US20110091830A1 - Baking system for a gas cooking appliance - Google Patents

Baking system for a gas cooking appliance Download PDF

Info

Publication number
US20110091830A1
US20110091830A1 US12/603,256 US60325609A US2011091830A1 US 20110091830 A1 US20110091830 A1 US 20110091830A1 US 60325609 A US60325609 A US 60325609A US 2011091830 A1 US2011091830 A1 US 2011091830A1
Authority
US
United States
Prior art keywords
heat source
gas
cooking appliance
oven cavity
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/603,256
Inventor
Daniel Joseph Trice
Heather Ann Thomas
Justin Todd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/603,256 priority Critical patent/US20110091830A1/en
Priority to CA2715679A priority patent/CA2715679A1/en
Priority to US13/008,310 priority patent/US8776776B2/en
Publication of US20110091830A1 publication Critical patent/US20110091830A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/12Arrangement or mounting of control or safety devices
    • F24C3/126Arrangement or mounting of control or safety devices on ranges
    • F24C3/128Arrangement or mounting of control or safety devices on ranges in baking ovens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/08Arrangement or mounting of burners
    • F24C3/085Arrangement or mounting of burners on ranges
    • F24C3/087Arrangement or mounting of burners on ranges in baking ovens

Definitions

  • the present disclosure relates generally to cooking appliances, and in particular to controlling a bake cooking cycle in a gas oven cavity of a gas cooking appliance.
  • cooking appliances such as gas ranges cycle a single heat source during a bake cooking cycle within an oven cavity of the cooking appliance.
  • This single heat source is generally at a bottom of the oven cavity and beneath the items being baked.
  • the cycling of a single heat source e.g. turning the heat source on and off located beneath the items may result in uneven cooking.
  • the bottom of the items may be seared or browned while the top(s) of the items remain substantially free from browning.
  • the exemplary embodiments overcome one or more of the above or other disadvantages known in the art.
  • the gas cooking appliance includes a gas oven cavity for baking a food item, the gas oven cavity including a top surface and a bottom surface.
  • the gas cooking appliance also includes a first heat source disposed adjacent the bottom surface of the gas oven cavity, a second heat source disposed adjacent the top surface of the gas oven cavity, and a controller configured to cycle the first heat source and the second heat source for providing heat above and below the food item during baking.
  • Another aspect of the exemplary embodiments relates to a system for cycling a first heat source and a second heat source during a bake cycle of a gas cooking appliance, the gas cooking appliance having a gas oven cavity and the first heat source and the second heat source are disposed inside the gas oven cavity.
  • the system includes a controller configured to cycle the first heat source and the second heat source for providing heat above and below food items placed within the gas cooking appliance, and the gas oven cavity includes a top surface and a bottom surface, the first heat source being disposed adjacent the bottom surface and the second heat source being disposed adjacent the top surface.
  • Still another aspect of the disclosed embodiments relates to a method for cycling a first heat source and second heat source of a gas cooking appliance during baking, where the gas cooking appliance includes a controller and a gas oven cavity having a top surface and a bottom surface, the first heat source being disposed adjacent the bottom surface and the second heat source being disposed adjacent the top surface.
  • the method includes activating one of the first heat source and second heat source with the controller, activating another one of the first heat source and second heat source with the controller, and between activation of the one of the first heat source and second heat source and/or the another of the first heat source and second heat source, deactivating both of the first heat source and the second heat source with the controller for a predetermined period of time, wherein at least one of the first heat source and second heat source comprises a gas burner.
  • FIG. 1 is a schematic illustration of an exemplary gas cooking appliance incorporating aspects of the disclosed embodiments
  • FIG. 2 is a schematic illustration of a portion of the appliance of FIG. 1 in accordance with an exemplary embodiment
  • FIG. 3 is an exemplary flow diagram illustrating aspects of the disclosed embodiments.
  • a cooking appliance 100 is provided.
  • the cooking appliance 100 may be any suitable cooking appliance, including but not limited to gas cooking appliances.
  • the cooking appliance 100 is configured as a free standing range.
  • the embodiments of the invention are described herein with respect to a free standing range, the aspects of the disclosed embodiments may be applied to any suitable cooking appliance with/without a cooktop and/or oven substantially similar to that described herein.
  • the cooking appliance 100 of FIG. 1 is a gas operated cooking appliance having an oven 120 .
  • the oven 120 of FIG. 1 includes a gas cavity or gas oven cavity 200 having first and second heat sources.
  • the first and second heat sources are configured to be cycled (e.g. selectively turned on and off) for providing heat both above and below cooking items, such as food, being baked within the gas oven cavity 200 .
  • the cooking appliance 100 includes a frame or housing 130 . Internal cavities are formed within the housing 130 , such as the gas oven cavity 200 of the oven 120 , and/or drawer/mini-oven 140 for storing/baking items.
  • the cooktop 110 includes one or more cooking grates 105 and respective burners 106 that are controlled in any suitable manner. In one example, each of the burners 106 may be controlled by a respective control knob 150 that is configured to regulate, for example, an amount of fuel provided to the respective burner.
  • the cooking appliance 100 may also include a control unit 170 for controlling the heat sources within the gas oven cavity 200 .
  • the control unit 170 may be suitably configured to control baking, broiling, cleaning, or other operations of the oven 120 .
  • the gas oven cavity 200 of the oven 120 includes side surfaces 200 S, a top surface 200 T and a bottom surface 200 B.
  • the side surfaces 200 S may include one or more sets of protrusions 260 or other suitable support members.
  • the protrusions 260 are configured so that oven racks 231 - 233 may be placed on the protrusions 260 for supporting items within the gas oven cavity 200 during, for example, a bake cooking cycle or baking
  • a first heat source 210 is disposed within the gas oven cavity 200 adjacent the bottom surface 200 B.
  • a second heat source 211 is disposed within the gas oven cavity 200 adjacent the top surface 200 T.
  • the first and second heat sources 210 , 211 are gas burners.
  • an electrically powered heat source such as an electric heating element, conventional resistance heaters, ceramic or halogen type radiant heaters, or other suitable electrically powered heat source(s) may be disposed adjacent the top surface 200 T in addition to or in lieu of the gas burner 211 .
  • one or more of the first and the second heat sources may be, for example, an electric heating element or a gas heating element such as radiant gas or ceramic burners.
  • the first and second gas burners 210 , 211 are of conventional design and obtain fuel from a suitable fuel supply or source 290 .
  • the control unit 170 is configured to control an amount of fuel provided by the fuel source 290 to a respective one of the first and second gas burners 210 , 211 .
  • the control unit 170 may control one or more valves, solenoids, or other flow control devices 250 for adjusting an amount of fuel provided by the fuel source 290 to each of the first and second heat sources 210 , 211 .
  • the control unit 170 may be configured to control one or more variable resistive devices (in addition to at least one gas burner) where the gas oven cavity 200 includes electrically powered heat source for controlling the output power of the electrically powered heat source.
  • the control unit 170 controls the amount of fuel provided to the first and second gas burners 210 , 211 , to selectively cycle the burners on and off. In this manner, the tops and bottoms of the items being baked (e.g. located on the racks 231 ) are substantially evenly browned or cooked.
  • the controller 170 cycles the first heat source 210 , which is located beneath the items being baked, on for a first predetermined length of time ( FIG. 3 , Block 300 ).
  • the first predetermined length of time is generally a length of time needed to achieve and/or maintain a predetermined temperature within the gas oven cavity 200 .
  • the first heat source 210 After expiration of the first predetermined length of time the first heat source 210 is turned off or deactivated for a second predetermined length of time.
  • the second heat source 211 is then activated for a third predetermined length of time for providing heat above the items being baked.
  • the third predetermined length of time is generally sufficient to achieve and/or maintain the predetermined temperature within the gas oven cavity 200 .
  • the second heat source 211 is turned off or deactivated for a fourth predetermined length of time before the cycling of one of the first or second heat sources 210 , 211 continues (e.g. is repeated).
  • the second and fourth lengths of time e.g.
  • the time periods which the first and second heat sources 210 , 211 are off) are generally sufficiently long enough to ensure substantially complete combustion of the fuel provided to a respective one of the first and second heat sources 210 , 211 and/or to ensure a sufficient fuel supply to both the first and second heat sources 210 , 211 .
  • the first heat source 210 is a 20,000 BTU/hr heat source and the second heat source 211 is a 14,500 BTU/hr heat source.
  • one or more of the first and second heat source may be an infrared heat source. Operation of these heat sources 210 , 211 may be controlled differently depending on an operational temperature range or band of the gas oven cavity 200 . In one aspect of the exemplary embodiments, operation of the heat sources 210 , 211 is divided into two or more temperature ranges for baking For example, a first temperature range corresponds to baking temperatures below about 390 degrees Fahrenheit and a second temperature range corresponds to baking temperatures above about 390 degrees Fahrenheit.
  • the control unit 170 is configured such that the first and second heat sources 210 , 211 are activated and deactivated differently for each of the temperature ranges.
  • the first heat source 210 is activated for about 45 seconds (e.g. the first predetermined length of time). After about 45 seconds the first heat source 210 is deactivated for about 10 seconds (e.g. the second predetermined length of time).
  • the second heat source 211 is then activated for about 30 seconds (e.g. the third predetermined length of time) for providing heat above the items being baked. After about 30 seconds the second heat source 211 is deactivated for about 15 seconds (e.g.
  • the first heat source 210 is activated for about 35 seconds (e.g. the first predetermined length of time). After about 35 seconds the first heat source 210 is deactivated for about 10 seconds (e.g. the second predetermined length of time). The second heat source 211 is then activated for about 40 seconds (e.g. the third predetermined length of time) for providing heat above the items being baked. After about 40 seconds, the second heat source 211 is deactivated for about 15 seconds (e.g.
  • the fourth predetermined length of time) before the cycling of the first and second heat sources 210 , 211 is repeated.
  • the temperature ranges and corresponding heat source on/off time periods described above are for exemplary purposes only and that in other examples the temperature ranges and heat source on/off time periods may be other suitable temperature ranges and time periods.
  • the oven can be operated at any suitable temperature for baking foods.
  • a user may select a desired baking temperature and/or baking time.
  • the user may select pre-programmed time temperature combinations for certain types of baked goods. If the user selected baking temperature is (or all the temperatures of a select pre-programmed time temperature combination are) below, for example, about 390 degrees the first and second heat sources will be cycled as described above for baking temperatures below about 390 degrees Fahrenheit.
  • the first and second heat sources will be cycled as described above for baking temperatures above about 390 degrees Fahrenheit. If a pre-programmed time temperature combination is selected a combination of the operational cycles for the first and second heat sources may be used. For example, if the first timed temperature is about 425 degrees Fahrenheit the first and second heat sources will be cycled as described above for temperature above about 390 degrees for the predetermined time period.
  • the operational cycling of the first and second heat sources 210 , 211 will be switched so that the first and second heat sources 210 , 211 are cycled as described above for temperatures below about 390 degrees.
  • the fuel pressure provided by the fuel source 290 may be limited such that both the first and second heat sources 210 , 211 cannot be activated simultaneously.
  • an electric powered heat source such as an electric resistive heater or radiant element may be disposed adjacent the top 200 T of the gas oven cavity 200 and be used in lieu of or in addition to the gas element 211 in a manner substantially similar to that described above with respect to the cycling of the first and second heat sources 210 , 211 .
  • first and second heat sources 210 , 211 do not have to be cycled alternately.
  • the fuel to the first and second heat sources 210 , 211 may be modulated between the first and second heat sources 210 , 211 through suitable valving so that sufficient gas pressure to each heat source is assured as is complete combustion of the supplied gas.
  • the amount of fuel provided to each of the first and second heat sources 210 , 211 may be adjusted as needed to provide a desired temperature towards the bottom and top of the oven cavity during the baking cycle so that sufficient browning of the food is achieved.
  • the control unit 170 may include any suitable components for effecting the cycling of the first and second heat sources 210 , 211 as is described herein.
  • the control unit 170 may include a memory 171 for storing information and data related to the execution of the processes described herein, such as for example, the cycling rate control data for the burners.
  • the cycling rate control data can be specified by, for example, the manufacturer of the cooking appliance 100 (or any other suitable entity) during manufacture of the cooking appliance 100 or during service of the cooking appliance 100 in the field.
  • the memory may include any other suitable memory, storage device or computer readable storage medium.
  • the control unit 170 can also include one or more processors configured to access, for example, the memory 171 for obtaining the cycling rate control data and for controlling the cycling and an amount of heat produced by the first heat source and/or second heat source during baking in response to inputs to the control unit 170 .
  • the processor(s) and/or memory may include, or have embodied thereon, any suitable computer readable program code for executing the processes and control of the cooking appliance 100 as described herein.

Abstract

A gas cooking appliance including a gas oven cavity for baking a food item, the gas oven cavity including a top surface and a bottom surface, a first heat source disposed adjacent the bottom surface of the gas oven cavity, a second heat source disposed adjacent the top surface of the gas oven cavity, and a controller configured to cycle the first heat source and the second heat source for providing heat above and below the food item during baking

Description

    BACKGROUND OF THE INVENTION
  • The present disclosure relates generally to cooking appliances, and in particular to controlling a bake cooking cycle in a gas oven cavity of a gas cooking appliance.
  • Generally, cooking appliances such as gas ranges cycle a single heat source during a bake cooking cycle within an oven cavity of the cooking appliance. This single heat source is generally at a bottom of the oven cavity and beneath the items being baked. The cycling of a single heat source (e.g. turning the heat source on and off) located beneath the items may result in uneven cooking. For example, the bottom of the items may be seared or browned while the top(s) of the items remain substantially free from browning.
  • It would be advantageous to be able to provide multiple heat sources in a gas oven cavity that addresses the problems identified above.
  • BRIEF DESCRIPTION OF THE INVENTION
  • As described herein, the exemplary embodiments overcome one or more of the above or other disadvantages known in the art.
  • One aspect of the exemplary embodiments relates to a gas cooking appliance. The gas cooking appliance includes a gas oven cavity for baking a food item, the gas oven cavity including a top surface and a bottom surface. The gas cooking appliance also includes a first heat source disposed adjacent the bottom surface of the gas oven cavity, a second heat source disposed adjacent the top surface of the gas oven cavity, and a controller configured to cycle the first heat source and the second heat source for providing heat above and below the food item during baking.
  • Another aspect of the exemplary embodiments relates to a system for cycling a first heat source and a second heat source during a bake cycle of a gas cooking appliance, the gas cooking appliance having a gas oven cavity and the first heat source and the second heat source are disposed inside the gas oven cavity. The system includes a controller configured to cycle the first heat source and the second heat source for providing heat above and below food items placed within the gas cooking appliance, and the gas oven cavity includes a top surface and a bottom surface, the first heat source being disposed adjacent the bottom surface and the second heat source being disposed adjacent the top surface.
  • Still another aspect of the disclosed embodiments relates to a method for cycling a first heat source and second heat source of a gas cooking appliance during baking, where the gas cooking appliance includes a controller and a gas oven cavity having a top surface and a bottom surface, the first heat source being disposed adjacent the bottom surface and the second heat source being disposed adjacent the top surface. The method includes activating one of the first heat source and second heat source with the controller, activating another one of the first heat source and second heat source with the controller, and between activation of the one of the first heat source and second heat source and/or the another of the first heat source and second heat source, deactivating both of the first heat source and the second heat source with the controller for a predetermined period of time, wherein at least one of the first heat source and second heat source comprises a gas burner.
  • These as other aspects and advantages of the exemplary embodiments will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for the purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. Moreover, the drawings are not necessarily to scale and, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein. In addition, any suitable size, shape or type of elements or materials could be used.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings:
  • FIG. 1 is a schematic illustration of an exemplary gas cooking appliance incorporating aspects of the disclosed embodiments;
  • FIG. 2 is a schematic illustration of a portion of the appliance of FIG. 1 in accordance with an exemplary embodiment; and
  • FIG. 3 is an exemplary flow diagram illustrating aspects of the disclosed embodiments.
  • DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS OF THE INVENTION
  • In one exemplary embodiment, referring to FIG. 1 a cooking appliance 100 is provided. The cooking appliance 100 may be any suitable cooking appliance, including but not limited to gas cooking appliances. In the examples described herein, the cooking appliance 100 is configured as a free standing range. However, it should be understood that while the embodiments of the invention are described herein with respect to a free standing range, the aspects of the disclosed embodiments may be applied to any suitable cooking appliance with/without a cooktop and/or oven substantially similar to that described herein.
  • In one embodiment, the cooking appliance 100 of FIG. 1 is a gas operated cooking appliance having an oven 120. The oven 120 of FIG. 1 includes a gas cavity or gas oven cavity 200 having first and second heat sources. The first and second heat sources are configured to be cycled (e.g. selectively turned on and off) for providing heat both above and below cooking items, such as food, being baked within the gas oven cavity 200.
  • As illustrated in FIG. 1, the cooking appliance 100 includes a frame or housing 130. Internal cavities are formed within the housing 130, such as the gas oven cavity 200 of the oven 120, and/or drawer/mini-oven 140 for storing/baking items. The cooktop 110 includes one or more cooking grates 105 and respective burners 106 that are controlled in any suitable manner. In one example, each of the burners 106 may be controlled by a respective control knob 150 that is configured to regulate, for example, an amount of fuel provided to the respective burner. The cooking appliance 100 may also include a control unit 170 for controlling the heat sources within the gas oven cavity 200. The control unit 170 may be suitably configured to control baking, broiling, cleaning, or other operations of the oven 120.
  • Referring to FIG. 2, the gas oven cavity 200 of the oven 120 includes side surfaces 200S, a top surface 200T and a bottom surface 200B. The side surfaces 200S may include one or more sets of protrusions 260 or other suitable support members. The protrusions 260 are configured so that oven racks 231-233 may be placed on the protrusions 260 for supporting items within the gas oven cavity 200 during, for example, a bake cooking cycle or baking A first heat source 210 is disposed within the gas oven cavity 200 adjacent the bottom surface 200B. A second heat source 211 is disposed within the gas oven cavity 200 adjacent the top surface 200T. In one aspect of the exemplary embodiments, the first and second heat sources 210, 211 are gas burners. In other aspects of the exemplary embodiments an electrically powered heat source such as an electric heating element, conventional resistance heaters, ceramic or halogen type radiant heaters, or other suitable electrically powered heat source(s) may be disposed adjacent the top surface 200T in addition to or in lieu of the gas burner 211. In still other aspects of the exemplary embodiments, one or more of the first and the second heat sources may be, for example, an electric heating element or a gas heating element such as radiant gas or ceramic burners.
  • In this example, the first and second gas burners 210, 211 are of conventional design and obtain fuel from a suitable fuel supply or source 290. In one aspect of the exemplary embodiments, the control unit 170 is configured to control an amount of fuel provided by the fuel source 290 to a respective one of the first and second gas burners 210, 211. For example, the control unit 170 may control one or more valves, solenoids, or other flow control devices 250 for adjusting an amount of fuel provided by the fuel source 290 to each of the first and second heat sources 210, 211. In other examples, the control unit 170 may be configured to control one or more variable resistive devices (in addition to at least one gas burner) where the gas oven cavity 200 includes electrically powered heat source for controlling the output power of the electrically powered heat source.
  • During baking, the control unit 170 controls the amount of fuel provided to the first and second gas burners 210, 211, to selectively cycle the burners on and off. In this manner, the tops and bottoms of the items being baked (e.g. located on the racks 231) are substantially evenly browned or cooked. For example, during baking the controller 170 cycles the first heat source 210, which is located beneath the items being baked, on for a first predetermined length of time (FIG. 3, Block 300). The first predetermined length of time is generally a length of time needed to achieve and/or maintain a predetermined temperature within the gas oven cavity 200. After expiration of the first predetermined length of time the first heat source 210 is turned off or deactivated for a second predetermined length of time. The second heat source 211 is then activated for a third predetermined length of time for providing heat above the items being baked. The third predetermined length of time is generally sufficient to achieve and/or maintain the predetermined temperature within the gas oven cavity 200. At the expiration of this third predetermined length of time, the second heat source 211 is turned off or deactivated for a fourth predetermined length of time before the cycling of one of the first or second heat sources 210, 211 continues (e.g. is repeated). The second and fourth lengths of time (e.g. the time periods which the first and second heat sources 210, 211 are off) are generally sufficiently long enough to ensure substantially complete combustion of the fuel provided to a respective one of the first and second heat sources 210, 211 and/or to ensure a sufficient fuel supply to both the first and second heat sources 210, 211.
  • For exemplary purposes only, in one embodiment, the first heat source 210 is a 20,000 BTU/hr heat source and the second heat source 211 is a 14,500 BTU/hr heat source. In alternate embodiments one or more of the first and second heat source may be an infrared heat source. Operation of these heat sources 210, 211 may be controlled differently depending on an operational temperature range or band of the gas oven cavity 200. In one aspect of the exemplary embodiments, operation of the heat sources 210, 211 is divided into two or more temperature ranges for baking For example, a first temperature range corresponds to baking temperatures below about 390 degrees Fahrenheit and a second temperature range corresponds to baking temperatures above about 390 degrees Fahrenheit. The control unit 170 is configured such that the first and second heat sources 210, 211 are activated and deactivated differently for each of the temperature ranges. In one exemplary operation of the first and second heat sources 210, 211 during baking at temperatures below about 390 degrees Fahrenheit, the first heat source 210 is activated for about 45 seconds (e.g. the first predetermined length of time). After about 45 seconds the first heat source 210 is deactivated for about 10 seconds (e.g. the second predetermined length of time). The second heat source 211 is then activated for about 30 seconds (e.g. the third predetermined length of time) for providing heat above the items being baked. After about 30 seconds the second heat source 211 is deactivated for about 15 seconds (e.g. the fourth predetermined length of time) before the cycling of the first and second heat sources 210, 211 is repeated. In another exemplary operation of the first and second heat sources 210, 211 during baking at temperatures above about 390 degrees Fahrenheit, the first heat source 210 is activated for about 35 seconds (e.g. the first predetermined length of time). After about 35 seconds the first heat source 210 is deactivated for about 10 seconds (e.g. the second predetermined length of time). The second heat source 211 is then activated for about 40 seconds (e.g. the third predetermined length of time) for providing heat above the items being baked. After about 40 seconds, the second heat source 211 is deactivated for about 15 seconds (e.g. the fourth predetermined length of time) before the cycling of the first and second heat sources 210, 211 is repeated. It should be understood that the temperature ranges and corresponding heat source on/off time periods described above are for exemplary purposes only and that in other examples the temperature ranges and heat source on/off time periods may be other suitable temperature ranges and time periods.
  • It should be understood that while the operative cycling of the first and second heat sources 210, 211 is divided into the two temperature ranges describe above, the oven can be operated at any suitable temperature for baking foods. For example, a user may select a desired baking temperature and/or baking time. Alternatively the user may select pre-programmed time temperature combinations for certain types of baked goods. If the user selected baking temperature is (or all the temperatures of a select pre-programmed time temperature combination are) below, for example, about 390 degrees the first and second heat sources will be cycled as described above for baking temperatures below about 390 degrees Fahrenheit. If the user selected baking temperature is (or all the temperatures of a select pre-programmed time temperature combination are) above, for example, about 390 degrees the first and second heat sources will be cycled as described above for baking temperatures above about 390 degrees Fahrenheit. If a pre-programmed time temperature combination is selected a combination of the operational cycles for the first and second heat sources may be used. For example, if the first timed temperature is about 425 degrees Fahrenheit the first and second heat sources will be cycled as described above for temperature above about 390 degrees for the predetermined time period. If the second timed temperature in the pre-programmed time temperature combination is about 250 degrees Fahrenheit the operational cycling of the first and second heat sources 210, 211 will be switched so that the first and second heat sources 210, 211 are cycled as described above for temperatures below about 390 degrees.
  • By cycling the first and second heat sources 210, 211, and leaving sufficient time off between the cycles, sufficient gas pressure to each heat source is assured as is complete combustion of the supplied gas, since the first and second heat sources are never on simultaneously. For example, the fuel pressure provided by the fuel source 290 may be limited such that both the first and second heat sources 210, 211 cannot be activated simultaneously. It is noted that in other alternate embodiments, an electric powered heat source, such as an electric resistive heater or radiant element may be disposed adjacent the top 200T of the gas oven cavity 200 and be used in lieu of or in addition to the gas element 211 in a manner substantially similar to that described above with respect to the cycling of the first and second heat sources 210, 211. It is also noted that while the above example illustrates an alternating cycling of the first and second heat sources 210, 211, it should be understood that the first and second heat sources 210, 211 do not have to be cycled alternately. For example, the fuel to the first and second heat sources 210, 211 may be modulated between the first and second heat sources 210, 211 through suitable valving so that sufficient gas pressure to each heat source is assured as is complete combustion of the supplied gas. The amount of fuel provided to each of the first and second heat sources 210, 211 may be adjusted as needed to provide a desired temperature towards the bottom and top of the oven cavity during the baking cycle so that sufficient browning of the food is achieved.
  • The control unit 170 may include any suitable components for effecting the cycling of the first and second heat sources 210, 211 as is described herein. In one embodiment, the control unit 170 may include a memory 171 for storing information and data related to the execution of the processes described herein, such as for example, the cycling rate control data for the burners. In one embodiment, the cycling rate control data can be specified by, for example, the manufacturer of the cooking appliance 100 (or any other suitable entity) during manufacture of the cooking appliance 100 or during service of the cooking appliance 100 in the field. The memory may include any other suitable memory, storage device or computer readable storage medium. The control unit 170 can also include one or more processors configured to access, for example, the memory 171 for obtaining the cycling rate control data and for controlling the cycling and an amount of heat produced by the first heat source and/or second heat source during baking in response to inputs to the control unit 170. The processor(s) and/or memory may include, or have embodied thereon, any suitable computer readable program code for executing the processes and control of the cooking appliance 100 as described herein.
  • Thus, while there have been shown and described and pointed out fundamental novel features of the invention as applied to the exemplary embodiments thereof, it will be understood that various omission and substitutions and changes in the form and details of devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps, which perform substantially the same way to achieve the same results, are with the scope of the invention. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.

Claims (17)

1. A gas cooking appliance comprising:
a gas oven cavity for baking an food item, the gas oven cavity including a top surface and a bottom surface;
a first heat source disposed adjacent the bottom surface of the gas oven cavity;
a second heat source disposed adjacent the top surface of the gas oven cavity; and
a controller configured to cycle the first heat source and the second heat source for providing heat above and below the food item during baking.
2. The gas cooking appliance of claim 1, wherein at least one of the first heat source and second heat source comprises a gas burner.
3. The gas cooking appliance of claim 1, wherein the second heat source comprises at least one of a gas burner, or an electric heating element.
4. The gas cooking appliance of claim 1, wherein the controller is configured to cycle the first heat source and the second heat source such that between activation of one of the first heat source and the second heat source, the first heat source and the second heat source are off for a predetermined period of time.
5. The gas cooking appliance of claim 4, wherein the predetermined period of time is selected to allow for sufficient fuel pressure for activation of that one of the first heat source and second heat source that is to be activated.
6. The gas cooking appliance of claim 4, wherein the predetermined period of time is selected to allow for substantially complete combustion of fuel by that one of the first heat source and second heat source that has been deactivated.
7. A system for cycling a first heat source and a second heat source during a bake cycle of a gas cooking appliance, the gas cooking appliance having a gas oven cavity and the first heat source and the second heat source are disposed inside the gas oven cavity, the system comprising:
a controller configured to cycle the first heat source and the second heat source for providing heat above and below a food item placed within the gas cooking appliance; and
the gas oven cavity includes a top surface and a bottom surface, the first heat source being disposed adjacent the bottom surface and the second heat source being disposed adjacent the top surface.
8. The system of claim 7, wherein the controller comprises a memory, the memory including selectable parameters for specifying the cycling of the first heat source and the second heat source.
9. The system of claim 7, wherein at least one of the first heat source and the second heat source comprises a gas burner.
10. The system of claim 7, wherein the second heat source comprises at least one of a gas burner, and an electric heating element.
11. The system of claim 7, wherein the controller is configured to cycle the first heat source and the second heat source such that between activation of one of the first heat source and the second heat source, the first heat source and second heat source are off for a predetermined period of time.
12. The system of claim 11, wherein the predetermined period of time is selected to allow sufficient fuel pressure for activation of that one of the first heat source and second heat source that is to be activated.
13. The system of claim 11, wherein the predetermined period of time is selected to allow for substantially complete combustion of fuel by that one of the first heat source and second heat source that has been deactivated.
14. A method for cycling a first heat source and second heat source of a gas cooking appliance during baking, where the gas cooking appliance includes a controller and a gas oven cavity having a top surface and a bottom surface, the first heat source being disposed adjacent the bottom surface and the second heat source being disposed adjacent the top surface, the method comprising:
activating one of the first heat source and the second heat source with the controller;
activating the other of the first heat source and the second heat source with the controller; and
between activation of the one of the first heat source and the second heat source and activation of the other of the first heat source and the second heat source, deactivating both of the first heat source and the second heat source with the controller for a predetermined period of time,
wherein at least one of the first heat source and the second heat source comprises a gas burner.
15. The method of claim 14, wherein the second heat source comprises at least one of a gas burner or an electric heating element.
16. The method of claim 14, wherein the predetermined period of time is selected to allow sufficient fuel pressure for activation of that one of the first heat source and the second heat source that is to be activated.
17. The method of claim 14, wherein the predetermined period of time is selected to allow for substantially complete combustion of fuel by that one of the first heat source and the second heat source that has been deactivated.
US12/603,256 2009-10-21 2009-10-21 Baking system for a gas cooking appliance Abandoned US20110091830A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/603,256 US20110091830A1 (en) 2009-10-21 2009-10-21 Baking system for a gas cooking appliance
CA2715679A CA2715679A1 (en) 2009-10-21 2010-09-24 Baking system for a gas cooking appliance
US13/008,310 US8776776B2 (en) 2009-10-21 2011-01-18 Baking system for a gas cooking appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/603,256 US20110091830A1 (en) 2009-10-21 2009-10-21 Baking system for a gas cooking appliance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/008,310 Continuation-In-Part US8776776B2 (en) 2009-10-21 2011-01-18 Baking system for a gas cooking appliance

Publications (1)

Publication Number Publication Date
US20110091830A1 true US20110091830A1 (en) 2011-04-21

Family

ID=43879567

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/603,256 Abandoned US20110091830A1 (en) 2009-10-21 2009-10-21 Baking system for a gas cooking appliance

Country Status (2)

Country Link
US (1) US20110091830A1 (en)
CA (1) CA2715679A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120168423A1 (en) * 2011-01-05 2012-07-05 General Electric Company Method and apparatus for top heat bake assist in a gas oven appliance
US20140048058A1 (en) * 2012-08-15 2014-02-20 Whirlpool Corporation Gas oven with electric and gas heating elements
US20150060435A1 (en) * 2013-08-30 2015-03-05 General Electric Company Cooktop appliance and a method for operating the same
US20150101592A1 (en) * 2013-10-11 2015-04-16 General Electric Company Double oven appliance
US20170261211A1 (en) * 2016-03-09 2017-09-14 Foremost Groups, Inc. Cooktop
IT201700035167A1 (en) * 2017-03-30 2018-09-30 Ing Polin & C S P A Oven for cooking food and heating an oven for cooking food

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405747A (en) * 1966-04-25 1968-10-15 Carroll R. Dennison Pencil lead sharpener
US3692239A (en) * 1971-02-11 1972-09-19 Robertshaw Controls Co Control system for a double burner oven or the like and improved parts and method for the same or the like
US4240397A (en) * 1979-01-24 1980-12-23 Raytheon Company Fuel saver oven
US4915613A (en) * 1989-01-25 1990-04-10 Honeywell Inc. Method and apparatus for monitoring pressure sensors
US6435424B1 (en) * 2000-07-27 2002-08-20 Alto U.S. Inc. Pressure washer with duty cycle temperature controller and method
US20030037780A1 (en) * 2001-08-21 2003-02-27 Distinctive Appliances, Inc. Positive air flow apparatus for infrared gas broiler
US6570136B1 (en) * 2002-05-31 2003-05-27 Whirlpool Corporation Top-heat oven with selective browning
US6734403B2 (en) * 2001-04-19 2004-05-11 Whirlpool Corporation Cooking oven incorporating accurate temperature control and method for doing the same
US20080237212A1 (en) * 2007-03-27 2008-10-02 Electrolux Home Products, Inc. Convection preheat system and method for radiant baking
US7759617B2 (en) * 2004-11-03 2010-07-20 General Electric Company Gas range and method for using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405747A (en) * 1966-04-25 1968-10-15 Carroll R. Dennison Pencil lead sharpener
US3692239A (en) * 1971-02-11 1972-09-19 Robertshaw Controls Co Control system for a double burner oven or the like and improved parts and method for the same or the like
US4240397A (en) * 1979-01-24 1980-12-23 Raytheon Company Fuel saver oven
US4915613A (en) * 1989-01-25 1990-04-10 Honeywell Inc. Method and apparatus for monitoring pressure sensors
US6435424B1 (en) * 2000-07-27 2002-08-20 Alto U.S. Inc. Pressure washer with duty cycle temperature controller and method
US6734403B2 (en) * 2001-04-19 2004-05-11 Whirlpool Corporation Cooking oven incorporating accurate temperature control and method for doing the same
US20030037780A1 (en) * 2001-08-21 2003-02-27 Distinctive Appliances, Inc. Positive air flow apparatus for infrared gas broiler
US6570136B1 (en) * 2002-05-31 2003-05-27 Whirlpool Corporation Top-heat oven with selective browning
US7759617B2 (en) * 2004-11-03 2010-07-20 General Electric Company Gas range and method for using the same
US20080237212A1 (en) * 2007-03-27 2008-10-02 Electrolux Home Products, Inc. Convection preheat system and method for radiant baking

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120168423A1 (en) * 2011-01-05 2012-07-05 General Electric Company Method and apparatus for top heat bake assist in a gas oven appliance
US8563901B2 (en) * 2011-01-05 2013-10-22 General Electric Company Method and apparatus for top heat bake assist in a gas oven appliance
US20140048058A1 (en) * 2012-08-15 2014-02-20 Whirlpool Corporation Gas oven with electric and gas heating elements
US9335054B2 (en) * 2012-08-15 2016-05-10 Whirlpool Corporation Gas oven with electric and gas heating elements
US10502427B2 (en) 2012-08-15 2019-12-10 Whirlpool Corporation Gas oven with electric and gas heating elements
US11242995B2 (en) 2012-08-15 2022-02-08 Whirlpool Corporation Gas oven with electric and gas heating elements
US20150060435A1 (en) * 2013-08-30 2015-03-05 General Electric Company Cooktop appliance and a method for operating the same
US20150101592A1 (en) * 2013-10-11 2015-04-16 General Electric Company Double oven appliance
US9504351B2 (en) * 2013-10-11 2016-11-29 Haler U.S. Appliance Solutions, Inc. Double oven appliance
US20170261211A1 (en) * 2016-03-09 2017-09-14 Foremost Groups, Inc. Cooktop
IT201700035167A1 (en) * 2017-03-30 2018-09-30 Ing Polin & C S P A Oven for cooking food and heating an oven for cooking food
EP3384775A1 (en) * 2017-03-30 2018-10-10 ING. POLIN & C. S.p.A. Oven for cooking foods and heating method of an oven for cooking foods

Also Published As

Publication number Publication date
CA2715679A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
US8776776B2 (en) Baking system for a gas cooking appliance
US20210251421A1 (en) Air fry cooking method and apparatus
US10690352B2 (en) Heating appliance
US11242995B2 (en) Gas oven with electric and gas heating elements
US20110091830A1 (en) Baking system for a gas cooking appliance
US9756981B2 (en) Toaster oven
US6815644B1 (en) Multirack cooking in speedcook ovens
US20080135539A1 (en) Heating systems and methods for a cooking appliance
US6777651B1 (en) Cook time control system for convection cooking appliance
US10753618B2 (en) Heating element arrangement for a cooking device, and a cooking device having a heating element arrangement of this type
CA2590109C (en) Heating systems and methods for a cooking appliance
US9927128B2 (en) Method for operating an oven appliance and a control system for an oven appliance
US11015814B2 (en) Cooking apparatus and method of controlling the same
JP4781406B2 (en) Cooker
CN110268198B (en) Heating cooker and steam cooking method
WO2021063040A1 (en) Seven burner digital cooktop with re-configurable wok and griddle burner
US9119248B2 (en) Method for controlling a light emitting device in a cooktop appliance
US20230270284A1 (en) Oven appliance and methods for broiling or high-heat cooking
KR20220101277A (en) Oven and method for controlling the same
US11578873B2 (en) Oven appliance and method for preheating high-heat cooking surface
US20220243926A1 (en) Oven and method for controlling the same
US20230172383A1 (en) Systems and methods for steam heating
US20230272922A1 (en) Oven appliance and methods for high-heat cooking
JP2021040878A (en) Heat cooker
US20150060435A1 (en) Cooktop appliance and a method for operating the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION