US20110117841A1 - Interacting with devices based on physical device-to-device contact - Google Patents

Interacting with devices based on physical device-to-device contact Download PDF

Info

Publication number
US20110117841A1
US20110117841A1 US12/747,845 US74784508A US2011117841A1 US 20110117841 A1 US20110117841 A1 US 20110117841A1 US 74784508 A US74784508 A US 74784508A US 2011117841 A1 US2011117841 A1 US 2011117841A1
Authority
US
United States
Prior art keywords
taps
parameters
user input
valid user
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/747,845
Inventor
Ola Karl THORN
Barteld Trip
Ernst Hupkes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Mobile Communications AB
Original Assignee
Sony Ericsson Mobile Communications AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Ericsson Mobile Communications AB filed Critical Sony Ericsson Mobile Communications AB
Priority to US12/747,845 priority Critical patent/US20110117841A1/en
Assigned to SONY ERICSSON MOBILE COMMUNICATIONS AB reassignment SONY ERICSSON MOBILE COMMUNICATIONS AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THORN, OLA KARL, HUPKES, ERNST, TRIP, BARTELD
Publication of US20110117841A1 publication Critical patent/US20110117841A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • H04W4/21Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel for social networking applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1694Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1698Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a sending/receiving arrangement to establish a cordless communication link, e.g. radio or infrared link, integrated cellular phone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72412User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories using two-way short-range wireless interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/7243User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality with interactive means for internal management of messages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1636Sensing arrangement for detection of a tap gesture on the housing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/64Details of telephonic subscriber devices file transfer between terminals

Definitions

  • keyboard or a keypad to provide part of a user interface.
  • using the keyboard or keypad is often cumbersome and/or inconvenient.
  • other devices that use touch screens to emulate a keyboard or a keypad may not provide significant improvements over devices that use a keyboard or a keypad.
  • a method may include receiving a signal from a sensor coupled to a first device, determining whether the first device is tapped against a second device based on the signal, sending a message to the second device when the first device is tapped against the second device, determining if the taps are valid user input based on a response from the second device, and performing an application specific action when the taps are valid user input.
  • receiving a signal may include receiving the signal from an accelerometer.
  • determining whether the first device is tapped against the second device may include determining if samples of the signal match a predetermined acceleration pattern.
  • sending a message may include obtaining parameters regarding taps that are detected based on the signal, and sending the parameters to the second device.
  • obtaining parameters may include obtaining locations of the taps on a surface of the first device, determining time between consecutive taps, determining time of occurrence of at least one of the taps.
  • determining if the taps are valid user input may include receiving the response, the response indicating if the sent parameters match parameters that are obtained from taps on the second device.
  • determining if the taps are valid user input may include receiving parameters about taps on the second device in response to the message, determining if the received parameters match parameters that are extracted from the signal when the first device is tapped against the second device, and determining whether the taps are valid by comparing the received parameters to the extracted parameters.
  • performing an application specific action may include coordinating at least one of an audio task or a-visual task with the second device.
  • performing an application specific action may include one of sending an audio signal to the second device for output by a speaker, or sending a video signal to the second device for display.
  • performing an application specific action may include at least one of receiving personal contact information from the second device, conducting a commercial transaction with the second device, or receiving a video clip, audio clip, image, or text from the second device.
  • performing an application specific action may include at least one of terminating a communication session that has been established based on taps between the first device and the second device, or causing the first device to terminate a communication session that has been established prior to taps between the first device and a third device.
  • a device may include a sensor and a processor.
  • the processor may be configured to receive a signal from the sensor, detect taps based on the signal, extract parameters that are associated with the detected taps, send a request to a second device to verify if the extracted parameters match parameters that are obtained from taps by the second device, determine if the detected taps are valid user input based on a response from the second device, and interact with the second device over a communication channel when the taps are valid user input.
  • the parameters may include at least one of time between consecutive taps, or time of occurrence of a tap.
  • the sensor may include at least one of an accelerometer or an electric field sensor.
  • the second device may include at least one of a cell phone with a display or a speaker, a headset, or a laptop.
  • the device may include a cell phone.
  • the communication channel may include a Bluetooth communication channel.
  • the request may include the extracted parameters and the response includes information that indicates whether the extracted parameters match the parameters that are obtained from taps by the second device.
  • the response may include parameters that are obtained from taps by the second device.
  • the processor may be further configured to cause the second device to terminate a communication session that has been established prior to detected taps between the second device and a third device, or terminate a communication session that has been established based on detected taps between the first device and the second device.
  • a method may include receiving a signal from a sensor coupled to a first device, determining whether the first device is tapped against a second device based on the signal, receiving a message from the second device when the first device is tapped against the second device, determining whether the taps are valid user input based on the message from the second device, and terminating a communication link between the second device and the first device when the taps are valid user input.
  • the method may further include determining whether the first device is tapped against a third device, receiving a message from the third device when the first device is tapped against the third device, determining whether the taps are valid user input based on the message from the third device, and establishing a communication link between the third device and the first device when the taps are valid user input.
  • FIGS. 1A through 1C illustrate a use of exemplary devices in which concepts described herein may be implemented
  • FIG. 2 shows an exemplary network in which concepts described herein may be implemented
  • FIGS. 3A and 3B are front and rear views of an exemplary device of FIG. 2 ;
  • FIG. 4 is a block diagram of the exemplary device of FIGS. 3A and 3B ;
  • FIG. 5 is a functional block diagram of the exemplary device of FIGS. 3A and 3B ;
  • FIG. 6 is a flow diagram of an exemplary process for establishing communication between and interacting with devices based on device-to-device contacts
  • FIG. 7 illustrates an output of a sensor of FIG. 4 ;
  • FIGS. 8A through 8F illustrate using other exemplary devices in which concepts described herein may be implemented
  • FIGS. 9A through 9C illustrate an example of interaction between devices based on physical device-to-device contact
  • FIG. 10A through 10C illustrates another example of interaction between devices based on physical device-to-device contact
  • FIGS. 11A and 11B illustrate yet another example of interaction between devices based on physical device-to-device contact
  • FIGS. 12A and 12B illustrate still another example of interaction between devices based on physical device-to-device contact
  • FIGS. 13A and 13B illustrate still another example of interaction between devices based physical device to-device contact.
  • the terms “tap,” “knock,” and “touch” are interchangeably used herein and they may refer to an impact or a contact an object makes against another object.
  • the impact may cause sufficient change in momentum in the body to allow a sensor, such as an accelerometer, to detect the change.
  • a sensor such as an accelerometer
  • the touch may cause a sensor, such as an electric field sensor, a surface conduction sensor, a pressure/force sensor, etc., to detect a surface contact against another surface.
  • a device may establish a communication link with another device after a user taps the device against the other device.
  • the device may detect the taps and obtain a pattern from the taps. Depending on the pattern, the device and the other device may interact with one another over a communication link.
  • Having devices that communicate/interact with other devices based on taps may be convenient, safe, and/or economical (e.g., no need to navigate through a menu system to communicate/interact with another device, no need to expend energy on having a communication link until taps are detected, or expose the link to spam, virus, and/or other unwanted network data, etc.).
  • FIGS. 1A through 1C illustrate an example of the above concept.
  • FIGS. 1A through 1C show devices 102 - 1 and 102 - 2 (e.g., cell phone).
  • Device 102 - 1 and device 102 - 2 may include speaker 104 - 1 and 104 - 2 , respectively.
  • each of devices 102 - 1 and 102 - 2 may sense presence of one another through a discovery link 106 . Assume that, in the example, device 102 - 1 is playing a song and generating sound waves 108 via speaker 104 - 1 .
  • both devices 102 - 1 and 102 - 2 may sense the taps and compare the taps to a particular pattern.
  • FIG. 1B shows device 102 - 2 being tapped with device 102 - 1 .
  • devices 102 - 1 and 102 - 2 may establish a communication link 110 .
  • device 102 - 1 may transmit signals on one of two audio channels for stereo sound to device 102 - 2 . Consequently, devices 102 - 1 and 102 - 2 may output stereo sound signals to speakers 104 - 1 and 104 - 2 , which then output sound waves 112 and 114 , respectively.
  • FIG. 2 shows an exemplary network 200 in which concepts described herein may be implemented.
  • network 200 may include device 102 - 1 , a headset 202 - 1 , a cell phone 202 - 2 , a display 202 - 3 , a keyboard 202 - 4 , wireless access point (WAP) 204 , and network 206 .
  • WAP wireless access point
  • network 200 may include fewer, additional, or different devices than the ones illustrated in FIG. 2 .
  • network 200 may include mobile devices (e.g., a wireless mouse, a mobile telephone accessory, a gaming device, a wearable computing device (e.g., watch), a GPS receiver, a television, etc.), or stationary devices (e.g., a copier machine, a television, etc.) that can communicate with device 102 - 1 or with each other.
  • mobile devices e.g., a wireless mouse, a mobile telephone accessory, a gaming device, a wearable computing device (e.g., watch), a GPS receiver, a television, etc.
  • stationary devices e.g., a copier machine, a television, etc.
  • Device 102 - 1 may include any of the following devices that have the ability to or are adapted to communicate and interact with another device in close range, such as a radio telephone or a mobile telephone with ultra wide band (UWB) communication capability or Bluetooth capability; a game console or device; a global positioning system (GPS) receiver; a personal communications system (PCS) terminal that may combine a cellular radiotelephone with, data processing, facsimile, and/or data communications capabilities; a wearable computing devices (e.g., calculator-watch); an electronic notepad, a laptop, and/or a personal computer that communicate with wireless peripherals (e.g., a wireless keyboard, speakers, mouse, etc.); a personal digital assistant (PDA) that can include a telephone; or another type of computational or communication device.
  • a radio telephone or a mobile telephone with ultra wide band (UWB) communication capability or Bluetooth capability such as a game console or device; a global positioning system (GPS) receiver; a personal communications system (PCS) terminal that may combine
  • Each of devices 202 - 1 through 202 - 4 may include one or more devices that are capable of communicating and/or interacting wirelessly with device 102 - 1 via, for example, Bluetooth, Wireless Fidelity (Wi-Fi), etc. More specifically, headset 202 - 1 may receive audio information from device 102 - 1 and output sound (e.g., songs). Cell-phone 202 - 2 may perform various functions for device 102 - 1 , such as providing an audio output device, display, microphone, etc. In one implementation, cell-phone 202 - 2 may be similarly or identically constructed as device 102 - 1 .
  • Display 202 - 3 may show images that are received by device 102 - 1 and/or may send information that is inputted via a touch-sensitive screen to device 102 - 1 .
  • Keyboard 202 - 4 may permit a user to conveniently input alphanumeric and special characters to device 102 - 1 .
  • WAP 204 may include a device for accessing network 206 , such as a router that is able to receive and transmit wireless and/or wired signals, or any other device that provides access to a network. WAP 204 may communicate with device 102 - 1 using a wireless communication protocol.
  • Network 206 may include the Internet, an ad hoc network, a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a cellular network, a public switched telephone network (PSTN), an intranet, any other network, or a combination of networks.
  • LAN local area network
  • WAN wide area network
  • MAN metropolitan area network
  • PSTN public switched telephone network
  • intranet any other network, or a combination of networks.
  • FIGS. 3A and 3B are front and rear views, respectively, of an exemplary device 102 - 1 in which concepts described herein may be implemented.
  • device 102 - 1 may take the form of a portable phone (e.g., a cell phone).
  • device 102 - 1 may include a speaker 302 , a display 304 , control buttons 306 , a keypad 308 , a microphone 310 , sensors 312 , a lens assembly 314 , and housing 316 .
  • Speaker 302 may provide audible information to a user of device 102 - 1 .
  • Display 304 may provide visual information to the user, such as an image of a caller, video images, or pictures.
  • Control buttons 306 may permit the user to interact with device 102 - 1 to cause device 102 - 1 to perform one or more operations, such as place or receive a telephone call.
  • Keypad 308 may include a standard telephone keypad.
  • Microphone 310 may receive audible information from the user.
  • Sensors 312 may collect and provide, to device 102 - 1 , information (e.g., acoustic, infrared, etc.) that is used to aid the user in capturing images.
  • Lens assembly 312 may include a device for manipulating light rays from a given or a selected range, so that images in the range can be captured in a desired manner.
  • Housing 316 may provide a casing for components of device 102 - 1 and may protect the components from outside elements.
  • FIG. 4 is a block diagram of exemplary components of device 102 - 1 .
  • the term “component,” as used herein, may refer to hardware component, a software component, or a combination of the two.
  • device 102 - 1 may include a memory 402 , processing unit 404 , display 406 , network interface 408 , input/output components 410 , sensor 412 , and communication path(s) 414 .
  • device 102 - 1 may include more, fewer, or different components.
  • Memory 402 may include static memory, such as read only memory (ROM), and/or dynamic memory, such as random access memory (RAM), or onboard cache, for storing data and machine-readable instructions. Memory 402 may also include storage devices, such as a floppy disk, CD ROM, CD read/write (R/W) disc, and/or flash memory, as well as other types of storage devices.
  • Processing unit 404 may include a processor, a microprocessor, an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), and/or other processing logic capable of controlling device 102 - 1 .
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • Display 406 may include a component that can display signals generated by device 102 - 1 as images on a screen and/or that can accept inputs in the form of taps or touches on the screen.
  • display 406 may provide a graphical user interface through which user can interface with device 102 - 1 to display images or to play music.
  • Examples of display 406 include a liquid crystal display (LCD), organic light-emitting diode (OLED) display, bistable display, and/or a touch screen.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • Network interface 408 may include any transceiver-like mechanism that enables device 102 - 1 to communicate with other devices and/or systems.
  • network interface 408 may include mechanisms for communicating via a network, such as the Internet, a terrestrial wireless network (e.g., wireless local area network (WLAN)), a satellite-based network, a WPAN, etc.
  • network interface 408 may include a modem, an Ethernet interface to a local area network (LAN), and/or an interface/connection for connecting device 102 - 1 to other devices (e.g., a Bluetooth interface).
  • network interface 408 may include one or more receivers, such as a Global Positioning System (GPS) or Beidou Navigation System (BNS) receiver for determining its own geographical location.
  • GPS Global Positioning System
  • BNS Beidou Navigation System
  • Input/output components 410 may include a keypad (e.g., keypad 308 of FIG. 2 ), a button (e.g., control buttons 306 ), a mouse, a speaker (e.g., speaker 302 ), a microphone (e.g., microphone 310 ), a Digital Video Disk (DVD) writer, a DVD reader, Universal Serial Bus (USB) lines, and/or other types of devices for converting physical events or phenomena to and/or from digital signals that pertain to device 102 - 1 .
  • a keypad e.g., keypad 308 of FIG. 2
  • a button e.g., control buttons 306
  • a mouse e.g., a mouse
  • a speaker e.g., speaker 302
  • a microphone e.g., microphone 310
  • DVD Digital Video Disk
  • DVD Universal Serial Bus
  • Sensor 412 may include an accelerometer and/or a contact-sensitive sensor (e.g., an electric field sensor, a surface conduction sensor, a pressure/force sensor, etc.).
  • the accelerometer may include hardware and/or software for determining acceleration of device 102 - 1 .
  • An example of accelerometer may include a micro electro mechanical system (MEMS) accelerometer or a piezoelectric accelerometer that is coupled to the device housing for measuring device acceleration in one, two, or three axes.
  • MEMS micro electro mechanical system
  • the accelerometer may output its measurement as three separate values, each of which represents the magnitude of an acceleration component that is parallel to one of coordinate axis.
  • the outputs of the accelerometer may be used to determine taps on the surface of housing 316 of device 102 - 1 .
  • Sensor 412 may include other accelerometer or motion sensitive devices.
  • the contact-sensitive sensor may include hardware and/or software for determining contacts, such as an electric field sensor, a surface conduction sensor, a pressure/force sensor, etc.
  • an electric field sensor or a surface conduction sensor may determine the location of a nearby object or a touching object having a conductive surface.
  • the electric field/surface conduction sensor may generate an electric field or a current at the surface of housing 316 , and may detect changes in its capacitance, electric field, and/or impedance of current paths when the object is close to or is in contact with device 102 - 1 .
  • the electric field/surface conduction sensor may cover only a small portion of housing 316 that may physically contact or touch another device.
  • different types of contact-sensitive sensors such as a vibration sensitive sensor based on piezoelectric material may be used to detect taps, a pressure/force sensor to detect force corresponding to taps, etc.
  • Communication path 412 may provide an interface through which components of device 102 - 1 can communicate with one another.
  • FIG. 5 is a functional block diagram of device 102 - 1 .
  • device 102 - 1 may include support logic 502 , a database 504 , a tap detector 506 , and a tap-enabled application 508 .
  • device 102 - 1 may include fewer, additional, or different types of functional blocks than those illustrated in FIG. 5 .
  • Support logic 502 may be included in processing unit 404 and/or memory 402 , and may include hardware and/or software for performing various support functions for other components in FIG. 5 (e.g., database 504 , a tap detector 506 , etc.).
  • support logic 502 may provide a Transmission Control Protocol (TCP)/Internet Protocol (IP) stack to support communications between tap-enabled applications 508 on different devices.
  • TCP Transmission Control Protocol
  • IP Internet Protocol
  • Database 504 may be included in memory 402 ( FIG. 4 ) and may act as an information repository for the components of device 102 - 1 .
  • database 504 may store data that may be used to identify tap patterns that are obtained from processing unit 404 and/or sensor 412 .
  • a tap pattern may correspond to two taps in a relatively short period of time (e.g., one second).
  • a user may associate a specific tap pattern (e.g., a tap pattern that has 3 taps) with an application and store the association in database 504 .
  • a specific tap pattern e.g., a tap pattern that has 3 taps
  • 3 taps may be associated with an application for sharing music between different devices, 2 taps may be associated with sharing a picture, etc.
  • Tap detector 506 may include a component for detecting a particular tap pattern based on inputs from sensor 412 .
  • tap detector 506 may determine acceleration of device 102 - 1 as a function of time based on outputs of sensor 412 , and may obtain a pattern of taps from the acceleration.
  • Tap detector 506 may compare the obtained pattern against stored patterns in database 504 . If tap detector 506 finds a match, tap detector 506 may convey that device 102 - 1 has detected valid user input to another component in device 102 - 1 , such as tap-enabled application 508 .
  • tap detector 506 may notify a nearby device about the pattern. The nearby device may compare the pattern against a pattern that the nearby device has detected, and if there is a match, may convey that the valid user input has been detected to tap-enabled application 508 on device 102 - 1 .
  • tap-detector 506 may convey the detected pattern to a specific tap-enabled application 508 . For example, if 3 taps are detected, tap-detector 506 may start a music sharing application and convey the information to the music sharing tap-enabled application 508 ; if 2 taps are detected, tap detector 506 may start an image sharing tap-enabled application 508 , etc. As explained above with respect to database 504 , a user may configure which pattern is associated with which application.
  • Tap-enabled application 508 may include a component for receiving an output from tap detector 506 (e.g., an indication that valid input is detected).
  • tap-enabled application 508 may initiate or terminate communication with another device with which device 102 - 1 has been tapped, and may interact with the other device. For instance, in the example illustrated in FIG. 1A through FIG. 1C , tap-enabled application 508 in device 102 - 1 may cause each of speakers 104 - 1 and 104 - 2 in device 102 - 1 and device 102 - 2 to output each of two channels of stereo audio signals. In another instance, in FIG. 2 , when device 102 - 1 is tapped against device 202 - 3 , tap-enabled application 508 in device 102 - 1 may cause device 102 - 1 and device 202 - 3 to terminate their communication.
  • Examples of different types of tap-enabled application 508 may include: an application for transferring a piece of information (e.g., an electronic payment, coupon, contact information, image, piece of music, text, etc.) between two devices that have been tapped against one another; an application for sharing a task between the devices (e.g., outputting stereo audio signal to different speakers on different devices); an application for selecting a particular device that has been tapped as an input/output device (e.g., a wireless display, a keyboard, a computer, or a television for displaying images/video and/or playing audio output), etc. If a tap-enabled application 508 is implemented to share a file with another application in a different device, tap-enabled application 508 may determine how to layout a picture, video, text, web document, and/or other media content across multiple screens.
  • a piece of information e.g., an electronic payment, coupon, contact information, image, piece of music, text, etc.
  • tap-enabled application 508 may
  • the functionalities of tap detector 506 may be incorporated in tap/enabled application 508 .
  • FIG. 6 shows an exemplary process 600 for establishing communication between and interacting with various devices based on device-to-device contact.
  • Process 600 may begin at block 602 , where sensor 412 of device 102 - 1 may be monitored (block 602 ).
  • Monitoring sensor 412 may entail processing unit 404 sampling outputs of sensor 412 .
  • sensor 412 may begin to monitor device 102 - 1 for taps when one of control buttons 306 or a key on keypad 308 is pressed. Such an implementation may facilitate saving power.
  • FIG. 7 shows outputs of sensor 412 when sensor 412 is implemented as an accelerometer. As shown, each of local peaks 702 may indicate a sudden change in acceleration of device 102 - 1 , and therefore, may indicate a potential tap.
  • database 504 may store reference output patterns of sensor 412 of device 102 - 1 when device 102 - 1 is tapped. The patterns may be compared against the samples, and if the samples match one or more of the patterns, tap detector 506 may determine that device 102 - 1 is tapped. In another implementation, tap detector 506 may perform a test on the samples (e.g., determine if one or more peaks are greater than a threshold) to determine the presence of one or more taps.
  • a tap may be detected by sensor 412 (e.g., changes in acceleration), and subsequently, device 102 - 1 may monitor sensor 412 for another tap within a particular amount of time (e.g., 2 seconds). If no tap is detected, device 102 - 1 may enter into an idle mode; otherwise process 600 may proceed to block 606 .
  • sensor 412 e.g., changes in acceleration
  • device 102 - 1 may monitor sensor 412 for another tap within a particular amount of time (e.g., 2 seconds). If no tap is detected, device 102 - 1 may enter into an idle mode; otherwise process 600 may proceed to block 606 .
  • parameters that are associated with the taps may be obtained (block 606 ).
  • the parameters may include the number of taps, time between consecutive taps, physical locations of the taps on housing 316 of device 102 - 1 , time at which each tap occurs, the orientation of device 102 - 1 , etc.
  • sensor 412 includes an accelerometer, the locations of the taps may be determined based on the direction of acceleration of device 102 - 1 during the taps. Alternatively, if sensor 412 is implemented as an electric field sensor, sensor 412 may determine and output the locations of the taps.
  • specific portions of housing 316 may be coupled to a contact-sensor, and each portion may be associated with a physical location on the surface of housing 316 . In such an implementation, detecting taps on one of the portions may indicate the locations of the taps.
  • a gyroscope/magnetometer may be included to obtain the orientation of device 102 - 1 as one of the parameters.
  • Whether the taps are a valid input may be determined based on the parameters (block 608 ).
  • another device that is used together with the device to produce the taps may be identified (block 608 ).
  • block 608 may be performed in a number of ways. For example, in one implementation, tap detector 506 may communicate with all nearby devices to determine which device has been recently tapped. Consequently, each of the nearby devices may determine whether it has been tapped in a similar manner to that described above with respect to device 102 - 1 . If a nearby device has been tapped, the nearby device may transmit parameters (e.g., time between two consecutive taps) that characterize its own taps to device 102 - 1 .
  • parameters e.g., time between two consecutive taps
  • Tap detector 506 in device 102 - 1 may compare the received parameters to the parameters that are obtained at block 606 . If they match, tap detector 506 may conclude that the taps represent valid user input and identify the nearby device as the other device that has been used to produce the taps.
  • device 102 - 1 may broadcast the parameters and/or tap patterns to nearby tap-enabled devices.
  • Each of the nearby tap-enabled devices may attempt to match the received parameters and/or the tap patterns to its own parameters and/or tap patterns. If there is a match, the nearby device may communicate with device 102 - 1 to identify itself and to indicate that the taps are valid user input. For example, the nearby device may signal device 102 - 1 with one or more beeps (e.g., two beeps) indicating a pairing of the two devices.
  • beeps e.g., two beeps
  • either device 102 - 1 or the nearby device may initiate the determination whether the taps are valid input and/or identify itself to the other device.
  • matching the parameters may involve matching the physical locations of the taps on device 102 - 1 and on other devices. For example, assume that device 102 - 1 is tapped simultaneously by two or three nearby devices. In such an implementation, a user may indicate which of the nearby devices may receive what information from device 102 - 1 by tapping device 102 - 1 with each of the nearby devices on predetermined locations of housing 316 . For example, the user may tap device 102 - 1 with a device that is to operate as a right speaker on the right side of housing 316 of device 102 - 1 .
  • validating the taps as user input may involve establishing a communication between device 102 - 1 and other devices via a wireless network (e.g., piconet).
  • device 102 - 1 and another device may connect via Bluetooth or WiFi, search for a temporary, unique network identifier (e.g., a name configured using an encryption algorithm in both devices), and use one of the parameters (e.g., time between two consecutive taps) as a unique password/key to establish a connection with one another.
  • a temporary, unique network identifier e.g., a name configured using an encryption algorithm in both devices
  • one of the parameters e.g., time between two consecutive taps
  • validating the taps may involve causing a nearby device that is already in communication with device 102 - 1 to respond with one or more of the parameters or to validate the taps in any number of different ways.
  • Interaction with the other device may be performed (block 610 ).
  • tap-enabled application 508 in either device 102 - 1 or the other device may establish or terminate communication with one another.
  • the interaction between the devices may depend on specifics of tap-enabled application 508 on device 102 - 1 and/or the other device, as illustrated in the examples described below. For example, if device 102 - 1 already has established a communication link with the other device, device 102 - 1 and the other device may terminate the communication link, interpreting taps as a cue or signal to decouple device 102 - 1 and the other device.
  • a process for establishing communication between and interacting with different devices based on taps may involve more than two devices.
  • devices 102 - 1 and 102 - 2 may be used in conjunction with a laptop. Tapping each of two devices 102 - 1 and 102 - 2 to different sides of the laptop may enable devices 102 - 1 and 102 - 2 to operate as a right-hand speaker and a left-hand speaker for the laptop.
  • FIGS. 8A-8F , 9 A- 9 C, 10 A- 10 C, 11 A- 11 B, 12 A- 12 B, and 13 A- 13 B illustrate processes involved in interacting with various devices based on physical device-to-device contact. The example is consistent with exemplary process described above with respect to FIG. 6 .
  • FIGS. 8A through 8C illustrate an example in which device 102 - 1 selects a peripheral for an audio output.
  • FIG. 8A assume that acceleration of device 102 - 1 is being monitored via sensor 412 . Signals from sensor 412 are used to determine if taps are present, and when, as illustrated in FIG. 8B , device 102 - 1 is tapped with headset 202 - 1 , tap detector detects 506 the taps. Furthermore, parameters that are associated with the taps are obtained, and sent to headset 202 - 1 .
  • Headset 202 - 1 confirms that the taps are a valid input (e.g., matches the parameters to those related to taps that are detected by headset 202 - 1 ), and sends the confirmation to device 102 - 1 .
  • tap-enabled application 508 in device 102 - 1 channels an audio output to headset 202 - 1 , which plays the audio output via speakers 702 , as illustrated in FIG. 8C .
  • the user may select headset 202 - 1 to use with device 102 - 1 by simply tapping headset 202 - 1 to device 102 - 1 .
  • FIGS. 8D through 8F illustrate an example in which device 102 - 1 , headset 202 - 1 , and device 102 - 2 interact.
  • device 102 - 2 has established a wireless communication with headset 202 - 1 .
  • another user that owns device 102 - 1 wishes to temporarily borrow headset 202 - 1 .
  • tap detector 506 in headset 202 - 1 and/or device 102 - 1 detects the taps.
  • Parameters that are associated with the taps are obtained by headset 202 - 1 and device 102 - 1 , exchanged, and used to confirm (by either headset 202 - 1 or device 102 - 1 ) that the taps are valid input (e.g., matches the parameters to those related to taps that are detected by either headset 202 - 1 or device 102 - 1 ).
  • tap-enabled application 508 in headset 202 - 1 /device 102 - 2 terminates a communication link between headset 202 - 1 and device 102 - 2 . Furthermore, headset 202 - 1 and device 102 - 1 begin a communication session with each other, as illustrated in FIG. 8F .
  • headset 202 - 1 and device 102 - 2 terminate the communication between headset 202 - 1 and device 102 - 2 .
  • headset 202 - 1 and device 101 - 1 start a new communication session with one another.
  • Switching between different peripherals and/or I/O devices in the manner described above may be convenient and easy for users. Furthermore, such switching may avoid multi-point connections that require significantly more power to maintain.
  • FIGS. 9A through 9C illustrate another example of interaction between devices based on physical device-to-device contact.
  • the example involves a cell-phone like devices 902 - 1 and 902 - 2 , which are different implementations of device 102 - 1 .
  • device 902 - 1 shows a photograph 904 on display 906 - 1 .
  • device 902 - 2 is tapped against device 902 - 1 .
  • device 902 - 1 confirms that the taps are valid user input and identifies device 902 - 2 as the device that has been used to produce the taps.
  • tap-enabled application 508 in device 902 - 1 uses display screen 906 - 1 on device 902 - 1 and display screen on 906 - 2 on device 902 - 2 to show enlarged picture 908 that expands the original image to span portions of both screens 906 - 1 and 906 - 2 .
  • FIG. 10A through 10C illustrates yet another example of interaction between devices based on physical device-to-device contact.
  • devices 902 - 1 and 902 - 2 show picture 908 on displays 906 - 1 and 906 - 2 .
  • a user wishes to switch from picture 908 to a second picture.
  • the user places a finger 1002 on a side edge of display 906 - 1 .
  • the user then sweeps finger 1002 across the surface of display 906 - 1 from the side edge toward the center of display 906 - 1 .
  • a line 1004 - 1 at the side edge follows the finger to the position illustrated in FIG. 10B , revealing a portion of picture 1006 .
  • tap-enabled application 508 sends information related to finger 1002 and line 1004 - 1 to device 902 - 2 , which causes line 1004 - 2 in display 904 - 2 to track line 1004 - 1 . Movement of line 1004 - 2 reveals a different portion of picture 1006 on display 906 - 2 .
  • FIG. 10C illustrates display 906 - 1 and 906 - 2 when finger 1002 completes its sweep across display 906 - 1 . As illustrated, displays 906 - 1 and 906 - 2 show picture 1006 .
  • FIGS. 11A and 11B illustrate yet another example of interaction between devices based on physical device-to-device contact.
  • the example involves devices 902 - 1 and 902 - 2 .
  • display 906 - 1 of device 902 - 1 shows a screen full of thumbnail images in accordance with another implementation of tap-enabled application 508 .
  • devices 902 - 1 and 902 - 2 are tapped together, as in the previous examples.
  • device 902 - 1 When device 902 - 2 is tapped against device 902 - 1 , device 902 - 1 confirms that the taps are valid user input and identifies device 902 - 2 as the device that has been used to produce the taps. Subsequently, when the user touches a thumbnail image 1102 with finger 1002 as shown in FIG. 11B , tap-enabled application 508 sends another image 1104 related to thumbnail image 1102 to device 902 - 2 . Device 902 - 2 displays image 1104 . In a different implementation, device 902 - 2 may access image 1104 from its own memory 402 or from a network.
  • FIGS. 12A and 12B illustrate yet another example of interaction between devices based on physical device-to-device contact.
  • the example is similar to the example illustrated by FIGS. 11A and 11B , except that, in place of device 902 - 2 , device 1202 (e.g., a laptop) is used.
  • device 1202 e.g., a laptop
  • FIGS. 13A and 13B illustrate still another example of interaction between devices based on physical device to-device contact.
  • devices 102 - 1 and 102 - 2 are tapped against device 1202 , whose tap-enabled application 508 is playing music.
  • devices 102 - 1 and 102 - 2 are tapped against device 1202 , a process similar to those described above for different examples is performed.
  • device 1202 sends each of audio signals that are associated with stereo sound to devices 102 - 1 and 102 - 2 , respectively.
  • Devices 102 - 1 and 102 - 2 may then act as left and right speakers for device 1202 .
  • devices 102 - 1 and 102 - 1 may play the audio signals within a particular amount of time after the taps (e.g., 1 second after the taps).
  • devices 102 - 1 , 102 - 1 , and 1202 may show coordinated music visualization graphics (e.g., waves).
  • causing a device to communicate with another device and/or interact with the other device based on taps may be convenient (e.g., there is no need for a user to navigate through a menu system on display 304 ), safe, (e.g., a communication link between the devices is not exposed to computer virus, spam, and/or other unwanted network data/messages until the taps are detected), and/or economical (e.g., no need to expend energy on maintaining a communication link until taps are detected).
  • non-dependent blocks may represent acts that can be performed in parallel to other blocks.
  • tap-enabled application 508 may send different types of information to tapped devices, such as information related to transferring electronic payment/cash, coupons, contact information, images, pieces of music (e.g., songs), text, etc.
  • specific location of the taps may determine what information is transferred. For example, if device 102 - 1 is tapped on a side, device 102 - 1 may send a picture, and if device 102 - 1 is tapped on the top near speaker 302 , device 102 - 1 may share a song with another device.
  • logic that performs one or more functions.
  • This logic may include hardware, such as a processor, an application specific integrated circuit, or a field programmable gate array, software, or a combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Telephone Function (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

A device may receive a signal from a sensor coupled to a first device, determine whether the first device is tapped against a second device based on the signal, send a message to the second device when the first device is tapped against the second device, determine if the taps are valid user input based on a response from the second device, and perform an application specific action when the taps are valid user input.

Description

    BACKGROUND
  • Many computer or communication devices rely on a keyboard or a keypad to provide part of a user interface. However, using the keyboard or keypad is often cumbersome and/or inconvenient. In addition, other devices that use touch screens to emulate a keyboard or a keypad may not provide significant improvements over devices that use a keyboard or a keypad.
  • SUMMARY
  • According to one aspect, a method may include receiving a signal from a sensor coupled to a first device, determining whether the first device is tapped against a second device based on the signal, sending a message to the second device when the first device is tapped against the second device, determining if the taps are valid user input based on a response from the second device, and performing an application specific action when the taps are valid user input.
  • Additionally, receiving a signal may include receiving the signal from an accelerometer.
  • Additionally, determining whether the first device is tapped against the second device may include determining if samples of the signal match a predetermined acceleration pattern.
  • Additionally, sending a message may include obtaining parameters regarding taps that are detected based on the signal, and sending the parameters to the second device.
  • Additionally, obtaining parameters may include obtaining locations of the taps on a surface of the first device, determining time between consecutive taps, determining time of occurrence of at least one of the taps.
  • Additionally, determining if the taps are valid user input may include receiving the response, the response indicating if the sent parameters match parameters that are obtained from taps on the second device.
  • Additionally, determining if the taps are valid user input may include receiving parameters about taps on the second device in response to the message, determining if the received parameters match parameters that are extracted from the signal when the first device is tapped against the second device, and determining whether the taps are valid by comparing the received parameters to the extracted parameters.
  • Additionally, performing an application specific action may include coordinating at least one of an audio task or a-visual task with the second device.
  • Additionally, performing an application specific action may include one of sending an audio signal to the second device for output by a speaker, or sending a video signal to the second device for display.
  • Additionally, performing an application specific action may include at least one of receiving personal contact information from the second device, conducting a commercial transaction with the second device, or receiving a video clip, audio clip, image, or text from the second device.
  • Additionally, performing an application specific action may include at least one of terminating a communication session that has been established based on taps between the first device and the second device, or causing the first device to terminate a communication session that has been established prior to taps between the first device and a third device.
  • According to another aspect, a device may include a sensor and a processor. The processor may be configured to receive a signal from the sensor, detect taps based on the signal, extract parameters that are associated with the detected taps, send a request to a second device to verify if the extracted parameters match parameters that are obtained from taps by the second device, determine if the detected taps are valid user input based on a response from the second device, and interact with the second device over a communication channel when the taps are valid user input.
  • Additionally, the parameters may include at least one of time between consecutive taps, or time of occurrence of a tap.
  • Additionally, the sensor may include at least one of an accelerometer or an electric field sensor.
  • Additionally, the second device may include at least one of a cell phone with a display or a speaker, a headset, or a laptop.
  • Additionally, the device may include a cell phone.
  • Additionally, the communication channel may include a Bluetooth communication channel.
  • Additionally, the request may include the extracted parameters and the response includes information that indicates whether the extracted parameters match the parameters that are obtained from taps by the second device.
  • Additionally, the response may include parameters that are obtained from taps by the second device.
  • Additionally, the processor may be further configured to cause the second device to terminate a communication session that has been established prior to detected taps between the second device and a third device, or terminate a communication session that has been established based on detected taps between the first device and the second device.
  • According to yet another aspect, a method may include receiving a signal from a sensor coupled to a first device, determining whether the first device is tapped against a second device based on the signal, receiving a message from the second device when the first device is tapped against the second device, determining whether the taps are valid user input based on the message from the second device, and terminating a communication link between the second device and the first device when the taps are valid user input.
  • Additionally, the method may further include determining whether the first device is tapped against a third device, receiving a message from the third device when the first device is tapped against the third device, determining whether the taps are valid user input based on the message from the third device, and establishing a communication link between the third device and the first device when the taps are valid user input.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments described herein and, together with the description, explain the embodiments. In the drawings:
  • FIGS. 1A through 1C illustrate a use of exemplary devices in which concepts described herein may be implemented;
  • FIG. 2 shows an exemplary network in which concepts described herein may be implemented;
  • FIGS. 3A and 3B are front and rear views of an exemplary device of FIG. 2;
  • FIG. 4 is a block diagram of the exemplary device of FIGS. 3A and 3B;
  • FIG. 5 is a functional block diagram of the exemplary device of FIGS. 3A and 3B;
  • FIG. 6 is a flow diagram of an exemplary process for establishing communication between and interacting with devices based on device-to-device contacts;
  • FIG. 7 illustrates an output of a sensor of FIG. 4;
  • FIGS. 8A through 8F illustrate using other exemplary devices in which concepts described herein may be implemented;
  • FIGS. 9A through 9C illustrate an example of interaction between devices based on physical device-to-device contact;
  • FIG. 10A through 10C illustrates another example of interaction between devices based on physical device-to-device contact;
  • FIGS. 11A and 11B illustrate yet another example of interaction between devices based on physical device-to-device contact;
  • FIGS. 12A and 12B illustrate still another example of interaction between devices based on physical device-to-device contact; and
  • FIGS. 13A and 13B illustrate still another example of interaction between devices based physical device to-device contact.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • The following detailed description refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements. The terms “tap,” “knock,” and “touch” are interchangeably used herein and they may refer to an impact or a contact an object makes against another object. The impact may cause sufficient change in momentum in the body to allow a sensor, such as an accelerometer, to detect the change. Alternatively, the touch may cause a sensor, such as an electric field sensor, a surface conduction sensor, a pressure/force sensor, etc., to detect a surface contact against another surface.
  • In implementations described herein, a device (e.g., a portable phone) may establish a communication link with another device after a user taps the device against the other device. When a user taps the device against the other device, the device may detect the taps and obtain a pattern from the taps. Depending on the pattern, the device and the other device may interact with one another over a communication link. Having devices that communicate/interact with other devices based on taps may be convenient, safe, and/or economical (e.g., no need to navigate through a menu system to communicate/interact with another device, no need to expend energy on having a communication link until taps are detected, or expose the link to spam, virus, and/or other unwanted network data, etc.).
  • FIGS. 1A through 1C illustrate an example of the above concept. FIGS. 1A through 1C show devices 102-1 and 102-2 (e.g., cell phone). Device 102-1 and device 102-2 may include speaker 104-1 and 104-2, respectively. In addition, each of devices 102-1 and 102-2 may sense presence of one another through a discovery link 106. Assume that, in the example, device 102-1 is playing a song and generating sound waves 108 via speaker 104-1.
  • When a user taps device 102-2 into device 102-1 (or vice versa), both devices 102-1 and 102-2 may sense the taps and compare the taps to a particular pattern. FIG. 1B shows device 102-2 being tapped with device 102-1.
  • As further shown in FIG. 1C, upon determining that the pattern represents user input to play the song on both devices 102-1 and 102-2, devices 102-1 and 102-2 may establish a communication link 110. Through communication link 110, device 102-1 may transmit signals on one of two audio channels for stereo sound to device 102-2. Consequently, devices 102-1 and 102-2 may output stereo sound signals to speakers 104-1 and 104-2, which then output sound waves 112 and 114, respectively.
  • Exemplary Network and Device
  • FIG. 2 shows an exemplary network 200 in which concepts described herein may be implemented. As shown, network 200 may include device 102-1, a headset 202-1, a cell phone 202-2, a display 202-3, a keyboard 202-4, wireless access point (WAP) 204, and network 206. In addition, depending on implementation, network 200 may include fewer, additional, or different devices than the ones illustrated in FIG. 2. For example, network 200 may include mobile devices (e.g., a wireless mouse, a mobile telephone accessory, a gaming device, a wearable computing device (e.g., watch), a GPS receiver, a television, etc.), or stationary devices (e.g., a copier machine, a television, etc.) that can communicate with device 102-1 or with each other.
  • Device 102-1 may include any of the following devices that have the ability to or are adapted to communicate and interact with another device in close range, such as a radio telephone or a mobile telephone with ultra wide band (UWB) communication capability or Bluetooth capability; a game console or device; a global positioning system (GPS) receiver; a personal communications system (PCS) terminal that may combine a cellular radiotelephone with, data processing, facsimile, and/or data communications capabilities; a wearable computing devices (e.g., calculator-watch); an electronic notepad, a laptop, and/or a personal computer that communicate with wireless peripherals (e.g., a wireless keyboard, speakers, mouse, etc.); a personal digital assistant (PDA) that can include a telephone; or another type of computational or communication device.
  • Each of devices 202-1 through 202-4 may include one or more devices that are capable of communicating and/or interacting wirelessly with device 102-1 via, for example, Bluetooth, Wireless Fidelity (Wi-Fi), etc. More specifically, headset 202-1 may receive audio information from device 102-1 and output sound (e.g., songs). Cell-phone 202-2 may perform various functions for device 102-1, such as providing an audio output device, display, microphone, etc. In one implementation, cell-phone 202-2 may be similarly or identically constructed as device 102-1. Display 202-3 may show images that are received by device 102-1 and/or may send information that is inputted via a touch-sensitive screen to device 102-1. Keyboard 202-4 may permit a user to conveniently input alphanumeric and special characters to device 102-1.
  • WAP 204 may include a device for accessing network 206, such as a router that is able to receive and transmit wireless and/or wired signals, or any other device that provides access to a network. WAP 204 may communicate with device 102-1 using a wireless communication protocol.
  • Network 206 may include the Internet, an ad hoc network, a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a cellular network, a public switched telephone network (PSTN), an intranet, any other network, or a combination of networks.
  • FIGS. 3A and 3B are front and rear views, respectively, of an exemplary device 102-1 in which concepts described herein may be implemented. In this implementation, device 102-1 may take the form of a portable phone (e.g., a cell phone). As shown in FIGS. 3A and 3B, device 102-1 may include a speaker 302, a display 304, control buttons 306, a keypad 308, a microphone 310, sensors 312, a lens assembly 314, and housing 316. Speaker 302 may provide audible information to a user of device 102-1. Display 304 may provide visual information to the user, such as an image of a caller, video images, or pictures. Control buttons 306 may permit the user to interact with device 102-1 to cause device 102-1 to perform one or more operations, such as place or receive a telephone call. Keypad 308 may include a standard telephone keypad. Microphone 310 may receive audible information from the user. Sensors 312 may collect and provide, to device 102-1, information (e.g., acoustic, infrared, etc.) that is used to aid the user in capturing images. Lens assembly 312 may include a device for manipulating light rays from a given or a selected range, so that images in the range can be captured in a desired manner. Housing 316 may provide a casing for components of device 102-1 and may protect the components from outside elements.
  • FIG. 4 is a block diagram of exemplary components of device 102-1. The term “component,” as used herein, may refer to hardware component, a software component, or a combination of the two. As shown, device 102-1 may include a memory 402, processing unit 404, display 406, network interface 408, input/output components 410, sensor 412, and communication path(s) 414. In other implementations, device 102-1 may include more, fewer, or different components.
  • Memory 402 may include static memory, such as read only memory (ROM), and/or dynamic memory, such as random access memory (RAM), or onboard cache, for storing data and machine-readable instructions. Memory 402 may also include storage devices, such as a floppy disk, CD ROM, CD read/write (R/W) disc, and/or flash memory, as well as other types of storage devices. Processing unit 404 may include a processor, a microprocessor, an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), and/or other processing logic capable of controlling device 102-1.
  • Display 406 may include a component that can display signals generated by device 102-1 as images on a screen and/or that can accept inputs in the form of taps or touches on the screen. For example, display 406 may provide a graphical user interface through which user can interface with device 102-1 to display images or to play music. Examples of display 406 include a liquid crystal display (LCD), organic light-emitting diode (OLED) display, bistable display, and/or a touch screen.
  • Network interface 408 may include any transceiver-like mechanism that enables device 102-1 to communicate with other devices and/or systems. For example, network interface 408 may include mechanisms for communicating via a network, such as the Internet, a terrestrial wireless network (e.g., wireless local area network (WLAN)), a satellite-based network, a WPAN, etc. Additionally or alternatively, network interface 408 may include a modem, an Ethernet interface to a local area network (LAN), and/or an interface/connection for connecting device 102-1 to other devices (e.g., a Bluetooth interface). Further, network interface 408 may include one or more receivers, such as a Global Positioning System (GPS) or Beidou Navigation System (BNS) receiver for determining its own geographical location. Input/output components 410 may include a keypad (e.g., keypad 308 of FIG. 2), a button (e.g., control buttons 306), a mouse, a speaker (e.g., speaker 302), a microphone (e.g., microphone 310), a Digital Video Disk (DVD) writer, a DVD reader, Universal Serial Bus (USB) lines, and/or other types of devices for converting physical events or phenomena to and/or from digital signals that pertain to device 102-1.
  • Sensor 412 may include an accelerometer and/or a contact-sensitive sensor (e.g., an electric field sensor, a surface conduction sensor, a pressure/force sensor, etc.). The accelerometer may include hardware and/or software for determining acceleration of device 102-1. An example of accelerometer may include a micro electro mechanical system (MEMS) accelerometer or a piezoelectric accelerometer that is coupled to the device housing for measuring device acceleration in one, two, or three axes. In one implementation, when the accelerometer detects acceleration, the accelerometer may output its measurement as three separate values, each of which represents the magnitude of an acceleration component that is parallel to one of coordinate axis. In one implementation, the outputs of the accelerometer may be used to determine taps on the surface of housing 316 of device 102-1. Sensor 412 may include other accelerometer or motion sensitive devices.
  • The contact-sensitive sensor may include hardware and/or software for determining contacts, such as an electric field sensor, a surface conduction sensor, a pressure/force sensor, etc. In one implementation, an electric field sensor or a surface conduction sensor may determine the location of a nearby object or a touching object having a conductive surface. The electric field/surface conduction sensor may generate an electric field or a current at the surface of housing 316, and may detect changes in its capacitance, electric field, and/or impedance of current paths when the object is close to or is in contact with device 102-1. In a different implementation, instead of covering most of the surface of housing 316 (e.g., a top corner portion of device 102-1), the electric field/surface conduction sensor may cover only a small portion of housing 316 that may physically contact or touch another device. In still other implementations, different types of contact-sensitive sensors, such as a vibration sensitive sensor based on piezoelectric material may be used to detect taps, a pressure/force sensor to detect force corresponding to taps, etc.
  • Communication path 412 may provide an interface through which components of device 102-1 can communicate with one another.
  • FIG. 5 is a functional block diagram of device 102-1. As shown, device 102-1 may include support logic 502, a database 504, a tap detector 506, and a tap-enabled application 508. Depending on the particular implementation, device 102-1 may include fewer, additional, or different types of functional blocks than those illustrated in FIG. 5.
  • Support logic 502 may be included in processing unit 404 and/or memory 402, and may include hardware and/or software for performing various support functions for other components in FIG. 5 (e.g., database 504, a tap detector 506, etc.). For example, support logic 502 may provide a Transmission Control Protocol (TCP)/Internet Protocol (IP) stack to support communications between tap-enabled applications 508 on different devices.
  • Database 504 may be included in memory 402 (FIG. 4) and may act as an information repository for the components of device 102-1. For example, in one implementation, database 504 may store data that may be used to identify tap patterns that are obtained from processing unit 404 and/or sensor 412. As an example, a tap pattern may correspond to two taps in a relatively short period of time (e.g., one second).
  • In some implementations, a user may associate a specific tap pattern (e.g., a tap pattern that has 3 taps) with an application and store the association in database 504. For example, 3 taps may be associated with an application for sharing music between different devices, 2 taps may be associated with sharing a picture, etc.
  • Tap detector 506 may include a component for detecting a particular tap pattern based on inputs from sensor 412. For example, tap detector 506 may determine acceleration of device 102-1 as a function of time based on outputs of sensor 412, and may obtain a pattern of taps from the acceleration. Tap detector 506 may compare the obtained pattern against stored patterns in database 504. If tap detector 506 finds a match, tap detector 506 may convey that device 102-1 has detected valid user input to another component in device 102-1, such as tap-enabled application 508. In a different implementation, when tap detector 506 obtains a pattern of taps, tap detector 506 may notify a nearby device about the pattern. The nearby device may compare the pattern against a pattern that the nearby device has detected, and if there is a match, may convey that the valid user input has been detected to tap-enabled application 508 on device 102-1.
  • In some implementation, when tap-detector 506 determines that the valid user input is detected, tap-detector 506 may convey the detected pattern to a specific tap-enabled application 508. For example, if 3 taps are detected, tap-detector 506 may start a music sharing application and convey the information to the music sharing tap-enabled application 508; if 2 taps are detected, tap detector 506 may start an image sharing tap-enabled application 508, etc. As explained above with respect to database 504, a user may configure which pattern is associated with which application.
  • Tap-enabled application 508 may include a component for receiving an output from tap detector 506 (e.g., an indication that valid input is detected). In addition, tap-enabled application 508 may initiate or terminate communication with another device with which device 102-1 has been tapped, and may interact with the other device. For instance, in the example illustrated in FIG. 1A through FIG. 1C, tap-enabled application 508 in device 102-1 may cause each of speakers 104-1 and 104-2 in device 102-1 and device 102-2 to output each of two channels of stereo audio signals. In another instance, in FIG. 2, when device 102-1 is tapped against device 202-3, tap-enabled application 508 in device 102-1 may cause device 102-1 and device 202-3 to terminate their communication.
  • Examples of different types of tap-enabled application 508 may include: an application for transferring a piece of information (e.g., an electronic payment, coupon, contact information, image, piece of music, text, etc.) between two devices that have been tapped against one another; an application for sharing a task between the devices (e.g., outputting stereo audio signal to different speakers on different devices); an application for selecting a particular device that has been tapped as an input/output device (e.g., a wireless display, a keyboard, a computer, or a television for displaying images/video and/or playing audio output), etc. If a tap-enabled application 508 is implemented to share a file with another application in a different device, tap-enabled application 508 may determine how to layout a picture, video, text, web document, and/or other media content across multiple screens.
  • In some implementations, the functionalities of tap detector 506 may be incorporated in tap/enabled application 508.
  • Exemplary Process for Interacting with Devices Based on Physical Device-to-Device Contact
  • FIG. 6 shows an exemplary process 600 for establishing communication between and interacting with various devices based on device-to-device contact. Process 600 may begin at block 602, where sensor 412 of device 102-1 may be monitored (block 602). Monitoring sensor 412 may entail processing unit 404 sampling outputs of sensor 412. In one implementation, sensor 412 may begin to monitor device 102-1 for taps when one of control buttons 306 or a key on keypad 308 is pressed. Such an implementation may facilitate saving power.
  • FIG. 7 shows outputs of sensor 412 when sensor 412 is implemented as an accelerometer. As shown, each of local peaks 702 may indicate a sudden change in acceleration of device 102-1, and therefore, may indicate a potential tap.
  • It may be determined whether samples of outputs of sensor 412 indicate a presence of taps (block 604). In one implementation, database 504 may store reference output patterns of sensor 412 of device 102-1 when device 102-1 is tapped. The patterns may be compared against the samples, and if the samples match one or more of the patterns, tap detector 506 may determine that device 102-1 is tapped. In another implementation, tap detector 506 may perform a test on the samples (e.g., determine if one or more peaks are greater than a threshold) to determine the presence of one or more taps. In a different implementation, a tap may be detected by sensor 412 (e.g., changes in acceleration), and subsequently, device 102-1 may monitor sensor 412 for another tap within a particular amount of time (e.g., 2 seconds). If no tap is detected, device 102-1 may enter into an idle mode; otherwise process 600 may proceed to block 606.
  • When taps are determined as being present, parameters that are associated with the taps may be obtained (block 606). The parameters may include the number of taps, time between consecutive taps, physical locations of the taps on housing 316 of device 102-1, time at which each tap occurs, the orientation of device 102-1, etc. If sensor 412 includes an accelerometer, the locations of the taps may be determined based on the direction of acceleration of device 102-1 during the taps. Alternatively, if sensor 412 is implemented as an electric field sensor, sensor 412 may determine and output the locations of the taps. In another implementation, specific portions of housing 316 may be coupled to a contact-sensor, and each portion may be associated with a physical location on the surface of housing 316. In such an implementation, detecting taps on one of the portions may indicate the locations of the taps. In some implementations, a gyroscope/magnetometer may be included to obtain the orientation of device 102-1 as one of the parameters.
  • Whether the taps are a valid input may be determined based on the parameters (block 608). When the taps correspond to a valid input, another device that is used together with the device to produce the taps may be identified (block 608). Depending on the implementation, block 608 may be performed in a number of ways. For example, in one implementation, tap detector 506 may communicate with all nearby devices to determine which device has been recently tapped. Consequently, each of the nearby devices may determine whether it has been tapped in a similar manner to that described above with respect to device 102-1. If a nearby device has been tapped, the nearby device may transmit parameters (e.g., time between two consecutive taps) that characterize its own taps to device 102-1. Tap detector 506 in device 102-1 may compare the received parameters to the parameters that are obtained at block 606. If they match, tap detector 506 may conclude that the taps represent valid user input and identify the nearby device as the other device that has been used to produce the taps.
  • In a different implementation, device 102-1 may broadcast the parameters and/or tap patterns to nearby tap-enabled devices. Each of the nearby tap-enabled devices may attempt to match the received parameters and/or the tap patterns to its own parameters and/or tap patterns. If there is a match, the nearby device may communicate with device 102-1 to identify itself and to indicate that the taps are valid user input. For example, the nearby device may signal device 102-1 with one or more beeps (e.g., two beeps) indicating a pairing of the two devices.
  • In different implementations, either device 102-1 or the nearby device may initiate the determination whether the taps are valid input and/or identify itself to the other device.
  • In one implementation, matching the parameters may involve matching the physical locations of the taps on device 102-1 and on other devices. For example, assume that device 102-1 is tapped simultaneously by two or three nearby devices. In such an implementation, a user may indicate which of the nearby devices may receive what information from device 102-1 by tapping device 102-1 with each of the nearby devices on predetermined locations of housing 316. For example, the user may tap device 102-1 with a device that is to operate as a right speaker on the right side of housing 316 of device 102-1.
  • In the above implementations, validating the taps as user input may involve establishing a communication between device 102-1 and other devices via a wireless network (e.g., piconet). In one implementation, when the taps are detected, device 102-1 and another device may connect via Bluetooth or WiFi, search for a temporary, unique network identifier (e.g., a name configured using an encryption algorithm in both devices), and use one of the parameters (e.g., time between two consecutive taps) as a unique password/key to establish a connection with one another. Once a communication is established, device 102-1 and the other device may retake or use their original device names or network identifiers. In a different implementation, validating the taps may involve causing a nearby device that is already in communication with device 102-1 to respond with one or more of the parameters or to validate the taps in any number of different ways.
  • Interaction with the other device may be performed (block 610). After device 102-1 determines that the taps are valid user input and identifies the other device used to produce the taps, tap-enabled application 508 in either device 102-1 or the other device may establish or terminate communication with one another. The interaction between the devices may depend on specifics of tap-enabled application 508 on device 102-1 and/or the other device, as illustrated in the examples described below. For example, if device 102-1 already has established a communication link with the other device, device 102-1 and the other device may terminate the communication link, interpreting taps as a cue or signal to decouple device 102-1 and the other device.
  • In some implementations, a process for establishing communication between and interacting with different devices based on taps may involve more than two devices. For example, in one implementation, devices 102-1 and 102-2 may be used in conjunction with a laptop. Tapping each of two devices 102-1 and 102-2 to different sides of the laptop may enable devices 102-1 and 102-2 to operate as a right-hand speaker and a left-hand speaker for the laptop.
  • Examples
  • FIGS. 8A-8F, 9A-9C, 10A-10C, 11A-11B, 12A-12B, and 13A-13B illustrate processes involved in interacting with various devices based on physical device-to-device contact. The example is consistent with exemplary process described above with respect to FIG. 6.
  • FIGS. 8A through 8C illustrate an example in which device 102-1 selects a peripheral for an audio output. In FIG. 8A, assume that acceleration of device 102-1 is being monitored via sensor 412. Signals from sensor 412 are used to determine if taps are present, and when, as illustrated in FIG. 8B, device 102-1 is tapped with headset 202-1, tap detector detects 506 the taps. Furthermore, parameters that are associated with the taps are obtained, and sent to headset 202-1. Headset 202-1 confirms that the taps are a valid input (e.g., matches the parameters to those related to taps that are detected by headset 202-1), and sends the confirmation to device 102-1. Upon receiving the confirmation, tap-enabled application 508 in device 102-1 channels an audio output to headset 202-1, which plays the audio output via speakers 702, as illustrated in FIG. 8C.
  • In the example, instead of selecting a particular peripheral based on a menu system, the user may select headset 202-1 to use with device 102-1 by simply tapping headset 202-1 to device 102-1.
  • FIGS. 8D through 8F illustrate an example in which device 102-1, headset 202-1, and device 102-2 interact. In FIG. 8D, assume device 102-2 has established a wireless communication with headset 202-1. In addition, assume that another user that owns device 102-1 wishes to temporarily borrow headset 202-1.
  • As illustrated in FIG. 8E, when device 102-1 is tapped with headset 202-1, tap detector 506 in headset 202-1 and/or device 102-1 detects the taps. Parameters that are associated with the taps are obtained by headset 202-1 and device 102-1, exchanged, and used to confirm (by either headset 202-1 or device 102-1) that the taps are valid input (e.g., matches the parameters to those related to taps that are detected by either headset 202-1 or device 102-1). Upon the confirmation, tap-enabled application 508 in headset 202-1/device 102-2 terminates a communication link between headset 202-1 and device 102-2. Furthermore, headset 202-1 and device 102-1 begin a communication session with each other, as illustrated in FIG. 8F.
  • In a different implementation, when headset 202-1 is tapped against device 102-2 (or vice versa), headset 202-1 and device 102-2 terminate the communication between headset 202-1 and device 102-2. When a user taps headset 202-1 against 101-1, headset 202-1 and device 101-1 start a new communication session with one another.
  • Switching between different peripherals and/or I/O devices in the manner described above may be convenient and easy for users. Furthermore, such switching may avoid multi-point connections that require significantly more power to maintain.
  • FIGS. 9A through 9C illustrate another example of interaction between devices based on physical device-to-device contact. As shown in FIG. 9A, the example involves a cell-phone like devices 902-1 and 902-2, which are different implementations of device 102-1. In the example, device 902-1 shows a photograph 904 on display 906-1.
  • As shown in FIG. 9B, device 902-2 is tapped against device 902-1. When device 902-2 is tapped against device 902-1, device 902-1 confirms that the taps are valid user input and identifies device 902-2 as the device that has been used to produce the taps. Thereafter, tap-enabled application 508 in device 902-1 uses display screen 906-1 on device 902-1 and display screen on 906-2 on device 902-2 to show enlarged picture 908 that expands the original image to span portions of both screens 906-1 and 906-2.
  • FIG. 10A through 10C illustrates yet another example of interaction between devices based on physical device-to-device contact. As shown in FIG. 10A, devices 902-1 and 902-2 show picture 908 on displays 906-1 and 906-2. Assume that a user wishes to switch from picture 908 to a second picture. To switch from picture 908 to another picture, the user places a finger 1002 on a side edge of display 906-1.
  • As shown in FIG. 10B, the user then sweeps finger 1002 across the surface of display 906-1 from the side edge toward the center of display 906-1. As finger 1002 sweeps the surface of display 906-1, a line 1004-1 at the side edge follows the finger to the position illustrated in FIG. 10B, revealing a portion of picture 1006. In addition, tap-enabled application 508 sends information related to finger 1002 and line 1004-1 to device 902-2, which causes line 1004-2 in display 904-2 to track line 1004-1. Movement of line 1004-2 reveals a different portion of picture 1006 on display 906-2.
  • FIG. 10C illustrates display 906-1 and 906-2 when finger 1002 completes its sweep across display 906-1. As illustrated, displays 906-1 and 906-2 show picture 1006.
  • FIGS. 11A and 11B illustrate yet another example of interaction between devices based on physical device-to-device contact. As illustrated in FIG. 11A, the example involves devices 902-1 and 902-2. In addition, display 906-1 of device 902-1 shows a screen full of thumbnail images in accordance with another implementation of tap-enabled application 508. In the example, devices 902-1 and 902-2 are tapped together, as in the previous examples.
  • When device 902-2 is tapped against device 902-1, device 902-1 confirms that the taps are valid user input and identifies device 902-2 as the device that has been used to produce the taps. Subsequently, when the user touches a thumbnail image 1102 with finger 1002 as shown in FIG. 11B, tap-enabled application 508 sends another image 1104 related to thumbnail image 1102 to device 902-2. Device 902-2 displays image 1104. In a different implementation, device 902-2 may access image 1104 from its own memory 402 or from a network.
  • FIGS. 12A and 12B illustrate yet another example of interaction between devices based on physical device-to-device contact. The example is similar to the example illustrated by FIGS. 11A and 11B, except that, in place of device 902-2, device 1202 (e.g., a laptop) is used.
  • FIGS. 13A and 13B illustrate still another example of interaction between devices based on physical device to-device contact. As shown in FIG. 13A, devices 102-1 and 102-2 are tapped against device 1202, whose tap-enabled application 508 is playing music. When devices 102-1 and 102-2 are tapped against device 1202, a process similar to those described above for different examples is performed. In addition, device 1202 sends each of audio signals that are associated with stereo sound to devices 102-1 and 102-2, respectively. Devices 102-1 and 102-2 may then act as left and right speakers for device 1202. Depending on the implementation, devices 102-1 and 102-1 may play the audio signals within a particular amount of time after the taps (e.g., 1 second after the taps). In some implementations, devices 102-1, 102-1, and 1202 may show coordinated music visualization graphics (e.g., waves).
  • The above example shows that causing a device to communicate with another device and/or interact with the other device based on taps may be convenient (e.g., there is no need for a user to navigate through a menu system on display 304), safe, (e.g., a communication link between the devices is not exposed to computer virus, spam, and/or other unwanted network data/messages until the taps are detected), and/or economical (e.g., no need to expend energy on maintaining a communication link until taps are detected).
  • CONCLUSION
  • The foregoing description of implementations provides illustration, but is not intended to be exhaustive or to limit the implementations to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the teachings.
  • For example, while a series of blocks has been described with regard to an exemplary process illustrated in FIG. 6, the order of the blocks may be modified in other implementations. In addition, non-dependent blocks may represent acts that can be performed in parallel to other blocks.
  • In yet another example, tap-enabled application 508 may send different types of information to tapped devices, such as information related to transferring electronic payment/cash, coupons, contact information, images, pieces of music (e.g., songs), text, etc. In some implementations, specific location of the taps may determine what information is transferred. For example, if device 102-1 is tapped on a side, device 102-1 may send a picture, and if device 102-1 is tapped on the top near speaker 302, device 102-1 may share a song with another device.
  • It will be apparent that aspects described herein may be implemented in many different forms of software, firmware, and hardware in the implementations illustrated in the figures. The actual software code or specialized control hardware used to implement aspects does not limit the invention. Thus, the operation and behavior of the aspects were described without reference to the specific software code—it being understood that software and control hardware can be designed to implement the aspects based on the description herein.
  • It should be emphasized that the term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components, or groups thereof.
  • Further, certain portions of the implementations have been described as “logic” that performs one or more functions. This logic may include hardware, such as a processor, an application specific integrated circuit, or a field programmable gate array, software, or a combination of hardware and software.
  • Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the invention. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification.
  • No element, act, or instruction used in the present application should be construed as critical or essential to the implementations described herein unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items. Where one item is intended, the term “one” or similar language is used. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (24)

1. (canceled)
2. The method of claim 23, where receiving a signal includes:
receiving the signal from an accelerometer,
the method further comprising:
determining whether the first device is tapped against the second device,
where determining whether the first device is tapped against the second device includes:
determining if samples of the signal match a predetermined acceleration pattern.
3. (canceled)
4. The method of claim 23, where sending the message includes:
sending the extracted parameters to the second device.
5. The method of claim 23, where extracting the parameters includes:
obtaining locations of the taps on a surface of the first device;
determining time between consecutive taps; or
determining time of occurrence of at least one of the taps.
6. The method of claim 4, where determining if the detected taps are valid user input includes:
receiving the response, the response indicating whether the extracted parameters match the parameters that are obtained from the taps on the second device.
7. The method of claim 23, where determining if the detected taps are valid user input includes:
determining if the parameters, included in the response, match the parameters that are extracted from the signal, when the first device is tapped against the second device; and
determining whether the taps are valid by comparing the parameters, included in the response, to the extracted parameters.
8. The method of claim 23, further comprising:
performing an application specific action when the taps are determined to be valid user input; and
performing a second application specific action in response to one or more subsequent taps between the first device and the second device, where the second application specific action includes:
coordinating at least one of an audio task or a visual task with the second device.
9. (canceled)
10. The method of claim 23, further comprising:
performing an application specific action when the taps are determined to be valid user input; and
performing a second application specific action in response to one or more subsequent taps between the first device and the second device, where the second application specific action includes at least one of:
receiving personal contact information from the second device,
conducting a commercial transaction with the second device, or
receiving a video clip, audio clip, image, or text from the second device.
11. The method of claim 23, further comprising:
performing an application specific action when the taps are determined to be valid user input; and
performing a second application specific action in response to subsequent taps between the first device and the second device, where performing the second application specific action includes at least one of:
terminating a communication session that has been established based on taps between the first device and the second device; or
causing the first device to terminate a communication session that has been established prior to taps between the first device and a third device.
12. A device comprising:
a sensor; and
a processor configured to:
receive a signal from the sensor;
detect taps based on the signal;
extract parameters that are associated with the detected taps;
send a request to a second device to verify if the extracted parameters match parameters that are obtained from taps by the second device;
determine if the detected taps are valid user input based on a response from the second device, the response including parameters that are obtained from taps by the second device; and
interact with the second device over a communication channel when the taps are valid user input.
13. The device of claim 12, where the parameters include at least one of:
time between consecutive taps; or
time of occurrence of a tap.
14. The device of claim 12, where the sensor includes at least one of:
an accelerometer; or
an electric field sensor.
15. The device of claim 12, where the second device includes at least one of:
a cell phone with a display or a speaker;
a headset; or
a laptop.
16. The device of claim 12, where the device comprises:
a cell phone.
17. The device of claim 12, where the communication channel includes:
a Bluetooth communication channel.
18. The device of claim 12, where the request includes the extracted parameters, and the response includes information that indicates whether the extracted parameters match the parameters that are obtained from taps by the second device.
19. (canceled)
20. The device of claim 12, where the processor is further configured to at least one of:
cause the second device to terminate a communication session that has been established prior to detected taps between the second device and a third device; or
terminate a communication session that has been established based on detected taps between the first device and the second device.
21. A method comprising:
receiving, at a first device, a signal from a sensor coupled to the first device;
determining, by the first device, whether the first device is tapped against a second device based the signal;
obtaining, by the first device, when the first device is determined to be tapped against the second device, parameters regarding taps that are detected based on the signal,
where obtaining parameters includes:
obtaining locations of the taps on a surface of the first device,
determining time between consecutive taps, or
determining time of occurrence of at least one of the taps;
sending, by the first device, a first message from the first device to the second device, the message including the parameters;
receiving, at the first device, a second message from the second device;
determining, by the first device, whether the taps are valid user input based on the second message from the second device; and
terminating, by the first device, a communication link between the second device and the first device when the taps are valid user input.
22. The method of claim 21, further comprising:
determining whether the first device is tapped against a third device;
receiving a message from the third device when the first device is tapped against the third device;
determining whether the taps are valid user input based on the message from the third device; and
establishing a communication link between the third device and the first device when the taps are valid user input.
23. A method comprising:
receiving, at a first device, a signal from a sensor associated with the first device;
detecting, by the first device, taps based on the signal;
extracting, by the first device, parameters that are associated with the detected taps;
sending, by the first device, a request to a second device to verify if the extracted parameters match parameters that are obtained from taps by the second device;
determining, by the first device, if the detected taps are valid user input based on a response from the second device, the response including parameters that are obtained from taps by the second device; and
interacting, using the first device, with the second device over a communication channel, when the taps are determined to be valid user input.
24. The method of claim 23, further comprising:
performing an application specific action when the taps are valid user input, where the performing the application specific action includes one of:
sending an audio signal to the second device for output by a speaker, or
sending a video signal to the second device for display.
US12/747,845 2007-12-12 2008-03-26 Interacting with devices based on physical device-to-device contact Abandoned US20110117841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/747,845 US20110117841A1 (en) 2007-12-12 2008-03-26 Interacting with devices based on physical device-to-device contact

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US1318007P 2007-12-12 2007-12-12
US11972712 2008-01-11
US11/972,712 US8482403B2 (en) 2007-12-12 2008-01-11 Interacting with devices based on physical device-to-device contact
US12/747,845 US20110117841A1 (en) 2007-12-12 2008-03-26 Interacting with devices based on physical device-to-device contact
PCT/IB2008/051132 WO2009074887A1 (en) 2007-12-12 2008-03-26 Interacting with devices based on physical device-to-device contact

Publications (1)

Publication Number Publication Date
US20110117841A1 true US20110117841A1 (en) 2011-05-19

Family

ID=40752457

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/972,712 Active 2031-06-28 US8482403B2 (en) 2007-12-12 2008-01-11 Interacting with devices based on physical device-to-device contact
US12/747,845 Abandoned US20110117841A1 (en) 2007-12-12 2008-03-26 Interacting with devices based on physical device-to-device contact

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/972,712 Active 2031-06-28 US8482403B2 (en) 2007-12-12 2008-01-11 Interacting with devices based on physical device-to-device contact

Country Status (6)

Country Link
US (2) US8482403B2 (en)
EP (1) EP2220855B1 (en)
JP (1) JP2011511335A (en)
CN (1) CN101889431A (en)
AT (1) ATE555593T1 (en)
WO (1) WO2009074887A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130125A1 (en) * 2008-11-21 2010-05-27 Nokia Corporation Method, Apparatus and Computer Program Product for Analyzing Data Associated with Proximate Devices
US20100144392A1 (en) * 2008-12-08 2010-06-10 Verizon Data Services Llc Accessory devices for mobile phones
US20100199092A1 (en) * 2009-02-02 2010-08-05 Apple Inc. Sensor derived authentication for establishing peer-to-peer networks
US20100221999A1 (en) * 2009-03-02 2010-09-02 Motorola, Inc. Method for selecting content for transfer or synchronization between devices
US20130052954A1 (en) * 2011-08-23 2013-02-28 Qualcomm Innovation Center, Inc. Data transfer between mobile computing devices
US20140220888A1 (en) * 2013-02-05 2014-08-07 Empire Technology Development Llc Secure near field communication (nfc) handshake
US20140242913A1 (en) * 2013-01-01 2014-08-28 Aliphcom Mobile device speaker control
US20140242912A1 (en) * 2013-02-25 2014-08-28 Nintendo Co., Ltd. Information processing system, computer-readable non-transitory storage medium having stored therein information processing program, information processing method, and information processing apparatus
US20140327526A1 (en) * 2012-04-30 2014-11-06 Charles Edgar Bess Control signal based on a command tapped by a user
US8965306B1 (en) * 2012-04-03 2015-02-24 Sprint Spectrum L.P. Wireless device communication
US20150106041A1 (en) * 2012-04-30 2015-04-16 Hewlett-Packard Development Company Notification based on an event identified from vibration data
US20170214780A1 (en) * 2014-07-07 2017-07-27 Acemsoa Diabetes Care Holdings Ag Improved device pairing with a dual use piezoelectric acoustic component and vibration sensor
US10201296B2 (en) 2010-11-11 2019-02-12 Ascensia Diabetes Care Holdings Ag Apparatus, systems, and methods adapted to transmit analyte data having common electronic architecture
US10432717B2 (en) 2014-01-10 2019-10-01 Ascensia Diabetes Care Holdings Ag Setup synchronization apparatus and methods for end user medical devices
US11237152B2 (en) 2014-04-11 2022-02-01 Ascensia Diabetes Care Holdings Ag Wireless transmitter adapters for battery-operated biosensor meters and methods of providing same
US11361863B2 (en) 2015-04-29 2022-06-14 Ascensia Diabetes Care Holdings Ag Location-based wireless diabetes management systems, methods and apparatus
US11765148B2 (en) * 2015-10-30 2023-09-19 Telefonaktiebolaget Lm Ericsson (Publ) Establishing a secret shared between a first communications device and at least one second communications device

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039561A (en) * 2006-08-04 2008-02-21 Nec Saitama Ltd Information communication terminal with acceleration sensor
US8294569B2 (en) 2007-12-12 2012-10-23 Sony Mobile Communications Ab Communication between devices based on device-to-device physical contact
US8482403B2 (en) 2007-12-12 2013-07-09 Sony Corporation Interacting with devices based on physical device-to-device contact
GB2472925B (en) * 2008-02-27 2012-07-25 Wms Gaming Inc Persistent device relationships in wagering game systems
EP2271946B8 (en) * 2008-04-30 2019-06-26 Movea S.A. Device for detecting a percussion event, and associated mobile system
GB2463638A (en) * 2008-09-01 2010-03-24 Anthony Richard Hardie-Bick Initiating data transfer between wireless communication devices by tapping them together.
US20100083189A1 (en) * 2008-09-30 2010-04-01 Robert Michael Arlein Method and apparatus for spatial context based coordination of information among multiple devices
WO2010047932A1 (en) * 2008-10-21 2010-04-29 Analog Devices, Inc. Tap detection
US8482520B2 (en) * 2009-01-30 2013-07-09 Research In Motion Limited Method for tap detection and for interacting with and a handheld electronic device, and a handheld electronic device configured therefor
US8442797B2 (en) * 2009-03-30 2013-05-14 Kionix, Inc. Directional tap detection algorithm using an accelerometer
EP2430820B1 (en) * 2009-05-11 2014-07-09 Sony Ericsson Mobile Communications AB Communication between devices based on device-to-device physical contact
EP2317729A1 (en) * 2009-10-28 2011-05-04 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Servers for device identification services
US9092783B2 (en) * 2009-10-16 2015-07-28 Microsoft Technology Licensing, Llc Viral distribution and tracking of electronic coupons
US8602875B2 (en) 2009-10-17 2013-12-10 Nguyen Gaming Llc Preserving game state data for asynchronous persistent group bonus games
US8290434B2 (en) * 2009-10-21 2012-10-16 Apple Inc. Method and apparatus for triggering network device discovery
US11990005B2 (en) 2009-11-12 2024-05-21 Aristocrat Technologies, Inc. (ATI) Gaming system supporting data distribution to gaming devices
US8864586B2 (en) 2009-11-12 2014-10-21 Nguyen Gaming Llc Gaming systems including viral gaming events
US9626826B2 (en) 2010-06-10 2017-04-18 Nguyen Gaming Llc Location-based real-time casino data
US8597108B2 (en) 2009-11-16 2013-12-03 Nguyen Gaming Llc Asynchronous persistent group bonus game
US8761809B2 (en) 2009-11-25 2014-06-24 Visa International Services Association Transaction using a mobile device with an accelerometer
EP2328142A1 (en) * 2009-11-27 2011-06-01 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method for detecting audio ticks in a noisy environment
EP2341417A1 (en) * 2009-12-31 2011-07-06 Sony Computer Entertainment Europe Limited Device and method of control
KR101637939B1 (en) * 2010-01-22 2016-07-20 삼성전자주식회사 Apparatus and method for motion detecting in mobile communication terminal
US8577292B2 (en) * 2010-02-03 2013-11-05 Google Inc. Bump validation
US9065532B2 (en) * 2010-02-03 2015-06-23 Google Inc. Bump button
US9213480B2 (en) 2010-04-08 2015-12-15 Nokia Technologies Oy Method, apparatus and computer program product for joining the displays of multiple devices
US8696470B2 (en) 2010-04-09 2014-04-15 Nguyen Gaming Llc Spontaneous player preferences
JPWO2012033107A1 (en) * 2010-09-06 2014-01-20 株式会社ウビ Communication terminal, server, and information communication system
EP2659729A2 (en) * 2010-10-20 2013-11-06 Yota Devices IPR Ltd Wireless network sharing device
US8723699B2 (en) * 2010-11-09 2014-05-13 Motorola Mobility Llc Method and apparatus for controlling a device
US9514276B2 (en) * 2010-11-12 2016-12-06 Physio-Control, Inc. Manually initiating wireless transmission of resuscitation event data to medical device
US9486704B2 (en) 2010-11-14 2016-11-08 Nguyen Gaming Llc Social gaming
US9564018B2 (en) 2010-11-14 2017-02-07 Nguyen Gaming Llc Temporary grant of real-time bonus feature
US9595161B2 (en) 2010-11-14 2017-03-14 Nguyen Gaming Llc Social gaming
US10052551B2 (en) * 2010-11-14 2018-08-21 Nguyen Gaming Llc Multi-functional peripheral device
US20180053374A9 (en) * 2010-11-14 2018-02-22 Binh T. Nguyen Multi-Functional Peripheral Device
US9235952B2 (en) 2010-11-14 2016-01-12 Nguyen Gaming Llc Peripheral management device for virtual game interaction
CN102566805A (en) * 2010-12-17 2012-07-11 英华达(南京)科技有限公司 File transmission method and communication system with file transmission function
CN105704841B (en) * 2010-12-28 2019-03-08 联想(北京)有限公司 The method and electronic equipment of information are exchanged between a kind of electronic equipment
WO2012092293A2 (en) 2010-12-30 2012-07-05 Visa International Service Association Mixed mode transaction protocol
DE102011013761A1 (en) * 2011-03-12 2012-09-13 Volkswagen Aktiengesellschaft Method for operating motor vehicle i.e. motor car, involves automatically initializing Bluetooth type communication link by shock sensor according to unique knocking of mobile telephone against motor vehicle at predetermined area
WO2012122939A1 (en) * 2011-03-15 2012-09-20 联想(北京)有限公司 Transmission processing method, apparatus and electronic device
US9264897B2 (en) * 2011-03-30 2016-02-16 Qualcomm Incorporated Pairing and authentication process between a host device and a limited input wireless device
JP2012247825A (en) * 2011-05-25 2012-12-13 Sony Corp Information processor, information processing method, program, and information processing system
CN102427378B (en) * 2011-07-29 2015-09-23 上海合合信息科技发展有限公司 Utilize data transmission method and the system of Bluetooth technology and acceleration induction technology
CN102427377A (en) * 2011-07-29 2012-04-25 上海合合信息科技发展有限公司 Data transmission method and system for establishing Bluetooth connection by using acceleration sensor
US9630096B2 (en) 2011-10-03 2017-04-25 Nguyen Gaming Llc Control of mobile game play on a mobile vessel
US9672686B2 (en) 2011-10-03 2017-06-06 Nguyen Gaming Llc Electronic fund transfer for mobile gaming
CN102624981A (en) * 2012-03-07 2012-08-01 华为终端有限公司 Data transmission method and device
WO2013131328A1 (en) * 2012-03-07 2013-09-12 中兴通讯股份有限公司 Dynamic interaction method and system for terminals
CN103313347A (en) * 2012-03-12 2013-09-18 联想(北京)有限公司 Method for establishing connection for mobile terminals, mobile terminals and server
CN103326747B (en) * 2012-03-23 2017-03-15 深圳富泰宏精密工业有限公司 Bluetooth file transmission system and method
US20130331116A1 (en) * 2012-06-06 2013-12-12 Microsoft Corporation Transmitting initiation details from a mobile device
US9325203B2 (en) 2012-07-24 2016-04-26 Binh Nguyen Optimized power consumption in a gaming device
WO2014027934A1 (en) * 2012-08-17 2014-02-20 Telefonaktiebolaget L M Ericsson (Publ) Sensor stimulation and response approach for mapping sensor network addresses to identification information
US10176666B2 (en) 2012-10-01 2019-01-08 Nguyen Gaming Llc Viral benefit distribution using mobile devices
CN103813322A (en) * 2012-11-06 2014-05-21 上海心动企业发展有限公司 Method for mutually authenticating users between mobile terminals by using collision manner
CN103813323B (en) * 2012-11-06 2015-12-09 心动网络股份有限公司 Carried out the method for user's certification mutually by collision mode between a kind of mobile terminal
CN103812995A (en) * 2012-11-07 2014-05-21 上海心动企业发展有限公司 Method of mutual user authentication between mobile terminals by collision way
CN103812993B (en) * 2012-11-07 2015-12-16 心动网络股份有限公司 Carried out the method for user's certification mutually by collision mode between a kind of mobile terminal
GB2509517B (en) * 2013-01-04 2021-03-10 Vertegaal Roel Computing apparatus
JP5862967B2 (en) * 2013-01-16 2016-02-16 ソニー株式会社 Display control apparatus, display control method, and program
US10421010B2 (en) 2013-03-15 2019-09-24 Nguyen Gaming Llc Determination of advertisement based on player physiology
US9600976B2 (en) 2013-03-15 2017-03-21 Nguyen Gaming Llc Adaptive mobile device gaming system
US11030851B2 (en) 2013-03-15 2021-06-08 Nguyen Gaming Llc Method and system for localized mobile gaming
US9814970B2 (en) 2013-03-15 2017-11-14 Nguyen Gaming Llc Authentication of mobile servers
US9483901B2 (en) 2013-03-15 2016-11-01 Nguyen Gaming Llc Gaming device docking station
KR102148645B1 (en) * 2013-03-15 2020-08-28 엘지전자 주식회사 Mobile terminal and method for controlling the same
CN104184563A (en) * 2013-05-23 2014-12-03 阿里巴巴集团控股有限公司 Data transmission method and system
US9699653B2 (en) 2013-07-24 2017-07-04 FiftyThree, Inc. Apparatuses for authenticating a wireless connection using time related user actions
WO2015010295A1 (en) * 2013-07-25 2015-01-29 Thomson Licensing Method and device for displaying objects
JP6387590B2 (en) * 2013-09-19 2018-09-12 セイコーエプソン株式会社 Display system, image display apparatus, and display system control method
CN104750656A (en) * 2013-12-29 2015-07-01 联想(北京)有限公司 Information processing method and electronic equipment
CN104808830B (en) * 2014-01-29 2019-03-15 联发科技(新加坡)私人有限公司 Screen touch electronic device and touch-control connection method
EP2916209B1 (en) 2014-03-03 2019-11-20 Nokia Technologies Oy Input axis between an apparatus and a separate apparatus
US20150268820A1 (en) * 2014-03-18 2015-09-24 Nokia Corporation Causation of a rendering apparatus to render a rendering media item
JP5920399B2 (en) * 2014-05-08 2016-05-18 カシオ計算機株式会社 Terminal device and program
CN105208683B (en) * 2014-05-28 2019-04-26 联想(北京)有限公司 A kind of determination method and apparatus of initiative equipment
US9986086B2 (en) 2014-07-31 2018-05-29 Samsung Electronics Co., Ltd. Mobile terminal and method of operating the same
KR20160016490A (en) * 2014-07-31 2016-02-15 삼성전자주식회사 Method and system for providing information on a time zone of an external device
KR101934930B1 (en) 2014-10-27 2019-01-04 에스케이텔레콤 주식회사 Apparatus and storage medium for mutually complementary motion recognition
DE102015100313B3 (en) * 2015-01-12 2016-05-04 Visteon Global Technologies Inc. Arrangement and method for the wireless connection of devices
CN104811481A (en) * 2015-04-01 2015-07-29 广东小天才科技有限公司 Data exchange method, device and equipment based on action matching
CN106161767B (en) * 2015-04-28 2020-09-11 北京智谷睿拓技术服务有限公司 Data transmission method and device
CN106302953A (en) * 2015-05-21 2017-01-04 中兴通讯股份有限公司 Coupling verification method, device and the equipment of a kind of terminal
CN105263194A (en) * 2015-09-18 2016-01-20 北京金山安全软件有限公司 Method and device for establishing communication connection between mobile equipment and fixed equipment
CN105451205A (en) * 2015-11-10 2016-03-30 北京奇虎科技有限公司 Intelligent wearable device matching method and device
US10916090B2 (en) 2016-08-23 2021-02-09 Igt System and method for transferring funds from a financial institution device to a cashless wagering account accessible via a mobile device
US11386747B2 (en) 2017-10-23 2022-07-12 Aristocrat Technologies, Inc. (ATI) Gaming monetary instrument tracking system
SG10201803628VA (en) * 2018-04-30 2019-11-28 Kaha Pte Ltd Methods and systems for establishing an operation between users based on identification of one or more user actions
GB2575983B (en) 2018-07-30 2022-08-10 Tappter Ltd System and method for verifying user connections
EP3867850A4 (en) * 2018-10-16 2022-07-13 Digimax Global Solutions Proximity electronic credit exchange system and method thereof
KR20210088401A (en) * 2020-01-06 2021-07-14 삼성전자주식회사 Electronic apparatus and the method thereof
CN111866379A (en) * 2020-07-03 2020-10-30 Oppo广东移动通信有限公司 Image processing method, image processing device, electronic equipment and storage medium
KR20230018909A (en) * 2021-07-30 2023-02-07 삼성전자주식회사 Electronic apparatus and method for controlling thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050219211A1 (en) * 2004-03-31 2005-10-06 Kotzin Michael D Method and apparatus for content management and control
US20060071904A1 (en) * 2004-10-05 2006-04-06 Samsung Electronics Co., Ltd. Method of and apparatus for executing function using combination of user's key input and motion
US20060256074A1 (en) * 2005-05-13 2006-11-16 Robert Bosch Gmbh Sensor-initiated exchange of information between devices
US20070273583A1 (en) * 2005-09-17 2007-11-29 Outland Research, Llc Pointing interface for person-to-person interaction through ad-hoc networks
US20090215397A1 (en) * 2007-12-12 2009-08-27 Sony Ericsson Mobile Communications Ab Communication between devices based on device-to-device physical contact

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634341B2 (en) * 2001-03-07 2009-12-15 1138037 Ontario Ltd. (“Alirt”) Detecting device and method of using same
US7027836B2 (en) * 2002-09-10 2006-04-11 Eastman Kodak Company Method and system for establishing a communication network
US20040203381A1 (en) 2002-12-31 2004-10-14 Cahn Janet E. Method and apparatus for data transfer
JP4189240B2 (en) * 2003-03-24 2008-12-03 アルプス電気株式会社 Mobile phone
JP2007513532A (en) * 2003-05-15 2007-05-24 ソニー エリクソン モバイル コミュニケーションズ, エービー Start secure communication
US8639819B2 (en) 2004-02-05 2014-01-28 Nokia Corporation Ad-hoc connection between electronic devices
WO2007034457A1 (en) 2005-09-23 2007-03-29 Koninklijke Philips Electronics, N.V. Presentation on a stationary device of information transmitted from a portable device
US7636794B2 (en) * 2005-10-31 2009-12-22 Microsoft Corporation Distributed sensing techniques for mobile devices
US7427926B2 (en) * 2006-01-26 2008-09-23 Microsoft Corporation Establishing communication between computing-based devices through motion detection
US8482403B2 (en) 2007-12-12 2013-07-09 Sony Corporation Interacting with devices based on physical device-to-device contact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050219211A1 (en) * 2004-03-31 2005-10-06 Kotzin Michael D Method and apparatus for content management and control
US20060071904A1 (en) * 2004-10-05 2006-04-06 Samsung Electronics Co., Ltd. Method of and apparatus for executing function using combination of user's key input and motion
US20060256074A1 (en) * 2005-05-13 2006-11-16 Robert Bosch Gmbh Sensor-initiated exchange of information between devices
US20070273583A1 (en) * 2005-09-17 2007-11-29 Outland Research, Llc Pointing interface for person-to-person interaction through ad-hoc networks
US20090215397A1 (en) * 2007-12-12 2009-08-27 Sony Ericsson Mobile Communications Ab Communication between devices based on device-to-device physical contact

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9614951B2 (en) * 2008-11-21 2017-04-04 Nokia Technologies Oy Method, apparatus and computer program product for analyzing data associated with proximate devices
US20100130125A1 (en) * 2008-11-21 2010-05-27 Nokia Corporation Method, Apparatus and Computer Program Product for Analyzing Data Associated with Proximate Devices
US20100144392A1 (en) * 2008-12-08 2010-06-10 Verizon Data Services Llc Accessory devices for mobile phones
US8630684B2 (en) * 2008-12-08 2014-01-14 Verizon Patent And Licensing Inc. Accessory devices for mobile phones
US8837716B2 (en) * 2009-02-02 2014-09-16 Apple Inc. Sensor derived authentication for establishing peer-to-peer networks
US20100199092A1 (en) * 2009-02-02 2010-08-05 Apple Inc. Sensor derived authentication for establishing peer-to-peer networks
US10089456B2 (en) 2009-02-02 2018-10-02 Apple Inc. Sensor derived authentication for establishing peer-to-peer networks
US10678904B2 (en) 2009-02-02 2020-06-09 Apple Inc. Sensor derived authentication for establishing peer-to-peer networks
US11734407B2 (en) 2009-02-02 2023-08-22 Apple Inc. Sensor derived authentication for establishing peer-to-peer networks
US11372962B2 (en) 2009-02-02 2022-06-28 Apple Inc. Sensor derived authentication for establishing peer-to-peer networks
US8131214B2 (en) * 2009-03-02 2012-03-06 Motorola Mobility, Inc. Method for selecting content for transfer or synchronization between devices
US20100221999A1 (en) * 2009-03-02 2010-09-02 Motorola, Inc. Method for selecting content for transfer or synchronization between devices
US11253175B2 (en) 2010-11-11 2022-02-22 Ascensia Diabetes Care Holdings Ag Apparatus, systems, and methods having common electronic architecture for communicating analyte data
US10201296B2 (en) 2010-11-11 2019-02-12 Ascensia Diabetes Care Holdings Ag Apparatus, systems, and methods adapted to transmit analyte data having common electronic architecture
US20130052954A1 (en) * 2011-08-23 2013-02-28 Qualcomm Innovation Center, Inc. Data transfer between mobile computing devices
US8965306B1 (en) * 2012-04-03 2015-02-24 Sprint Spectrum L.P. Wireless device communication
US20140327526A1 (en) * 2012-04-30 2014-11-06 Charles Edgar Bess Control signal based on a command tapped by a user
US20150106041A1 (en) * 2012-04-30 2015-04-16 Hewlett-Packard Development Company Notification based on an event identified from vibration data
US20140242913A1 (en) * 2013-01-01 2014-08-28 Aliphcom Mobile device speaker control
US9432088B2 (en) * 2013-02-05 2016-08-30 Empire Technology Development Llc Secure near field communication (NFC) handshake
US20140220888A1 (en) * 2013-02-05 2014-08-07 Empire Technology Development Llc Secure near field communication (nfc) handshake
US20150372720A1 (en) * 2013-02-05 2015-12-24 Empire Technology Development Llc Secure near field communication (nfc) handshake
WO2014123511A1 (en) * 2013-02-05 2014-08-14 Empire Technology Development, Llc Secure near field communication (nfc) handshake
US9154191B2 (en) * 2013-02-05 2015-10-06 Empire Technology Development Llc Secure near field communication (NFC) handshake
US20140242912A1 (en) * 2013-02-25 2014-08-28 Nintendo Co., Ltd. Information processing system, computer-readable non-transitory storage medium having stored therein information processing program, information processing method, and information processing apparatus
US10432717B2 (en) 2014-01-10 2019-10-01 Ascensia Diabetes Care Holdings Ag Setup synchronization apparatus and methods for end user medical devices
US10897503B2 (en) 2014-01-10 2021-01-19 Ascensia Diabetes Care Holdings Ag Setup synchronization apparatus and methods for end user medical devices
US11237152B2 (en) 2014-04-11 2022-02-01 Ascensia Diabetes Care Holdings Ag Wireless transmitter adapters for battery-operated biosensor meters and methods of providing same
US10306444B2 (en) * 2014-07-07 2019-05-28 Ascensia Diabetes Care Holdings Ag Device pairing with a dual use piezoelectric acoustic component and vibration sensor
US11064334B2 (en) * 2014-07-07 2021-07-13 Ascensia Diabetes Care Holdings Ag Device pairing with a dual use piezoelectric acoustic component and vibration sensor
US10582361B2 (en) 2014-07-07 2020-03-03 Ascensia Diabetes Care Holdings Ag Device pairing taking into account at least one condition
US20170214780A1 (en) * 2014-07-07 2017-07-27 Acemsoa Diabetes Care Holdings Ag Improved device pairing with a dual use piezoelectric acoustic component and vibration sensor
US11399269B2 (en) 2014-07-07 2022-07-26 Ascensia Diabetes Care Holdings Ag Device pairing taking into account at least one condition
US10142823B2 (en) 2014-07-07 2018-11-27 Ascensia Diabetes Care Holdings Ag Device pairing taking into account at least one condition
US11361863B2 (en) 2015-04-29 2022-06-14 Ascensia Diabetes Care Holdings Ag Location-based wireless diabetes management systems, methods and apparatus
US11765148B2 (en) * 2015-10-30 2023-09-19 Telefonaktiebolaget Lm Ericsson (Publ) Establishing a secret shared between a first communications device and at least one second communications device

Also Published As

Publication number Publication date
EP2220855B1 (en) 2012-04-25
CN101889431A (en) 2010-11-17
US20090153342A1 (en) 2009-06-18
EP2220855A1 (en) 2010-08-25
US8482403B2 (en) 2013-07-09
ATE555593T1 (en) 2012-05-15
WO2009074887A1 (en) 2009-06-18
JP2011511335A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
US8482403B2 (en) Interacting with devices based on physical device-to-device contact
US10420064B2 (en) Tactile feedback in an electronic device
US8294569B2 (en) Communication between devices based on device-to-device physical contact
EP1994462B1 (en) Electronic equipment with data transfer function using motion and method
US8547342B2 (en) Gesture-based delivery from mobile device
US9319402B2 (en) Digital handshake for authentication of devices
EP2430820B1 (en) Communication between devices based on device-to-device physical contact
KR20140136633A (en) Method and apparatus for executing application in portable electronic device
CN106921791B (en) Multimedia file storage and viewing method and device and mobile terminal
EP2764420A1 (en) Providing common interface mode based on image analysis
JP5130409B1 (en) Communication system and communication terminal connection method
JP2011071580A (en) Electronic apparatus and data transmission/reception system
WO2018232646A1 (en) Mobile terminal with adaptive playing capability and related product
KR20170046122A (en) Method for rotating a displaying information using multi touch and terminal thereof
CN113064537A (en) Media resource playing method, device, equipment, medium and product

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY ERICSSON MOBILE COMMUNICATIONS AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THORN, OLA KARL;TRIP, BARTELD;HUPKES, ERNST;SIGNING DATES FROM 20101108 TO 20110107;REEL/FRAME:025716/0696

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION