccttgatcaccctaaccggcaacattttatgaaagtcgaaggtgtatttagt
    gaggggactcaaaaagcattacttgatgccaatatgctaagagatgtgggcaaaacgcttcttcaaact
    gctatttacttgcgtagcgattcattatcagcaactggtagaaaaaaattagaagagcgctatttatta
    ggtactcgttatgtccttgaacaaggttttacacgaggaagtggttatcaaattattactcatgttggt
    taccaaaccagagaactttttgatgcatggtttattggccgtcatgttcttgcaaaaaataacctttta
    gcccccactcaacaagctatgatgtggtacaacgccacaggacgtatttttgaaaaagataatgaaatt
    gttgatgcaaatgtcgatattctcaatactcaattgcaatggatgataaaaagcttattgatgctaccg
    gattatcaacaacgtcaacaagccttagcgcaactgcaaagttggctaaataaaaccattctaagctca
    aaaggtgttgctggcggtttcaaatctgatggttctatttttcaccattcacaacattaccccgcttat
    gctaaagatgcatttggtggtttagcacccagtgtttatgcattaagtgattcaccttttcgcttatct
    acttcagcacatgagcatttaaaagatgttttgttaaaaatgcggatctacaccaaagagacacaaatt
    cctgtggtattaagtggtcgtcatccaactgggttgcataaaatagggatcgcgccatttaaatggatg
    gcattagcaggaaccccagatggcaaacaaaagttagataccacattatccgccgcttatgcaaactta
    gacaacaaaacgcattttgaaggcattaacgctgaaagtgagccagtcggcgcatgggcaatgaattat
    gcatcaatggcaatacaacgaagagcatcgacccaatcaccacaacaaagctggctcgccatagcgcgc
    ggttttagccgttatcttgttggtaatgaaagctatgaaaataacaaccgttatggtcgttatttacaa
    tatggacaattggaaattattccagctgatttaactcaatcagggtttagccatgctggatgggattgg
    aatagatatccaggtacaacaactattcatcttccctataacgaacttgaagcaaaacttaatcaatta
    cctgctgcaggtattgaagaaatgttgctttcaacagaaagttactctggtgcaaatacccttaataat
    aacagtatgtttgccatgaaattacacggtcacagtaaatatcaacaacaaagcttaagggcaaataaa
    tcctatttcttatttgataatagagttattgctttaggctcaggtattgaaaatgatgataaacaacat
    acgaccgaaacaacactattccagtttgccgtccctaaattacagtcagtgatcattaatggcaaaaag
    gtaaatcaattagatactcaattaactttaaataatgcagatacattaattgatcctgccggcaattta
    tataagctcactaaaggacaaactgtaaaatttagttatcaaaaacaacattcacttgatgatagaaat
    tcaaaaccaacagaacaattatttgcaacagctgttatttctcatggtaaggcaccgagtaatgaaaat
    tatgaatatgcaatagctatcgaagcacaaaataataaagctcccaaatacacagtattacaacataat
    gatcagctccatgcggtaaaagataaaataacccaagaagagggatatggtttttttgaagccactaag
    ttaaaatcagcggatgcaacattattatccagtgatgcgccggttatggtcatggctaaaatacaaaat
    cagcaattaacattaagtattgttaatcctgatttaaatttatatcaaggtagagaaaaagatcaattt
    gatgataaaggtaatcaaatcgaagttagtgtttattctcgtcattggcttacagcagaatcgcaatca
    acaaatagtactattaccgtaaaaggaatatggaaattaacgacacctcaacccggtgttattattaag
    caccacaataacaacactcttattacgacaacaaccatacaggcaacacctactgttattaattagtta
    agtaa
    SEQ ID NO: 27
    Present Invention Chondroitinase ABC II protein
    >_ ABC (present invention) 990 aa vs.
    >_ ABC (mature) 990 aa
    scoring matrix:, gap penalties: −12/−2
    98.3% identity; Global alignment score: 6393
            10        20        30        40        50        60
    457676 LPTLSHEAFGDIYLFEGELPNILTTSNNNQLSLSKQHAKDGEQSLKWQYQPQATLTLNNI
    ::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::
    _ LPTLSHEAFGDIYLFEGELPNTLTTSNNNQLSLSKQHAKDGEQSLKWQYQPQATLTLNNI
            10        20        30        40        50        60
            70        80        90       100       110       120
    457676 VNYQDDKNTATPLTFMMWIYNEKPQSSPLTLAFKQNNKIALSFNAELNFTGWRGIAVPFR
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ VNYQDDKNTATPLTFMMWIYNEKPQSSPLTLAFKQNNKIALSFNAELNFTGWRGIAVPFR
            70        80        90       100       110       120
           130       140       150       160       170       180
    457676 DMQGSATGQLDQLVITAPNQAGTLFFDQIIMSVPLDNRWAVPDYQTPYVNNAVNTMVSKN
    :::::.::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ DMQGSVTGQLDQLVITAPNQAGTLFFDQIIMSVPLDNRWAVPDYQTPYVNNAVNTMVSKN
           130       140       150       160       170       180
           190       200       210       220       230       240
    457676 WSALLMYDQMFQAHYPTLNFDTEFRDDQTEMASIYQRFEYYQGIRSDKKITPDMLDKHLA
    ::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::
    _ WSALLMYDQMFQAHYPTLNFDTEFRDDQTEMASRYQRFEYYQGIRSDKKITPDMLDKHLA
           190       200       210       220       230       240
           250       260       270       280       290       300
    457676 LWEKLGLTQHADGSITGKALDHPNRQHFMKVEGVFSEGTQKALLDANMLRDVGKTLLQTA
    ::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ LWEKLVLTQHADGSITGKALDHPNRQHFMKVEGVFSEGTQKALLDANMLRDVGKTLLQTA
           250       260       270       280       290       300
           310       320       330       340       350       360
    457676 IYLRSDSLSATGRKKLEERYLLGTRYVLEQGFTRGSGYQIITHVGYQTRELFDAWFIGRH
    ::::::::::: :::::::::::::::::::: :::::::::::::::::::::::::::
    _ IYLRSDSLSATDRKKLEERYLLGTRYVLEQGFHRGSGYQIISHVGYQTRELFDAWFIGRH
           310       320       330       340       350       360
           370       380       390       400       410       420
    457676 VLAKNNLLAPTQQAMMWYNATGRIFEKDNEIVDANVDILNTQLQWMIKSLLMLPDYQQRQ
    :::::::::::::::::::::::::::.::::::::::::::::::::::::::::::::
    _ VLAKNNLLAPTQQAMMWYNATGRIFEKNNEIVDANVDILNTQLQWMIKSLLMLPDYQQRQ
           370       380       390       400       410       420
           430       440       450       460       470       480
    457676 QALAQLQSWLNKTILSSKGVAGGFKSDGSIFHHSQHYPAYAKDAFGGLAPSVYALSDSPF
    ::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ QALAQLQRWLNKTILSSKGVAGGFKSDGSIFHHSQHYPAYAKDAFGGLAPSVYALSDSPF
           430       440       450       460       470       480
           490       500       510       520       530       540
    457676 RLSTSAHEHLKDVLLKMRIYTKETQIPVVLSGRHPTGLHKIGIAPFKWMALAGTPDGKQK
    ::::::::.:::::::::::::::::::::::::::::::::::::::::::::::::::
    - RLSTSAHERLKDVLLKMRIYTKETQIPAVLSGRHPTGLHKIGIAPFKWMALAGTPDGKQK
           490       500       510       520       530       540
           550       560       570       580       590       600
    457676 LDTTLSAAYAKLDNKTHFEGINAESEPVGAWAMNYASMAIQRRASTQSPQQSWLAIARGF
    :::::::::::::::::::::.::::::::::::::::::::::::::::::::::::::
    _ LDTTLSAAYAKLDNKTHFEGIKAESSPVGAWAMNYASMAIQRRASTQSPQQSWLAIARGF
           550       560       570       580       590       600
           610       620       630       640       650       660
    457676 SRYLVGNESYENNNRYGRYLQYGQLEIIPADLTQSGFSHAGWDWNRYPGTTTIHLPYNEL
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ SRYLVGNESYENNNRYCRYLQYGQLEIIPADLTQSGFSHAGWDWNRYPGTTTIHLPYNEL
           610       620       630       640       650       660
           670       680       690       700       710       720
    457676 EAKLNQLPAAGIEEMLLSTESYSGANTLNNNSMFAMKLHGHSKYQQQSLRANKSYFLFDN
    :::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::
    _ EAKLNQLPAAGIEEMLLSTESYSGANTLNNNSMFAMKLHGPSKYQQQSLRANKSYFLFDN
           670       680       690       700       710       720
           730       740       750       760       770       780
    457676 RVIALGSGIENDDKQHTTETTLFQFAVPKLQSVIINGKKVNQLDTQLTLNNADTLIDPAG
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ RVTALGSGIENDDKQHTTETTLFQFAVPKLQSVIINGKKVNQLDTQLTLNNADTLIDPAG
           730       740       750       760       770       780
           790       800       810       820       830       840
    457676 NLYKLTKGQTVKFSYQKQHSLDDRNSKPTEQLFATAVISHGKAPSNENYEYAIAIEAQNN
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ NLYKLTKGQTVKFSYQKQHSLDDRNSKPTEQLFATAVISHGKAPSNENYEYAIAEIAQNN
           790       800       810       820       830       840
           850       860       870       880       890       900
    457676 KAPKYTVLQHNDQLHAVKDKITQEEGYGFFEATKLKSADATLLSSDAPVMVMAKIQNQQL
    :::.::::::::: :::::::::::::.::::::::::::::::::::::::::::::::
    _ KAPEYTVLQHNDQPHAVKDKITQEEGYAFFEATKLKSADATLLSSDAPVMVMAKIQNQQL
           850       860       870       880       890       900
           910       920       930       940       950       960
    457676 TLSIVNPDLNLYQGREKDQFDDKGNQIEVSVYSRHWLTAESQSTNSTITVKGIWKLTTPQ
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    _ TLSIVNPDLNLYQGREKDQFDDKGNQIEVSVYSRHWLTAESQSTNSTITVKGIWKLTTPQ
           910       920       930       940       950       960
           970       980       990
    457676 PGVIIKHHNNNTLITTTTIQATPTVINLVK
    ::::::::::::::::::::::::::::::
    _ PGVIIKHHNNNTLITTTTIQATPTVINLVK
           970       980       990
    SEQ ID NO: 28
    Present Invention Chondroitinase ABC I nucleic acid
    gccaccagcaatcctgcatttgatcctaaaaatctgatgcagtcagaaatttaccattttgcacaaaat
    aacccattagcagacttctcatcagataaaaactcaatactaacgttatctgataaacgtagcattatg
    ggaaaccaatctcttttatggaaatggaaaggtggtagtagctttactttacataaaaaactgattgtc
    cccaccgataaagaagcatctaaagcatggggacgctcatccacccccgttttctcattttggctttac
    aatgaaaaaccgattgatggttatcttactatcgatttcggagaaaaactcatttcaaccagtgaggct
    caggcaggctttaaagtaaaattagatttcactggctggcgtactgtgggagtctctttaaataacgat
    cttgaaaatcgagagatgaccttaaatgcaaccaatacctcctctgatggtactcaagacagcattggg
    cgttctttaggtgctaaagtcgatagtattcgttttaaagcgccttctaatgtgagtcagggtgaaatc
    tatatcgaccgtattatgttttctgtcgatgatgctcgctaccaatggtctgattatcaagtaaaaact
    cgcttatcagaacctgaaattcaatttcacaacgtaaagccacaactacctgtaacacctgaaaattta
    gcggccattgatcttattcgccaacgtctaattaatgaatttgtcggaggtgaaaaagagacaaacctc
    gcattagaagagaatatcagcaaattaaaaagtgatttcgatgctcttaatactcacactttagcaaat
    ggtggaacgcaaggcagacatctgatcactgataaacaaatcattatttatcaaccagagaatcttaac
    tctcaagataaacaactatttgataattatgttattttaggtaattacacgacattaatgtttaatatt
    agccgtgcttatgtgctggaaaaagatcccacacaaaaggcgcaactaaagcagatgtacttattaatg
    acaaagcatttattagatcaaggctttgttaaagggagtgctttagtgacaacccatcactggggatac
    agttctcgttggtggtatatttccacgttataatgtctgatgcactaaaagaagcgaacctacaaactc
    aagtttatgattcattactgtggtattcacgtgagtttaaaagtagttttgatatgaaagtaagtgctg
    atagctctgatctagattatttcaataccttatctcgccaacatttagccttattactactagagcctg
    atgatcaaaagcgtatcaacttagttaatactttcagccattatatcactggcgcattaacgcaagtgc
    caccgggtggtaaagatggtttacgccctgatggtacagcatggcgacatgaaggcaactatccgggct
    actctttcccagcctttaaaaatgcctctcagcttatttatttattacgcgatacaccattttcagtgg
    gtgaaagtggttggaatagcctgaaaaaagcgatggtttcagcgtggatctacagtaatccagaagttg
    gattaccgcttgcaggaagacaccctcttaactcaccttcgttaaaatcagtcgctcaaggctattact
    ggcttgccatgtctgcaaaatcatcgcctgataaaacacttgcatctatttatcttgcgattagtgata
    aaacacaaaatgaatcaactgctatttttggagaaactattacaccatgcgtctttacctcaaggtttc
    tatgcctttaatggcggtgcttttggtattcatcgttggcaagataaaatggtgacactgaaagcttat
    aacaccaatgtttggtcatctgaaatttataacaaagataaccgttatggccgttaccaaagtcatggt
    gtcgctcaaatagtgagtaatggctcgcagctttcacagggctatcagcaagaaggttgggattggaat
    agaatgccaggggcaaccactatccaccttcctcttaaagacttagacagtcctaaacctcatacctta
    atgcaacgtggagagcgtggatttagcggaacatcatcccttgaaggtcaatatggcatgatggcattc
    gatcttatttatcccgccaatcttgagcgttttgatcctaatttcactgcgaaaaagagtgtattagcc
    gctgataatcacttaatttttattggtagcaatataaatagtagtgataaaaataaaaatgttgaaacg
    accttattccaacatgccattactccaacattaaataccctttggattaatggacaaaagatagaaaac
    atgccttatcaaacaacacttcaacaaggtgattggttaattgatagcaatggcaatggttacttaatt
    actcaagcagaaaaagtaaagtaaatgtaagtcgccaacatcaggtttcagcggaaaataaaaatcgcc
    aaccgacagaaggaaactttagctcggcatggatcgatcacagcactcgccccaaagatgccagttatg
    agtatatggtctttttagatgcgacacctgaaaaaatgggagagatggcacaaaaattccgtgaaaata
    atgggttatatcaggttcttcgtaaggataaagacgttcatattattctcgataaactcagcaatgtaa
    cgggatatgccttttatcagccagcatcaattgaagacaaatggatcaaaaaggttaataaacctgcaa
    ttgtgatgactcatcgacaaaaagacactcttattgtcagtgcagttacacctgatttaaatatgactc
    gccaaaaagcagcaactcctgtcaccatcaatgtcacgattaatggcaaatggcaatctgctgataaaa
    atagtgaagtgaaatatcaggtttctggtgataacactgaactgacgtttacgagttactttggtattc
    cacaagaaatcaaactctcgccactcccttga
    SEQ ID NO: 29
    Present Invention Chondroitinase ABC I protein
    365019 ATSNPAFDPKNLMQSEIYHFAQNNPLADFSSDKNSILTLSDKRSIMGNQSLLWKWKGGSS
    ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    365019 FTLHKKLIVPTDKEASKAWGRSSTPVFSFWLYNEKPIDGYLTIDFGEKLISTSEAQAGFK
    365019 VKLDFTGWRTVGVSLNNDLENREMTLNATNTSSDGTQDSIGRSLGAKVDSIRFKAPSNVS
    365019 QGEIYIDRIMFSVDDARYQWSDYQVKTRLSEPEIQFHNVKPQLPVTPENLAAIDLIRQRL
    365019 INEFVGGEKETNLALEENISKLKSDFDALNTHTLANGGTQGRHLITDKQIIIYQPENLNS
    365019 QDKQLFDNYVILGNYTTLMFNISRAYVLEKDPTQKAQLKQMYLLMTKHLLDQGFVKGSAL
    365019 VTTHHWGYSSRWWYISTLLMSDALKEANLQTQVYDSLLWYSREFKSSFDMKVSADSSDLD
    365019 YFNTLSRQHLALLLLEPDDQKRINLVNTFSHYITGALTQVPPGGKDGLRPDGTAWRHEGN
    365019 YPGYSFPAFKNASQLIYLLRDTPFSVGESGWNSLKKAMVSAWIYSNPEVGLPLAGRHPLN
    365019 SPSLKSVAQGYYWLAMSAKS5PDKTLASIYLAISDKTQNESTAIFGETITPASLPQGFYA
    365019 FNGGAFGIHRWQDKMVTLKAYNTNVWSSEIYNKDNRYGRYQSHGVAQIVSNGSQLSQGYQ
    385019 QEGWDWNRMPGATTIHLPLKDLDSPKPHTLMQRGERGFSGTSSLEGQYGMMAFDLIYPAN
    365019 LERFDPNFTAKKSVLAADNHLIFIGSNINSSDKNKNVETTLFQHAITPTLNTLWINGQKI
    365019 ENMPYQTTLQQGDWLIDSNGNGYLITQAEKVNVSRQHQVSAENKNRQPTEGNFSSAWIDH
    365019 STRPKDASYEYMVFLDATPEKMGEMAQKFRENNGLYQVLRKDKDVHIILDKLSNVTGYAF
    365019 YQPASIEDKWIKKVNKPAIVMTHRQKDTLIVSAVTPDLNMTRQKAATPVTINVTINGKWQ
    365019 SADKNSEVKYQVSGDNTELTFTSYFGIPQEIKLSPLP
    SEQ ID NO: 30
    hyaluronidase 1 protein,,
    Locus HSU96078
    SEQ ID NO: 31
    hyaluronidase 2 protein,,
    SEQ ID NO: 32
    hyaluronidase 3 protein,,
    Locus BC012892
    SEQ ID NO: 33
    hyaluronidase 4 protein,,
    AF009010
    SEQ ID NO: 34
    PH-20 protein,,
    SEQ ID NO: 35
    Tat peptide
    SEQ ID NO: 36
    ABCI a site-specific mutant designated H501a and Y508a
    SEQ ID NO: 37
    Chondroitinase ABCI protein Locus P59807
    ORIGIN
       1 mpifrftala mtlgllsapy namaatsnpa fdpknlmqse iyhfaqnnpl adfssdknsi
      61 ltlsdkrsim gnqslLwkwk ggssftlhkk livptdkeas kawgrsstpv fsfwlynekp
     121 idgyltidfg eklistseaq agfkvkldft gwravgvsln ndlenremtl natntssdgt
     181 qdsigrslga kvdsirfkap snvsqgeiyi drimfsvdda ryqwsdyqvk trlsepeiqf
     241 hnvkpqlpvt penlaaidli rqrlinefvg geketnlale enisklksdf dalnihtlan
     301 ggtqgrhlit dkqiiiyqpe nlnsqdkqlf dnyvilgnyt tlmfnisray vlekdptqka
     361 qlkqmyllmt khlldqgfvk gsalvtthhw gyssrwwyis tllmsdalke anlqtqvyds
     421 llwysrefks sfdmkvsads sdldyfntls rqhlalllle pddqkrinlv ntfshyitga
     481 ltqvppggkd glrpdgtawr hegnypgysf pafknasqli yllrdtpfsv gesgwnnlkk
     541 amvsawiysn pevglplagr hpfnspslks vaqgyywlam saksspdktl asiylaisdk
     601 tqnestaifg etitpaslpq gfyafnggaf gihrwqdkmv tlkayntnvw sseiynkdnr
     661 ygryqshgva qivsngsqls qgyqqegwdw nrmegattih lplkdldspk phtlmqrger
     721 gfsgtssleg qygmmafnli ypanlerfdp nftakksvla adnhlifigs ninssdknkn
     781 vettlfqhai tptlntlwin gqkienmpyq ttlqqgdwli dsngngylit qaekvnvsrq
     841 hqvsaenknr qptegnfssa widhstrpkd asyeymvfld atpekmgema qkfrenngly
     901 qvlrkdkdvh iildklsnvt gyafyqpasi edkwikkvnk paivmthrqk dtlivsavtp
     961 dlnmtrqkaa tpvtinvtin gkwqsadkns evkyqvsgdn teltftsyfg ipqeiklspl
    1021 pXX
    SEQ ID NO: 38
    NΔ20 ABCI (A45-N1023), protein
                                                    aqnnpl adfssdknsi
      61 ltlsdkrsim gnqsllwkwk ggssftlhkk livptdkeas kawgrsstpv fsfwlynekp
     121 idgyltidfg eklistseaq agfkvkldft gwravgvsln ndlenremtl natntssdgt
     181 qdsigrslga kvdsirfkap snvsqgeiyi drimfsvdda ryqwsdyqvk trlsepeiqf
     241 hnvkpqlpvt penlaaidli rqrlinefvg geketnlale enisklksdf dalnihtlan
     301 ggtqgrhlit dkqiiiyqpe nlnsqdkqlf dnyvilgnyt tlmfnisray vlekdptqka
     361 qlkqmyllmt khlldqgfvk gsalvtthhw gyssrwwyis tllmsdalke anlqtqvyds
     421 llwysrefks sfdmkvsads sdldyfntls rqhlalllle pddqkrinlv ntfshyitga
     481 ltqvppggkd glrpdgtawr hegnypgysf pafknasqli yllrdtpfsv gesgwnnlkk
     541 amvsawiysn pevglplagr hpfnspslks vaqgyywlam saksspdktl asiylaisdk
     601 tqnestaifg etitpaslpq gfyafnggaf gihrwqdkmv tlkayntnvw sseiynkdnr
     661 ygryqshgva qivsngsqls qgyqqegwdw nrmegattih lplkdldspk phtlmqrger
     721 gfsgtssleg qygmmafnli ypanlerfdp nftakksvla adnhlifigs ninssdknkn
     781 vettlfqhai tptlntlwin gqkienmpyq ttlqqgdwli dsngngylit qaekvnvsrq
     841 hqvsaenknr qptegnfssa widhstrpkd asyeymvfld atpekmgema qkfrenngly
     901 qvlrkdkdvh iildklsnvt gyafyqpasi edkwikkvnk paivmthrqk dtlivsavtp
     961 dlnmtrqkaa tpvtinvtin gkwqsadkns evkyqvsgdn teltftsyfg ipqeiklspl
    1021 pXX
    SEQ ID NO: 39
    NΔ60 ABCI (F85-N1023) protein
                              ftlhkk livptdkeas kawgrsstpv fsfwlynekp
     121 idgyltidfg eklistseaq agfkvkldft gwravgvsln ndlenremtl natntssdgt
     181 qdsigrslga kvdsirfkap snvsqgeiyi drimfsvdda ryqwsdyqvk trlsepeiqf
     241 hnvkpqlpvt penlaaidli rqrlinefvg geketnlale enisklksdf dalnihtlan
     301 ggtqgrhlit dkqiiiyqpe nlnsqdkqlf dnyvilgnyt tlmfnisray vlekdptqka
     361 qlkqmyllmt khlldqgfvk gsalvtthhw gyssrwwyis tllmsdalke anlqtqvyds
     421 llwysrefks sfdmkvsads sdldyfntls rqhlalllle pddqkrinlv ntfshyitga
     481 ltqvppggkd glrpdgtawr hegnypgysf pafknasqli yllrdtpfsv gesgwnnlkk
     541 amvsawiysn pevglplagr hpfnspslks vaqgyywlam saksspdktl asiylaisdk
     601 tqnestaifg etitpaslpq gfyafnggaf gihrwqdkmv tlkayntnvw sseiynkdnr
     661 ygryqshgva qivsngsqls qgyqqegwdw nrmegattih lplkdldspk phtlmqrger
     721 gfsgtssleg qygmmafnli ypanlerfdp nftakksvla adnhlifigs ninssdknkn
     781 vettlfqhai tptlntlwin gqkienmpyq ttlqqgdwli dsngngylit qaekvnvsrq
     841 hqvsaenknr qptegnfssa widhstrpkd asyeymvfld atpekmgema qkfrenngly
     901 qvlrkdkdvh iildkIsnvt gyafyqpasi edkwikkvnk paivmthrqk dtlivsavtp
     961 dlnmtrqkaa tpvtinvtin gkwqsadkns evkyqvsgdn teltftsyfg ipqeiklspl
    1021 pXX
    SEQ ID No. 40:
    NΔ60 CΔ80 ABCI (F85-A942) protein
                              ftlhkk livptdkeas kawgrsstpv fsfwlynekp
     121 idgyltidfg eklistseaq agfkvkldft gwravgvsln ndlenremtl natntssdgt
     181 qdsigrslga kvdsirfkap snvsqgeiyi drimfsvdda ryqwsdyqvk trlsepeiqf
     241 hnvkpqlpvt penlaaidli rqrlinefvg geketnlale enisklksdf dalnihtlan
     301 ggtqgrhlit dkqiiiyqpe nlnsqdkqlf dnyvilgnyt rlmfnisray vlekdptqka
     361 qlkqmyllmt khlldqgfvk gsalvtthhw gyssrwwyis tllmsdalke anlqtqvyds
     421 llwysrefks sfdmkvsads sdldyfntls rqhlalllle pddqkrinlv ntfshyitga
     481 ltqvppggkd glrpdgtawr hegnypgysf pafknasqli yllrdtpfsv gesgwnnlkk
     541 amvsawiysn pevglplagr hpfnspslks vaqgyywlam saksspdktl asiylaisdk
     601 tqnestaifg etitpaslpq gfyafnggaf gihrwqdkmv tlkayntnvw sseiynkdnr
     661 ygryqshgva qivsngsqls qgyqqegwdw nrmegattih lplkdldspk phtlmqrger
     721 gfsgtssleg qygmmafnli ypanlerfdp nftakksvla adnhlifigs ninssdknkn
     781 vettlfqhai tptlntlwin gqkienmpyq ttlqqgdwli dsngngylit qaekvnvsrq
     841 hqvsaenknr qptegnfssa widhstrpkd asyeymvfld atpekmgema qkfrenngly
     901 qvlrkdkdvh iildklsnvt gyafyqpasi edkwikkvnk pa
    SEQ ID NO. 41:
    I. Nucleotide sequence for TAT-ABCI-nΔ20:
       1       ggtc gtaaaaagcg tcgtcaacgt cgtcgtcctc ctcaatgcgc acaaaataac
      61 ccattagcag acttctcatc agataaaaac tcaatactaa cgttatctga taaacgtagc
     121 attatgggaa accaatctct tttatggaaa tggaaaggtg gtagtagctt tactttacat
     181 aaaaaactga ttgtccccac cgataaagaa gcatctaaag catggggacg ctcatccacc
     241 cccgttttct cattttggct ttacaatgaa aaaccgattg atggttatct tactatcgat
     301 ttcggagaaa aactcatttc aaccagtgag gctcaggcag gctttaaagt aaaattagat
     361 ttcactggct ggcgtactgt gggagtctct ttaaataacg atcttgaaaa tcgagagatg
     421 accttaaatg caaccaatac ctcctctgat ggtactcaag acagcattgg gcgttcttta
     481 ggtgctaaag tcgatagtat tcgttttaaa gcgccttcta atgtgagtca gggtgaaatc
     541 tatatcgacc gtattatgtt ttctgtcgat gatgctcgct accaatggtc tgattatcaa
     601 gtaaaaactc gcttatcaga acctgaaatt caatttcaca acgtaaagcc acaactacct
     661 gtaacacctg aaaatttagc ggccattgat cttattcgcc aacgtctaat taatgaattt
     721 gtcggaggtg aaaaagagac aaacctcgca ttagaagaga atatcagcaa attaaaaagt
     781 gatttcgatg ctcttaatac tcacacttta gcaaatggtg gaacgcaagg cagacatctg
     841 atcactgata aacaaatcat tatttatcaa ccagagaatc ttaactctca agataaacaa
     901 ctatttgata attatgttat tttaggtaat tacacgacat taatgtttaa tattagccgt
     961 gcttatgtgc tggaaaaaga tcccacacaa aaggcgcaac taaagcagat gtacttatta
    1021 atgacaaagc atttattaga tcaaggcttt gttaaaggga gtgctttagt gacnacccat
    1081 cactggggat acagttctcg ttggtggtat atttccacgt tattaatgtc tgatgcacta
    1141 aaagaagcga acctacaaac tcaagtttat gattcattac tgtggtattc acgtgagttt
    1201 aaaagtagtt ttgatatgaa agtaagtgct gatagctctg atctagatta tttcaatacc
    1261 ttatctcgcc aacatttagc cttattacta ctagagcctg atgatcaaaa gcgtatcaac
    1321 ttagttaata ctttcagcca ttatatcact ggcgcattaa cgcaagtgcc accgggtggt
    1381 aaagatggtt tacgccctga tggtacagca tggcgacatg aaggcaacta tccgggctac
    1441 tctttcccag cctttaaaaa tgcctctcag cttatttatt tattacgcga tacaccattt
    1501 tcagtgggtg aaagtggttg gaatagcctg aaaaaagcga tggtttcagc gtggatctac
    1561 agtaatccag aagttggatt accgcttgca ggaagacacc ctcttaactc accttcgtta
    1621 aaatcagtcg ctcaaggcta ttactggctt gccatgtctg caaaatcatc gcctgataaa
    1681 acacttgcat ctatttatct tgcgattagt gataaaacac aaaatgaatc aactgctatt
    1741 tttggagaaa ctattacacc agcgtcttta cctcaaggtt tctatgcctt taatggcggt
    1801 gcttttggta ttcatcgttg gcaagataaa atggtgacac tgaaagctta taacaccaat
    1861 gtttggtcat ctgaaattta taacaaagat aaccgttatg gccgttacca aagtcatggt
    1921 gtcgctcaaa tagtgagtaa tggctcgcag ctttcacagg gctatcagca agaaggttgg
    1981 gattggaata gaatgccagg ggcaaccact atccaccttc ctcttaaaga cttagacagt
    2041 cctaaacctc ataccttaat gcaacgtgga gagcgtggat ttagcggaac atcatccctt
    2101 gaaggtcaat atggcatgat ggcattcgat cttatttatc ccgccaatct tgagcgtttt
    2161 gatcctaatt tcactgcgaa aaagagtgta ttagccgctg ataatcactt aatttttatt
    2221 ggtagcaata taaatagtag tgataaaaat aaaaatgttg aaacgacctt attccaacat
    2281 gccattactc caacattaaa taccctttgg attaatggac aaaagataga aaacatgcct
    2341 tatcaaacaa cacttcaaca aggtgattgg ttaattgata gcaatggcaa tggttactta
    2401 attactcaag cagaaaaagt aaatgtaagt cgccaacatc aggtttcagc ggaaaataaa
    2461 aatcgccaac cgacagaagg aaactttagc tcggcatgga tcgatcacag cactcgcccc
    2521 aaagatgcca gttatgagta tatggtcttt ttagatgcga cacctgaaaa aatgggagag
    2581 atggcacaaa aattccgtga aaataatggg ttatatcagg ttcttcgtaa ggataaagac
    2641 gttcatatta ttctcgataa actcagcaat gtaacgggat atgcctttta tcagccagca
    2701 tcaattgaag acaaatggat caaaaaggtt aataaacctg caattgtgat gactcatcga
    2761 caaaaagaca ctcttattgt cagtgcagtt acacctgatt taaatatgac tcgccaaaaa
    2821 gcagcaactc ctgtcaccat caatgtcacg attaatggca aatggcaatc tgctgataaa
    2881 aatagtgaag tgaaatatca gatttctggt gataacactg aactgacgtt tacgagttac
    2941 tttggtattc cacaagaaat caaactctcg ccactccctt ga
    Sequence in purple denotes TAT sequence attached to the 5′ of
    ABCI-nΔ20 sequence.
    SEQ ID NO. 42:
    II. Amino acid sequence for TAT-ABCI-nΔ20:
    grkkrrqrrrppqcaqnnpladfssdknsiltlsdkrsimgnqsllwkwkggssftlhkklivptdkea
    skawgrsstpvfsfwlynekpidgyltidfgeklistseaqagfkvkldftgwrtvgvslnndlenrem
    tlnatntssdgtqdsigrslgakvdsirfkapsnvsqgeiyidrimfsvddaryqwsdyqvktrlsepe
    iqfhnvkpqlpvtpenlaaidlirqrlinefvggeketnlaleenisklksdfdalnthtlanggtqgr
    hlitdkqiiiyqpenlnsqdkqlfdnyvilgnyttlmfnisrayvlekdptqkaqlkqmyllmtkhlld
    qgfvkgsalvtthhwgyssrwwyistllmsdalkeanlqtqvydsllwysrefkssfdmkvsadssdld
    yfntlsrqhlallllepddqkrinlvntfshyitgaltqvppggkdglrpdgtawrhegnypgysfpaf
    knasqliyllrdtpfsvgesgwnslkkamvsawiysnpevglplagrhplnspslksvaqgyywlamsa
    ksspdktlasiylaisdktqnestaifgetitpaslpqgfyafnggafgihrwqdkmvtlkayntnvws
    seiynkdnrygryqshgvaqivsngsqlsqgyqqegwdwnrmpgattihlplkdldspkphtlmqrger
    gfsgtsslegqygmmafdliypanlerfdpnftakksvlaadnhlifigsninssdknknvettlfqha
    itptlntlwingqkienmpyqttlqqgdwlidsngngylitqaekvnvsrqhqvsaenknrqptegnfs
    sawidhstrpkdasyeymvfldatpekmgemaqkfrennglyqvlrkdkdvhiildklsnvtgyafyqp
    asiedkwikkvnkpaivmthrqkdtlivsavtpdlnmtrqkaatpvtinvtingkwqsadknsevkyqv
    sgdnteltftsyfgipqeildsplp
    SEQ ID NO. 43:
    II. Nucleotide sequence for TAT-ABCI-nΔ60:
    ggtcgtaaaaagcgtcgtcaacgtcgtcgtcctcctcaatgctttactttacataaaaaactgattgtc
    cccaccgataaagaagcatctaaagcatggggacgctcatccacccccgttttctcattttggctttac
    aatgaaaaaccgattgatggttatcttactatcgatttcggagaaaaactcatttcaaccagtgaggct
    caggcaggctttaaagtaaaattagatttcactggctggcgtactgtgggagtctctttaaataacgat
    cttgaaaatcgagagatgaccttaaatgcaaccaatacctcctctgatggtactcaagacagcattggg
    cgttctttaggtgctaaagtcgatagtattcgttttaaagcgccttctaatgtgagtcagggtgaaatc
    tatatcgaccgtattatgttttctgtcgatgatgctcgctaccaatggtctgattatcaagtaaaaact
    cgcttatcagaacctgaaattcaatttcacaacgtaaagccacaactacctgtaacacctgaaaattta
    gcggccattgatcttattcgccaacgtctaattaatgaatttgtcggaggtgaaaaagagacaaacctc
    gcattagaagagaatatcagcaaattaaaaagtgatttcgatgctcttaatactcacactttagcaaat
    ggtggaacgcaaggcagacatctgatcactgataaacaaatcattatttatcaaccagagaatcttaac
    tctcaagataaacaactatttgataattatgttattttaggtaattacacgacattaatgtttaatatt
    agccgtgcttatgtgctggaaaaagatcccacacaaaaggcgcaactaaagcagatgtacttattaatg
    acaaagcatttattagatcaaggctttgttaaagggagtgctttagtgacnacccatcactggggatac
    agttctcgttggtggtatatttccacgttattaatgtctgatgcactaaaagaagcgaacctacaaact
    caagtttatgattcattactgtggtattcacgtgagtttaaaagtagttttgatatgaaagtaagtgct
    gatagctctgatctagattatttcaataccttatctcgccaacatttagccttattactactagagcct
    gatgatcaaaagcgtatcaacttagttaatactttcagccattatatcactggcgcattaacgcaagtg
    ccaccgggtggtaaagatggtttacgccctgatggtacagcatggcgacatgaaggcaactatccgggc
    tactctttcccagcctttaaaaatgcctctcagcttatttatttattacgcgatacaccattttcagtg
    ggtgaaagtggttggaatagcctgaaaaaagcgatggtttcagcgtggatctacagtaatccagaagtt
    ggattaccgcttgcaggaagacaccctcttaactcaccttcgttaaaatcagtcgctcaaggctattac
    tggcttgccatgtctgcaaaatcatcgcctgataaaacacttgcatctatttatcttgcgattagtgat
    aaaacacaaaatgaatcaactgctatttttggagaaactattacaccagcgtctttacctcaaggtttc
    tatgcctttaatggcggtgcttttggtattcatcgttggcaagataaaatggtgacactgaaagcttat
    aacaccaatgtttggtcatctgaaatttataacaaagataaccgttatggccgttaccaaagtcatggt
    gtcgctcaaatagtgagtaatggctcgcagctttcacagggctatcagcaagaaggttgggattggaat
    agaatgccaggggcaaccactatccaccttcctcttaaagacttagacagtcctaaacctcatacctta
    atgcaacgtggagagcgtggatttagcggaacatcatcccttgaaggtcaatatggcatgatggcattc
    gatcttatttatcccgccaatcttgagcgttttgatcctaatttcactgcgaaaaagagtgtattagcc
    gctgataatcacttaatttttattggtagcaatataaatagtagtgataaaaataaaaatgttgaaacg
    accttattccaacatgccattactccaacattaaataccctttggattaatggacaaaagatagaaaac
    atgccttatcaaacaacacttcaacaaggtgattggttaattgatagcaatggcaatggttacttaatt
    actcaagcagaaaaagtaaatgtaagtcgccaacatcaggtttcagcggaaaataaaaatcgccaaccg
    acagaaggaaactttagctcggcatggatcgatcacagcactcgccccaaagatgccagttatgagtat
    atggtctttttagatgcgacacctgaaaaaatgggagagatggcacaaaaattccgtgaaaataatggg
    ttatatcaggttcttcgtaaggataaagacgttcatattattctcgataaactcagcaatgtaacggga
    tatgccttttatcagccagcatcaattgaagacaaatggatcaaaaaggttaataaacctgcaattgtg
    atgactcatcgacaaaaagacactcttattgtcagtgcagttacacctgatttaaatatgactcgccaa
    aaagcagcaactcctgtcaccatcaatgtcacgattaatggcaaatggcaatctgctgataaaaatagt
    gaagtgaaatatcaggtttctggtgataacactgaactgacgtttacgagttactttggtattccacaa
    gaaatcaaactctcgccactcccttga
    SEQ ID NO. 44:
    IV. Amino acid sequence for TAT-ABCI-nΔ60
    grkkrrqrrrppqcftlhkklivptdkeaskawgrsstpvfsfwlynekpidgyltidfgeklistsea
    qagfkvkldftgwrtvgvslnndlenremtlnatntssdgtqdsigrslgakvdsirfkapsnvsqgei
    yidrimfsvddaryqwsdyqvktrlsepeiqfhnvkpqlpvtpenlaaidlirqrlinefvggeketnl
    aleenisklksdfdalnthtlanggtqgthlitdkqiiiyqpenlnsqdkqlfdnyvilgnyttlmfni
    srayvlekdptqkaqlkqmyllmtkhlldqgfvkgsalvtthhwgyssrwwyistllmsdalkeanlqt
    qvydsllwysrefkssfdmkvsadssdldyfntlsrqhlallllepddqkrinlvntfshyitgaltqv
    ppggkdglrpdgtawrhegnypgysfpafknasqliyllrdtpfsvgesgwnslkkamvsawiysnpev
    glplagrhplnspslksvaggyywlamsaksspdktlasiylaisdktqnestaifgetitpaslpqgf
    yafnggafgihrwqdkmvtlkayntnvwsseiynkdnrygryqshgvaqivsngsqlsqgyqqegwdwn
    rmpgattihlplkdldspkphtlmqrgergfsgtsslegqygmmafdliypanlerfdpnftakksvla
    adnhlifigsninssdknknvettlfqhaitptlntlwingqkienmpyqttlqqgdwlidsngngyli
    tqaekvnvsrqhqvsaenknrqptegnfssawidhstrpkdasyeymvfldatpekmgemaqkfrenng
    lyqvlrkdkdvhiildklsnvtgyafyqpasiedkwikkvnkpaivmthrqkdtlivsavtpdlnmtrq
    kaatpvtinvtingkwqsadknsevkyqvsgdnteltftsyfgipqeiklsplp
    SEQ ID NO. 45:
    V. Nucleotide sequence for ABCI-TAT-C:
    gccaccagcaatcctgcatttgatcctaaaaatctgatgcagtcagaaatttaccattttgcacaaaat
    aacccattagcagacttctcatcagataaaaactcaatactaacgttatctgataaacgtagcattatg
    ggaaaccaatctcttttatggaaatggaaaggtggtagtagctttactttacataaaaaactgattgtc
    cccaccgataaagaagcatctaaagcatggggacgctcatccacccccgttttctcattttggctttac
    aatgaaaaaccgattgatggttatcttactatcgatttcggagaaaaactcatttcaaccagtgaggct
    caggcaggctttaaagtaaaattagatttcactggctggcgtactgtgggagtctctttaaataacgat
    cttgaaaatcgagagatgaccttaaatgcaaccaatacctcctctgatggtactcaagacagcattggg
    cgttctttaggtgctaaagtcgatagtattcgttttaaagcgccttctaatgtgagtcagggtgaaatc
    tatatcgaccgtattatgttttctgtcgatgatgctcgctaccaatggtctgattatcaagtaaaaact
    cgcttatcagaacctgaaattcaatttcacaacgtaaagccacaactacctgtaacacctgaaaattta
    gcggccattgatcttattcgccaacgtctaattaatgaatttgtcggaggtgaaaaagagacaaacctc
    gcattagaagagaatatcagcaaattaaaaagtgatttcgatgctcttaatactcacactttagcaaat
    ggtggaacgcaaggcagacatctgatcactgataaacaaatcattatttatcaaccagagaatcttaac
    tctcaagataaacaactatttgataattatgttattttaggtaattacacgacattaatgtttaatatt
    agccgtgcttatgtgctggaaaaagatcccacacaaaaggcgcaactaaagcagatgtacttattaatg
    acaaagcatttattagatcaaggctttgttaaagggagtgctttagtgacnacccatcactggggatac
    agttctcgttggtggtatatttccacgttattaatgtctgatgcactaaaagaagcgaacctacaaact
    caagtttatgattcattactgtggtattcacgtgagtttaaaagtagttttgatatgaaagtaagtgct
    gatagctctgatctagattatttcaataccttatctcgccaacatttagccttattactactagagcct
    gatgatcaaaagcgtatcaacttagttaatactttcagccattatatcactggcgcattaacgcaagtg
    ccaccgggtggtaaagatggtttacgccctgatggtacagcatggcgacatgaaggcaactatccgggc
    tactctttcccagcctttaaaaatgcctctcagcttatttatttattacgcgatacaccattttcagtg
    ggtgaaagtggttggaatagcctgaaaaaagcgatggtttcagcgtggatctacagtaatccagaagtt
    ggattaccgcttgcaggaagacaccctcttaactcaccttcgttaaaatcagtcgctcaaggctattac
    tggcttgccatgtctgcaaaatcatcgcctgataaaacacttgcatctatttatcttgcgattagtgat
    aaaacacaaaatgaatcaactgctatttttggagaaactattacaccagcgtctttacctcaaggtttc
    tatgcctttaatggcggtgcttttggtattcatcgttggcaagataaaatggtgacactgaaagcttat
    aacaccaatgtttggtcatctgaaatttataacaaagataaccgttatggccgttaccaaagtcatggt
    gtcgctcaaatagtgagtaatggctcgcagctttcacagggctatcagcaagaaggttgggattggaat
    agaatgccaggggcaaccactatccaccttcctcttaaagacttagacagtcctaaacctcatacctta
    atgcaacgtggagagcgtggatttagcggaacatcatcccttgaaggtcaatatggcatgatggcattc
    gatcttatttatcccgccaatcttgagcgttttgatcctaatttcactgcgaaaaagagtgtattagcc
    gctgataatcacttaatttttattggtagcaatataaatagtagtgataaaaatgttgaaacgacctta
    ttccaacatgccattactccaacattaaataccctttggattaatggacaaaagatagaaaacatgcct
    tatcaaacaacacttcaacaaggtgattggttaattgatagcaatggcaatggttacttaattactcaa
    gcagaaaaagtaaatgtaagtcgccaacatcaggtttcagcggaaaataaaaatcgccaaccgacagaa
    ggaaactttagctcggcatggatcgatcacagcactcgccccaaagatgccagttatgagtatatggtc
    tttttagatgcgacacctgaaaaaatgggagagatggcacaaaaattccgtgaaaataatgggttatat
    caggttcttcgtaaggataaagacgttcatattattctcgataaactcagcaatgtaacgggatatgcc
    ttttatcagccagcatcaattgaagacaaatggatcaaaaaggttaataaacctgcaattgtgatgact
    catcgacaaaaagacactcttattgtcagtgcagttacacctgatttaaatatgactcgccaaaaagca
    gcaactcctgtcaccatcaatgtcacgattaatggcaaatggcaatctgctgataaaaatagtgaagtg
    aaatatcaggtttctggtgataacactgaactgacgtttacgagttactttggtattccacaagaaatc
    aaactctcgccactccct gGgtcgtaaaaagcgtcgtcaacgtcgtcgtcctcctcaatgctag
    SEQ ID NO. 46:
    V. Amino acid sequence for ABCI-TAT-C:
    atsnpafdpknlmqseiyhfaqnnpladfssdknsiltlsdkrsimgnqsllwkwkggssftlhkkliv
    ptdkeaskawgrsstpvfsfwlynekpidgyltidfgeklistseaqagfkvkldftgwrtvgvslnnd
    lenremtlnatntssdgtqdsigrslgakvdsirfkapsnvsqgeiyidrimfsvddaryqwsdyqvkt
    rlsepeiqfhnvkpqlpvtpenlaaidlirqrlinefvggeketnlaleenisklksdfdalnthtlan
    ggtqgrhlitdkqiiiyqpenlnsqdkqlfdnyvilgnyttlmfnisrqyvlekdptqkaqklqmyllm
    tkhlldqgfvkgsalvtthhwgyssrwwyistllmsdalkeanlqtqvydsllwysrefkssfdmkvsa
    dssdldyfntlsrqhlallllepddqkrinlvntfshyitgaltqvppggkdglrpdgtawrhegnypg
    ysfpafknasqliyllrdtpfsvgesgwnslkkamvsawiysnpevglplagrhplnspslksvaqgyy
    wlamsaksspdktlasiylaisdktqnestaifgetitpaslpqgfyafnggafgihrwqdkmvtlkay
    ntnvwssieynkdnrygryqshgvaqivsngsqlsqgyqqegwdwnrmpgattihlplkdldspkphtl
    mqrgergfsgtsslegqygmmafdliypanlerfdpnftakksvlaadnhlifigsninssdknknvet
    tlfqhaitptlntlwingqkienmpyqttlqqgdwlidsngngylitqaekvnvsrqhqvsaenknrqp
    tegnfssawidhstrpkdasyeymvfldatpekmgemaqkfrennglyqvlrkdkdvhiildklsnvtg
    yafyqpasiedkwikkvnkpaivmthrqkdtlivsavtpdlnmtrqkaatpvtinvtingkwqsadkns
    evkyqvsgdnteltftsyfgipqeiklsplpgrkkrrqrrrppqe
    SEQ ID NO. 47
    Nucleotide sequence for chondroitinase ABCI-nΔ20
                                                        gc acaaaataac
      61 ccattagcag acttctcatc agataaaaac tcaatactaa cgttatctga taaacgtagc
     121 attatgggaa accaatctct tttatggaaa tggaaaggtg gtagtagctt tactttacat
     181 aaaaaactga ttgtccccac cgataaagaa gcatctaaag catggggacg ctcatccacc
     241 cccgttttct cattttggct ttacaatgaa aaaccgattg atggttatct tactatcgat
     301 ttcggagaaa aactcatttc aaccagtgag gctcaggcag gctttaaagt aaaattagat
     361 ttcactggct ggcgtactgt gggagtctct ttaaataacg atcttgaaaa tcgagagatg
     421 accttaaatg caaccaatac ctcctctgat ggtactcaag acagcattgg gcgttcttta
     481 ggtgctaaag tcgatagtat tcgttttaaa gcgccttcta atgtgagtca gggtgaaatc
     541 tatatcgacc gtattatgtt ttctgtcgat gatgctcgct accaatggtc tgattatcaa
     601 gtaaaaactc gcttatcaga acctgaaatt caatttcaca acgtaaagcc acaactacct
     661 gtaacacctg aaaatttagc ggccattgat cttattcgcc aacgtctaat taatgaattt
     721 gtcggaggtg aaaaagagac aaacctcgca ttagaagaga atatcagcaa attaaaaagt
     781 gatttcgatg ctcttaatac tcacacttta gcaaatggtg gaatgccagg cagacatctg
     841 atcactgata aacaaatcat tatttatcaa ccagagaatc ttaactctca agataaacaa
     901 ctatttgata attatgttat tttaggtaat tacacgacat taatgtttaa tattagccgt
     961 gcttatgtgc tggaaaaaga tcccacacaa aaggcgcaac taaagcagat gtacttatta
    1021 atgacaaagc atttattaga tcaaggcttt gttaaaggga gtgctttsgt gacnacccat
    1081 cactggggat acagttctcg ttggtggtat atttccacgt tattaatgtc tgatgcacta
    1141 aaagaagcga acctacaaac tcaagtttat gattcattac tgtggtattc acgtgagttt
    1201 aaaagtagtt ttgatatgaa agtaagtgct gatagctctg atctagatta tttcaatacc
    1261 ttatctcgcc aacatttagc cttattacta ctagagcctg atgatcaaaa gcgtatcaac
    1321 ttagttaata ctttcagcca ttatatcact ggcgcattaa cgcaagtgcc accgggtggt
    1381 aaagatggtt tacgccctga tggtacagca tggcgacatg aaggcaacta tccgggctac
    1441 tctttcccag cctttaaaaa tgcctctcag cttatttatt tattacgcga tacaccattt
    1501 tcagtgggtg aaagtggttg gaatagcctg aaaaaagcga tggtttcagc gtggatctac
    1561 agtaatccag aagttggatt accgcttgca ggaagacacc ctcttaactc accttcgtta
    1621 aaatcagtcg ctcaaggcta ttactggctt gccatgtctg caaaatcatc gcctgataaa
    1681 acacttgcat ctatttatct tgcgattagt gataaaacac aaaatgaatc aactgctatt
    1741 tttggagaaa ctattacacc agcgtcttta cctcaaggtt tctatgcctt taatggcggt
    1801 gcttttggta ttcatcgttg gcaagataaa atggtgacac tgaaagctta taacaccaat
    1861 gtttggtcat ctgaaattta taacaaagat aaccgttatg gccgttacca aagtcatggt
    1921 gtcgctcaaa tagtgagtaa tggctcgcag ctttcacagg gctatcagca agaaggttgg
    1981 gattggaata gaatgccagg ggcaaccact atccaccttc ctcttaaaga cttagacagt
    2041 cctaaacctc ataccttaat gcaacgtgga gagcgtggat ttagcggaac atcatccctt
    2101 gaaggtcaat atggcatgat ggcattcgat cttatttatc ccgccaatct tgagcgtttt
    2161 gatcctaatt tcactgcgaa aaagagtgta ttagccgctg ataatcactt aatttttatt
    2221 ggtagcaata taaatagtag tgataaaaat aaaaatgttg aaacgacctt attccaacat
    2281 gccattactc caacattaaa taccctttgg attaatggac aaaagataga aaacatgcct
    2341 tatcaaacaa cacttcaaca aggtgattgg ttaattgata gcaatggcaa tggttactta
    2401 attactcaag cagaaaaagt aaatgtaagt cgccaacatc aggtttcagc ggaaaataaa
    2461 aatcgccaac cgacagaagg aaactttagc tcggcatgga tcgatcacag cactcgcccc
    2521 aaagatgcca gttatgagta tatggtcttt ttagatgcga cacctgaaaa aatgggagag
    2581 atggcacaaa aattccgtga aaataatggg ttatatcagg ttcttcgtaa ggataaagac
    2641 gttcatatta ttctcgataa actcagcaat gtaacgggat atgcctttta tcagccagca
    2701 tcaattgaag acaaatggat caaaaaggtt aataaacctg caattgtgat gactcatcga
    2761 caaaaagaca ctcttattgt cagtgcagtt acacctgatt taaatatgac tcgccaaaaa
    2821 gcagcaactc ctgtcaccat caatgtcacg attaatggca aatggcaatc tgctgataaa
    2881 aatagtgaag tgaaatatca ggtttctggt gataacactg aactgacgtt tacgagttac
    2941 tttggtattc cacaagaaat caaactctcg ccactccctt ga
    SEQ ID NO. 48:
    II. Nucleotide sequence for ABCI-nΔ60:
    tttactttacataaaaaactgattgtccccaccgataaagaagcatctaaagcatggggacgctcatcc
    acccccgttttctcattttggctttacaatgaaaaaccgattgatggttatcttactatcgatttcgga
    gaaaaactcatttcaaccagtgaggctcaggcaggctttaaagtaaaattagatttcactggctggcgt
    actgtgggagtctctttaaataacgatcttgaaaatcgagagatgaccttaaatgcaaccaatacctcc
    tctgatggtactcaagacagcattgggcgttctttaggtgctaaagtcgatagtattcgttttaaagcg
    ccttctaatgtgagtcagggtgaaatctatatcgaccgtattatgttttctgtcgatgatgctcgctac
    caatggtctgattatcaagtaaaaactcgcttatcagaacctgaaattcaatttcacaacgtaaagcca
    caactacctgtaacacctgaaaatttagcggccattgatcttattcgccaacgtctaattaatgaattt
    gtcggaggtgaaaaagagacaaacctcgcattagaagagaatatcagcaaattaaaaagtgatttcgat
    gctcttaatactcacactttagcaaatggtggaacgcaaggcagacatctgatcactgataaacaaatc
    attatttatcaaccagagaatcttaactctcaagataaacaactatttgataattatgttattttaggt
    aattacacgacattaatgtttaatattagccgtgcttatgtgctggaaaaagatcccacacaaaaggcg
    caactaaagcagatgtacttattaatgacaaagcatttattagatcaaggctttgttaaagggagtgct
    ttagtgacnacccatcactggggatacagttctcgttggtggtatatttccacgttattaatgtctgat
    gcactaaaagaagcgaacctacaaactcaagtttatgattcattactgtggtattcacgtgagtttaaa
    agtagttttgatatgaaagtaagtgctgatagctctgatctagattatttcaataccttatctcgccaa
    catttagccttattactactagagcctgatgatcaaaagcgtatcaacttagttaatactttcagccat
    tatatcactggcgcattaacgcaagtgccaccgggtggtaaagatggtttacgccctgatggtacagca
    tggcgacatgaaggcaactatccgggctactctttcccagcctttaaaaatgcctctcagcttatttat
    ttattacgcgatacaccattttcagtgggtgaaagtggttggaatagcctgaaaaaagcgatggtttca
    gcgtggatctacagtaatccagaagttggattaccgcttgcaggaagacaccctcttaactcaccttcg
    ttaaaatcagtcgctcaaggctattactggcttgccatgtctgcaaaatcatcgcctgataaaacactt
    gcatctatttatcttgcgattagtgataaaacacaaaatgaatcaactgctatttttggagaaactatt
    acaccagcgtctttacctcaaggtttctatgcctttaatggcggtgcttttggtattcatcgttggcaa
    gataaaatggtgacactgaaagcttataacaccaatgtttggtcatctgaaatttataacaaagataac
    cgttatggccgttaccaaagtcatggtgtcgctcaaatagtgagtaatggctcgcagctttcacagggc
    tatcagcaagaaggttgggattggaatagaatgccaggggcaaccactatccaccttcctcttaaagac
    ttagacagtcctaaacctcataccttaatgcaacgtggagagcgtggatttagcggaacatcatccctt
    gaaggtcaatatggcatgatggcattcgatcttatttatcccgccaatcttgagcgttttgatcctaat
    ttcactgcgaaaaagagtgtattagccgctgataatcacttaatttttattggtagcaatataaatagt
    agtgataaaaataaaaatgttgaaacgaccttattccaacatgccattactccaacattaaataccctt
    tggattaatggacaaaagatagaaaacatgccttatcaaacaacacttcaacaaggtgattggttaatt
    gatagcaatggcaatggttacttaattactcaagcagaaaaagtaaatgtaagtcgccaacatcaggtt
    tcagcggaaaataaaaatcgccaaccgacagaaggaaactttagctcggcatggatcgatcacagcact
    cgccccaaagatgccagttatgagtatatggtctttttagatgcgacacctgaaaaaatgggagagatg
    gcacaaaaattccgtgaaaataatgggttatatcaggttcttcgtaaggataaagacgttcatattatt
    ctcgataaactcagcaatgtaacgggatatgccttttatcagccagcatcaattgaagacaaatggatc
    aaaaaggttaataaacctgcaattgtgatgactcatcgacaaaaagacactcttattgtcagtgcagtt
    acacctgatttaaatatgactcgccaaaaagcagcaactcctgtcaccatcaatgtcacgattaatggc
    aaatggcaatctgctgataaaaatagtgaagtgaaatatcaggtttctggtgataacactgaactgacg
    tttacgagttactttggtattccacaagaaatcaaactctcgccactcccttga
    SEQ ID NO. 49:
    Nucleotide sequence for TAT
    ggtcgtaaaaagcgtcgtcaacgtcgtcgtcctcctcaatgc
    (SEQ ID NO. 50)
    Amino acid sequence for a TAT peptide
    grkkrrqrrrppqc

Claims (42)

1. An composition comprising:
an isolated nucleic acid comprising a sequence that encodes for mutant proteoglycan degrading polypeptide.
2. The composition of claim 1 wherein the nucleic acid encodes for a proteoglycan degrading polypeptide that is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: 27), Chondroitinase AC, (SEQ ID NO: 5), and Chondroitinase B, (SEQ ID NO: 12), hyaluronidase 1, (SEQ ID NO: 30), hyaluronidase 2, (SEQ ID NO: 31), hyaluronidase 3, (SEQ ID NO: 32), or hyaluronidase 4, (SEQ ID NO: 33).
3. The composition of claim 1 wherein the nucleic acid encodes for a proteoglycan degrading polypeptide that is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: 27), Chondroitinase AC, (SEQ ID NO: 5), and Chondroitinase B, (SEQ ID NO: 12)
4. The composition of claim 1 wherein the nucleic acid encodes for a proteoglycan degrading polypeptide that is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1).
5. The composition of claim 1 wherein the nucleic acid encodes for a proteoglycan degrading polypeptide that is a mutant of Chondroitinase ABC Type II, (SEQ ID NO: 27).
6. The composition of claim 1 wherein the sequence of said nucleic acid is at least 80%, identical to a nucleic acid sequence encoding for a mutant proteoglycan degrading polypeptide.
7. The composition of claim 1 wherein the nucleic acid encodes for a polypeptide that degrades a proteoglycan in a tissue of the central nervous system.
8. The composition of claim 1 wherein the nucleic acid encodes for a polypeptide that degrades a chondroitin sulfate proteoglycan.
9. An expression vector comprising the nucleic acid of claim 1 operably linked to an expression control sequence.
10. The composition of claim 1 further including cells.
11. An composition comprising:
an isolated nucleic acid consisting of a sequence a sequence that encodes for a biologically active mutant proteoglycan degrading polypeptide.
12. The composition of claim 11 wherein the nucleic acid encodes for a proteoglycan degrading polypeptide that is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: 27), Chondroitinase AC, (SEQ ID NO: 5), and Chondroitinase B, (SEQ ID NO: 12), hyaluronidase 1, (SEQ ID NO: 30), hyaluronidase 2, (SEQ ID NO: 31), hyaluronidase 3, (SEQ ID NO: 32), or hyaluronidase 4, (SEQ ID NO: 33).
13. The composition of claim 11 wherein the nucleic acid encodes for a proteoglycan degrading polypeptide that is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: 27), Chondroitinase AC, (SEQ ID NO: 5), and Chondroitinase B, (SEQ ID NO: 12)
14. The composition of claim 11 wherein the nucleic acid encodes for a proteoglycan degrading polypeptide that is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1)
15. The composition of claim 11 wherein the nucleic acid encodes for a proteoglycan degrading polypeptide that is a mutant of Chondroitinase ABC Type II, (SEQ ID NO: 27).
16. The composition of claim 11 wherein the nucleic acid encodes for a polypeptide that degrades a proteoglycan in a tissue of the central nervous system.
17. The composition of claim 11 wherein the nucleic acid encodes polypeptide that degrades chondroitin sulfate proteoglycan.
18. The composition of claim 11 further including cells.
19. A composition comprising:
a polypeptide comprising the amino acid sequence of a biologically active mutant proteoglycan degrading polypeptide.
20. The composition of claim 19 wherein the proteoglycan degrading polypeptide is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: 27), Chondroitinase AC, (SEQ ID NO: 5), and Chondroitinase B, (SEQ ID NO: 12), hyaluronidase 1, (SEQ ID NO: 30), hyaluronidase 2, (SEQ ID NO: 31), hyaluronidase 3, (SEQ ID NO: 32), or hyaluronidase 4, (SEQ ID NO: 33).
21. The composition of claim 19 wherein the proteoglycan degrading polypeptide is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: 27), Chondroitinase AC, (SEQ ID NO: 5), or Chondroitinase B, SEQ ID NO: 12).
22. The composition of claim 19 wherein the proteoglycan degrading polypeptide is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1).
23. The composition of claim 19 wherein the proteoglycan degrading polypeptide is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 27).
24. The composition of claim 19 proteoglycan degrading polypeptide is (SEQ ID NO: 2), (SEQ ID NO: 3), or (SEQ ID NO: 4).
25. The composition of claim 19 wherein the polypeptide degrades a proteoglycan in a tissue of the central nervous system.
26. The composition of claim 19 wherein the polypeptide degrades a chondroitin sulfate proteoglycan.
27. The composition of claim 19 further including cells.
28. The composition of claim 19 and a pharmaceutically acceptable excipient.
29. The composition of claim 19 further including molecules which block the action of neurite growth inhibitors, molecules which promote neurite adhesion, diagnostic molecules or a combination of these.
30. A method of treating a tissue, the method comprising:
administering a mutant proteoglycan degrading polypeptide composition to the tissue, said tissue including proteoglycan molecules, said composition degrading at least a portion of the proteoglycan in the tissue.
32. The method of claim 30 wherein the tissue is from the CNS.
33. The method of claim 30 wherein the proteoglycan degradation promotes diffusion of molecules into the tissue.
34. The method of claim 30 further comprising the act of identifying tissue from a contusive spinal cord injury.
35. The method of claim 30 wherein the composition promote neurite regeneration.
36. The method of claim 30 wherein the composition further includes molecules which block the action of neurite growth inhibitors, molecules which promote neurite adhesion, diagnostic molecules or a combination of these.
37. The method of claim 30 wherein the plasticity of the of the nervous system is improved.
38. The method of claim 30 wherein the proteoglycan degrading polypeptide is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: 27), Chondroitinase AC, (SEQ ID NO: 5), and Chondroitinase B, (SEQ ID NO: 12), hyaluronidase 1, (SEQ ID NO: 30), hyaluronidase 2, (SEQ ID NO: 31), hyaluronidase 3, (SEQ ID NO: 32), or hyaluronidase 4, (SEQ ID NO: 33).
39. The method of claim 30 wherein the proteoglycan degrading polypeptide is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1), Chondroitinase ABC Type II, (SEQ ID NO: 27), Chondroitinase AC, (SEQ ID NO: 5), or Chondroitinase B, SEQ ID NO: 12).
40. The method of claim 30 wherein the proteoglycan degrading polypeptide is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 1).
41. The method of claim 30 wherein the proteoglycan degrading polypeptide is a mutant of chondroitinase ABC Type I, (SEQ ID NO: 27).
42. The method of claim 30 proteoglycan degrading polypeptide is (SEQ ID NO: 2), (SEQ ID NO: 3), or (SEQ ID NO: 4).
43. A purified chondroitinase mutant polypeptide that degrades a proteoglycan.
US13/112,985 2003-05-16 2011-05-20 Proteoglycan degrading mutants for treatment of cns Abandoned US20110250631A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/112,985 US20110250631A1 (en) 2003-05-16 2011-05-20 Proteoglycan degrading mutants for treatment of cns
US14/188,679 US9528102B2 (en) 2003-05-16 2014-02-24 Proteoglycan degrading mutants for treatment of CNS
US15/355,663 US20170137799A1 (en) 2003-05-16 2016-11-18 Proteoglycan degrading mutants for treatment of cns

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US47123903P 2003-05-16 2003-05-16
US47124003P 2003-05-16 2003-05-16
US47130003P 2003-05-16 2003-05-16
US47437203P 2003-05-29 2003-05-29
US10/848,561 US7429375B2 (en) 2003-05-16 2004-05-17 Proteoglycan degrading mutants for the treatment of CNS
US12/167,573 US7968089B2 (en) 2003-05-16 2008-07-03 Proteoglycan degrading mutants for the treatment of CNS
US13/112,985 US20110250631A1 (en) 2003-05-16 2011-05-20 Proteoglycan degrading mutants for treatment of cns

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/167,573 Continuation US7968089B2 (en) 2003-05-16 2008-07-03 Proteoglycan degrading mutants for the treatment of CNS

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/188,679 Continuation US9528102B2 (en) 2003-05-16 2014-02-24 Proteoglycan degrading mutants for treatment of CNS

Publications (1)

Publication Number Publication Date
US20110250631A1 true US20110250631A1 (en) 2011-10-13

Family

ID=33556641

Family Applications (7)

Application Number Title Priority Date Filing Date
US10/848,564 Expired - Fee Related US8906363B2 (en) 2003-05-16 2004-05-17 Fusion proteins for the treatment of CNS
US10/848,561 Active 2025-02-04 US7429375B2 (en) 2003-05-16 2004-05-17 Proteoglycan degrading mutants for the treatment of CNS
US12/167,573 Expired - Fee Related US7968089B2 (en) 2003-05-16 2008-07-03 Proteoglycan degrading mutants for the treatment of CNS
US13/112,985 Abandoned US20110250631A1 (en) 2003-05-16 2011-05-20 Proteoglycan degrading mutants for treatment of cns
US14/188,679 Expired - Lifetime US9528102B2 (en) 2003-05-16 2014-02-24 Proteoglycan degrading mutants for treatment of CNS
US14/535,113 Abandoned US20180073007A9 (en) 2003-05-16 2014-11-06 Fusion proteins for the treatment of cns
US15/355,663 Abandoned US20170137799A1 (en) 2003-05-16 2016-11-18 Proteoglycan degrading mutants for treatment of cns

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/848,564 Expired - Fee Related US8906363B2 (en) 2003-05-16 2004-05-17 Fusion proteins for the treatment of CNS
US10/848,561 Active 2025-02-04 US7429375B2 (en) 2003-05-16 2004-05-17 Proteoglycan degrading mutants for the treatment of CNS
US12/167,573 Expired - Fee Related US7968089B2 (en) 2003-05-16 2008-07-03 Proteoglycan degrading mutants for the treatment of CNS

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/188,679 Expired - Lifetime US9528102B2 (en) 2003-05-16 2014-02-24 Proteoglycan degrading mutants for treatment of CNS
US14/535,113 Abandoned US20180073007A9 (en) 2003-05-16 2014-11-06 Fusion proteins for the treatment of cns
US15/355,663 Abandoned US20170137799A1 (en) 2003-05-16 2016-11-18 Proteoglycan degrading mutants for treatment of cns

Country Status (8)

Country Link
US (7) US8906363B2 (en)
EP (4) EP2460881B1 (en)
JP (9) JP2007532094A (en)
AU (2) AU2004247026B2 (en)
CA (1) CA2525784C (en)
ES (4) ES2887949T3 (en)
MX (2) MX348062B (en)
WO (1) WO2004110360A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070274979A1 (en) * 2002-05-04 2007-11-29 Gruskin Elliott A Compositions and Methods for Promoting Neuronal Outgrowth
US20080025963A1 (en) * 2003-05-16 2008-01-31 Gruskin Elliott A Compositions and methods for the treatment of CNS injuries
US20100239557A1 (en) * 2005-09-26 2010-09-23 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase abci mutants
US20110014158A1 (en) * 2006-10-10 2011-01-20 Caggiano Anthony O Compositions and methods of using chondroitinase abci mutants
US8679481B2 (en) 2003-05-16 2014-03-25 Acorda Therapeutics, Inc. Methods of reducing extravasation of inflammatory cells
US9528102B2 (en) 2003-05-16 2016-12-27 Acorda Therapeutics, Inc. Proteoglycan degrading mutants for treatment of CNS

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312051B1 (en) 2001-06-01 2017-07-12 Mitsubishi Paper Mills Limited Total heat exchanging element paper
US6962699B2 (en) 2002-06-03 2005-11-08 Massachusetts Institute Of Technology Rationally designed polysaccharide lyases derived from chondroitinase B
US20060153827A1 (en) * 2002-08-15 2006-07-13 Gruskin Elliott A Chimeric protein
CA2517145C (en) 2003-03-05 2017-08-01 Halozyme, Inc. Soluble hyaluronidase glycoprotein (shasegp), process for preparing the same, uses and pharmaceutical compositions comprising thereof
EP1737954A2 (en) * 2004-03-10 2007-01-03 The Massachusetts Institute Of Technology Recombinant chondroitinase abc i and uses thereof
WO2005112986A2 (en) * 2004-05-18 2005-12-01 Acorda Therapeutics, Inc. Purifying chondroitinase and stable formulations thereof
CN101489582B (en) 2006-05-19 2015-11-25 爱知县 Ameliorating agent for brain damage
ES2441961T3 (en) * 2007-02-15 2014-02-07 Allergan, Inc. Botulinum toxin compositions and methods
WO2009005033A1 (en) 2007-06-29 2009-01-08 National University Corporation Nagoya University Agent for improving dysfunction due to neuropathy and rho kinase activation inhibitor
US20090286289A1 (en) * 2008-03-10 2009-11-19 Pang Danny Z Production of Hyaluronate Unsaturated Disaccharides and its Application
EP2153844A1 (en) * 2008-08-14 2010-02-17 HAUBECK, Hans-Dieter Human hyaluronidases for axonal regrowth
US20110311521A1 (en) 2009-03-06 2011-12-22 Pico Caroni Novel therapy for anxiety
US20110142949A1 (en) * 2009-10-16 2011-06-16 The Research Foundation Of State University Of New York Chondroitinase treatment method for demyelination-related conditions and diseases
WO2011133862A1 (en) * 2010-04-23 2011-10-27 Oregon Health And Science University Methods and compositions for promoting myelination
CA2845198A1 (en) * 2010-08-13 2012-02-16 Georgetown University Ggf2 and methods of use
WO2012034049A2 (en) 2010-09-10 2012-03-15 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Implantable medical devices having double walled microspheres
WO2012136768A1 (en) 2011-04-08 2012-10-11 Hans-Dieter Haubeck Use of mutants of human hyaluronidase ph-20 with increased chondroitinase activity for axonal regrowth
WO2013102144A2 (en) 2011-12-30 2013-07-04 Halozyme, Inc. Ph20 polypeptede variants, formulations and uses thereof
US20160244740A1 (en) * 2013-09-27 2016-08-25 Ohio State Innovation Foundation Mutant chondroitinase abc i compositions and methods of their use
CA3039364A1 (en) 2016-10-04 2018-04-12 University Of Florida Research Foundation, Inc. Targeted effector proteins and uses thereof
EP3645557A4 (en) 2017-06-28 2021-07-14 The Cleveland Clinic Foundation Treatment of nervous system injury and neurodegenerative disorders and related conditions
US11407797B2 (en) 2017-10-11 2022-08-09 University Of Florida Research Foundation, Incorporated Modified gal-1 proteins and uses thereof
WO2019162942A1 (en) * 2018-02-20 2019-08-29 Carmel Haifa University Economic Corporation Ltd. Compositions and methods for delivery and expression of small inhibitory peptides and use thereof
JP2020028277A (en) * 2018-08-24 2020-02-27 国立大学法人弘前大学 Method for detecting glycosaminoglycan degrading enzyme, or inhibitory substance of the same
US20220106580A1 (en) * 2018-10-26 2022-04-07 University Of Florida Research Foundation, Incorporated Targeted chondroitinase abc fusion proteins and complexes thereof
EP4093387A4 (en) * 2020-01-24 2024-04-24 Dompe Farm Spa Growth factor formulation for condition associated with otic event
CN111593040B (en) * 2020-06-20 2022-08-30 山东大学 Dermatan sulfate lyase and application thereof

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338157B1 (en) * 1992-09-09 1999-11-02 Sims Deltec Inc Systems and methods for communicating with ambulat
US5083710A (en) * 1988-09-06 1992-01-28 Oxy-Dry Corporation Powder sprayer with automatic powder supply system
US5153827A (en) * 1989-01-30 1992-10-06 Omni-Flow, Inc. An infusion management and pumping system having an alarm handling system
US5320725A (en) * 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5270194A (en) 1989-08-31 1993-12-14 Instrumentation Laboratory Spa Stabilized glucose oxidase from Aspergillus Niger
CA2071898A1 (en) 1989-10-27 1991-04-28 Diane M. Snow Inhibition of cell growth by keratan sulfate, chondroitin sulfate, dermatan sulfate and other glycans
US5804604A (en) 1989-12-21 1998-09-08 Biogen, Inc. Tat-derived transport polypeptides and fusion proteins
US5670617A (en) 1989-12-21 1997-09-23 Biogen Inc Nucleic acid conjugates of tat-derived transport polypeptides
US5108819A (en) * 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5679650A (en) 1993-11-24 1997-10-21 Fukunaga; Atsuo F. Pharmaceutical compositions including mixtures of an adenosine compound and a catecholamine
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5322063A (en) * 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5262522A (en) 1991-11-22 1993-11-16 Immunex Corporation Receptor for oncostatin M and leukemia inhibitory factor
US5284140A (en) * 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
US6087323A (en) * 1992-04-03 2000-07-11 Cambridge Neuroscience, Inc. Use of neuregulins as modulators of cellular communication
JP3980657B2 (en) 1992-06-26 2007-09-26 生化学工業株式会社 Chondroitinase ABC, process for producing the same and pharmaceutical composition
US5496718A (en) 1992-06-26 1996-03-05 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Chondroitinase ABC isolated from proteus vulgaris ATCC 6896
US7008783B1 (en) * 1992-09-22 2006-03-07 Maruha Corporation Gene encoding chondroitinase ABC and uses therefor
US5897493A (en) * 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US5913310A (en) * 1994-05-23 1999-06-22 Health Hero Network, Inc. Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
US5832448A (en) * 1996-10-16 1998-11-03 Health Hero Network Multiple patient monitoring system for proactive health management
US5307263A (en) * 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US5879163A (en) * 1996-06-24 1999-03-09 Health Hero Network, Inc. On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
US5899855A (en) * 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
ZA938555B (en) * 1992-11-23 1994-08-02 Lilly Co Eli Technique to improve the performance of electrochemical sensors
US5299571A (en) * 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
JPH09500011A (en) * 1993-04-23 1997-01-07 アメリカン サイアナミド カンパニー P. Cloning and expression of chondroitinase I and II genes from Bulgaris
US5578480A (en) 1993-04-23 1996-11-26 American Cyanamid Company Methods for the isolation and purification of the recombinantly expressed chondroitinase I and II enzymes from P. vulgaris
US6248562B1 (en) 1993-11-01 2001-06-19 Research Foundation State University Of New York Chimeric proteins comprising borrelia polypeptides and uses therefor
AU1176595A (en) 1993-11-12 1995-05-29 International Technology Management Associates, Ltd. Methods of repairing connective tissues
US5497772A (en) * 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5660176A (en) * 1993-12-29 1997-08-26 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US5594638A (en) * 1993-12-29 1997-01-14 First Opinion Corporation Computerized medical diagnostic system including re-enter function and sensitivity factors
FR2716286A1 (en) * 1994-02-16 1995-08-18 Debiotech Sa Installation of remote monitoring of controllable equipment.
US5630710A (en) * 1994-03-09 1997-05-20 Baxter International Inc. Ambulatory infusion pump
US5536249A (en) * 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5498536A (en) 1994-04-22 1996-03-12 American Cyanamid Company Chondroitinase II from Proteus vulgaris
US5482473A (en) * 1994-05-09 1996-01-09 Minimed Inc. Flex circuit connector
US5704366A (en) * 1994-05-23 1998-01-06 Enact Health Management Systems System for monitoring and reporting medical measurements
DE69528128T2 (en) 1994-06-10 2003-03-13 United States Surgical Corp Recombinant chimeric proteins and methods of using them
US5997863A (en) 1994-07-08 1999-12-07 Ibex Technologies R And D, Inc. Attenuation of wound healing processes
US6093563A (en) 1994-07-08 2000-07-25 Ibex Technologies R And D, Inc. Chondroitin lyase enzymes
US5505709A (en) * 1994-09-15 1996-04-09 Minimed, Inc., A Delaware Corporation Mated infusion pump and syringe
US5573506A (en) * 1994-11-25 1996-11-12 Block Medical, Inc. Remotely programmable infusion system
US6326166B1 (en) 1995-12-29 2001-12-04 Massachusetts Institute Of Technology Chimeric DNA-binding proteins
CA2212006A1 (en) 1995-02-03 1996-08-08 G.D. Searle & Co. Novel c-mpl ligands
US5792743A (en) 1995-04-19 1998-08-11 Acorda Therapeutics Method for promoting neural growth comprising administering a soluble neural cell adhesion molecule
US5609060A (en) * 1995-04-28 1997-03-11 Dentsleeve Pty Limited Multiple channel perfused manometry apparatus and a method of operation of such a device
US5772635A (en) * 1995-05-15 1998-06-30 Alaris Medical Systems, Inc. Automated infusion system with dose rate calculator
US6313265B1 (en) 1995-07-24 2001-11-06 The Scripps Research Institute Neurite outgrowth-promoting polypeptides containing fibronectin type III repeats and methods of use
US5750926A (en) * 1995-08-16 1998-05-12 Alfred E. Mann Foundation For Scientific Research Hermetically sealed electrical feedthrough for use with implantable electronic devices
US5754111A (en) * 1995-09-20 1998-05-19 Garcia; Alfredo Medical alerting system
US6689265B2 (en) * 1995-10-11 2004-02-10 Therasense, Inc. Electrochemical analyte sensors using thermostable soybean peroxidase
US5869301A (en) 1995-11-02 1999-02-09 Lockhead Martin Energy Research Corporation Method for the production of dicarboxylic acids
US5861018A (en) * 1996-05-28 1999-01-19 Telecom Medical Inc. Ultrasound transdermal communication system and method
US5885245A (en) * 1996-08-02 1999-03-23 Sabratek Corporation Medical apparatus with remote virtual input device
JP3702450B2 (en) 1996-12-18 2005-10-05 ニプロ株式会社 Reagent for lactate dehydrogenase measurement
US6043437A (en) * 1996-12-20 2000-03-28 Alfred E. Mann Foundation Alumina insulation for coating implantable components and other microminiature devices
US6032119A (en) * 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US5960085A (en) * 1997-04-14 1999-09-28 De La Huerga; Carlos Security badge for automated access control and secure data gathering
CA2285940A1 (en) 1997-04-11 1998-10-22 K. Ramakrishnan Bhaskar Use of chondroitinase in the manufacture of a medicament in the treatment and prevention of mucoid secretions
DE69829605T2 (en) 1997-05-02 2006-02-09 Seikagaku Corp. Chondroitinase-containing compositions
JP4172842B2 (en) 1997-05-02 2008-10-29 生化学工業株式会社 Chondroitinase composition
US6558351B1 (en) * 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US6063378A (en) 1997-08-22 2000-05-16 Seikagaku Corporation Therapeutic agent for herniated intervertebral disc
US20010006630A1 (en) 1997-09-02 2001-07-05 Oron Yacoby-Zeevi Introducing a biological material into a patient
US6153187A (en) 1997-09-02 2000-11-28 Insight Strategy & Marketing Ltd. Use of glycosaminoglycans degrading enzymes for management of airway associated diseases
US6071391A (en) * 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US5917346A (en) * 1997-09-12 1999-06-29 Alfred E. Mann Foundation Low power current to frequency converter circuit for use in implantable sensors
AU9787498A (en) * 1997-10-02 1999-04-27 Micromed Technology, Inc. Implantable pump system
DK1887014T3 (en) * 1997-10-17 2010-08-02 Genentech Inc Human Toll Homologs
US6081736A (en) * 1997-10-20 2000-06-27 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems adapted for long term use
US6579690B1 (en) * 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
WO1999046368A2 (en) 1998-03-13 1999-09-16 Biomarin Pharmaceuticals Carbohydrate-modifying enzymes for burn and wound debridement and methods for treatment
JP2002505873A (en) * 1998-03-13 2002-02-26 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド Vascular endothelial growth factor 2
EP1061972A1 (en) * 1998-03-16 2000-12-27 Medtronic, Inc. Hemostatic system and components for extracorporeal circuit
US5904708A (en) * 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
US6171575B1 (en) 1998-04-06 2001-01-09 Shinichi Okuyama Method of radioisotopic assessment of the integrity and function of the nose-brain barrier
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6554798B1 (en) * 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
WO2000012726A2 (en) 1998-08-27 2000-03-09 Massachusetts Institute Of Technology Rationally designed heparinases derived from heparinase i and ii
ES2478257T3 (en) 1998-10-06 2014-07-21 Stryker Corporation Composition comprising an osteogenic protein selected from the group consisting of OP-2, OP-3, BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, BMP-9, BMP-10, BMP- 11, BMP-15, BMP-3B, DPP, Vg-1, Vgr-1, protein 60A, GDF-1, GDF-2, GDF-3, GDF-6, GDF-7, GDF-8, GDF-9 , GDF-10, and GDF-11 for use in the repair of non-articular cartilage defects
US6560741B1 (en) * 1999-02-24 2003-05-06 Datastrip (Iom) Limited Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same
US6360888B1 (en) * 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system
EP1157275A4 (en) 1999-02-28 2003-01-15 Univ Washington Novel transduction molecules and methods for using same
AU3883800A (en) * 1999-04-02 2000-10-23 Eli Lilly And Company Hob-bp2h compositions, methods and uses thereof
SE9901428D0 (en) 1999-04-21 1999-04-21 Karolinska Innovations Ab Amphibodies
WO2000074080A1 (en) * 1999-06-02 2000-12-07 Composite Materials, L.L.C. An article shielded against emi and rfi
UA74146C2 (en) 1999-06-08 2005-11-15 Редженерон Фармасьютікалс, Інк. Modified chimeric polypeptide with improved pharmacokinetics
US6654625B1 (en) * 1999-06-18 2003-11-25 Therasense, Inc. Mass transport limited in vivo analyte sensor
US6804558B2 (en) * 1999-07-07 2004-10-12 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US6553263B1 (en) * 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6610820B1 (en) * 1999-10-12 2003-08-26 University Of Lausanne Cell-permeable peptide inhibitors of the JNK signal transduction pathway
EP1222206A1 (en) * 1999-10-22 2002-07-17 Wyeth Pablo, a polypeptide that interacts with bcl-xl, and uses related thereto
JP2004504262A (en) 1999-12-02 2004-02-12 アイベックス テクノロジーズ, インコーポレイテッド Attenuated fibroblast proliferation
EP1243595B1 (en) * 1999-12-27 2006-09-06 Shionogi & Co., Ltd. Bh4-fused polypeptides
CZ20022438A3 (en) * 2000-01-12 2002-10-16 Yale University Nucleic acid encoding Nogo receptor, isolated polypeptide, and pharmaceutical preparation for stimulating growth of axons
US20030060765A1 (en) * 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US6895263B2 (en) * 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
ATE502567T1 (en) * 2000-05-19 2011-04-15 Welch Allyn Protocol Inc DEVICE FOR MONITORING PATIENTS
WO2002076503A1 (en) * 2000-06-20 2002-10-03 Mayo Foundation For Medical Education And Research Treatment of central nervous system diseases by antibodies against glatiramer acetate
JP2004504064A (en) 2000-06-22 2004-02-12 アムジエン・インコーポレーテツド IL-17 molecule and its use
US20020055857A1 (en) * 2000-10-31 2002-05-09 Mault James R. Method of assisting individuals in lifestyle control programs conducive to good health
EP1343528A2 (en) * 2000-11-02 2003-09-17 Research Foundation of City University of New York Methods for stimulating nervous system regeneration and repair by inhibition phosphodiesterase type 4
JP2004515534A (en) * 2000-12-12 2004-05-27 エンカム ファーマシューティカルズ アクティーゼルスカブ NCAM binding compounds and NCAM ligand binding compounds that promote survival
US20020142299A1 (en) 2001-01-09 2002-10-03 Davidson Beverly L. PTD-modified proteins
GB0103174D0 (en) * 2001-02-08 2001-03-28 Smithkline Beecham Plc Novel method of treatment
EP2319936A3 (en) * 2001-02-15 2012-10-17 The University of Chicago Yeast screens for agents affecting protein folding
EP1373905A2 (en) * 2001-04-06 2004-01-02 BioVisioN AG Method for detecting chronic dementia diseases, and corresponding peptides and detection reagents
CA2367636C (en) 2001-04-12 2010-05-04 Lisa Mckerracher Fusion proteins
US6748250B1 (en) * 2001-04-27 2004-06-08 Medoptix, Inc. Method and system of monitoring a patient
US6676816B2 (en) * 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
WO2003000901A2 (en) 2001-06-26 2003-01-03 Decode Genetics Ehf. Nucleic acids encoding protein kinases
IL160188A0 (en) 2001-08-13 2004-07-25 Univ Florida Materials and methods to promote repair of nerve tissue
US7025760B2 (en) * 2001-09-07 2006-04-11 Medtronic Minimed, Inc. Method and system for non-vascular sensor implantation
US20030049258A1 (en) * 2001-09-11 2003-03-13 Martin Ungerer Method of increasing the contractility of a heart, a heart muscle or cells of a heart muscle
WO2003031578A2 (en) 2001-10-09 2003-04-17 Immunex Corporation Mammalian c-type lectins
US6728576B2 (en) * 2001-10-31 2004-04-27 Medtronic, Inc. Non-contact EKG
GB0205022D0 (en) 2002-03-04 2002-04-17 Univ Cambridge Tech Materials and methods for the treatment of cns damage
WO2003088830A1 (en) * 2002-04-16 2003-10-30 Carematix, Inc. Method and apparatus for remotely monitoring the condition of a patient
WO2004108069A2 (en) 2002-05-04 2004-12-16 Acorda Therapeutics, Inc. Compositions and methods for promoting neuronal outgrowth
EP1521523A4 (en) 2002-05-20 2006-04-19 Univ Texas Methods and compositions for delivering enzymes and nucleic acid molecules to brain, bone, and other tissues
US6962699B2 (en) 2002-06-03 2005-11-08 Massachusetts Institute Of Technology Rationally designed polysaccharide lyases derived from chondroitinase B
US7163545B2 (en) 2002-07-29 2007-01-16 Mayo Foundation For Medical Education And Research Spinal cord surgical implant
US7074581B2 (en) 2002-08-09 2006-07-11 Sysmex Corporation Reagent for assaying lipid
JP4527950B2 (en) 2002-08-09 2010-08-18 シスメックス株式会社 Lipid measuring reagent
DK1534736T3 (en) * 2002-08-10 2010-09-20 Biogen Idec Inc Nogo receptor antagonists
US20060153827A1 (en) * 2002-08-15 2006-07-13 Gruskin Elliott A Chimeric protein
JP2004113166A (en) 2002-09-27 2004-04-15 Mitsui Chemicals Inc Method for stabilizing haloperoxidase activity
US7162289B2 (en) * 2002-09-27 2007-01-09 Medtronic Minimed, Inc. Method and apparatus for enhancing the integrity of an implantable sensor device
US20040061232A1 (en) * 2002-09-27 2004-04-01 Medtronic Minimed, Inc. Multilayer substrate
US7138330B2 (en) * 2002-09-27 2006-11-21 Medtronic Minimed, Inc. High reliability multilayer circuit substrates and methods for their formation
US7736309B2 (en) * 2002-09-27 2010-06-15 Medtronic Minimed, Inc. Implantable sensor method and system
US20040074785A1 (en) * 2002-10-18 2004-04-22 Holker James D. Analyte sensors and methods for making them
US20050038680A1 (en) * 2002-12-19 2005-02-17 Mcmahon Kevin Lee System and method for glucose monitoring
EP1614040A4 (en) * 2003-04-08 2009-03-11 Medic4All Ag A portable wireless gateway for remote medical examination
US7959914B2 (en) 2003-05-16 2011-06-14 Acorda Therapeutics, Inc. Methods of reducing extravasation of inflammatory cells
EP2460881B1 (en) * 2003-05-16 2017-05-03 Acorda Therapeutics, Inc. Proteoglycan degrading mutants for treatment of CNS
ATE524067T1 (en) 2003-05-16 2011-09-15 Acorda Therapeutics Inc COMPOSITIONS AND METHODS FOR TREATING CNS DAMAGE
MXPA05012306A (en) 2003-05-16 2006-04-18 Acorda Therapeutics Inc Fusion proteins for the treatment of cns.
US20050038331A1 (en) * 2003-08-14 2005-02-17 Grayson Silaski Insertable sensor assembly having a coupled inductor communicative system
EP1737954A2 (en) 2004-03-10 2007-01-03 The Massachusetts Institute Of Technology Recombinant chondroitinase abc i and uses thereof
WO2005112986A2 (en) 2004-05-18 2005-12-01 Acorda Therapeutics, Inc. Purifying chondroitinase and stable formulations thereof
JP5108522B2 (en) * 2004-11-12 2012-12-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Message integrity for secure communication of wireless medical devices
US20090081951A1 (en) * 2004-11-16 2009-03-26 Koninklijke Philips Electronics N.V. Time synchronization in wireless ad hoc networks of medical devices and sensors
JP5189985B2 (en) 2005-09-26 2013-04-24 アコーダ セラピューティクス、インク. Composition using chondroitinase ABCI mutant and method of using the same
ES2473610T3 (en) 2006-10-10 2014-07-07 Acorda Therapeutics, Inc. Compositions and methods of using ABCI chondroitinase mutants

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468671B2 (en) 2002-05-04 2016-10-18 Acorda Therapeutics, Inc. Compositions and methods for promoting neuronal outgrowth
US9956273B2 (en) 2002-05-04 2018-05-01 Acorda Therapeutics, Inc. Compositions and methods for promoting neuronal outgrowth
US8183350B2 (en) 2002-05-04 2012-05-22 Acorda Therapeutics, Inc. Compositions and methods for promoting neuronal outgrowth
US20070274979A1 (en) * 2002-05-04 2007-11-29 Gruskin Elliott A Compositions and Methods for Promoting Neuronal Outgrowth
US8785606B2 (en) 2002-05-04 2014-07-22 Acorda Therapeutics, Inc. Compositions and methods for promoting neuronal outgrowth
US20080025963A1 (en) * 2003-05-16 2008-01-31 Gruskin Elliott A Compositions and methods for the treatment of CNS injuries
US11141467B2 (en) 2003-05-16 2021-10-12 Acorda Therapeutics, Inc. Methods of reducing extravasation of inflammatory cells
US9839679B2 (en) 2003-05-16 2017-12-12 Acorda Therapeutics, Inc. Methods of reducing extravasation of inflammatory cells
US8679481B2 (en) 2003-05-16 2014-03-25 Acorda Therapeutics, Inc. Methods of reducing extravasation of inflammatory cells
US20140248253A1 (en) * 2003-05-16 2014-09-04 Acorda Therapeutics, Inc. Compositions and methods for the treatment of cns injuries
US9528102B2 (en) 2003-05-16 2016-12-27 Acorda Therapeutics, Inc. Proteoglycan degrading mutants for treatment of CNS
US9834764B2 (en) 2005-09-26 2017-12-05 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase ABCI mutants
US9402886B2 (en) 2005-09-26 2016-08-02 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase ABCI mutants
US8236302B2 (en) 2005-09-26 2012-08-07 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase ABCI mutants
US10323240B2 (en) 2005-09-26 2019-06-18 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase ABCI mutants
US20100239557A1 (en) * 2005-09-26 2010-09-23 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase abci mutants
US9410141B2 (en) 2006-10-10 2016-08-09 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase ABCI mutants
US9102930B2 (en) 2006-10-10 2015-08-11 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase ABCI mutants
US8404232B2 (en) 2006-10-10 2013-03-26 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase ABCI mutants
US20110014158A1 (en) * 2006-10-10 2011-01-20 Caggiano Anthony O Compositions and methods of using chondroitinase abci mutants
US9987340B2 (en) 2006-10-10 2018-06-05 Acorda Therapeutics, Inc. Compositions and methods of using chondroitinase ABCI mutants

Also Published As

Publication number Publication date
EP1631237A4 (en) 2009-11-25
US20090028829A1 (en) 2009-01-29
JP2010187685A (en) 2010-09-02
US20150299687A1 (en) 2015-10-22
EP1631237A2 (en) 2006-03-08
EP3514238A1 (en) 2019-07-24
AU2009251124B2 (en) 2012-12-06
AU2004247026B2 (en) 2009-09-24
EP2460881A1 (en) 2012-06-06
CA2525784C (en) 2019-04-09
JP6867167B2 (en) 2021-04-28
JP2017105783A (en) 2017-06-15
JP2007532094A (en) 2007-11-15
AU2004247026A1 (en) 2004-12-23
US7429375B2 (en) 2008-09-30
JP2013223500A (en) 2013-10-31
EP1631237B1 (en) 2016-11-30
US20060233782A1 (en) 2006-10-19
EP3211084B1 (en) 2019-03-27
JP6100142B2 (en) 2017-03-22
JP5452820B2 (en) 2014-03-26
EP3514238B1 (en) 2021-05-05
JP2014064580A (en) 2014-04-17
JP5705921B2 (en) 2015-04-22
ES2616749T3 (en) 2017-06-14
MXPA05012307A (en) 2006-07-03
ES2887949T3 (en) 2021-12-29
WO2004110360A9 (en) 2005-03-10
US9528102B2 (en) 2016-12-27
EP2460881B1 (en) 2017-05-03
US20180073007A9 (en) 2018-03-15
ES2636653T3 (en) 2017-10-06
JP5341808B2 (en) 2013-11-13
WO2004110360A3 (en) 2009-04-09
EP3211084A1 (en) 2017-08-30
US7968089B2 (en) 2011-06-28
US8906363B2 (en) 2014-12-09
MX348062B (en) 2017-05-26
CA2525784A1 (en) 2004-12-23
ES2727480T3 (en) 2019-10-16
JP2014236729A (en) 2014-12-18
US20170137799A1 (en) 2017-05-18
JP2019030295A (en) 2019-02-28
JP2011103888A (en) 2011-06-02
US20090041728A1 (en) 2009-02-12
US20140322192A1 (en) 2014-10-30
JP2021046406A (en) 2021-03-25
JP6505379B2 (en) 2019-04-24
AU2009251124A1 (en) 2010-01-21
WO2004110360A2 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
US20110250631A1 (en) Proteoglycan degrading mutants for treatment of cns
EP2354155A2 (en) Fusion Proteins for Treatment of CNS
AU2016204464B2 (en) Proteoglycan degrading mutants for treatment of cns
AU2013201097B2 (en) Proteoglycan degrading mutants for treatment of cns
CA3025063A1 (en) Proteoglycan degrading mutants for treatment of cns

Legal Events

Date Code Title Description
AS Assignment

Owner name: ACORDA THERAPEUTICS, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRUSKIN, ELLIOTT A.;CAGGIANO, ANTHONY O.;ROY, GARGI;AND OTHERS;SIGNING DATES FROM 20040611 TO 20040614;REEL/FRAME:026318/0803

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION