US20110083859A1 - Downhole valve - Google Patents

Downhole valve Download PDF

Info

Publication number
US20110083859A1
US20110083859A1 US12/575,999 US57599909A US2011083859A1 US 20110083859 A1 US20110083859 A1 US 20110083859A1 US 57599909 A US57599909 A US 57599909A US 2011083859 A1 US2011083859 A1 US 2011083859A1
Authority
US
United States
Prior art keywords
state
pressure
tool
annulus
valve element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/575,999
Inventor
Joseph D. Scranton
Kamil Iftikhar
Colin Longfield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US12/575,999 priority Critical patent/US20110083859A1/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IFTIKHAR, KAMIL, LONGFIELD, COLIN, SCRANTON, JOSEPH D.
Priority to GB1205983.8A priority patent/GB2486383B/en
Priority to BR112012007724A priority patent/BR112012007724A2/en
Priority to PCT/US2010/049903 priority patent/WO2011043931A2/en
Publication of US20110083859A1 publication Critical patent/US20110083859A1/en
Priority to NO20120432A priority patent/NO20120432A1/en
Priority to US13/969,100 priority patent/US9062514B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole

Definitions

  • the invention generally relates to a downhole valve.
  • Hydrocarbon fluid typically is communicated from a subterranean well using a pipe, called a “production string.”
  • the production string extends through a wellbore that is drilled through the producing formation and may include various valves for purposes of controlling the production of the hydrocarbon fluid.
  • One such valve is a ball valve that may be operated for purposes of controlling the flow of the hydrocarbon fluid through the central passageway of the production string.
  • Another valve that is typically part of a production string is a circulating valve, a valve that is operated to control the flow of the hydrocarbon fluid between the central passageway and the region outside of the string, called the “annulus.”
  • a well may be in an underbalanced state, a state in which the pressure that is exerted by the formation is greater than the hydrostatic pressure that is exerted by the fluid in the annulus.
  • One type of circulating valve that is used in an underbalanced well has a series of check valve elements through which well fluid is circulated for purposes of opening and closing the valve.
  • a potential challenge in using such a circulating valve is that typically, the central passageway of the production tubing string above the valve must be filled with fluid in order to properly operate the valve.
  • Another type of conventional circulating valve is remotely operated by communicating stimuli (pressure pulses, for example) into the fluid in the annulus near the valve.
  • a sensor a pressure sensor, for example
  • the valve typically decode commands from the stimuli and operate the valve accordingly.
  • HPHT high pressure high temperature
  • a tool that is usable with a well includes a valve element, a mechanical operator, a pressure chamber and a regulator.
  • the valve element has a first state and a second state.
  • the mechanical operator responds to a predetermined signature in an annulus pressure relative to a baseline level of the annulus pressure to transition the valve element from the first state to the second state.
  • the pressure chamber exerts a chamber pressure to bias the mechanical operator to transition from the second state to the first state.
  • the baseline level is capable of varying over time, and the regulator regulates the chamber pressure based on the baseline level.
  • a tool that is usable with a well includes a valve element having a first state and a second state.
  • the tool includes a spring, a pressure chamber and a mechanical operator.
  • the mechanical operator responds to forces exerted in concert by the spring and the pressure chamber to bias transitioning of the valve element from the first state to the second state, and the mechanical operator responds to annulus pressure to transition the valve element from the second state to the first state.
  • a tool that is usable with a well includes a valve element, a first mechanical operator, a pilot valve and a second mechanical operator.
  • the valve element has a first state and a second state.
  • the pilot valve controls communication of an annulus pressure to the first mechanical operator; and the second mechanical operator responds to the annulus pressure to control operation of the pilot valve.
  • the second mechanical operator is adapted to cause the pilot valve to communicate the annulus pressure to the first mechanical operator to cause the first mechanical operator to transition the valve element from the first state to the second state in response to the annulus pressure exhibiting a predetermined signature and otherwise block the communication of the annulus pressure to the first mechanical operator to cause the first mechanical operator to transition the valve element from the second state to the first state.
  • FIG. 1 is a schematic diagram of a subterranean well according to an example.
  • FIG. 2 is a schematic diagram of a circulating valve tool according to an example.
  • FIG. 3 is a more detailed cross-sectional view of a mechanical operator section of the tool of FIG. 2 according to an example.
  • FIGS. 4 and 5 are schematic diagrams of other examples of circulating valve tools.
  • FIG. 6 is a schematic diagram of a hydraulic circuit of the circulating valve tool of FIG. 5 when the tool is in a first state.
  • FIG. 7 is a schematic diagram of a hydraulic circuit of the valve of FIG. 5 when the tool is in a second state.
  • a well 10 includes a wellbore 20 , which may be lined with a casing string 22 that supports the wellbore 20 .
  • the wellbore 20 may be only partially cased by a wellbore or may be entirely uncased.
  • a tubular string 30 extends downhole into the wellbore 20 through one or more production or injection zones of the well 10 for purposes of facilitating the production of fluids from the well 10 and/or the injection of fluids into the well 10 .
  • FIG. 1 depicts the string 30 as being disposed in a main vertical wellbore, the wellbore 20 may be a lateral wellbore, in accordance with other examples.
  • FIG. 1 depicts a subterranean terrestrial well, the systems, techniques, tools and systems that are described herein may likewise be applied to subsea wells.
  • the string 30 includes at least one valve assembly, such as a circulating valve tool 50 that is depicted in FIG. 1 .
  • the tool 50 may be a multiple cycle tool, which means that the tool 50 is constructed to be opened and closed numerous times.
  • the string 30 may includes other types of valve assemblies (a ball valve assembly, for example), which may employ the control systems and techniques that are disclosed herein, in accordance with other examples.
  • the well 10 is an underbalanced state, although this condition is not a prerequisite for the use of the tool 50 .
  • the pressure that is exerted by the formation is greater than the hydrostatic pressure that is exerted by the fluid in an annulus 54 , which is the annular region of the well 10 between the borehole wall or well casing string 22 (depending on whether the well 10 is cased or uncased) and the exterior of the tool 50 .
  • the tool 50 is operated by manipulating a pressure in the annulus 54 .
  • the annulus pressure may be manipulated using a surface-disposed pump 12 , although other systems and techniques may be used to induce pressure fluctuations in the annulus 54 for purposes of controlling the tool 50 , as can be appreciated by one of skill in the art.
  • pressure stimuli may be communicated from the surface of the well 10 downhole into the annulus 54 for purposes of delivering a command to the tool 50 , such as a command to open fluid communication through radial ports 100 of the tool 50 or a command to close the fluid communication through the radial ports 100 to isolate the annulus 54 from the central passageway of the string 30 , as non-limiting examples.
  • a command to open fluid communication through radial ports 100 of the tool 50 or a command to close the fluid communication through the radial ports 100 to isolate the annulus 54 from the central passageway of the string 30 , as non-limiting examples.
  • the communication of the pressure stimuli may involve momentarily increasing the pressure in the annulus 54 above a baseline annulus pressure level; momentarily decreasing the annulus pressure below the annulus baseline pressure level; a series of annulus pressure increases or decreases; etc.
  • a sequence of pressurization cycles may be applied to the annulus 54 to operate the tool 50 .
  • the pressurization cycles may include cycles (called “up cycles”) in which the annulus pressure is increased and cycles (called “down cycles”) in which the annulus pressure is relaxed or decreased back to the annulus baseline level.
  • up cycles cycles in which the annulus pressure is increased
  • down cycles cycles in which the annulus pressure is relaxed or decreased back to the annulus baseline level.
  • the tool 50 includes a mechanical operator 130 , which responds to the fluid pressure in the annulus 54 .
  • the actuation of the mechanical operator 130 does not depend on whether a full column of fluid exists in the central passageway of the string 30 , and the operation of the mechanical operator does not involve circulating well fluid through the tool 50 .
  • the tool 50 communicates the annulus pressure to the mechanical operator 130 for purposes of transitioning the tool 50 from a first state (an open or closed state, as non-limiting examples) to a different, second state (an open or closed state, as non-limiting examples).
  • a gas chamber 134 of the tool 50 exerts a force to counter the force that is produced by the annulus pressure (e.g., to bias the tool 50 to remain in the first state or return to the first state from the second state).
  • the tool 50 has features to compensate the force that is exerted by the gas chamber 134 for purposes of causing this force to track the baseline pressure level of the annulus. In this way, the gas chamber accommodates downhole pressure and temperature fluctuations, which may otherwise adversely affect the operation of the tool 50 .
  • FIG. 2 depicts a partial cross-sectional view of the tool 50 , in accordance with a non-limiting example.
  • FIG. 2 depicts a simplified, right-hand cross-sectional view of the tool 50 (on the right hand side of a longitudinal axis 51 of the tool 50 ), as can be appreciated by one of skill in the art, the tool 50 is generally symmetrical about the longitudinal axis 51 , with the corresponding mirroring left-hand cross-section generally not being depicted in FIG. 2 .
  • the tool 50 includes a generally tubular outer housing 99 , which is generally coaxial with the longitudinal axis 51 and is designed to connect in line with the string 30 .
  • the outer housing 99 includes a central passageway 90 that is in fluid communication with the corresponding central passageways of the string sections above and below the valve assembly 50 .
  • the tool 50 includes a circulating valve element 107 , which includes the radially-disposed flow ports 100 , which are formed in the housing 99 .
  • the sleeve 104 is near or at the uppermost point of travel such that the flow ports 100 are disposed between the o-rings 106 to therefore block fluid communication between the central passageway 90 and the annulus 54 .
  • the up and down travel of the sleeve 104 is controlled by the mechanical operator 130 of the tool 50 .
  • the operator 130 includes a piston head 140 , which is connected through a mandrel 105 to the sleeve 106 .
  • the piston head 140 is concentric with the sleeve 104 and has a central passageway to form part of the central passageway 90 of the tool 50 .
  • the piston head 140 moves up and down in response to a pressure differential between upper and lower gas chambers: the gas chamber 134 (called the “upper chamber 134 ” below), which exerts a downward force on an upper surface of the piston head 140 and a gas chamber 135 (called the “lower chamber 135 ” below), which exerts an upward force on a lower surface of the piston head 140 .
  • the upper 134 and lower 135 chambers reside inside a corresponding annular recess of the housing 99 .
  • the volumes of the upper 134 and lower 135 gas chambers are variable in that the volume of the upper chamber 134 is maximized and the volume of the lower chamber 135 is minimized (as depicted in FIG. 2 ) in the open state of the tool 50 ; and the volume of the upper chamber 134 is minimized, and the volume of the lower chamber 135 is maximized in the closed state of the valve 50 .
  • the upper 134 and lower 135 chambers contain an inert gas (Nitrogen, for example); and the differential pressure between the upper 134 and lower 135 chambers control the upward and downward movement of the piston head 140 , and thus, control the upper and downward movement of the sleeve 104 .
  • the lower chamber 135 is in fluid communication with another gas chamber 146 via a gas passageway 147 .
  • the gas chamber 146 is part of a compensator 150 , which transfers the annulus pressure to the gas chamber 146 while isolating the gas chamber 146 from the well fluid in the annulus 54 .
  • the compensator 150 includes a floating compensating piston 148 , which resides in an annular recess of the housing 99 to form the gas chamber 146 above the piston 148 and a chamber 149 below the piston 148 , which receives annulus fluid communicated from one or more radially-disposed ports 160 (one port being shown in FIG. 2 ) that are formed in the outer housing 99 .
  • the compensating piston 148 pressurizes the gas in the gas chamber 146 , which in turn, produces an upward force on the piston head 140 .
  • a valve control network is built into the piston head 140 to allow equalization of pressures between the upper 134 and lower 135 gas chambers.
  • the equalization occurs at a controlled rate for purposes of permitting pressure differentials to develop to act on the piston head 140 .
  • the flow rate between the gas chambers 134 and 135 is initially limited when the annulus pressure first changes with respect to its steady state baseline pressure level. This limited flow rate, in turn, produces a set upward or downward force on the piston head 140 .
  • the pressure in the chamber 135 exceeds the pressure in the chamber 134 to cause an upward force on the piston head 140 .
  • the pressures between the chambers 134 and 135 equalize to create a balanced condition after the piston head 140 is shifted to an upper position.
  • the tool 50 includes an indexer 110 to control the sequence of annulus pressurization cycles for purposes of causing the tool 50 to change states.
  • the indexer 110 may a J-slot mechanism, in which a pin on the operator mandrel 105 traverses a J-slot that has a predetermined pattern that restricts the travel of the operator mandrel 105 until the end of the pattern is reached.
  • the J-slot establishes a predetermined number up/down pressurization cycles that must occur before the tool 50 transitions from a closed state to an open state.
  • the indexer 110 may be reset by releasing pressure on the annulus to move the operator mandrel 105 back to its lowermost point of travel to close the tool 50 .
  • the tool 50 may include a mechanism 120 to restrict all motion of the operator mandrel 105 until a predetermined force on the piston head 140 (and operator mandrel 105 ) builds up. This allows the pressure differential across the piston head 140 to increase to a predetermined threshold before the operator mandrel 105 shifts for purposes of increasing the tool shifting speed to avoid leaving the tool 50 in an undesirable mid state (never fully opened or fully closed, for example).
  • the mechanism 120 may be a collet, which includes a plurality of fingers that engage corresponding features on the operator mandrel 105 to secure the operator mandrel 105 in place until the predetermined force threshold is reached. The fingers on the collet hold the operator mandrel 105 in its original position until the pressure differential across the piston head 140 is sufficiently high to overcome the grasp of the collet fingers and quickly shift the operator mandrel 105 all the way to the end position.
  • the piston head 140 may include an embedded valve system, which includes a first flow path 190 for purposes of communicating gas pressure from the lower chamber 135 to the upper chamber 134 .
  • This flow path includes a flow restrictor 210 and a check valve 200 .
  • the check valve 200 opens to permit a bleed flow between the chambers 134 and 135 .
  • the flow restrictor 210 ensures that the flow rate is relatively small to create a pressure differential to produce an upward force on the piston head 140 .
  • a radial crosshole 204 which is in communication with the above-described communication path bypasses a seal that is created by an upper o-ring 212 to bypass the flow restrictor 210 and allow relatively fast equalization of the pressure between the upper 134 and lower 135 chambers.
  • a metered flow path 191 is disposed in the piston head 140 for purposes of equalizing pressures in the chambers 134 and 135 for the scenario in which the lower chamber 135 is de-pressurized due to a decrease in the annulus pressure.
  • This flow path 191 includes a flow restrictor 208 and a check valve 206 , which is constructed to open to allow communication through the flow restrictor 208 between the chambers 134 and 135 when the pressure in the upper chamber 134 is greater than the pressure in the lower chamber 135 . Due to the metering by the flow restrictor 208 , a downward force is created while the pressures in the chambers 134 and 135 are being equalized.
  • a cross hole 207 which is in communication with the passageway travels past the seal created by a lower o-ring 214 to therefore bypass the flow restrictor 208 to allow relatively rapid equalization of the chamber pressures.
  • the pressure in the upper chamber 134 tracks the baseline pressure level in the annulus 54 to compensate its gas pressure for shrinkage or expansion due to thermal changes and changes in the annulus pressure.
  • FIG. 4 depicts a circulating valve tool 250 in accordance with other another example.
  • the tool 250 includes a mechanical operator that responds to pressure changes in the annulus 54 , without requiring a full column of fluid in the tubing string and without requiring circulation of well fluid through the tool 250 .
  • the tool 250 does not use a gas chamber that equalizes its pressure with the baseline annulus pressure.
  • the tool 250 includes a gas chamber 264 that has a fill port to store a predetermined charge of inert gas (Nitrogen gas, for example), which is used for purposes of operating a circulating valve element 252 of the tool 250 .
  • inert gas Nirogen gas
  • the combination of pressure from the gas chamber 264 and a spring 260 produces an upward force on a power piston head 258 .
  • the power piston head 258 is connected by way of an operator mandrel 254 to the circulating valve element 252 .
  • the tool 250 may include an indexer 270 to establish a predefined up and down transition cycle in order to change the state of the circulating valve 252 .
  • the upper surface of the piston 258 is exposed through radial ports 256 to the annulus pressure.
  • the piston 258 moves downwardly in response to increasing pressure in the pressure stimuli, and when the pressure relaxes, the upward force provided by the compressed spring 260 and the gas pressure exerted by the gas chamber 264 produce a force in concert to move the piston 258 in an upward direction.
  • valve assembly 250 may include a retention mechanism, such as the above-described collet, for purposes of storing energy and ensuring a fast valve opening, which avoids half states and overcomes the effects of erosion.
  • FIG. 5 depicts a circulating valve tool 300 in accordance with another example.
  • the tool 300 has a similar design, in some aspects, relative to the tool 50 , in that the tool 300 has upper 320 and lower 326 gas chambers, an operator piston 324 and indexer 314 , similar in design to the upper 134 and lower 135 gas chambers, piston 130 and indexer 110 , respectively, of the tool 50 .
  • the lower gas chamber 326 has pressure that is derived by a compensator from the annulus pressure (not depicted in FIG. 5 ).
  • the valve assembly 300 does not use the gas pressure to drive an operator mandrel for purposes of opening and closing a circulating valve element 302 of the tool 300 . Instead, the tool 300 uses the annulus pressure for purposes of operating the circulating valve element 302 .
  • the piston 324 may be connected to operator a pilot valve 312 , which controls the application of annulus pressure to a power piston 304 , which, in turn, operates the circulating valve 302 .
  • the system to control the power piston 304 includes a pilot valve 312 (connected to the piston 320 ), a hydrostatic chamber 308 and a dump chamber 306 .
  • FIGS. 6 depictting the power piston 304 at its uppermost position of travel
  • 7 depictting the power piston 304 at its lowermost position of travel
  • annulus pressure is always applied to an upper chamber that is communication with an upper face of the power piston 304 .
  • the lower face of the piston 304 is connected either to the dump chamber 306 or to the hydrostatic chamber 308 , as depicted in FIG. 6 .
  • an operator section 322 that contains the piston 320
  • the power piston 304 moves upwardly, as depicted in FIG. 6 .
  • FIG. 6 depicted in FIG.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Surgical Instruments (AREA)
  • Earth Drilling (AREA)
  • Details Of Valves (AREA)

Abstract

A tool that is usable with a well includes a valve element, a mechanical operator, a pressure chamber and a regulator. The valve element has a first state and a second state. The mechanical operator responds to a predetermined signature in an annulus pressure relative to a baseline level of the annulus pressure to transition the valve element from the first state to the second state. The pressure chamber exerts a chamber pressure to bias the mechanical operator to transition from the second state to the first state. The baseline level is capable of varying over time, and the regulator regulates the chamber pressure based on the baseline level.

Description

    BACKGROUND
  • The invention generally relates to a downhole valve.
  • Hydrocarbon fluid (oil or gas) typically is communicated from a subterranean well using a pipe, called a “production string.” The production string extends through a wellbore that is drilled through the producing formation and may include various valves for purposes of controlling the production of the hydrocarbon fluid. One such valve is a ball valve that may be operated for purposes of controlling the flow of the hydrocarbon fluid through the central passageway of the production string. Another valve that is typically part of a production string is a circulating valve, a valve that is operated to control the flow of the hydrocarbon fluid between the central passageway and the region outside of the string, called the “annulus.”
  • A well may be in an underbalanced state, a state in which the pressure that is exerted by the formation is greater than the hydrostatic pressure that is exerted by the fluid in the annulus. One type of circulating valve that is used in an underbalanced well has a series of check valve elements through which well fluid is circulated for purposes of opening and closing the valve. A potential challenge in using such a circulating valve is that typically, the central passageway of the production tubing string above the valve must be filled with fluid in order to properly operate the valve.
  • Another type of conventional circulating valve is remotely operated by communicating stimuli (pressure pulses, for example) into the fluid in the annulus near the valve. A sensor (a pressure sensor, for example) of the circulating valve detects the stimuli, and electromechanics of the valve typically decode commands from the stimuli and operate the valve accordingly. Although there is no requirement that the central passageway be filled with fluid for purposes of operating this type of circulating valve, the valve typically is not suitable for use in a high pressure high temperature (HPHT) environment due to temperature limitations of the valve.
  • SUMMARY
  • In an embodiment of the invention, a tool that is usable with a well includes a valve element, a mechanical operator, a pressure chamber and a regulator. The valve element has a first state and a second state. The mechanical operator responds to a predetermined signature in an annulus pressure relative to a baseline level of the annulus pressure to transition the valve element from the first state to the second state. The pressure chamber exerts a chamber pressure to bias the mechanical operator to transition from the second state to the first state. The baseline level is capable of varying over time, and the regulator regulates the chamber pressure based on the baseline level.
  • In another embodiment of the invention, a tool that is usable with a well includes a valve element having a first state and a second state. The tool includes a spring, a pressure chamber and a mechanical operator. The mechanical operator responds to forces exerted in concert by the spring and the pressure chamber to bias transitioning of the valve element from the first state to the second state, and the mechanical operator responds to annulus pressure to transition the valve element from the second state to the first state.
  • In yet another embodiment of the invention, a tool that is usable with a well includes a valve element, a first mechanical operator, a pilot valve and a second mechanical operator. The valve element has a first state and a second state. The pilot valve controls communication of an annulus pressure to the first mechanical operator; and the second mechanical operator responds to the annulus pressure to control operation of the pilot valve. The second mechanical operator is adapted to cause the pilot valve to communicate the annulus pressure to the first mechanical operator to cause the first mechanical operator to transition the valve element from the first state to the second state in response to the annulus pressure exhibiting a predetermined signature and otherwise block the communication of the annulus pressure to the first mechanical operator to cause the first mechanical operator to transition the valve element from the second state to the first state.
  • Advantages and other features of the invention will become apparent from the following drawing, description and claims.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a schematic diagram of a subterranean well according to an example.
  • FIG. 2 is a schematic diagram of a circulating valve tool according to an example.
  • FIG. 3 is a more detailed cross-sectional view of a mechanical operator section of the tool of FIG. 2 according to an example.
  • FIGS. 4 and 5 are schematic diagrams of other examples of circulating valve tools.
  • FIG. 6 is a schematic diagram of a hydraulic circuit of the circulating valve tool of FIG. 5 when the tool is in a first state.
  • FIG. 7 is a schematic diagram of a hydraulic circuit of the valve of FIG. 5 when the tool is in a second state.
  • DETAILED DESCRIPTION
  • In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments are possible.
  • As used here, the terms “above” and “below”; “up” and “down”; “upper” and “lower”; “upwardly” and “downwardly”; and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe some embodiments of the invention. However, when applied to equipment and methods for use in wells that are deviated or horizontal, such terms may refer to a left to right, right to left, or diagonal relationship as appropriate.
  • Referring to FIG. 1, in accordance with an example, a well 10 includes a wellbore 20, which may be lined with a casing string 22 that supports the wellbore 20. As other examples, the wellbore 20 may be only partially cased by a wellbore or may be entirely uncased. A tubular string 30 extends downhole into the wellbore 20 through one or more production or injection zones of the well 10 for purposes of facilitating the production of fluids from the well 10 and/or the injection of fluids into the well 10. It is noted that although FIG. 1 depicts the string 30 as being disposed in a main vertical wellbore, the wellbore 20 may be a lateral wellbore, in accordance with other examples. Furthermore, although FIG. 1 depicts a subterranean terrestrial well, the systems, techniques, tools and systems that are described herein may likewise be applied to subsea wells.
  • In general, the string 30 includes at least one valve assembly, such as a circulating valve tool 50 that is depicted in FIG. 1. For purposes of example, the tool 50 may be a multiple cycle tool, which means that the tool 50 is constructed to be opened and closed numerous times. It is noted that the string 30 may includes other types of valve assemblies (a ball valve assembly, for example), which may employ the control systems and techniques that are disclosed herein, in accordance with other examples.
  • For the following example, it is assumed that the well 10 is an underbalanced state, although this condition is not a prerequisite for the use of the tool 50. In the underbalanced state, the pressure that is exerted by the formation is greater than the hydrostatic pressure that is exerted by the fluid in an annulus 54, which is the annular region of the well 10 between the borehole wall or well casing string 22 (depending on whether the well 10 is cased or uncased) and the exterior of the tool 50. In general, the tool 50 is operated by manipulating a pressure in the annulus 54. As examples, the annulus pressure may be manipulated using a surface-disposed pump 12, although other systems and techniques may be used to induce pressure fluctuations in the annulus 54 for purposes of controlling the tool 50, as can be appreciated by one of skill in the art.
  • To operate the tool 50, pressure stimuli may be communicated from the surface of the well 10 downhole into the annulus 54 for purposes of delivering a command to the tool 50, such as a command to open fluid communication through radial ports 100 of the tool 50 or a command to close the fluid communication through the radial ports 100 to isolate the annulus 54 from the central passageway of the string 30, as non-limiting examples. As more specific examples, the communication of the pressure stimuli may involve momentarily increasing the pressure in the annulus 54 above a baseline annulus pressure level; momentarily decreasing the annulus pressure below the annulus baseline pressure level; a series of annulus pressure increases or decreases; etc.
  • In one control scheme, a sequence of pressurization cycles may be applied to the annulus 54 to operate the tool 50. The pressurization cycles may include cycles (called “up cycles”) in which the annulus pressure is increased and cycles (called “down cycles”) in which the annulus pressure is relaxed or decreased back to the annulus baseline level. In this manner, a particular number of up and down pressurization cycles may be used for purposes of transitioning the tool 50 from its closed state to its open state, and vice versa.
  • As described herein, the tool 50 includes a mechanical operator 130, which responds to the fluid pressure in the annulus 54. Unlike conventional arrangements, the actuation of the mechanical operator 130 does not depend on whether a full column of fluid exists in the central passageway of the string 30, and the operation of the mechanical operator does not involve circulating well fluid through the tool 50. Instead, as described herein, the tool 50 communicates the annulus pressure to the mechanical operator 130 for purposes of transitioning the tool 50 from a first state (an open or closed state, as non-limiting examples) to a different, second state (an open or closed state, as non-limiting examples).
  • As further described herein, a gas chamber 134 of the tool 50 exerts a force to counter the force that is produced by the annulus pressure (e.g., to bias the tool 50 to remain in the first state or return to the first state from the second state). The tool 50 has features to compensate the force that is exerted by the gas chamber 134 for purposes of causing this force to track the baseline pressure level of the annulus. In this way, the gas chamber accommodates downhole pressure and temperature fluctuations, which may otherwise adversely affect the operation of the tool 50.
  • FIG. 2 depicts a partial cross-sectional view of the tool 50, in accordance with a non-limiting example. Although FIG. 2 depicts a simplified, right-hand cross-sectional view of the tool 50 (on the right hand side of a longitudinal axis 51 of the tool 50), as can be appreciated by one of skill in the art, the tool 50 is generally symmetrical about the longitudinal axis 51, with the corresponding mirroring left-hand cross-section generally not being depicted in FIG. 2.
  • Referring to FIG. 2 in conjunction with FIG. 1, the tool 50 includes a generally tubular outer housing 99, which is generally coaxial with the longitudinal axis 51 and is designed to connect in line with the string 30. The outer housing 99 includes a central passageway 90 that is in fluid communication with the corresponding central passageways of the string sections above and below the valve assembly 50. The tool 50 includes a circulating valve element 107, which includes the radially-disposed flow ports 100, which are formed in the housing 99.
  • In the open state of the circulating valve element 107 (and tool 50), fluid communication is established between the annulus 54 (see FIG. 1) and the central passageway 90 through the flow ports 100. In this open state, an internal sleeve 104 of the circulating valve element 107 is in its downward position of travel (as depicted in FIG. 2), which means that the flow ports 100 are above the highest o-ring 106 on the sleeve 104 (i.e., the sleeve 104 and its associated o-rings do not block the radial flow).
  • For the closed state (not depicted in FIG. 2) of the valve element 107 (and tool 50), the sleeve 104 is near or at the uppermost point of travel such that the flow ports 100 are disposed between the o-rings 106 to therefore block fluid communication between the central passageway 90 and the annulus 54.
  • The up and down travel of the sleeve 104 is controlled by the mechanical operator 130 of the tool 50. In general, the operator 130 includes a piston head 140, which is connected through a mandrel 105 to the sleeve 106. In general, the piston head 140 is concentric with the sleeve 104 and has a central passageway to form part of the central passageway 90 of the tool 50. The piston head 140 moves up and down in response to a pressure differential between upper and lower gas chambers: the gas chamber 134 (called the “upper chamber 134” below), which exerts a downward force on an upper surface of the piston head 140 and a gas chamber 135 (called the “lower chamber 135” below), which exerts an upward force on a lower surface of the piston head 140. The upper 134 and lower 135 chambers reside inside a corresponding annular recess of the housing 99.
  • The volumes of the upper 134 and lower 135 gas chambers are variable in that the volume of the upper chamber 134 is maximized and the volume of the lower chamber 135 is minimized (as depicted in FIG. 2) in the open state of the tool 50; and the volume of the upper chamber 134 is minimized, and the volume of the lower chamber 135 is maximized in the closed state of the valve 50. The upper 134 and lower 135 chambers contain an inert gas (Nitrogen, for example); and the differential pressure between the upper 134 and lower 135 chambers control the upward and downward movement of the piston head 140, and thus, control the upper and downward movement of the sleeve 104. The lower chamber 135 is in fluid communication with another gas chamber 146 via a gas passageway 147.
  • The gas chamber 146 is part of a compensator 150, which transfers the annulus pressure to the gas chamber 146 while isolating the gas chamber 146 from the well fluid in the annulus 54. More specifically, the compensator 150 includes a floating compensating piston 148, which resides in an annular recess of the housing 99 to form the gas chamber 146 above the piston 148 and a chamber 149 below the piston 148, which receives annulus fluid communicated from one or more radially-disposed ports 160 (one port being shown in FIG. 2) that are formed in the outer housing 99. Thus, in general, via the ports 160, well fluid enters the chamber 149 and exerts upward pressure on the compensating piston 148. In response to this pressure, the compensating piston 148 pressurizes the gas in the gas chamber 146, which in turn, produces an upward force on the piston head 140.
  • As described in more detail below, a valve control network is built into the piston head 140 to allow equalization of pressures between the upper 134 and lower 135 gas chambers. However, the equalization occurs at a controlled rate for purposes of permitting pressure differentials to develop to act on the piston head 140. More specifically, the flow rate between the gas chambers 134 and 135 is initially limited when the annulus pressure first changes with respect to its steady state baseline pressure level. This limited flow rate, in turn, produces a set upward or downward force on the piston head 140.
  • For example, in response to an increase in annulus pressure, the pressure in the chamber 135 exceeds the pressure in the chamber 134 to cause an upward force on the piston head 140. As the piston head 140 moves upwardly, the pressures between the chambers 134 and 135 equalize to create a balanced condition after the piston head 140 is shifted to an upper position.
  • When the annulus pressure subsequently decreases, a downward force is initially produced on the piston head 140 due to the momentary differential pressure. Due to the valve system in the piston head 140, the pressures generally equalize so that when the piston head 140 reaches a point near its lowermost position of travel (as depicted in FIG. 2), a balanced condition once again rises. Due to the above-described pressure balancing, the gas pressure in the tool 50 adjusts to the baseline annulus pressure level; and as such, the gas charge is compensated for shrinkage or expansion due to thermal changes and changes in the annulus pressure.
  • Among the other features of the tool 50, in accordance with some examples, the tool 50 includes an indexer 110 to control the sequence of annulus pressurization cycles for purposes of causing the tool 50 to change states. As a non-limiting example, the indexer 110 may a J-slot mechanism, in which a pin on the operator mandrel 105 traverses a J-slot that has a predetermined pattern that restricts the travel of the operator mandrel 105 until the end of the pattern is reached. In other words, the J-slot establishes a predetermined number up/down pressurization cycles that must occur before the tool 50 transitions from a closed state to an open state. Once at the end of the pattern, the indexer 110 may be reset by releasing pressure on the annulus to move the operator mandrel 105 back to its lowermost point of travel to close the tool 50.
  • The tool 50 may include a mechanism 120 to restrict all motion of the operator mandrel 105 until a predetermined force on the piston head 140 (and operator mandrel 105) builds up. This allows the pressure differential across the piston head 140 to increase to a predetermined threshold before the operator mandrel 105 shifts for purposes of increasing the tool shifting speed to avoid leaving the tool 50 in an undesirable mid state (never fully opened or fully closed, for example). In accordance with some examples, the mechanism 120 may be a collet, which includes a plurality of fingers that engage corresponding features on the operator mandrel 105 to secure the operator mandrel 105 in place until the predetermined force threshold is reached. The fingers on the collet hold the operator mandrel 105 in its original position until the pressure differential across the piston head 140 is sufficiently high to overcome the grasp of the collet fingers and quickly shift the operator mandrel 105 all the way to the end position.
  • Referring to FIG. 3, the piston head 140 may include an embedded valve system, which includes a first flow path 190 for purposes of communicating gas pressure from the lower chamber 135 to the upper chamber 134. This flow path includes a flow restrictor 210 and a check valve 200. In this arrangement, when the pressure in the lower chamber 135 exceeds the pressure in the upper chamber 134, the check valve 200 opens to permit a bleed flow between the chambers 134 and 135. The flow restrictor 210 ensures that the flow rate is relatively small to create a pressure differential to produce an upward force on the piston head 140. After the piston head 140 has traveled upwardly by a sufficient distance, a radial crosshole 204, which is in communication with the above-described communication path bypasses a seal that is created by an upper o-ring 212 to bypass the flow restrictor 210 and allow relatively fast equalization of the pressure between the upper 134 and lower 135 chambers.
  • In a similar arrangement, a metered flow path 191 is disposed in the piston head 140 for purposes of equalizing pressures in the chambers 134 and 135 for the scenario in which the lower chamber 135 is de-pressurized due to a decrease in the annulus pressure. This flow path 191 includes a flow restrictor 208 and a check valve 206, which is constructed to open to allow communication through the flow restrictor 208 between the chambers 134 and 135 when the pressure in the upper chamber 134 is greater than the pressure in the lower chamber 135. Due to the metering by the flow restrictor 208, a downward force is created while the pressures in the chambers 134 and 135 are being equalized. After the piston head 130 has traveled downwardly by a sufficient distance, a cross hole 207, which is in communication with the passageway travels past the seal created by a lower o-ring 214 to therefore bypass the flow restrictor 208 to allow relatively rapid equalization of the chamber pressures.
  • Thus, due to the above-described valve system in the piston head 140, the pressure in the upper chamber 134 tracks the baseline pressure level in the annulus 54 to compensate its gas pressure for shrinkage or expansion due to thermal changes and changes in the annulus pressure.
  • FIG. 4 depicts a circulating valve tool 250 in accordance with other another example. Similar to the tool 50, the tool 250 includes a mechanical operator that responds to pressure changes in the annulus 54, without requiring a full column of fluid in the tubing string and without requiring circulation of well fluid through the tool 250. However, unlike the tool 50, the tool 250 does not use a gas chamber that equalizes its pressure with the baseline annulus pressure. Instead, the tool 250 includes a gas chamber 264 that has a fill port to store a predetermined charge of inert gas (Nitrogen gas, for example), which is used for purposes of operating a circulating valve element 252 of the tool 250.
  • More specifically, the combination of pressure from the gas chamber 264 and a spring 260 (a Belleville spring or bellows spring, as non-limiting examples) produces an upward force on a power piston head 258. The power piston head 258, in turn, is connected by way of an operator mandrel 254 to the circulating valve element 252. As also shown in FIG. 4, the tool 250 may include an indexer 270 to establish a predefined up and down transition cycle in order to change the state of the circulating valve 252. The upper surface of the piston 258 is exposed through radial ports 256 to the annulus pressure. Therefore, the piston 258 moves downwardly in response to increasing pressure in the pressure stimuli, and when the pressure relaxes, the upward force provided by the compressed spring 260 and the gas pressure exerted by the gas chamber 264 produce a force in concert to move the piston 258 in an upward direction.
  • Other variations are contemplated and are within the scope of the appended claims. For example, the valve assembly 250 may include a retention mechanism, such as the above-described collet, for purposes of storing energy and ensuring a fast valve opening, which avoids half states and overcomes the effects of erosion.
  • FIG. 5 depicts a circulating valve tool 300 in accordance with another example. The tool 300 has a similar design, in some aspects, relative to the tool 50, in that the tool 300 has upper 320 and lower 326 gas chambers, an operator piston 324 and indexer 314, similar in design to the upper 134 and lower 135 gas chambers, piston 130 and indexer 110, respectively, of the tool 50. In this regard, the lower gas chamber 326 has pressure that is derived by a compensator from the annulus pressure (not depicted in FIG. 5). However, unlike the tool 50, the valve assembly 300 does not use the gas pressure to drive an operator mandrel for purposes of opening and closing a circulating valve element 302 of the tool 300. Instead, the tool 300 uses the annulus pressure for purposes of operating the circulating valve element 302.
  • More specifically, the piston 324 may be connected to operator a pilot valve 312, which controls the application of annulus pressure to a power piston 304, which, in turn, operates the circulating valve 302. As shown in FIG. 5, the system to control the power piston 304 includes a pilot valve 312 (connected to the piston 320), a hydrostatic chamber 308 and a dump chamber 306.
  • Operation of the tool 300 may be better understood with reference to FIGS. 6 (depicting the power piston 304 at its uppermost position of travel) and 7 (depicting the power piston 304 at its lowermost position of travel). Referring to FIG. 6, annulus pressure is always applied to an upper chamber that is communication with an upper face of the power piston 304. The lower face of the piston 304, in turn, is connected either to the dump chamber 306 or to the hydrostatic chamber 308, as depicted in FIG. 6. When an operator section 322 (that contains the piston 320) configures the pilot valve 312 to connect the lower chamber to the hydrostatic chamber 308, the power piston 304 moves upwardly, as depicted in FIG. 6. As depicted in FIG. 7, when the operator section 322 configures the pilot valve 312 to connect the lower chamber to the dump chamber 306, then the power piston 304 moves to the lower position as depicted in FIG. 7. It is noted that the number of up and down cycles to effect a transition of the power piston 304 is controlled by the capacity of the dump chamber 306.
  • While the present invention has been described with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

Claims (29)

1. A tool usable with a well, comprising:
a valve element having a first state and a second state;
a mechanical operator to respond to a predetermined signature in an annulus pressure relative to a baseline level of the annulus pressure to transition the valve element from the first state to the second state, the baseline level capable of varying over time;
a pressure chamber to exert a chamber pressure to bias the mechanical operator to transition from the second state to the first state; and
a regulator to regulate the second pressure based on the baseline level.
2. The tool of claim 1, wherein the predetermined signature comprises a momentary increase in the annulus pressure above the baseline level.
3. The tool of claim 1, wherein the tool comprises:
a first gas chamber to store a gas; and
a compensator to isolate the gas from fluid in the annulus and communicate the predetermined signature to the first gas chamber.
4. The tool of claim 3, further comprising:
a second gas chamber,
wherein the mechanical operator comprises a piston to travel between an upper position and a lower position in response to a differential between a pressure exerted by the gas stored in the first gas chamber and a pressure in the second gas chamber.
5. The tool of claim 4, wherein the mechanical operator further comprises:
a pressure equalizer to bleed gas between the first and second gas chambers to equalize the pressure in the first and second gas chambers in response to the pressure differential.
6. The tool of claim 5, wherein the pressure equalizer is adapted to accelerate equalization of the pressures in the first and second chambers in response to the second piston nearing the first position or the second piston nearing the second position.
7. The tool of claim 1, further comprising:
an indexer to establish a predetermined travel pattern from the mechanical operator before the valve element transitions from the first state to the second state.
8. A method usable with a well, comprising:
responding to a predetermined signature in an annulus pressure relative to a baseline level of the annulus pressure transition a valve element from a first state to a second state, the baseline level capable of varying over time;
exerting a chamber pressure to bias the valve element to transition from the second state to the first; and
regulating the chamber pressure based on the baseline level.
9. The method of claim 8, wherein the predetermined signature comprises a momentary increase in the annulus pressure above the baseline level.
10. The method of claim 8, wherein the act of regulating comprises regulating the chamber pressure to track the baseline level.
11. The method of claim 8, further comprising:
bleeding gas between the first and second chambers to equalize the pressure in the first and second chambers in response to a pressure differential between the first and second chambers.
12. The method of claim 8, further comprising:
using an indexer to establish a predetermined pressurization schedule for the annulus for the valve element to transition from the first state to the second state.
13. A tool usable with a well, comprising:
a valve element having a first state and a second state;
a spring;
a pressure chamber;
a mechanical operator to:
respond to forces exerted in concert by the spring and the pressure chamber to bias transitioning of the valve element from the first state to the second state; and
respond to annulus pressure to transition the valve element from the second state to the first state.
14. The tool of claim 13, wherein the spring comprises a Belleville spring.
15. The tool of claim 13, further comprising:
a collet to selectively restrict operation of the mechanical operator to establish a predetermined force for transitioning the mechanical operator.
16. The tool of claim 13, wherein the pressure chamber is filled with an inert gas.
17. The tool of claim 13, further comprising:
an indexer to selectively restrict travel of the mechanical operator until a predetermined number of pressurization cycles occur in the well.
18. A method comprising:
biasing a valve element to transition from a first state to a second state, comprising responding to forces exerted in concert by a spring and a pressure chamber; and
responding to annulus pressure to transition the valve element from the second state to the first state.
19. The method of claim 18, wherein the act of responding to the annulus pressure comprises transitioning a circulating valve from the second state to the first state.
20. The method of claim 18, further comprising:
restricting transitioning of the valve element with a collet until the forces exerted in concert by the spring and the pressure chamber exceed a predetermined threshold.
21. The method of claim 18, further comprising:
regulating the transition of the valve element using an indexer.
22. A tool usable with a well, comprising:
a valve element having a first state and a second state;
a first mechanical operator;
a pilot valve to control communication of an annulus pressure to the first mechanical operator; and
a second mechanical operator to respond to annulus pressure to control operation of the pilot valve,
wherein the second mechanical operator is adapted to cause pilot valve to communicate the annulus pressure to the first mechanical operator to cause the first mechanical operator to transition the valve element from the first state to the second state in response to the annulus pressure exhibiting a predetermined signature and otherwise block the communication of the annulus pressure to the first mechanical operator to cause the first mechanical operator to transition the valve element from the second state to the first state.
23. The tool of claim 22, further comprising:
a dump chamber to receive fluid from the first mechanical operator in response to the transition of the second mechanical operator from the second state to the first state.
24. The tool of claim 22, further comprising:
a compensator to transfer pressure from the annulus and isolate the annulus fluid from the second mechanical operator.
25. The tool of claim 22, wherein the valve element comprises a circulation valve element.
26. A method comprising:
operating a pilot valve to communicate annulus pressure to a first mechanical operator to cause the first mechanical operator to transition a valve element from a first state to a second state in response to the annulus pressure exhibiting a first predetermined signature; and
using the pilot valve to block the communication of the annulus pressure to the first mechanical operator to cause the first mechanical operator to transition the valve element from the second state to the first state in response to the annulus pressure exhibiting a second predetermined signature.
27. The method of claim 26, further comprising:
receiving fluid from the first mechanical operator in a dump chamber in response to the transition of the second mechanical operator from the second state to the first state.
28. The method of claim 26, further comprising:
transferring pressure from the annulus and isolating the annulus fluid from the second mechanical operator.
29. The method of claim 26, wherein the valve element comprises a circulation valve element.
US12/575,999 2009-10-08 2009-10-08 Downhole valve Abandoned US20110083859A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/575,999 US20110083859A1 (en) 2009-10-08 2009-10-08 Downhole valve
GB1205983.8A GB2486383B (en) 2009-10-08 2010-09-23 Downhole valve
BR112012007724A BR112012007724A2 (en) 2009-10-08 2010-09-23 tool usable in a well, method usable in a well, and method
PCT/US2010/049903 WO2011043931A2 (en) 2009-10-08 2010-09-23 Downhole valve
NO20120432A NO20120432A1 (en) 2009-10-08 2012-04-12 Downhole Valve
US13/969,100 US9062514B2 (en) 2009-10-08 2013-08-16 Downhole valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/575,999 US20110083859A1 (en) 2009-10-08 2009-10-08 Downhole valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/969,100 Division US9062514B2 (en) 2009-10-08 2013-08-16 Downhole valve

Publications (1)

Publication Number Publication Date
US20110083859A1 true US20110083859A1 (en) 2011-04-14

Family

ID=43853915

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/575,999 Abandoned US20110083859A1 (en) 2009-10-08 2009-10-08 Downhole valve
US13/969,100 Active US9062514B2 (en) 2009-10-08 2013-08-16 Downhole valve

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/969,100 Active US9062514B2 (en) 2009-10-08 2013-08-16 Downhole valve

Country Status (5)

Country Link
US (2) US20110083859A1 (en)
BR (1) BR112012007724A2 (en)
GB (1) GB2486383B (en)
NO (1) NO20120432A1 (en)
WO (1) WO2011043931A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242199A1 (en) * 2008-03-26 2009-10-01 Schlumberger Technology Corporation Systems and techniques to actuate isolation valves
US20130087326A1 (en) * 2011-10-06 2013-04-11 Halliburton Energy Services, Inc. Downhole Tester Valve Having Rapid Charging Capabilities and Method for Use Thereof
US20130327538A1 (en) * 2012-06-12 2013-12-12 Schlumberger Technology Corporation Underbalance actuators and methods
US20140014352A1 (en) * 2011-03-30 2014-01-16 Welltec A/S Downhole pressure compensating device
US20140069508A1 (en) * 2012-09-07 2014-03-13 Leo Minervini Virtual Limit Switch
WO2015051469A1 (en) * 2013-10-11 2015-04-16 Raise Production Inc. Crossover valve system and method for gas production
US20180347315A1 (en) * 2012-10-16 2018-12-06 Weatherford Technology Holdings, Llc Flow control assembly
US10662736B2 (en) * 2017-02-10 2020-05-26 Halliburton Energy Services, Inc. Hydrostatic equalizing stem check valve
US11512682B2 (en) * 2018-04-28 2022-11-29 Thomas Magnete Gmbh Linear-acting electric pump unit and method for operating said unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704363B2 (en) * 2017-08-17 2020-07-07 Baker Hughes, A Ge Company, Llc Tubing or annulus pressure operated borehole barrier valve

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113012A (en) * 1977-10-27 1978-09-12 Halliburton Company Reclosable circulation valve for use in oil well testing
US4467867A (en) * 1982-07-06 1984-08-28 Baker Oil Tools, Inc. Subterranean well safety valve with reference pressure chamber
US4537258A (en) * 1983-09-19 1985-08-27 Halliburton Company Low pressure responsive downhole tool
US4664196A (en) * 1985-10-28 1987-05-12 Halliburton Company Downhole tool with compressible liquid spring chamber
US4665991A (en) * 1986-01-28 1987-05-19 Halliburton Company Downhole tool with gas energized compressible liquid spring
US4691779A (en) * 1986-01-17 1987-09-08 Halliburton Company Hydrostatic referenced safety-circulating valve
US4736798A (en) * 1986-05-16 1988-04-12 Halliburton Company Rapid cycle annulus pressure responsive tester valve
US5050681A (en) * 1990-07-10 1991-09-24 Halliburton Company Hydraulic system for electronically controlled pressure activated downhole testing tool
US5193619A (en) * 1989-04-28 1993-03-16 Exploration And Production Services (North Sea) Ltd. Well control apparatus
US5209303A (en) * 1991-11-20 1993-05-11 Halliburton Company Compressible liquid mechanism for downhole tool
US5240072A (en) * 1991-09-24 1993-08-31 Halliburton Company Multiple sample annulus pressure responsive sampler
US5259456A (en) * 1989-03-29 1993-11-09 Exploration And Production Services (North Sea) Ltd. Drill stem test tools
US5318130A (en) * 1992-08-11 1994-06-07 Halliburton Company Selective downhole operating system and method
US5558162A (en) * 1994-05-05 1996-09-24 Halliburton Company Mechanical lockout for pressure responsive downhole tool
US5791414A (en) * 1996-08-19 1998-08-11 Halliburton Energy Services, Inc. Early evaluation formation testing system
US5826660A (en) * 1996-06-18 1998-10-27 Schlumberger Technology Corporation Dual action valve including a built in hydraulic circuit
US5918688A (en) * 1997-10-09 1999-07-06 Dailey International, Inc. Gas-filled accelerator
US5984014A (en) * 1997-12-01 1999-11-16 Halliburton Energy Services, Inc. Pressure responsive well tool with intermediate stage pressure position
US6145595A (en) * 1998-10-05 2000-11-14 Halliburton Energy Services, Inc. Annulus pressure referenced circulating valve
US6209663B1 (en) * 1998-05-18 2001-04-03 David G. Hosie Underbalanced drill string deployment valve method and apparatus
US20030155131A1 (en) * 2002-02-19 2003-08-21 Vick James D. Deep set safety valve
US20060169462A1 (en) * 2005-02-02 2006-08-03 Bj Services Company Interventionless oil tool actuator with floating piston
US7624792B2 (en) * 2005-10-19 2009-12-01 Halliburton Energy Services, Inc. Shear activated safety valve system
US20100200245A1 (en) * 2009-02-09 2010-08-12 Halliburton Energy Services Inc. Hydraulic Lockout Device for Pressure Controlled Well Tools

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667743A (en) * 1985-12-12 1987-05-26 Halliburton Company Low pressure responsive tester valve with ratchet
US4796699A (en) * 1988-05-26 1989-01-10 Schlumberger Technology Corporation Well tool control system and method
US6536529B1 (en) * 1998-05-27 2003-03-25 Schlumberger Technology Corp. Communicating commands to a well tool
US6182764B1 (en) * 1998-05-27 2001-02-06 Schlumberger Technology Corporation Generating commands for a downhole tool using a surface fluid loop
US8443894B2 (en) 2009-11-18 2013-05-21 Baker Hughes Incorporated Anchor/shifting tool with sequential shift then release functionality

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113012A (en) * 1977-10-27 1978-09-12 Halliburton Company Reclosable circulation valve for use in oil well testing
US4467867A (en) * 1982-07-06 1984-08-28 Baker Oil Tools, Inc. Subterranean well safety valve with reference pressure chamber
US4537258A (en) * 1983-09-19 1985-08-27 Halliburton Company Low pressure responsive downhole tool
US4664196A (en) * 1985-10-28 1987-05-12 Halliburton Company Downhole tool with compressible liquid spring chamber
US4691779A (en) * 1986-01-17 1987-09-08 Halliburton Company Hydrostatic referenced safety-circulating valve
US4665991A (en) * 1986-01-28 1987-05-19 Halliburton Company Downhole tool with gas energized compressible liquid spring
US4736798A (en) * 1986-05-16 1988-04-12 Halliburton Company Rapid cycle annulus pressure responsive tester valve
US5259456A (en) * 1989-03-29 1993-11-09 Exploration And Production Services (North Sea) Ltd. Drill stem test tools
US5193619A (en) * 1989-04-28 1993-03-16 Exploration And Production Services (North Sea) Ltd. Well control apparatus
US5050681A (en) * 1990-07-10 1991-09-24 Halliburton Company Hydraulic system for electronically controlled pressure activated downhole testing tool
US5240072A (en) * 1991-09-24 1993-08-31 Halliburton Company Multiple sample annulus pressure responsive sampler
US5209303A (en) * 1991-11-20 1993-05-11 Halliburton Company Compressible liquid mechanism for downhole tool
US5318130A (en) * 1992-08-11 1994-06-07 Halliburton Company Selective downhole operating system and method
US5597016A (en) * 1994-05-05 1997-01-28 Halliburton Company Mechanical lockout for pressure responsive downhole tool
US5558162A (en) * 1994-05-05 1996-09-24 Halliburton Company Mechanical lockout for pressure responsive downhole tool
US5826660A (en) * 1996-06-18 1998-10-27 Schlumberger Technology Corporation Dual action valve including a built in hydraulic circuit
US5791414A (en) * 1996-08-19 1998-08-11 Halliburton Energy Services, Inc. Early evaluation formation testing system
US5918688A (en) * 1997-10-09 1999-07-06 Dailey International, Inc. Gas-filled accelerator
US5984014A (en) * 1997-12-01 1999-11-16 Halliburton Energy Services, Inc. Pressure responsive well tool with intermediate stage pressure position
US6209663B1 (en) * 1998-05-18 2001-04-03 David G. Hosie Underbalanced drill string deployment valve method and apparatus
US6145595A (en) * 1998-10-05 2000-11-14 Halliburton Energy Services, Inc. Annulus pressure referenced circulating valve
US6328055B1 (en) * 1998-10-05 2001-12-11 Halliburton Energy Services, Inc. Annulus pressure referenced circulating valve
US20030155131A1 (en) * 2002-02-19 2003-08-21 Vick James D. Deep set safety valve
US20060169462A1 (en) * 2005-02-02 2006-08-03 Bj Services Company Interventionless oil tool actuator with floating piston
US7624792B2 (en) * 2005-10-19 2009-12-01 Halliburton Energy Services, Inc. Shear activated safety valve system
US20100200245A1 (en) * 2009-02-09 2010-08-12 Halliburton Energy Services Inc. Hydraulic Lockout Device for Pressure Controlled Well Tools

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242199A1 (en) * 2008-03-26 2009-10-01 Schlumberger Technology Corporation Systems and techniques to actuate isolation valves
US8056643B2 (en) * 2008-03-26 2011-11-15 Schlumberger Technology Corporation Systems and techniques to actuate isolation valves
US8776890B2 (en) * 2008-03-26 2014-07-15 Schlumberger Technology Corporation Systems and techniques to actuate isolation valves
US9458695B2 (en) * 2011-03-30 2016-10-04 Welltec A/S Downhole pressure compensating device
US20140014352A1 (en) * 2011-03-30 2014-01-16 Welltec A/S Downhole pressure compensating device
US20130087326A1 (en) * 2011-10-06 2013-04-11 Halliburton Energy Services, Inc. Downhole Tester Valve Having Rapid Charging Capabilities and Method for Use Thereof
EP2748418A4 (en) * 2011-10-06 2016-05-11 Halliburton Energy Services Inc Downhole tester valve having rapid charging capabilities and method for use thereof
US8701778B2 (en) * 2011-10-06 2014-04-22 Halliburton Energy Services, Inc. Downhole tester valve having rapid charging capabilities and method for use thereof
US20130327538A1 (en) * 2012-06-12 2013-12-12 Schlumberger Technology Corporation Underbalance actuators and methods
US9388665B2 (en) * 2012-06-12 2016-07-12 Schlumberger Technology Corporation Underbalance actuators and methods
US9133959B2 (en) * 2012-09-07 2015-09-15 Pentair Flow Services Ag Virtual limit switch
US20140069508A1 (en) * 2012-09-07 2014-03-13 Leo Minervini Virtual Limit Switch
US10781665B2 (en) * 2012-10-16 2020-09-22 Weatherford Technology Holdings, Llc Flow control assembly
US20180347315A1 (en) * 2012-10-16 2018-12-06 Weatherford Technology Holdings, Llc Flow control assembly
WO2015051469A1 (en) * 2013-10-11 2015-04-16 Raise Production Inc. Crossover valve system and method for gas production
US10612350B2 (en) 2013-10-11 2020-04-07 Raise Production Inc. Crossover valve system and method for gas production
CN105934559A (en) * 2013-10-11 2016-09-07 莱瑟制造有限公司 Crossover valve system and method for gas production
US10662736B2 (en) * 2017-02-10 2020-05-26 Halliburton Energy Services, Inc. Hydrostatic equalizing stem check valve
US11512682B2 (en) * 2018-04-28 2022-11-29 Thomas Magnete Gmbh Linear-acting electric pump unit and method for operating said unit

Also Published As

Publication number Publication date
WO2011043931A3 (en) 2011-07-21
US20130327539A1 (en) 2013-12-12
BR112012007724A2 (en) 2016-08-23
GB2486383A (en) 2012-06-13
GB201205983D0 (en) 2012-05-16
NO20120432A1 (en) 2012-05-07
WO2011043931A2 (en) 2011-04-14
GB2486383B (en) 2015-02-18
US9062514B2 (en) 2015-06-23

Similar Documents

Publication Publication Date Title
US9062514B2 (en) Downhole valve
US8186444B2 (en) Flow control valve platform
US7654333B2 (en) Downhole safety valve
US6782952B2 (en) Hydraulic stepping valve actuated sliding sleeve
US7635029B2 (en) Downhole electrical-to-hydraulic conversion module for well completions
US9228423B2 (en) System and method for controlling flow in a wellbore
AU2005213284B2 (en) Apparatus for changing wellbore fluid temperature
US7954552B2 (en) Overriding a primary control subsystem of a downhole tool
US9080404B2 (en) Method and system for interventionless hydraulic setting of equipment when performing subterranean operations
US10280708B2 (en) Flow control valve with balanced plunger
US11649695B2 (en) Pressure regulating check valve
US8162066B2 (en) Tubing weight operation for a downhole tool
NL2019726B1 (en) Top-down squeeze system and method
US10435987B2 (en) Flow control valve
WO2014011178A1 (en) Control line damper for valves
US11613973B1 (en) Downhole gas control valve having belleville washers
US10392900B2 (en) Actuation control system using pilot control circuit
NO20201043A1 (en) Hydraulic control system for index downhole valves
CA2540997A1 (en) Downhole safety valve
US20220356779A1 (en) Intelligent flow control valve reverse choke position
US12006788B2 (en) Passive pressure application and regulation of downhole hydraulic devices
US20230250706A1 (en) Passive pressure application and regulation of downhole hydraulic devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCRANTON, JOSEPH D.;IFTIKHAR, KAMIL;LONGFIELD, COLIN;SIGNING DATES FROM 20091006 TO 20091008;REEL/FRAME:023458/0977

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION