US20110086179A1 - Thermal barrier coating with a plasma spray top layer - Google Patents

Thermal barrier coating with a plasma spray top layer Download PDF

Info

Publication number
US20110086179A1
US20110086179A1 US12/971,370 US97137010A US2011086179A1 US 20110086179 A1 US20110086179 A1 US 20110086179A1 US 97137010 A US97137010 A US 97137010A US 2011086179 A1 US2011086179 A1 US 2011086179A1
Authority
US
United States
Prior art keywords
thermal barrier
barrier coating
coating
step comprises
plasma spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/971,370
Inventor
Kevin W. Schlichting
Michael J. Maloney
David A. Litton
Melvin Freling
John G. Smeggil
David Snow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38952020&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110086179(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to US12/971,370 priority Critical patent/US20110086179A1/en
Publication of US20110086179A1 publication Critical patent/US20110086179A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to the use of a plasma sprayed outer layer on top of a thermal barrier coating to block the penetration of molten sands into the thermal barrier coating.
  • Turbine engine airfoils used in desert environments may degrade due to sand related distress of thermal barrier coatings.
  • the mechanism for such distress is believed to be caused by the penetration of fluid sand deposits into 7YSZ ceramic thermal barrier coatings that leads to spallation and then accelerated oxidation of exposed metal.
  • gadolinia stabilized zirconia coatings react with fluid sand deposits and a reaction product forms that inhibits fluid sand penetration into the coating.
  • the reaction product has been identified as being a silicate oxyapatite/garnet containing primarily gadolinia, calcia, zirconia, and silica.
  • a turbine engine component which uses an air plasma sprayed outer layer on top of a thermal barrier coating to block the penetration of molten sands into the thermal barrier coating.
  • a turbine engine component which broadly comprises a substrate, a thermal barrier coating deposited onto the substrate, and means for sealing an outer surface of the thermal barrier coating and thereby limiting molten sand penetration into the thermal barrier coating.
  • a method for forming a coating on a turbine engine component broadly comprising the steps of forming a thermal barrier coating on a surface of the turbine engine component, and plasma spraying a sealing layer onto the thermal barrier coating.
  • the FIGURE is a schematic representation of a thermal barrier coating system in accordance with the present invention.
  • a turbine engine component 10 such as a blade, a vane, a combustor panel, or a seal having a substrate 12 , such as an airfoil portion or a platform portion of a blade or vane or a portion of a combustor panel or a portion of a seal, and a thermal barrier coating 14 on at least one surface of the substrate 12 .
  • the substrate 12 may be formed from any suitable material known in the art such as a nickel based superalloy, a cobalt based superalloy, molybdenum, or niobium.
  • the substrate 12 may be a ceramic based substrate or a ceramic matrix composite substrate.
  • the thermal barrier coating 14 may comprise one or more layers of a ceramic material such as a yttria stabilized zirconia material or a gadolinia stabilized zirconia material.
  • the yttria stabilized zirconia material may contain from 1.0 to 25 wt % yttria and the balance zirconia.
  • the gadolinia stabilized zirconia material may contain from 5.0 to 99 wt % gadolinia, more preferably 30 to 70 wt %, and the balance zirconia.
  • the ceramic material layer(s) may be deposited using any suitable method known in the art.
  • the thermal barrier coating 14 may be applied using any suitable technique known in the art such as electron beam physical vapor deposition, thermal spray, sol-gel, slurry, chemical vapor deposition, and sputtering.
  • the use of different spray parameters will create distinctly different microstructures which would differentiate between the layers, i.e. a dense top sealing layer with a porous bottom layer.
  • a preferred method for depositing the thermal barrier coating is by electron bean physical vapor deposition (EB-PVD).
  • the deposition may occur in a chamber with a temperature of from 1700 to 2000° F. and a pressure of from 0.05 to 2.0 millitors.
  • the ceramic feedstock may be feed at a rate of 0.3 to 2.0 inches per hour with a coating time from 20 to 120 minutes.
  • a bond coated may be deposited on the substrate prior to the application of the thermal barrier coating 14 .
  • the bond coat may be either a MCrAly coating where M is nickel and/or cobalt, an aluminide coating, a platinum aluminide coating, a ceramic based bond coat, or a silica based bond coat.
  • the bond coat may be applied using any suitable technique known in the art.
  • a plasma-sprayed layer 16 is applied on top of the thermal barrier coating.
  • the plasma-sprayed layer 16 is preferably formed from a ceramic material such as yttria stabilized zirconia.
  • the layer 16 may be formed using a plasma-spray gun operating at from 30 to 70 volts and from 300 to 900 amps. A mixture of argon and helium or argon and hydrogen may be used as the carrier gas.
  • the gun may have a standoff distance from 2 to 8 inches and a ceramic powder flow rate of from 30 to 70 grams per minute.
  • the resulting structure is a two-layer ceramic where the plasma-sprayed layer 16 is preferably on the outer surface.
  • the two layers 14 and 16 may not have a defined interface, but they may rather blend together.
  • Plasma-sprayed coatings are formed by injecting powder, either metallic or ceramic, into a plasma plume where the material is heated and accelerated toward the substrate to be coated.
  • the molten or semi-molten particles impact the substrate and form a splat or pancake type structure.
  • the coating thickness is built up as additional molten particles impact the substrate and form splats. As these splats build up, defects are incorporated into the coating such as porosity (both micro and macro), cracks, and splat boundaries.
  • Spray parameters can be adjusted to yield a very dense or porous coating depending on the application.
  • the resulting structure of the outer plasma-sprayed layer acts as a barrier to prevent the penetration of molten sand into the thermal barrier coating below due to its lower porosity and more tortuous path.
  • the average porosity for the EB-PVD coating layer 14 can be anywhere from 10 to 20%, while the porosity of the plasma-sprayed coating layer 16 can be from 2.0 to 30% depending on the parameters used.
  • the benefit of the present invention is a thermal barrier coating system that resists penetration of molten silicate material and provides enhanced durability in environments where sand induced distress of turbine airfoils occurs.
  • the outer plasma sprayed layer seals the surface of the thermal barrier coating to limit molten sand from penetrating therein.

Abstract

A turbine engine component has a substrate, a thermal barrier coating deposited onto the substrate, and a sealing layer of ceramic material on an outer surface of the thermal barrier coating for limiting molten sand penetration.

Description

    BACKGROUND
  • (1) Field of the Invention
  • The present invention relates to the use of a plasma sprayed outer layer on top of a thermal barrier coating to block the penetration of molten sands into the thermal barrier coating.
  • (2) Prior Art
  • Turbine engine airfoils used in desert environments may degrade due to sand related distress of thermal barrier coatings. The mechanism for such distress is believed to be caused by the penetration of fluid sand deposits into 7YSZ ceramic thermal barrier coatings that leads to spallation and then accelerated oxidation of exposed metal. It has been observed that gadolinia stabilized zirconia coatings react with fluid sand deposits and a reaction product forms that inhibits fluid sand penetration into the coating. The reaction product has been identified as being a silicate oxyapatite/garnet containing primarily gadolinia, calcia, zirconia, and silica.
  • There remains a need however for a coating system which effectively deals with sand related distress.
  • SUMMARY OF THE INVENTION
  • A turbine engine component is provided which uses an air plasma sprayed outer layer on top of a thermal barrier coating to block the penetration of molten sands into the thermal barrier coating.
  • In accordance with the present invention, there is provided a turbine engine component which broadly comprises a substrate, a thermal barrier coating deposited onto the substrate, and means for sealing an outer surface of the thermal barrier coating and thereby limiting molten sand penetration into the thermal barrier coating.
  • Further in accordance with the present invention, there is provided a method for forming a coating on a turbine engine component broadly comprising the steps of forming a thermal barrier coating on a surface of the turbine engine component, and plasma spraying a sealing layer onto the thermal barrier coating.
  • Other details of the thermal barrier coating with a plasma-spray top layer of the present invention, as well as other objects and advantages attendant thereto, are set forth in the following detailed description and the accompanying drawings wherein like reference numerals depict like elements.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The FIGURE is a schematic representation of a thermal barrier coating system in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • Referring now to the FIGURE, there is shown a turbine engine component 10, such as a blade, a vane, a combustor panel, or a seal having a substrate 12, such as an airfoil portion or a platform portion of a blade or vane or a portion of a combustor panel or a portion of a seal, and a thermal barrier coating 14 on at least one surface of the substrate 12. The substrate 12 may be formed from any suitable material known in the art such as a nickel based superalloy, a cobalt based superalloy, molybdenum, or niobium. Alternatively, the substrate 12 may be a ceramic based substrate or a ceramic matrix composite substrate.
  • The thermal barrier coating 14 may comprise one or more layers of a ceramic material such as a yttria stabilized zirconia material or a gadolinia stabilized zirconia material. The yttria stabilized zirconia material may contain from 1.0 to 25 wt % yttria and the balance zirconia. The gadolinia stabilized zirconia material may contain from 5.0 to 99 wt % gadolinia, more preferably 30 to 70 wt %, and the balance zirconia. The ceramic material layer(s) may be deposited using any suitable method known in the art.
  • The thermal barrier coating 14 may be applied using any suitable technique known in the art such as electron beam physical vapor deposition, thermal spray, sol-gel, slurry, chemical vapor deposition, and sputtering. The use of different spray parameters will create distinctly different microstructures which would differentiate between the layers, i.e. a dense top sealing layer with a porous bottom layer. A preferred method for depositing the thermal barrier coating is by electron bean physical vapor deposition (EB-PVD). The deposition may occur in a chamber with a temperature of from 1700 to 2000° F. and a pressure of from 0.05 to 2.0 millitors. The ceramic feedstock may be feed at a rate of 0.3 to 2.0 inches per hour with a coating time from 20 to 120 minutes.
  • If desired a bond coated may be deposited on the substrate prior to the application of the thermal barrier coating 14. The bond coat may be either a MCrAly coating where M is nickel and/or cobalt, an aluminide coating, a platinum aluminide coating, a ceramic based bond coat, or a silica based bond coat. The bond coat may be applied using any suitable technique known in the art.
  • After the thermal barrier coating 14 has been applied to the substrate 12, a plasma-sprayed layer 16 is applied on top of the thermal barrier coating. The plasma-sprayed layer 16 is preferably formed from a ceramic material such as yttria stabilized zirconia. The layer 16 may be formed using a plasma-spray gun operating at from 30 to 70 volts and from 300 to 900 amps. A mixture of argon and helium or argon and hydrogen may be used as the carrier gas. The gun may have a standoff distance from 2 to 8 inches and a ceramic powder flow rate of from 30 to 70 grams per minute. The resulting structure is a two-layer ceramic where the plasma-sprayed layer 16 is preferably on the outer surface. The two layers 14 and 16 may not have a defined interface, but they may rather blend together.
  • Plasma-sprayed coatings are formed by injecting powder, either metallic or ceramic, into a plasma plume where the material is heated and accelerated toward the substrate to be coated. The molten or semi-molten particles impact the substrate and form a splat or pancake type structure. The coating thickness is built up as additional molten particles impact the substrate and form splats. As these splats build up, defects are incorporated into the coating such as porosity (both micro and macro), cracks, and splat boundaries. Spray parameters can be adjusted to yield a very dense or porous coating depending on the application. The resulting structure of the outer plasma-sprayed layer acts as a barrier to prevent the penetration of molten sand into the thermal barrier coating below due to its lower porosity and more tortuous path. The average porosity for the EB-PVD coating layer 14 can be anywhere from 10 to 20%, while the porosity of the plasma-sprayed coating layer 16 can be from 2.0 to 30% depending on the parameters used.
  • The benefit of the present invention is a thermal barrier coating system that resists penetration of molten silicate material and provides enhanced durability in environments where sand induced distress of turbine airfoils occurs. The outer plasma sprayed layer seals the surface of the thermal barrier coating to limit molten sand from penetrating therein.
  • It is apparent that there has been provided in accordance with the present invention a thermal barrier coating with a plasma-spray top layer which fully satisfies the objects, means, and advantages set forth hereinbefore. While the present invention has been described in the context of specific embodiments thereof, other unforseeable alternatives, modifications and variations may become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations as fall within the broad scope of the appended claims.

Claims (11)

1-14. (canceled)
15. A method for forming a coating on a turbine engine component comprising the steps of:
forming a thermal barrier coating on a surface of said turbine engine component; and
plasma spraying a sealing layer onto said thermal barrier coating.
16. The method of claim 15, wherein said plasma spraying step comprises plasma spraying a ceramic material onto said thermal barrier coating.
17. The method of claim 15, wherein said plasma spraying step comprises plasma spraying a yttria stabilized zirconia layer onto said thermal barrier coating.
18. The method of claim 15, wherein said plasma spraying step comprises depositing said sealing layer using a plasma spray gun operating at from 30 to 70 volts and from 300 to 900 amps and a ceramic powder flow rate of from 30 to 70 grams per minute.
19. The method of claim 15, wherein said thermal barrier coating step comprises depositing at least one layer of yttria stabilized zirconia onto said surface.
20. The method of claim 15, wherein said thermal barrier coating step comprises depositing at least one layer of gadolinia stabilized zirconia onto said surface.
21. The method of claim 15, wherein said thermal barrier coating step comprises depositing a ceramic material at a temperature of from 1700 to 2000° F., a pressure of from 0.05 to 2.0 millitors, and a feed rate of from 0.3 to 2.0 inches per hour.
22. The method of claim 15, further comprising applying a bond coat to said surface of said turbine engine component prior to said thermal barrier coating forming step.
23. The method according to claim 22, wherein said bond coat applying step comprises applying a material selected from the group of a MCrAlY coating, an aluminide coating, a platinum aluminide coating, a ceramic based material, and a silica based material.
24-33. (canceled)
US12/971,370 2006-08-18 2010-12-17 Thermal barrier coating with a plasma spray top layer Abandoned US20110086179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/971,370 US20110086179A1 (en) 2006-08-18 2010-12-17 Thermal barrier coating with a plasma spray top layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/506,376 US7875370B2 (en) 2006-08-18 2006-08-18 Thermal barrier coating with a plasma spray top layer
US12/971,370 US20110086179A1 (en) 2006-08-18 2010-12-17 Thermal barrier coating with a plasma spray top layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/506,376 Division US7875370B2 (en) 2006-08-18 2006-08-18 Thermal barrier coating with a plasma spray top layer

Publications (1)

Publication Number Publication Date
US20110086179A1 true US20110086179A1 (en) 2011-04-14

Family

ID=38952020

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/506,376 Active 2028-11-27 US7875370B2 (en) 2006-08-18 2006-08-18 Thermal barrier coating with a plasma spray top layer
US12/971,370 Abandoned US20110086179A1 (en) 2006-08-18 2010-12-17 Thermal barrier coating with a plasma spray top layer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/506,376 Active 2028-11-27 US7875370B2 (en) 2006-08-18 2006-08-18 Thermal barrier coating with a plasma spray top layer

Country Status (3)

Country Link
US (2) US7875370B2 (en)
EP (1) EP1889940B1 (en)
JP (1) JP2008045211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100104766A1 (en) * 2008-10-24 2010-04-29 Neal James W Method for use with a coating process
US9023486B2 (en) 2011-10-13 2015-05-05 General Electric Company Thermal barrier coating systems and processes therefor
US9034479B2 (en) 2011-10-13 2015-05-19 General Electric Company Thermal barrier coating systems and processes therefor

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100021716A1 (en) * 2007-06-19 2010-01-28 Strock Christopher W Thermal barrier system and bonding method
US8273470B2 (en) * 2008-12-19 2012-09-25 General Electric Company Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components
US8343589B2 (en) 2008-12-19 2013-01-01 General Electric Company Methods for making environmental barrier coatings and ceramic components having CMAS mitigation capability
US8119247B2 (en) * 2008-12-19 2012-02-21 General Electric Company Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components
US20100154422A1 (en) * 2008-12-19 2010-06-24 Glen Harold Kirby Cmas mitigation compositions, environmental barrier coatings comprising the same, and ceramic components comprising the same
US8658291B2 (en) * 2008-12-19 2014-02-25 General Electric Company CMAS mitigation compositions, environmental barrier coatings comprising the same, and ceramic components comprising the same
US8658255B2 (en) * 2008-12-19 2014-02-25 General Electric Company Methods for making environmental barrier coatings and ceramic components having CMAS mitigation capability
US8039113B2 (en) * 2008-12-19 2011-10-18 General Electric Company Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components
US9051652B2 (en) * 2009-12-07 2015-06-09 United Technologies Corporation Article having thermal barrier coating
US20110143043A1 (en) * 2009-12-15 2011-06-16 United Technologies Corporation Plasma application of thermal barrier coatings with reduced thermal conductivity on combustor hardware
FR2959244B1 (en) * 2010-04-23 2012-06-29 Commissariat Energie Atomique PROCESS FOR PREPARING A MULTILAYER COATING ON A SURFACE OF A SUBSTRATE BY THERMAL PROJECTION
US8535783B2 (en) * 2010-06-08 2013-09-17 United Technologies Corporation Ceramic coating systems and methods
US10309018B2 (en) * 2011-05-31 2019-06-04 United Technologies Corporation Composite article having layer with co-continuous material regions
US20130260132A1 (en) * 2012-04-02 2013-10-03 United Technologies Corporation Hybrid thermal barrier coating
US20140030497A1 (en) * 2012-07-30 2014-01-30 United Technologies Corporation Localized transitional coating of turbine components
US11047033B2 (en) 2012-09-05 2021-06-29 Raytheon Technologies Corporation Thermal barrier coating for gas turbine engine components
US10107137B2 (en) 2013-09-10 2018-10-23 Honeywell International Inc. Turbine engine, engine structure, and method of forming an engine structure with thermal barrier coating protection
EP3060695B1 (en) * 2013-10-21 2019-12-11 United Technologies Corporation Ceramic attachment configuration and method for manufacturing same
US10196728B2 (en) * 2014-05-16 2019-02-05 Applied Materials, Inc. Plasma spray coating design using phase and stress control
EP3029274B1 (en) 2014-10-30 2020-03-11 United Technologies Corporation Thermal-sprayed bonding of a ceramic structure to a substrate
US10024760B2 (en) * 2015-12-17 2018-07-17 General Electric Company Methods for monitoring turbine components
JP6908973B2 (en) * 2016-06-08 2021-07-28 三菱重工業株式会社 Manufacturing methods for thermal barrier coatings, turbine components, gas turbines, and thermal barrier coatings
US11352890B2 (en) 2017-06-12 2022-06-07 Raytheon Technologies Corporation Hybrid thermal barrier coating
EP3728682A4 (en) 2017-12-19 2021-07-21 Oerlikon Metco (US) Inc. Erosion and cmas resistant coating for protecting ebc and cmc layers and thermal spray coating method

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705231A (en) * 1995-09-26 1998-01-06 United Technologies Corporation Method of producing a segmented abradable ceramic coating system
US5914189A (en) * 1995-06-26 1999-06-22 General Electric Company Protected thermal barrier coating composite with multiple coatings
US5955182A (en) * 1996-02-05 1999-09-21 Kabushiki Kaisha Toshiba Heat resisting member and its production method
US6177200B1 (en) * 1996-12-12 2001-01-23 United Technologies Corporation Thermal barrier coating systems and materials
US20030129316A1 (en) * 2002-01-09 2003-07-10 General Electric Company Thermal barrier coating and process therefor
US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same
US6716539B2 (en) * 2001-09-24 2004-04-06 Siemens Westinghouse Power Corporation Dual microstructure thermal barrier coating
US6790486B2 (en) * 2002-08-15 2004-09-14 General Electric Company Vapor deposition process
US20050013994A1 (en) * 2003-07-16 2005-01-20 Honeywell International Inc. Thermal barrier coating with stabilized compliant microstructure
US6875529B1 (en) * 2003-12-30 2005-04-05 General Electric Company Thermal barrier coatings with protective outer layer for improved impact and erosion resistance
US6982126B2 (en) * 2003-11-26 2006-01-03 General Electric Company Thermal barrier coating
US20070160859A1 (en) * 2006-01-06 2007-07-12 General Electric Company Layered thermal barrier coatings containing lanthanide series oxides for improved resistance to CMAS degradation
US7255940B2 (en) * 2004-07-26 2007-08-14 General Electric Company Thermal barrier coatings with high fracture toughness underlayer for improved impact resistance
US7306859B2 (en) * 2005-01-28 2007-12-11 General Electric Company Thermal barrier coating system and process therefor
US7326470B2 (en) * 2004-04-28 2008-02-05 United Technologies Corporation Thin 7YSZ, interfacial layer as cyclic durability (spallation) life enhancement for low conductivity TBCs
US7347663B2 (en) * 2002-04-30 2008-03-25 Ebara Corporation Abrasion resistant surface treatment method of a rotary member, runner, and fluid machine having runner
US7622195B2 (en) * 2006-01-10 2009-11-24 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
US20100196663A1 (en) * 2006-10-05 2010-08-05 United Technologies Corporation Segmented Abradable Coatings and Process(es) for Applying the Same
US20100196605A1 (en) * 2006-01-20 2010-08-05 United Technologies Corporation Yttria-Stabilized Zirconia Coating with a Molten Silicate Resistant Outer Layer
US20110033284A1 (en) * 2009-08-04 2011-02-10 United Technologies Corporation Structurally diverse thermal barrier coatings

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL84067A (en) 1986-10-30 1992-03-29 United Technologies Corp Thermal barrier coating system
CA2110007A1 (en) 1992-12-29 1994-06-30 Adrian M. Beltran Thermal barrier coating process
GB2277405A (en) 1993-04-22 1994-10-26 Sharp Kk Semiconductor colour display or detector array
DE19680223B3 (en) 1995-04-03 2013-01-17 General Electric Co. Method for protecting a thermal barrier coating and corresponding component
JPH09316622A (en) 1996-05-28 1997-12-09 Toshiba Corp Gas turbine member and its thermal insulation coating method
US6335105B1 (en) * 1999-06-21 2002-01-01 General Electric Company Ceramic superalloy articles
SG98436A1 (en) 1999-12-21 2003-09-19 United Technologies Corp Method of forming an active-element containing aluminide as stand alone coating and as bond coat and coated article
JP2006104577A (en) 2004-10-04 2006-04-20 United Technol Corp <Utc> Segmented gadolinia zirconia coating film, method for forming the same, segmented ceramic coating system and coated film component
US7579087B2 (en) * 2006-01-10 2009-08-25 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
US7662489B2 (en) * 2006-01-20 2010-02-16 United Technologies Corporation Durable reactive thermal barrier coatings
EP2005661B1 (en) 2006-04-06 2009-12-02 Telefonaktiebolaget LM Ericsson (publ) System, arrangements and method relating to access handling
WO2007112783A1 (en) 2006-04-06 2007-10-11 Siemens Aktiengesellschaft Layered thermal barrier coating with a high porosity, and a component

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914189A (en) * 1995-06-26 1999-06-22 General Electric Company Protected thermal barrier coating composite with multiple coatings
US5705231A (en) * 1995-09-26 1998-01-06 United Technologies Corporation Method of producing a segmented abradable ceramic coating system
US5955182A (en) * 1996-02-05 1999-09-21 Kabushiki Kaisha Toshiba Heat resisting member and its production method
US6177200B1 (en) * 1996-12-12 2001-01-23 United Technologies Corporation Thermal barrier coating systems and materials
US6716539B2 (en) * 2001-09-24 2004-04-06 Siemens Westinghouse Power Corporation Dual microstructure thermal barrier coating
US20030129316A1 (en) * 2002-01-09 2003-07-10 General Electric Company Thermal barrier coating and process therefor
US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same
US7347663B2 (en) * 2002-04-30 2008-03-25 Ebara Corporation Abrasion resistant surface treatment method of a rotary member, runner, and fluid machine having runner
US6790486B2 (en) * 2002-08-15 2004-09-14 General Electric Company Vapor deposition process
US20050013994A1 (en) * 2003-07-16 2005-01-20 Honeywell International Inc. Thermal barrier coating with stabilized compliant microstructure
US6982126B2 (en) * 2003-11-26 2006-01-03 General Electric Company Thermal barrier coating
US6875529B1 (en) * 2003-12-30 2005-04-05 General Electric Company Thermal barrier coatings with protective outer layer for improved impact and erosion resistance
US7326470B2 (en) * 2004-04-28 2008-02-05 United Technologies Corporation Thin 7YSZ, interfacial layer as cyclic durability (spallation) life enhancement for low conductivity TBCs
US7255940B2 (en) * 2004-07-26 2007-08-14 General Electric Company Thermal barrier coatings with high fracture toughness underlayer for improved impact resistance
US7306859B2 (en) * 2005-01-28 2007-12-11 General Electric Company Thermal barrier coating system and process therefor
US20070160859A1 (en) * 2006-01-06 2007-07-12 General Electric Company Layered thermal barrier coatings containing lanthanide series oxides for improved resistance to CMAS degradation
US7622195B2 (en) * 2006-01-10 2009-11-24 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
US20100047075A1 (en) * 2006-01-10 2010-02-25 United Technologies Corporation Thermal Barrier Coating Compositions, Processes for Applying Same and Articles Coated with Same
US20100196605A1 (en) * 2006-01-20 2010-08-05 United Technologies Corporation Yttria-Stabilized Zirconia Coating with a Molten Silicate Resistant Outer Layer
US8080283B2 (en) * 2006-01-20 2011-12-20 United Technologies Corporation Method for forming a yttria-stabilized zirconia coating with a molten silicate resistant outer layer
US20100196663A1 (en) * 2006-10-05 2010-08-05 United Technologies Corporation Segmented Abradable Coatings and Process(es) for Applying the Same
US20110033284A1 (en) * 2009-08-04 2011-02-10 United Technologies Corporation Structurally diverse thermal barrier coatings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100104766A1 (en) * 2008-10-24 2010-04-29 Neal James W Method for use with a coating process
US8343591B2 (en) * 2008-10-24 2013-01-01 United Technologies Corporation Method for use with a coating process
US9023486B2 (en) 2011-10-13 2015-05-05 General Electric Company Thermal barrier coating systems and processes therefor
US9034479B2 (en) 2011-10-13 2015-05-19 General Electric Company Thermal barrier coating systems and processes therefor

Also Published As

Publication number Publication date
EP1889940A2 (en) 2008-02-20
EP1889940A3 (en) 2008-06-25
EP1889940B1 (en) 2015-03-18
US7875370B2 (en) 2011-01-25
US20080044662A1 (en) 2008-02-21
JP2008045211A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
US7875370B2 (en) Thermal barrier coating with a plasma spray top layer
EP1811060B1 (en) CMAS resistant thermal barrier coating
US9023486B2 (en) Thermal barrier coating systems and processes therefor
US7736759B2 (en) Yttria-stabilized zirconia coating with a molten silicate resistant outer layer
EP2766504B1 (en) Thermal barrier coating systems and processes therefor
US7833586B2 (en) Alumina-based protective coatings for thermal barrier coatings
EP1829984B1 (en) Process for making a high density thermal barrier coating
US7662489B2 (en) Durable reactive thermal barrier coatings
US20160333455A1 (en) Thermal Barrier Coating with Lower Thermal Conductivity
EP2108715A2 (en) Thermal barrier coating system and coating methods for gas turbine engine shroud
US20080145674A1 (en) Yttria containing thermal barrier coating topcoat layer and method for applying the coating layer
US20130260132A1 (en) Hybrid thermal barrier coating
EP2947173B1 (en) Calcium magnesium aluminosilicate (cmas) resistant thermal barrier coating and coating process therefor
US20080044663A1 (en) Dual layer ceramic coating
Subramanian et al. Thermal barrier coating resistant to sintering

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION