US20100119665A1 - Home-style meat product and method of producing same - Google Patents

Home-style meat product and method of producing same Download PDF

Info

Publication number
US20100119665A1
US20100119665A1 US12/614,249 US61424909A US2010119665A1 US 20100119665 A1 US20100119665 A1 US 20100119665A1 US 61424909 A US61424909 A US 61424909A US 2010119665 A1 US2010119665 A1 US 2010119665A1
Authority
US
United States
Prior art keywords
meat
whole muscle
product
home
style
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/614,249
Other versions
US9848631B2 (en
Inventor
Cory Painter
Edward A. Kusmider
Sarah Humke
Matthew Hurm
Lauren Michele Sammel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kraft Foods Group Brands LLC
Original Assignee
Kraft Foods Global Brands LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/267,356 external-priority patent/US9675089B2/en
Application filed by Kraft Foods Global Brands LLC filed Critical Kraft Foods Global Brands LLC
Priority to US12/614,249 priority Critical patent/US9848631B2/en
Assigned to KRAFT FOODS GLOBAL BRANDS LLC reassignment KRAFT FOODS GLOBAL BRANDS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAMMEL, LAUREN MICHELE, HUMKE, SARAH, HURM, MATTHEW, KUSMIDER, EDWARD A., PAINTER, CORY
Publication of US20100119665A1 publication Critical patent/US20100119665A1/en
Priority to US13/157,711 priority patent/US9629374B2/en
Assigned to KRAFT FOODS GROUP BRANDS LLC reassignment KRAFT FOODS GROUP BRANDS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRAFT FOODS GLOBAL BRANDS LLC
Priority to US15/460,355 priority patent/US10154683B2/en
Application granted granted Critical
Publication of US9848631B2 publication Critical patent/US9848631B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/60Comminuted or emulsified meat products, e.g. sausages; Reformed meat from comminuted meat product
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/40Meat products; Meat meal; Preparation or treatment thereof containing additives

Definitions

  • This disclosure relates generally to a method and apparatus for producing a home-style meat product, specifically mass producing a home-style meat product.
  • Processing systems for various food products like vegetables, fruits, and meat products are known. When focused on meat products, the systems in the art are typically directed to producing uniform slices and cuts. In fact, the art exhibits a systematic progression to achieve greater and greater uniformity. This is true whether the system is producing a diced product, where the squareness of the final product is the desired trait, or producing a sliced product, where uniformity of thickness, size, and shape is preferred. These systems produce a final meat product that is packaged and presented to the consumer with each piece looking generally the same as the next.
  • a method and apparatus is needed to mass produce high quality slices of meat of irregular shape and size in a cost effective manner.
  • the disclosed method and apparatus produces high quality, unique slices of meat that have irregular edges, natural meat grains, and natural color variation.
  • FIG. 1 is a flow diagram of a method for producing meat slices of irregular shape and size
  • FIG. 2 is a side elevation view of an apparatus for producing meat slices of irregular shape and size
  • FIG. 3 is a front elevation view of an apparatus shown in FIG. 2 .
  • FIG. 4 is a perspective view of the apparatus of FIG. 2 with the optional front panel open.
  • FIG. 5 is a side elevation view of the impeller and knife assembly of the apparatus of FIG. 2 ;
  • FIG. 6 is a perspective view of an optional circular knife assembly for use in the apparatus of FIG. 2 ;
  • FIG. 7 is a flow diagram illustrating a process as described below.
  • a method and processing machine for use in producing irregularly shaped and sized food products and, in particular, for use in producing irregularly shaped and sized meat slices.
  • the processing machine is generally referred to by reference numeral 10 in FIGS. 2-4 .
  • the rotary processing machine 10 comprises a support frame 12 and a housing 14 .
  • Prepared meat products 46 are fed into a rotary impeller 34 , which is rotatably attached in the housing 14 .
  • the impeller 34 comprises a plurality of equally spaced paddles 40 and is encircled by a stationary cylinder 48 .
  • a motor 42 drives the rotation of the impeller 34 .
  • the paddles 40 catch the meat product 46 and carry it along an inner surface 50 of the stationary cylinder 48 .
  • the stationary cylinder 48 includes an opening 54 . On one side of the opening 54 , a slicing knife 56 is attached.
  • the impeller 34 drives the meat product 46 around the inner surface 50 of the stationary cylinder 48 , the meat product 46 approaches the opening 54 and impacts the slicing knife 56 .
  • the meat products 46 are able to tumble in the impeller so that different sides are engaged by the slicing knife 56 . This process produces meat slices 46 a of irregular shape and size.
  • the rotary processing machine 10 can further include a circular knife assembly 62 .
  • the circular knife assembly 62 is positioned proximal to the opening 54 , but downstream of the slicing knife 56 .
  • the circular knife assembly 62 is oriented generally parallel with the slicing knife 56 .
  • the circular knife assembly 62 may then further reduce the size of the meat product 46 , while still producing meat slices 46 a of irregular shape and size.
  • the circular knife assembly 62 would have at least one circular, rotating cutting blade 68 .
  • the blade 68 preferably is dulled to produce rough cutting edges.
  • the rotary processing machine 10 can further include a cross cut knife assembly 76 .
  • the cross cut knife assembly 76 is positioned proximal to and downstream of the circular knife assembly 62 and the slicing knife 56 .
  • the cross cut knife assembly 76 is oriented generally parallel with the slicing knife 56 .
  • the cross cut knife assembly 76 may then further reduce the size of the meat product 46 , while still producing meat slices 46 a of irregular shape and size.
  • the cross cut knife assembly 76 would have at least one cross cut blade 78 .
  • the blade 78 preferably is dulled to produce rough cutting edges.
  • the rotary processing machine 10 can be made to be highly space efficient.
  • the rotary processing machine 10 may have a height in the range of 50 inches to 72 inches, and preferably in the range of 54 inches to 69 inches.
  • the rotary processing machine 10 may weigh in the range of 1,400 pounds to 1,600 pounds, and preferably about 1,500 pounds.
  • the frame 12 provides the support for the rotary processing machine 10 .
  • the frame 12 may have a length in the range of 26 inches to 38 inches and a width in the range of 25 inches to 37 inches.
  • the frame 12 has a length of about 32 inches and a width of about 31 inches.
  • the small area allows the rotary processing machine 10 to seamlessly integrate with existing operations.
  • the frame 12 may further comprise numerous legs 16 .
  • each of the legs 16 has casters 18 at their terminal end to allow for greater mobility of the rotary processing machine 10 .
  • At least one caster 18 preferably has a locking mechanism 20 that an operator can engage to prevent the rotary processing machine 10 from moving when movement is not desired.
  • the frame 12 is attached to and supports the housing 14 .
  • the housing 14 may have a length in the range of 37 inches to 67 inches, and preferably in the range of 47 inches to 62 inches, and more preferably about 57 inches.
  • the housing 14 may enclose any or all of the motor 42 , the impeller 34 , the stationary cylinder 48 , the knife assembly 52 , and an electrical component box 32 .
  • the housing 14 may also include access to the devices enclosed within it. In one embodiment, this access comprises a front panel 22 .
  • the front panel 22 may be hinged to provide the operator access to the impeller 34 , the stationary cylinder 48 and the knife assembly 52 . This feature provides the user with easy access to these devices as needed, for example, for maintenance or cleaning.
  • this access may include a back panel 24 .
  • the back panel 24 may be hinged to provide the operator access to at least the electrical component box 32 , as needed.
  • the housing 14 includes a hopper 26 .
  • the hopper 26 is positioned to receive the prepared meat product 46 and feed it into the stationary cylinder 48 .
  • the hopper 26 is positioned adjacent to the stationary cylinder 48 , and preferably centered with the stationary cylinder 48 .
  • the hopper 26 has an opening directed upwards for loading of the prepared meat product 46 and urging of the prepared meat product 46 into the stationary cylinder 48 by gravitational force.
  • the diameter of the hopper 26 where it provides access to the stationary cylinder 48 may be in the range of 13.5 inches to 14.8 inches, and preferably about 13.5 inches.
  • the hopper 26 may preferably be positioned on the front panel 22 to provide access to the stationary cylinder 48 and the impeller 34 as needed, for example, for maintenance or cleaning.
  • the housing 14 also comprises a feeder chute 28 .
  • the feeder chute 28 is attached to the hopper 26 to provide an extended and more covered access route for the prepared meat product to reach the stationary cylinder 48 .
  • the access opening of the feeder chute 28 may be vertically aligned or preferably facing generally upwards.
  • the feeder chute 28 is generally circular with an opening generally equal to that of the hopper 26 at its distal end where the chute 28 meets the hopper 26 .
  • the feeder chute 28 starts with a generally square opening, preferably about 13.5 inches on each side, and ends with an opening generally equal to that of the hopper 26 at its distal end where the chute 28 meets the hopper 26 .
  • the housing 14 also may include a discharge chute 30 .
  • the discharge chute 30 is positioned below the knife assembly 52 to direct the discharge of the meat slices 46 a from the rotary processing machine 10 .
  • the discharge chute 30 may be downward facing.
  • the distal end of the discharge chute 30 may be in the range of 10 inches to 20 inches above the floor, and preferably about 15 inches. This preferable height from the floor provides the discharge chute 30 with a sufficient height to accommodate larger slices produced by the processing machine 10 . It may be of a generally rectangular shape with a width equal to or larger than the width of the stationary cylinder 48 , and preferably in the range of 13 inches to 15 inches, and more preferably about 13.7 inches.
  • the length of the distal end of the discharge chute 30 may be in the range of 5 inches to 15 inches, and preferably about 10 inches.
  • the discharge chute 30 is attached to the housing 14 directly below the knife assembly 52 and angles away from the rotary processing machine 10 , so that the distal end of the discharge chute 30 is spaced from the frame 12 in the range of about 4 inches to 12 inches, and preferably in the range of 8 inches to 9 inches.
  • the discharge chute 30 preferably does not contain any obstructions in order to provide an easier discharge path for the meat slices 46 a.
  • the impeller 34 includes a pair of rotating end discs 36 , 38 interconnected by the paddles 40 .
  • the paddles 40 are equally spaced around the interior circumference of the end discs 36 , 38 .
  • the impeller 34 is rotatably attached in the housing 14 .
  • the paddles 40 are preferably attached perpendicular to the end discs 36 , 38 .
  • the paddles may be orientated generally radially, or alternatively, they may be angled toward the direction of rotation of the impeller 34 . This angle can be between 0 and 55 degrees from radial in the direction of rotation of the impeller 34 , and preferably about 30 degrees.
  • the paddles 40 may preferably start at the outer edge of the impeller 34 or, alternatively, start in a range up to 1 inch from the edge.
  • the paddles 40 have a length in the range of 3 inches to 6 inches, and preferably 4 to 5 inches. This preferable length allows the meat product 46 to tumble and present different oriented slicing surfaces to the slicing knife 56 .
  • the impeller 34 has between two and six paddles 40 , and preferably between three and five paddles 40 . In the most preferred embodiment, the impeller 34 has four paddles 40 .
  • the motor 42 drives the rotation of the impeller 34 , such as in a direction indicated by the arrow 44 .
  • the motor 42 can operate at any feasible hertz level, and preferably in a range from 60 to 75 hertz, and more preferably 75 hertz.
  • the motor 42 can operate at any feasible horsepower, and preferably at 10 horsepower.
  • the motor 42 may preferably be supplied voltage across the line or, alternatively, by a variable frequency drive.
  • the paddles 40 contact the prepared meat product 46 and cause it to rotate along with the impeller 34 in the direction of the arrow 44 .
  • centrifugal force presses the prepared meat product 46 against the inner surface 50 of the stationary cylinder 48 .
  • the paddles 40 drive the prepared food product 46 around the inner surface 50 of the stationary cylinder 48 .
  • the rotary cutting machine 10 does not restrain or control the position of the prepared meat product 46 beyond the application of centrifugal force, the prepared food product 46 can tumble and fall within the impeller 34 .
  • the prepared meat product 46 is pressed against the inner surface 50 of the stationary cylinder 48 in random and different orientations as it is driven by the paddles 40 of the impeller 34 .
  • the degree of random and different orientations can be increased depending upon the amount of meat product 46 present in the impeller 34 .
  • having more meat products 46 in the impeller 34 than the number of paddles 40 can advantageously result in the excess meat products 46 accumulating in a lower region of the cylinder 48 .
  • the meat product 46 can continue to rotated toward the lower region where the accumulated meat products 46 can cause the just-sliced meat product 46 to become dislodged from adjacent the paddle 40 .
  • Another meat product 46 can then take the place of the just-sliced meat product 46 .
  • just-sliced meat product 46 When the just-sliced meat product 46 is subsequently advanced by the same of a different paddle 40 , it can be in a different orientation than if it had continued to rotate by the same paddle 40 , and thereby the next time it is sliced, a differently shaped slice can be cut.
  • the knife assembly 52 includes the opening 54 and the slicing knife 56 .
  • the opening 54 is formed in the stationary cylinder 48 by spacing the side of the opening 54 positioned earlier in the path of rotation of the impeller 34 from the outer periphery of the impeller 34 .
  • the opening 54 can be formed anywhere on the stationary cylinder 48 , and preferably is formed at a position of the stationary cylinder 48 where the rotation of the impeller 34 is in a generally downward direction and, more preferably, where the velocity of the prepared meat product 46 is generally perpendicular with the floor.
  • the opening 54 preferably spans the width of the stationary cylinder 48 and is preferably generally horizontal. Alternatively, the opening 54 may be formed in the stationary cylinder 48 at an angle in the range of 45 degrees above or below horizontal.
  • the width of the opening 54 can be adjusted by a control knob 58 .
  • the control knob 58 is preferably adjacent to the opening 54 and attached to the side of the opening 54 spaced from the outer periphery of the impeller 34 .
  • the control knob 58 can adjust the distance the side of the opening 54 is spaced from the outer periphery of the impeller 34 .
  • the control knob 58 can vary the width of the opening 54 in a range from 1/16 inch to 1 inch, and preferably the opening 54 is set between 1 ⁇ 8 inch and 3/16 inch.
  • the width of the opening 54 set by the control knob 58 determines the maximum thickness of the meat slices 46 a produced by the rotary processing machine 10 .
  • the slicing knife 56 is positioned at the side of the opening 54 that extends along the outer periphery of the impeller 34 .
  • the slicing knife 56 is removably positioned at the opening 54 .
  • the removably attached slicing knife 56 may then be removed and inserted as needed, for example, to select a different type of the slicing knife 56 , with a scalloped blade being preferred, to repair or maintain the slicing knife 56 , or to- replace -the slicing knife 56 .
  • the slicing knife 56 preferably spans the length of the opening 54 and is positioned to provide the first point of contact for the meat product 46 as it is driven into the opening 54 by the impeller 34 .
  • the meat product 46 As the paddles 40 drive the meat product 46 to the opening 54 , the meat product 46 is driven beyond the outer periphery of the impeller 34 due to the spacing of the opening 54 . As the paddle 40 continues to rotate, the meat product 46 is driven into the slicing knife 56 which is positioned at the outer periphery of the impeller 34 , producing meat slices 46 a of thickness determined by the width of the opening 54 .
  • the slicing knife 56 may further comprise a guide surface 60 . As the slicing knife 56 cuts into the prepared meat product 46 , meat slices 46 a are produced, and the guide surface 60 can direct the meat slices 46 a away from the knife assembly 52 and towards the discharge chute 30 .
  • the knife assembly 52 may further comprise the circular knife assembly 62 , as shown in FIG. 6 .
  • the circular knife assembly 62 comprises at least one circular blade 68 mounted on a rotatable shaft 64 and is positioned in a direction that is generally parallel to the process feed direction.
  • the circular knife assembly 62 is rotatably mounted to the housing 14 to preferably rotate in a direction as indicated by the arrow 66 .
  • the circular knife assembly 62 is preferably downstream and proximal to the slicing knife 56 . As the meat slices 46 a are produced, they may travel down the guide surface 60 of the slicing knife 56 . While on the guide surface 60 , the at least one circular blade 68 may then further reduce the size of the meat slices 46 a.
  • the circular knife assembly 62 has dulled circular blades 68 .
  • the circular blades 68 may be artificially dulled by any method, or preferably, the circular blades 68 may be allowed to dull naturally and are not sharpened.
  • the dulled circular blades 68 may then reduce the meat slice 46 a size while still producing meat slices 46 a with irregular edges consistent with the appearance of “home-style” carved meat.
  • the dull circular blades 68 provide a natural cut by pulling the muscle fibers of the sliced meat product 46 a.
  • the circular knife assembly 62 may alternatively contain feed discs 70 to assist in advancing the meat slices 46 a.
  • the feed discs 70 may be mounted on the rotatable shaft 64 in place of any number of the circular blades 68 .
  • the circular knife assembly 62 may consist of between one and fifteen circular blades 68 , and preferably one circular blade 68 , depending on the size of the prepared meat product 46 being used and the size of the meat slices 46 a desired.
  • the chosen number of blades 68 having different spacings therebetween to cut the meat slices 46 a into further reduced sizes of varying widths.
  • a first spacer 72 creates a gap or space of length ‘a,’ and a second spacer 74 creates a gap of length ‘b.’
  • the spacers 72 , 74 can be alternated every other one, such that the spacing between the blades 68 is also alternating between a space of length ‘a’ and ‘b,’ or, alternatively, may be placed in any other suitable combination.
  • the blade 68 spacing may be varied from 1 ⁇ 8 inch to 1 inch.
  • the feed discs 70 may be positioned on the rotatable shaft 64 instead.
  • the circular knife assembly 62 is composed of two circular blades 68 spaced apart by 3 inches and centered on the rotatable shaft 64 having 3 ⁇ 4 inch spacers 72 , 74 running the length of the rotatable shaft 64 .
  • the remaining spaces between the spacers 72 , 74 on the rotatable shaft 64 preferably have feed discs 70 .
  • the knife assembly 52 may also comprise the cross cut knife assembly 76 .
  • the cross cut knife assembly 76 is positioned in a direction that is generally parallel to the process feed direction.
  • the cross cut knife assembly 76 can be comprised of a number of cross cut blades 78 in the range of 1 to 14, and preferably 2.
  • the cross cut blades 78 preferably run the length of the cross cut knife assembly 76 and are positioned generally parallel to the process feed direction.
  • the cross cut knife assembly 76 is rotatably mounted to the housing 14 to preferably rotate in a direction as indicated by the arrow 80 .
  • the cross cut knife assembly 76 is preferably downstream and proximal to the slicing knife 56 .
  • the meat slices 46 a may travel down the guide surface 60 of the slicing knife 56 . As the meat slices advance beyond the end of the guide surface 60 , the cross cut blades 78 may then further reduce the size of the meat slices 46 a.
  • the cross cut knife assembly 76 has dulled cross cut blades 78 .
  • the cross cut blades 78 may be artificially dulled by any method, or preferably, the cross cut blades 78 may be allowed to dull naturally and are not sharpened.
  • the dulled cross cut blades 78 may then reduce the meat slice 46 a size while still producing meat slices 46 a with irregular edges consistent with the appearance of “home-style” carved meat.
  • the dull cross cut blades 78 provide a natural cut by pulling the muscle fibers of the sliced meat product 46 a.
  • a bulk meat product is first selected for processing by the processing machine.
  • the bulk meat product can be selected from any variety of meat product, including, for example, ham, turkey, chicken, or beef. Once the bulk meat product is selected, it can then be prepared for processing. This preparation can first include chilling the bulk meat product to the required temperature. This may include storing the bulk meat product at the desired temperature or instead chilling the bulk meat product further to reach the desired temperature.
  • the meat product should be kept at a temperature below 40 degrees Fahrenheit for food safety purposes, and preferably, the meat product should have a temperature in the range of 30 to 35 degrees Fahrenheit when processed by the processing machine. Alternatively, the bulk meat product can be cooked or heated prior to processing.
  • This may include cooking the meat product by any suitable means.
  • This preparation can also include removing the bulk meat product from any casing or wrapping used to store and ship the product. This preparation may ensure that the meat product is free of any foreign material to keep any foreign material out of the final sliced product.
  • Another option for preparation includes breaking down the bulk meat product prior to processing.
  • the bulk meat product may be broken down by hand or other suitable means. However, it has been found that breaking down formulated turkey into smaller portions before processing can create a good, but small end product. In any case, the prepared meat product is preferably about 10 inches in any dimension or less.
  • the total amount of meat product may be selected. The amount of meat product selected is dependent on the amount of output slices desired and can be in a range of one meat product to more than 20 with each load into the processing machine.
  • a next step can include selecting a slicing knife.
  • the slicing knife can have any type of edge, including, for example, a scalloped or a wavy edge. Once the slicing knife is selected, it may then be inserted into the processing machine. As disclosed above, inserting the slicing knife into the processing machine positions the knife at the opening formed in the stationary cylinder.
  • a desired slice thickness can be determined.
  • the slice thickness may be in the range of 1/16 inch to 1 inch.
  • the desired slice thickness may vary depending on the selected type of meat or the application of the desired output.
  • the slice thickness may then be represented on the processing machine.
  • the control knob is operably attached to the opening to adjust the width thereof.
  • the slice thickness corresponds to the distance between the slicing knife and the side of the opening spaced from the outer periphery of the impeller.
  • the following step may include determining a desired slice width. This width may be as large as the selected bulk meat product or the broken down selected meat product, or as small as 1 ⁇ 8 inch as disclosed in the discussion of the circular knife assembly above.
  • the desired slice width may vary depending on the type of the selected meat product or the application of the product intended to be produced by the processing machine. Once the desired slice width is determined, it can then be determined whether a circular knife assembly is needed. If the desired slice width is less than any dimension of the prepared meat product, the circular knife assembly may be used to further reduce the width. If the circular knife assembly is required, its setup must then be determined. This includes choosing the number of pre-dulled circular blades desired and the spacing between the pre-dulled circular blades.
  • the type of spacers and number of feed discs can be ascertained. Once all of the circular knife assembly materials are chosen, they may be mounted on a rotatable shaft. The assembled circular knife assembly may then be rotatably attached to the housing of the processing machine proximal to and downstream of the slicing knife.
  • Another step may include determining a desired slice height. This height may be as large as the height of the selected bulk meat product or the broken down selected meat product, or instead, a smaller slice may be desired. If a smaller slice height is desired, a cross cut knife assembly may be used. If the cross cut knife assembly is required, its setup must then be determined. This includes choosing the number of pre-dulled cross cut blades desired and the spacing between the pre-dulled cross cut blades, and preferably two evenly spaced dulled cross cut blades. The cross cut knife assembly may then be rotatably attached to the housing of the processing machine proximal to and downstream of the slicing knife.
  • a desired speed of rotation of the impeller may then be determined.
  • the speed of the rotation of impeller influences the magnitude of the centrifugal force applied on the prepared meat product while in the impeller and, similarly, it may also influence the tumbling and orientation of the meat products while in the impeller. This process determines the edge of the meat product from which the slices are produced. If a desired speed is determined, the speed of rotation of the impeller may then be set.
  • the available speeds may vary with the type of motor operating the processing machine, and preferably the motor can operate at 75 hertz.
  • the processing machine comprised of a housing, a motor, an impeller, and a knife assembly may then use the impeller having at least one paddle to rotatably drive the prepared meat product around the housing, the prepared meat product held to the housing by centrifugal force, to impact the knife assembly to create irregularly shaped meat slices.
  • the selected and prepared meat product can then be loaded into the processing machine.
  • the machine operates as detailed above to output mass-scale “home-style” slices of meat of irregular shape and size.
  • the slices of meat can be collected. This may be done by placing a bag or collection bin under the discharge chute. Finally, the collected slices can be packaged.
  • the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at sixty hertz across the line, and a scalloped slicing knife with a 3/16 inch slice thickness. Two bags of bulk meat product, removed from the plastic casing, were used in the tests.
  • the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at sixty hertz across the line, a scalloped insert knife with a 3/16 inch slice thickness, and a circular knife assembly.
  • the circular knife assembly had one circular blade at 51 ⁇ 4 inches and feed discs positioned at the remaining spaces between the 3 ⁇ 4 inch spacers. Two bags of bulk meat product, removed from the plastic casing, were used in the tests.
  • Test Meat Temp. Prep. Result 8 Formulated 38° F. Whole Good Slices of Irregular Turkey Shape and Size 9 Ham Loaves 34° F. Broken into Very Good Slices of pieces by hand Irregular Shape and Size
  • the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at seventy five hertz across the line, a scalloped insert knife with a 1 ⁇ 8 inch slice thickness, and a circular knife assembly.
  • the circular knife assembly had one circular blade at 51 ⁇ 4 inches and feed discs positioned at the remaining spaces between the 3 ⁇ 4 inch spacers. Two bags of bulk meat product, removed from the plastic casing, were used in the test.
  • the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at 75 hertz across the line, a scalloped slicing knife with a 3/16 inch slice thickness, and a circular knife assembly.
  • the circular knife assembly had two dulled circular blades one 3 inches from either end of the rotatable shaft and feed discs positioned at the remaining spaces between the 3 ⁇ 4 inch spacers. Four pieces of bulk meat product were used in the tests.
  • Test Meat Temp. Prep. Result 11 Chicken - Slit 31° F. Whole, drained Very Good Slices of casing juices Irregular Shape and Size 12 Chicken 31° F. Whole, drained Very Good Slices of juices Irregular Shape and Size 13 Turkey - Slit casing 31° F. Whole, drained Very Good Slices of juices Irregular Shape and Size 14 Turkey 31° F. Whole, drained Very Good Slices of juices Irregular Shape and Size 15 Ham - Split Top 31° F. Whole, drained Very Good Slices of juices Irregular Shape and Size 16 Ham 31° F.
  • the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at 75 hertz across the line, a scalloped slicing knife with a 1 ⁇ 2 inch slice thickness, a circular knife assembly, and a cross cut knife assembly.
  • the circular knife assembly had dulled circular blades at every 11 ⁇ 2 inches and feed discs positioned at the remaining spaces between the 3 ⁇ 4 inch spacers.
  • Four pieces of bulk meat product were used in the tests.
  • the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at 75 hertz across the line, a scalloped slicing knife with a 3/16 inch slice thickness, a circular knife assembly, and a cross cut knife assembly.
  • the circular knife assembly had dulled circular blades spaced 33 ⁇ 4 inches from each end of the rotatable shaft and feed discs positioned at the remaining spaces between the 3 ⁇ 4 inch spacers.
  • the cross cut knife assembly had two dulled cross cut blades positioned on opposite sides of the assembly. Two pieces of bulk meat product were used in the tests.
  • FIG. 7 illustrates a process 200 for producing a shaped home-style meat product having an irregular appearance.
  • Such home-style meat products may have a variety of irregular shapes, sizes, and textures, to note but a few of the varied characteristics.
  • a package of such home-style meat products may have individual meat slices or pieces with irregular shapes, sizes, textured surfaces, and density. Further, it is anticipated that although each of the individual slices is varied from one slice to the next, the various parameters of each of the slices may fall within a predetermined range.
  • the shape of the meat slices may be irregular, the shape may nonetheless, fall into a range such that a majority of the slices in a package may have a small, diced configuration or all of the slices in a package may be flat with a relatively thin depth compared to the width, to note but a few shape options.
  • the rotary processing machine 10 may be employed to mass produce slices of meat having an irregular appearance.
  • Process 200 also may be used to that end. Further, process 200 may be used to produce such a home-style meat product having an irregular appearance with conventional slicing equipment. Indeed, process 200 may be used, either in combination with the rotary processing machine 10 discussed above or in combination with other slicing equipment such as a reciprocating-carriage slicer, among others. Thus, if a high degree of irregularity between the meat slices is desired, the rotary processing machine 10 may be used to slice meat prepared according to process 200 .
  • process 200 Prior to slicing the whole muscle meat, process 200 formulates a whole muscle meat mixture having a low-salt, no-phosphate solution mixed therein such that when the meat mixture is cooked and chilled, this formulation produces a whole muscle meat structure characterized by individual meat fibers that bind modest amounts of water and fat. Further, such a mixture may be loosely stuffed, as detailed below.
  • the cut surface of the whole muscle meat is typically fractured along the lines between weakly bound fibers, thereby resulting in a sliced meat product having a rough irregular surface that displays the natural structure of the meat.
  • Such an irregular surface is commonly found in whole muscle meats that have been prepared in the home.
  • product formulations are designed to maximize protein functionality and when such a formulation is combined with conventional slicing technology, a meat product with smooth, regular surface cuts is produced.
  • conventional processing indicates that once the deboned whole muscle meat is supplied, it is then mixed with a pickle solution having a relatively high salt concentration and phosphates to increase functionality.
  • Phosphates function like ATP in the muscle structure. They temporarily break the chemical bonds between protein bundles and allow the protein structure to open up and hold water.
  • the deboned whole muscle meat is treated in a pickle injector that injects pickle solution into the meat.
  • the injector uses hypodermic-type needles to puncture the meat and to inject a pickle solution through needles into the meat, as the meat travels through the pickle injector on a conveyor.
  • the injection step helps diffuse pickle solution through the meat and also serves to tenderize the meat.
  • Various pickle solutions may be employed for meat processing.
  • Conventional pickle solutions include a mixture of: water, salt, nitrite, phosphate, ascorbate, erythorbate, and sugar to note but a few ingredients.
  • a typical curing solution contains 10% salt, 2.3% sodium phosphate, 62% water, 0.3% sodium ascorbate, 0.09% sodium nitrite, 3.5% sugar, 20% sodium lactate.
  • a typical product such as a deli-shaved meats, we add around 20 lbs of pickle to 100 lbs of meat. This will result in having 2 lbs of salt per 100 lbs of meat.
  • Additional pickle solution may be added to the whole muscle meat after the injector step if desired.
  • the conventional batch is mixed for a specified period of time, typically about 60 minutes. Once mixed, the meat mixture is allowed to cure for between approximately 24-48 hours.
  • the conventional meat is tightly stuffed into casings.
  • Conventional wisdom encouraged stuffing the casings tightly to avoid creating void spaces inside the casings, which resulted in excess moisture being expelled from the meat.
  • the meat is cooked just above 155° F., anywhere from between 3 and 6 hours. Then, the meat is cooled, and sliced.
  • Such conventionally prepared meat may be sliced in a variety of slicing equipment including the rotary processing machine 10 discussed above. Slicing such conventionally prepared meat on conventional slicing equipment produced a meat product having regular, standardized appearance.
  • Such a meat product typically has little variations between shape, surface, and texture of the slices or pieces produced.
  • the resulting product exhibits a moderate degree of irregularity between the meat pieces and avoids the meat product having the standardized regular appearance typically resulting from meat processing.
  • process 200 may be employed with the rotary processing machine 10 . Further, as discussed below, process 200 may also be employed with other slicing equipment to provide a moderate degree of irregularity between the meat pieces. In determining how to prepare and slice the whole muscle meat, the desired product including the desired level of irregularity and differentiation between the various meat slices should be considered.
  • process 200 includes receiving or providing 201 deboned whole muscle meat at a processing plant. Further, the whole muscle meat is combined 203 with a mixture or solution having a small amount of salt and having no phosphates.
  • the whole muscle meat provided 201 undergoes a pickle injection step 202 .
  • Such a pickle injection step delivers the pickle solution to the whole muscle meat via hypodermic-type needles.
  • the whole muscle meat is not combined with phosphates in process 200 .
  • the pickle solution of process 200 has no phosphates and, further, has a limited amount of salt therein.
  • the pickle solution added to the whole muscle meat will be less than 2 lbs.
  • the whole muscle meat may be further combined with additional pickle solution having a small amount of salt and lacking any phosphates.
  • the combination may be mixed 204 together such as in a tumbler or other mixing apparatus.
  • the combined whole muscle meat may be mixed 204 for a specified of time period.
  • the mixing step is approximately 30 minutes or less.
  • the mixing step may be between 30 and 60 minutes, depending on the desired end product.
  • Significant mixing promotes binding of the muscle structure such that the structure binds more tightly.
  • the cut surface of the meat slices will not fracture along the irregular protein strand seams but will slice smoothly and have a more conventional sliced meat appearance.
  • the meat is collected in a vat for a period of time to permit the salt and other ingredients to diffuse uniformly throughout the meat pieces.
  • the length of the cure time may depend on the desired final product.
  • the whole muscle meat is retained in a cooler for between 24 and 48 hours.
  • the whole muscle meat may then be stuffed 206 into casings in which the meat is cooked.
  • process 200 loosely stuffs 206 the meat product into the casings.
  • loosely stuffs indicates that the whole muscle meat is stuffed into the casings such that voids are permitted to occur between the individual whole muscle meat pieces and between the pieces and the casing. Further, such voids create irregularities in the meat product during the cooking phase via moisture expulsion.
  • the low-salt, no-phosphate solution is a relatively poor water binder and thereby encourages water loss through evaporation and expulsion, similar to what occurs in home-style cooking.
  • a conventional product having a higher salt solution and phosphates is relatively a good water binder, which results in a higher product yield.
  • a product produces a very regular appearance. By allowing the water to escape form the system, irregularities in the final product are further introduced.
  • the casing Since the low-salt, no phosphate solution does not promote significant water binding, the casing is relied upon to retain some of the moisture within the meat structure. However, certain casings may retain too much water or may not permit expansion of the product, thereby unduly increasing the pressure inside the casing, while others may permit too much water loss.
  • the meat cooked in the average home-oven produces a significant amount of steam and meat juices collect in the pan, which is the result of moisture evaporation and expulsion from the meat. Thus, the casing used in process 200 typically permits significant amounts of moisture loss.
  • the water loss occurs through the casings, which may be comprised of a variety of natural or synthetic materials.
  • a thin mesh fabric or wire mesh may be used, to note but a few.
  • the casings are pre-stuck casings that have openings, such as slits or holes, created therein prior to stuffing and cooking. These openings allow the water to escape from the casing.
  • some void space is deliberately left within the casing once it is filled with the meat product.
  • This void space permits moisture expulsion and keeps the pieces from “gluing” together to thereby help create a meat product with a home-style appearance by creating surfaces with an irregular texture.
  • the casings selected also encourage some amount of water loss.
  • the manner of stuffing the casings and the casings themselves contribute to the irregularities in the final cooked product.
  • the casings may be thermally processed 207 such as through cooking at a temperature of at least 155° F.
  • a series of temperature steps are employed, where the temperature gradually increases to reach the final temperature, just over 155° F.
  • the final product temperature at the end of the cooking cycle is approximately in between the 155°-170° F. range, whereas and the air temperature in the final cook step is in the range of approximately 180°-210° F., depending on the product.
  • such temps are a bit higher than those conventionally used and this drives off more moisture by evaporation. A loss of between 22-28% of the total ingoing product weight is targeted.
  • the cook process takes about 6 hours, while conventional cook times range from 3 to 6 hours.
  • the cook time of process 200 is at the long end of the spectrum.
  • the cook temperature is at the higher end, as well.
  • water loss is encouraged, which contributes to the final product's varied texture. Encouraging such water loss is possible because the solution does not have a high salt concentration or phosphates that bind the water.
  • the casings of meat products are cooled 208 .
  • cooling occurs by showering the casings with chilled water.
  • the casings and meat product are permitted to chill by removing the casings from the heat source and exposing the outside of the casings to chilled air.
  • the water shower, if used, will expose the casings to water at approximately 34-38° F. for about 30 minutes.
  • the air chill takes about 7 hours and uses 18-25° F. air to reduce the product temperature to the desired slicing temperature of 29-31° F.
  • the prepared meat may undergo slicing 209 to produce the home-style meat with individual pieces have an irregular appearance.
  • slicing 209 may occur in a variety of slicing equipment. Since process 200 prepares the whole muscle meat in a manner such as to purposefully create irregularities in the final product, such a prepared meat mixture may be sliced in a conventional slicer and may still exhibit a degree of irregularity between the sliced pieces. In addition, if a high degree of irregularity is desired the whole muscle meat prepared according to process 200 may be sliced in the rotary processing machine 10 .
  • the rotary processing machine has an impeller 34 with equally spaced paddles 40 that rotate and carry the meat product to be sliced by slicing knife 56 having a dulled cutting edge.
  • slicing knife 56 having a dulled cutting edge.
  • Such a configuration wherein the chunks of whole muscle meat are exposed to the stationary slicing knife from different angles creates further irregularities in the low-salt, phosphate-free meat product.
  • a slicer with a less random and varied manner of slicing would still produce an irregularly textured meat product if process 200 were employed to prepare the meat.
  • a slicer with a reciprocating carriage and a stationary blade typically orients the meat relative to the slicing knife based on the manner of delivery of the meat, such as through a feed tube or hopper.
  • the orientation of the meat product in such a feed tube does not widely vary as the whole muscle meat does not have room to rotate or significantly shift around. Instead, the whole muscle meat slowly advances toward the slicing knife as leading portions of the whole muscle meat are sliced from the unsliced portion.
  • Such a slicer typically produces a sliced meat product having standardized, highly regular characteristics, however, such equipment may be used to produce irregularly textured and shaped meat slices if the sliced meat is prepared according to process 200 .
  • a home-style carved meat product having intentionally irregular and controlled variations which are within certain parameters including size, shape, texture, and density, may be produced by slicing on a rotary processing machine 10 or by preparing the whole muscle meat according to process 200 .
  • a home-style carved meat product having a high degree of irregularity may be produced by preparing whole muscle meat according to process 200 and then slicing the prepared meat in the rotatry processing machine 10 .
  • process 200 illustrated in FIG. 7 may occur in order of the steps listed, such as combining 203 the whole muscle meat with a small amount of salt and without phosphates after the boneless whole muscle meat has been provided 201 to the meat processing plant. It is also contemplated that the steps of process 200 may occur in a variety of other orders as well For example, combining 203 the whole muscle meat with the low-salt, phosphate-free solution may occur prior to providing 201 the whole muscle meat at the processing plant. Further, in such a configuration, curing 205 of the whole muscle meat may occur during several of the other steps. Thus, it is contemplated that the steps of process 200 may occur in a variety of sequences.
  • Sliced meat having a home-style appearance preferably will have increased irregularities in the slice surface, such as an increase in surface roughness, as compared to conventionally prepared meat.
  • the range of irregularities is higher, such as the range of surface roughness is also larger.
  • test samples of ham processed according to process 200 were compared with samples of conventionally processed ham. As discussed below, five samples of conventionally produced ham and seven test samples of ham produced according to the invention described herein were examined.
  • the five samples of conventionally produced ham had surface irregularity values falling between approximately 44.60 and 60.61.
  • images of the seven samples of the test ham had surface irregularity values ranging from approximately 58.64 to 94.16.
  • the mean variance for the conventional ham was 54.53, whereas mean variance for the test ham was 74.74.
  • the test ham showed significantly more variation in the surface (increased amount of difference between the light and dark pixels).
  • ham according to process 200 has noticeable surface irregularities that help create the home-style appearance desired by many consumers.
  • the home-style meat product has a surface irregularity value of above 61 .
  • the home-style meat product has a mean variance surface irregularity value of greater than about 70.
  • the home-style meat product has a mean variance surface irregularity value of greater than about 75.
  • the meat produced according to the invention herein has a mean variance of at least 25% more than conventionally produced meat products.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

Methods and apparatus are disclosed for producing irregular slices of meat from meat products. Further, a method of mass-producing a home-style meat product with an irregular appearance includes combining whole muscle meat with a mixture having no phosphates and a limited amount of salt. Further, the whole muscle meat mixture is loosely stuffed into casings such that void space is permitted between the individual whole muscles. Once the whole muscle meat has been cooked and cooled, the meat may be sliced on a variety of slicing equipment to create a home-style meat product with an irregular appearance.

Description

    RELATED APPLICATION
  • This application is a continuation-in-part of co-pending and co-owned U.S. patent application number, entitled Ser. No. 12/267,356, entitled Method and Apparatus to Mechanically Reduce Food Products Into Irregular Shapes and Sizes, filed Nov. 7, 2008, which is incorporated by reference in its entirety herein.
  • FIELD
  • This disclosure relates generally to a method and apparatus for producing a home-style meat product, specifically mass producing a home-style meat product.
  • BACKGROUND
  • Processing systems for various food products like vegetables, fruits, and meat products are known. When focused on meat products, the systems in the art are typically directed to producing uniform slices and cuts. In fact, the art exhibits a systematic progression to achieve greater and greater uniformity. This is true whether the system is producing a diced product, where the squareness of the final product is the desired trait, or producing a sliced product, where uniformity of thickness, size, and shape is preferred. These systems produce a final meat product that is packaged and presented to the consumer with each piece looking generally the same as the next.
  • An important factor in a consumer's selection is the visual appearance of the cut food product. If put off by the uniformity normally on display by mass produced meat products, consumers may instead desire “home-style” products with an appearance similar to meat cut from a home cooked turkey or ham. Meat products that are irregular in shape and size can solve this need without requiring the consumer to spend hours preparing a home cooked meat product. However, the known processing systems for producing slices of meat with irregular shapes and sizes do not provide a sufficient solution this problem.
  • When applied on a mass scale, manual cutting and slicing is simply not cost effective, requiring tedious processing and excessive manual labor. Accordingly, there have been other attempts at producing irregular shaped and sized slices. One method known in the art involves using molds to shape the meat in casing to give them an irregular shape. These molded slices of meat are then put through a traditional cutting or slicing system, which produces a product where consecutive slices appear different from one another, but also with a pattern of repeating shapes, uniform thickness and size. Another method uses a technique of skimming the bottom of a cooked meat product to produce slices with a roughed up appearance. A final method to produce slices with an irregular shape and size involves simply taking slices from several different sticks of meat and packaging them together. However, all of these techniques still result in slices of meat that have an overall uniform appearance and/or a lack of a cost-effective technique.
  • Therefore, a method and apparatus is needed to mass produce high quality slices of meat of irregular shape and size in a cost effective manner. The disclosed method and apparatus produces high quality, unique slices of meat that have irregular edges, natural meat grains, and natural color variation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow diagram of a method for producing meat slices of irregular shape and size;
  • FIG. 2 is a side elevation view of an apparatus for producing meat slices of irregular shape and size;
  • FIG. 3 is a front elevation view of an apparatus shown in FIG. 2.
  • FIG. 4 is a perspective view of the apparatus of FIG. 2 with the optional front panel open.
  • FIG. 5 is a side elevation view of the impeller and knife assembly of the apparatus of FIG. 2;
  • FIG. 6 is a perspective view of an optional circular knife assembly for use in the apparatus of FIG. 2; and
  • FIG. 7 is a flow diagram illustrating a process as described below.
  • DETAILED DESCRIPTION
  • With reference to the drawings, a method and processing machine is provided for use in producing irregularly shaped and sized food products and, in particular, for use in producing irregularly shaped and sized meat slices. The processing machine is generally referred to by reference numeral 10 in FIGS. 2-4.
  • With reference to FIGS. 2-5, the rotary processing machine 10 comprises a support frame 12 and a housing 14. Prepared meat products 46 are fed into a rotary impeller 34, which is rotatably attached in the housing 14. The impeller 34 comprises a plurality of equally spaced paddles 40 and is encircled by a stationary cylinder 48. A motor 42 drives the rotation of the impeller 34. As the impeller 34 rotates, the paddles 40 catch the meat product 46 and carry it along an inner surface 50 of the stationary cylinder 48. The stationary cylinder 48 includes an opening 54. On one side of the opening 54, a slicing knife 56 is attached. As the impeller 34 drives the meat product 46 around the inner surface 50 of the stationary cylinder 48, the meat product 46 approaches the opening 54 and impacts the slicing knife 56. The meat products 46 are able to tumble in the impeller so that different sides are engaged by the slicing knife 56. This process produces meat slices 46a of irregular shape and size.
  • The rotary processing machine 10 can further include a circular knife assembly 62. The circular knife assembly 62 is positioned proximal to the opening 54, but downstream of the slicing knife 56. The circular knife assembly 62 is oriented generally parallel with the slicing knife 56. The circular knife assembly 62 may then further reduce the size of the meat product 46, while still producing meat slices 46 a of irregular shape and size. The circular knife assembly 62 would have at least one circular, rotating cutting blade 68. The blade 68 preferably is dulled to produce rough cutting edges.
  • The rotary processing machine 10 can further include a cross cut knife assembly 76. The cross cut knife assembly 76 is positioned proximal to and downstream of the circular knife assembly 62 and the slicing knife 56. The cross cut knife assembly 76 is oriented generally parallel with the slicing knife 56. The cross cut knife assembly 76 may then further reduce the size of the meat product 46, while still producing meat slices 46 a of irregular shape and size. The cross cut knife assembly 76 would have at least one cross cut blade 78. The blade 78 preferably is dulled to produce rough cutting edges.
  • The rotary processing machine 10 can be made to be highly space efficient. For example, in one embodiment, the rotary processing machine 10 may have a height in the range of 50 inches to 72 inches, and preferably in the range of 54 inches to 69 inches. In addition, the rotary processing machine 10 may weigh in the range of 1,400 pounds to 1,600 pounds, and preferably about 1,500 pounds.
  • The frame 12 provides the support for the rotary processing machine 10. In one embodiment, the frame 12 may have a length in the range of 26 inches to 38 inches and a width in the range of 25 inches to 37 inches. In the preferred embodiment, the frame 12 has a length of about 32 inches and a width of about 31 inches. These embodiments are designed to utilize a relatively small area while still allowing the rotary processing machine 10 to operate in a high-speed commercial environment.
  • The small area allows the rotary processing machine 10 to seamlessly integrate with existing operations. The frame 12 may further comprise numerous legs 16. In the preferred embodiment, each of the legs 16 has casters 18 at their terminal end to allow for greater mobility of the rotary processing machine 10. At least one caster 18 preferably has a locking mechanism 20 that an operator can engage to prevent the rotary processing machine 10 from moving when movement is not desired.
  • The frame 12 is attached to and supports the housing 14. In one embodiment, the housing 14 may have a length in the range of 37 inches to 67 inches, and preferably in the range of 47 inches to 62 inches, and more preferably about 57 inches. The housing 14 may enclose any or all of the motor 42, the impeller 34, the stationary cylinder 48, the knife assembly 52, and an electrical component box 32. The housing 14 may also include access to the devices enclosed within it. In one embodiment, this access comprises a front panel 22. The front panel 22 may be hinged to provide the operator access to the impeller 34, the stationary cylinder 48 and the knife assembly 52. This feature provides the user with easy access to these devices as needed, for example, for maintenance or cleaning. In another embodiment, this access may include a back panel 24. The back panel 24 may be hinged to provide the operator access to at least the electrical component box 32, as needed.
  • The housing 14 includes a hopper 26. The hopper 26 is positioned to receive the prepared meat product 46 and feed it into the stationary cylinder 48. The hopper 26 is positioned adjacent to the stationary cylinder 48, and preferably centered with the stationary cylinder 48. In the preferred embodiment, the hopper 26 has an opening directed upwards for loading of the prepared meat product 46 and urging of the prepared meat product 46 into the stationary cylinder 48 by gravitational force. The diameter of the hopper 26 where it provides access to the stationary cylinder 48 may be in the range of 13.5 inches to 14.8 inches, and preferably about 13.5 inches. The hopper 26 may preferably be positioned on the front panel 22 to provide access to the stationary cylinder 48 and the impeller 34 as needed, for example, for maintenance or cleaning.
  • In the preferred embodiment, the housing 14 also comprises a feeder chute 28. The feeder chute 28 is attached to the hopper 26 to provide an extended and more covered access route for the prepared meat product to reach the stationary cylinder 48. The access opening of the feeder chute 28 may be vertically aligned or preferably facing generally upwards. In one embodiment, the feeder chute 28 is generally circular with an opening generally equal to that of the hopper 26 at its distal end where the chute 28 meets the hopper 26. Alternatively, in the preferred embodiment, the feeder chute 28 starts with a generally square opening, preferably about 13.5 inches on each side, and ends with an opening generally equal to that of the hopper 26 at its distal end where the chute 28 meets the hopper 26.
  • The housing 14 also may include a discharge chute 30. The discharge chute 30 is positioned below the knife assembly 52 to direct the discharge of the meat slices 46 a from the rotary processing machine 10. The discharge chute 30 may be downward facing. The distal end of the discharge chute 30 may be in the range of 10 inches to 20 inches above the floor, and preferably about 15 inches. This preferable height from the floor provides the discharge chute 30 with a sufficient height to accommodate larger slices produced by the processing machine 10. It may be of a generally rectangular shape with a width equal to or larger than the width of the stationary cylinder 48, and preferably in the range of 13 inches to 15 inches, and more preferably about 13.7 inches. The length of the distal end of the discharge chute 30 may be in the range of 5 inches to 15 inches, and preferably about 10 inches. In one embodiment, the discharge chute 30 is attached to the housing 14 directly below the knife assembly 52 and angles away from the rotary processing machine 10, so that the distal end of the discharge chute 30 is spaced from the frame 12 in the range of about 4 inches to 12 inches, and preferably in the range of 8 inches to 9 inches. In addition, the discharge chute 30 preferably does not contain any obstructions in order to provide an easier discharge path for the meat slices 46 a.
  • The impeller 34 includes a pair of rotating end discs 36, 38 interconnected by the paddles 40. The paddles 40 are equally spaced around the interior circumference of the end discs 36, 38. The impeller 34 is rotatably attached in the housing 14. The paddles 40 are preferably attached perpendicular to the end discs 36, 38. The paddles may be orientated generally radially, or alternatively, they may be angled toward the direction of rotation of the impeller 34. This angle can be between 0 and 55 degrees from radial in the direction of rotation of the impeller 34, and preferably about 30 degrees. The paddles 40 may preferably start at the outer edge of the impeller 34 or, alternatively, start in a range up to 1 inch from the edge. The paddles 40 have a length in the range of 3 inches to 6 inches, and preferably 4 to 5 inches. This preferable length allows the meat product 46 to tumble and present different oriented slicing surfaces to the slicing knife 56. In one embodiment, the impeller 34 has between two and six paddles 40, and preferably between three and five paddles 40. In the most preferred embodiment, the impeller 34 has four paddles 40.
  • The motor 42 drives the rotation of the impeller 34, such as in a direction indicated by the arrow 44. The motor 42 can operate at any feasible hertz level, and preferably in a range from 60 to 75 hertz, and more preferably 75 hertz. In addition, the motor 42 can operate at any feasible horsepower, and preferably at 10 horsepower. The motor 42 may preferably be supplied voltage across the line or, alternatively, by a variable frequency drive.
  • As the motor 42 causes the impeller 34 to rotate, the paddles 40 contact the prepared meat product 46 and cause it to rotate along with the impeller 34 in the direction of the arrow 44. As a result of the rotation, centrifugal force presses the prepared meat product 46 against the inner surface 50 of the stationary cylinder 48. The paddles 40, in turn, drive the prepared food product 46 around the inner surface 50 of the stationary cylinder 48. Because the rotary cutting machine 10 does not restrain or control the position of the prepared meat product 46 beyond the application of centrifugal force, the prepared food product 46 can tumble and fall within the impeller 34. As a result of this process, the prepared meat product 46 is pressed against the inner surface 50 of the stationary cylinder 48 in random and different orientations as it is driven by the paddles 40 of the impeller 34.
  • The degree of random and different orientations can be increased depending upon the amount of meat product 46 present in the impeller 34. For example, having more meat products 46 in the impeller 34 than the number of paddles 40 can advantageously result in the excess meat products 46 accumulating in a lower region of the cylinder 48. After a meat product 46 has been sliced, the meat product 46 can continue to rotated toward the lower region where the accumulated meat products 46 can cause the just-sliced meat product 46 to become dislodged from adjacent the paddle 40. Another meat product 46 can then take the place of the just-sliced meat product 46. When the just-sliced meat product 46 is subsequently advanced by the same of a different paddle 40, it can be in a different orientation than if it had continued to rotate by the same paddle 40, and thereby the next time it is sliced, a differently shaped slice can be cut.
  • As the prepared meat product 46 is driven around the inner surface 50 of the stationary cylinder 48, it encounters the knife assembly 52, as shown in FIG. 5. The knife assembly 52 includes the opening 54 and the slicing knife 56.
  • The opening 54 is formed in the stationary cylinder 48 by spacing the side of the opening 54 positioned earlier in the path of rotation of the impeller 34 from the outer periphery of the impeller 34. The opening 54 can be formed anywhere on the stationary cylinder 48, and preferably is formed at a position of the stationary cylinder 48 where the rotation of the impeller 34 is in a generally downward direction and, more preferably, where the velocity of the prepared meat product 46 is generally perpendicular with the floor. The opening 54 preferably spans the width of the stationary cylinder 48 and is preferably generally horizontal. Alternatively, the opening 54 may be formed in the stationary cylinder 48 at an angle in the range of 45 degrees above or below horizontal.
  • In the preferred embodiment, the width of the opening 54 can be adjusted by a control knob 58. The control knob 58 is preferably adjacent to the opening 54 and attached to the side of the opening 54 spaced from the outer periphery of the impeller 34. To adjust the width of the opening 54, the control knob 58 can adjust the distance the side of the opening 54 is spaced from the outer periphery of the impeller 34. The control knob 58 can vary the width of the opening 54 in a range from 1/16 inch to 1 inch, and preferably the opening 54 is set between ⅛ inch and 3/16 inch. The width of the opening 54 set by the control knob 58 determines the maximum thickness of the meat slices 46 a produced by the rotary processing machine 10.
  • The slicing knife 56 is positioned at the side of the opening 54 that extends along the outer periphery of the impeller 34. In the preferred embodiment, the slicing knife 56 is removably positioned at the opening 54. The removably attached slicing knife 56 may then be removed and inserted as needed, for example, to select a different type of the slicing knife 56, with a scalloped blade being preferred, to repair or maintain the slicing knife 56, or to- replace -the slicing knife 56. The slicing knife 56 preferably spans the length of the opening 54 and is positioned to provide the first point of contact for the meat product 46 as it is driven into the opening 54 by the impeller 34. As the paddles 40 drive the meat product 46 to the opening 54, the meat product 46 is driven beyond the outer periphery of the impeller 34 due to the spacing of the opening 54. As the paddle 40 continues to rotate, the meat product 46 is driven into the slicing knife 56 which is positioned at the outer periphery of the impeller 34, producing meat slices 46 a of thickness determined by the width of the opening 54.
  • The slicing knife 56 may further comprise a guide surface 60. As the slicing knife 56 cuts into the prepared meat product 46, meat slices 46 a are produced, and the guide surface 60 can direct the meat slices 46 a away from the knife assembly 52 and towards the discharge chute 30.
  • The knife assembly 52 may further comprise the circular knife assembly 62, as shown in FIG. 6. The circular knife assembly 62 comprises at least one circular blade 68 mounted on a rotatable shaft 64 and is positioned in a direction that is generally parallel to the process feed direction. The circular knife assembly 62 is rotatably mounted to the housing 14 to preferably rotate in a direction as indicated by the arrow 66. The circular knife assembly 62 is preferably downstream and proximal to the slicing knife 56. As the meat slices 46 a are produced, they may travel down the guide surface 60 of the slicing knife 56. While on the guide surface 60, the at least one circular blade 68 may then further reduce the size of the meat slices 46 a.
  • In the preferred embodiment, the circular knife assembly 62 has dulled circular blades 68. The circular blades 68 may be artificially dulled by any method, or preferably, the circular blades 68 may be allowed to dull naturally and are not sharpened. The dulled circular blades 68 may then reduce the meat slice 46 a size while still producing meat slices 46 a with irregular edges consistent with the appearance of “home-style” carved meat. The dull circular blades 68 provide a natural cut by pulling the muscle fibers of the sliced meat product 46a.
  • The circular knife assembly 62 may alternatively contain feed discs 70 to assist in advancing the meat slices 46a. The feed discs 70 may be mounted on the rotatable shaft 64 in place of any number of the circular blades 68.
  • The circular knife assembly 62 may consist of between one and fifteen circular blades 68, and preferably one circular blade 68, depending on the size of the prepared meat product 46 being used and the size of the meat slices 46 a desired. The chosen number of blades 68 having different spacings therebetween to cut the meat slices 46 a into further reduced sizes of varying widths. As illustrated in FIG. 6, a first spacer 72 creates a gap or space of length ‘a,’ and a second spacer 74 creates a gap of length ‘b.’ The spacers 72, 74 can be alternated every other one, such that the spacing between the blades 68 is also alternating between a space of length ‘a’ and ‘b,’ or, alternatively, may be placed in any other suitable combination. The blade 68 spacing may be varied from ⅛ inch to 1 inch. For any number of the circular blades 68 not used, the feed discs 70 may be positioned on the rotatable shaft 64 instead. Preferably, the circular knife assembly 62 is composed of two circular blades 68 spaced apart by 3 inches and centered on the rotatable shaft 64 having ¾ inch spacers 72, 74 running the length of the rotatable shaft 64. The remaining spaces between the spacers 72, 74 on the rotatable shaft 64 preferably have feed discs 70.
  • The knife assembly 52 may also comprise the cross cut knife assembly 76. The cross cut knife assembly 76 is positioned in a direction that is generally parallel to the process feed direction. The cross cut knife assembly 76 can be comprised of a number of cross cut blades 78 in the range of 1 to 14, and preferably 2. The cross cut blades 78 preferably run the length of the cross cut knife assembly 76 and are positioned generally parallel to the process feed direction. The cross cut knife assembly 76 is rotatably mounted to the housing 14 to preferably rotate in a direction as indicated by the arrow 80. The cross cut knife assembly 76 is preferably downstream and proximal to the slicing knife 56. As the meat slices 46 a are produced, they may travel down the guide surface 60 of the slicing knife 56. As the meat slices advance beyond the end of the guide surface 60, the cross cut blades 78 may then further reduce the size of the meat slices 46 a.
  • In the preferred embodiment, the cross cut knife assembly 76 has dulled cross cut blades 78. The cross cut blades 78 may be artificially dulled by any method, or preferably, the cross cut blades 78 may be allowed to dull naturally and are not sharpened. The dulled cross cut blades 78 may then reduce the meat slice 46 a size while still producing meat slices 46 a with irregular edges consistent with the appearance of “home-style” carved meat. The dull cross cut blades 78 provide a natural cut by pulling the muscle fibers of the sliced meat product 46 a.
  • With reference to the diagram of FIG. 1, a bulk meat product is first selected for processing by the processing machine. The bulk meat product can be selected from any variety of meat product, including, for example, ham, turkey, chicken, or beef. Once the bulk meat product is selected, it can then be prepared for processing. This preparation can first include chilling the bulk meat product to the required temperature. This may include storing the bulk meat product at the desired temperature or instead chilling the bulk meat product further to reach the desired temperature. The meat product should be kept at a temperature below 40 degrees Fahrenheit for food safety purposes, and preferably, the meat product should have a temperature in the range of 30 to 35 degrees Fahrenheit when processed by the processing machine. Alternatively, the bulk meat product can be cooked or heated prior to processing. This may include cooking the meat product by any suitable means. This preparation can also include removing the bulk meat product from any casing or wrapping used to store and ship the product. This preparation may ensure that the meat product is free of any foreign material to keep any foreign material out of the final sliced product. Another option for preparation includes breaking down the bulk meat product prior to processing. The bulk meat product may be broken down by hand or other suitable means. However, it has been found that breaking down formulated turkey into smaller portions before processing can create a good, but small end product. In any case, the prepared meat product is preferably about 10 inches in any dimension or less. Finally, the total amount of meat product may be selected. The amount of meat product selected is dependent on the amount of output slices desired and can be in a range of one meat product to more than 20 with each load into the processing machine.
  • A next step can include selecting a slicing knife. The slicing knife can have any type of edge, including, for example, a scalloped or a wavy edge. Once the slicing knife is selected, it may then be inserted into the processing machine. As disclosed above, inserting the slicing knife into the processing machine positions the knife at the opening formed in the stationary cylinder.
  • Next, a desired slice thickness can be determined. As disclosed above, the slice thickness may be in the range of 1/16 inch to 1 inch. The desired slice thickness may vary depending on the selected type of meat or the application of the desired output. Once selected, the slice thickness may then be represented on the processing machine. To alter the thickness of the slices produced by the processing machine, the width of the opening can be adjusted. The control knob is operably attached to the opening to adjust the width thereof. The slice thickness corresponds to the distance between the slicing knife and the side of the opening spaced from the outer periphery of the impeller.
  • The following step may include determining a desired slice width. This width may be as large as the selected bulk meat product or the broken down selected meat product, or as small as ⅛ inch as disclosed in the discussion of the circular knife assembly above. The desired slice width may vary depending on the type of the selected meat product or the application of the product intended to be produced by the processing machine. Once the desired slice width is determined, it can then be determined whether a circular knife assembly is needed. If the desired slice width is less than any dimension of the prepared meat product, the circular knife assembly may be used to further reduce the width. If the circular knife assembly is required, its setup must then be determined. This includes choosing the number of pre-dulled circular blades desired and the spacing between the pre-dulled circular blades. After the desired number of blades and spacing is determined, then the type of spacers and number of feed discs can be ascertained. Once all of the circular knife assembly materials are chosen, they may be mounted on a rotatable shaft. The assembled circular knife assembly may then be rotatably attached to the housing of the processing machine proximal to and downstream of the slicing knife.
  • Another step may include determining a desired slice height. This height may be as large as the height of the selected bulk meat product or the broken down selected meat product, or instead, a smaller slice may be desired. If a smaller slice height is desired, a cross cut knife assembly may be used. If the cross cut knife assembly is required, its setup must then be determined. This includes choosing the number of pre-dulled cross cut blades desired and the spacing between the pre-dulled cross cut blades, and preferably two evenly spaced dulled cross cut blades. The cross cut knife assembly may then be rotatably attached to the housing of the processing machine proximal to and downstream of the slicing knife.
  • Next, the processing machine may be started. A desired speed of rotation of the impeller may then be determined. The speed of the rotation of impeller influences the magnitude of the centrifugal force applied on the prepared meat product while in the impeller and, similarly, it may also influence the tumbling and orientation of the meat products while in the impeller. This process determines the edge of the meat product from which the slices are produced. If a desired speed is determined, the speed of rotation of the impeller may then be set. The available speeds may vary with the type of motor operating the processing machine, and preferably the motor can operate at 75 hertz.
  • The processing machine comprised of a housing, a motor, an impeller, and a knife assembly may then use the impeller having at least one paddle to rotatably drive the prepared meat product around the housing, the prepared meat product held to the housing by centrifugal force, to impact the knife assembly to create irregularly shaped meat slices.
  • The selected and prepared meat product can then be loaded into the processing machine. The machine operates as detailed above to output mass-scale “home-style” slices of meat of irregular shape and size. As the slices of meat are output by the processing machine, they can be collected. This may be done by placing a bag or collection bin under the discharge chute. Finally, the collected slices can be packaged.
  • Examples
  • The following examples illustrate presently preferred methods and should be understood to be illustrative of, but not limiting upon, the scope of the apparatus and method which are set forth in the appended claims.
  • For the following tests, the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at sixty hertz across the line, and a scalloped slicing knife with a 3/16 inch slice thickness. Two bags of bulk meat product, removed from the plastic casing, were used in the tests.
  • Test Meat Temp. Prep. Result
    1 Ham Loaves 32° F. Whole Very Good Slices of
    Irregular Shape and Size
    2 Ham Loaves 35° F. Broken into Very Good Slices of
    pieces by hand Irregular Shape and Size
    3 Ham Loaves 35° F. Whole Very Good Slices of
    Irregular Shape and Size
    4 Formulated 30° F. Whole Very Good Slices of
    Turkey Irregular Shape and Size
    5 Formulated 30° F. Broken into Very Small Slices of
    Turkey pieces by hand Irregular Shape and Size
    6 K Butt Tumbled 32° F Broken into Very Good Slices of
    Ham Loaves pieces by hand Irregular Shape and Size
    7 K Butt Not 32° F. Broken into Very Good Slices of
    Tumbled pieces by hand Irregular Shape and Size
    Ham Loaves
  • For the following tests, the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at sixty hertz across the line, a scalloped insert knife with a 3/16 inch slice thickness, and a circular knife assembly. The circular knife assembly had one circular blade at 5¼ inches and feed discs positioned at the remaining spaces between the ¾ inch spacers. Two bags of bulk meat product, removed from the plastic casing, were used in the tests.
  • Test Meat Temp. Prep. Result
    8 Formulated 38° F. Whole Good Slices of Irregular
    Turkey Shape and Size
    9 Ham Loaves 34° F. Broken into Very Good Slices of
    pieces by hand Irregular Shape and Size
  • For the final test, the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at seventy five hertz across the line, a scalloped insert knife with a ⅛ inch slice thickness, and a circular knife assembly. The circular knife assembly had one circular blade at 5¼ inches and feed discs positioned at the remaining spaces between the ¾ inch spacers. Two bags of bulk meat product, removed from the plastic casing, were used in the test.
  • Test Meat Temp. Prep. Result
    10 Ham Loaves 34° F. Whole Very Good Slices of
    Irregular Shape and Size
  • For the following tests, the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at 75 hertz across the line, a scalloped slicing knife with a 3/16 inch slice thickness, and a circular knife assembly. The circular knife assembly had two dulled circular blades one 3 inches from either end of the rotatable shaft and feed discs positioned at the remaining spaces between the ¾ inch spacers. Four pieces of bulk meat product were used in the tests.
  • Test Meat Temp. Prep. Result
    11 Chicken - Slit 31° F. Whole, drained Very Good Slices of
    casing juices Irregular Shape and Size
    12 Chicken 31° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    13 Turkey - Slit casing 31° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    14 Turkey 31° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    15 Ham - Split Top 31° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    16 Ham 31° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    17 Beef - Split Top 31° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    18 Turkey Breasts 31° F. Halved, drained Very Good Slices of
    Halved juices Irregular Shape and Size
    19 Chicken Breasts 31° F. In 12 pieces, Very Good Slices of
    drained juices Irregular Shape and Size
  • For the following tests, the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at 75 hertz across the line, a scalloped slicing knife with a ½ inch slice thickness, a circular knife assembly, and a cross cut knife assembly. The circular knife assembly had dulled circular blades at every 1½ inches and feed discs positioned at the remaining spaces between the ¾ inch spacers. Four pieces of bulk meat product were used in the tests.
  • Test Meat Temp. Prep. Result
    20 Beef  97° F Whole, drained Chunk style shreads
    juices
    21 Ham 125° F. Whole, drained Chunk style shreads
    juices
    22 Ham 120° F. Whole, drained Chunk style shreads
    juices
    23 Beef 135° F. Whole, drained Chunk style shreads
    juices
  • For the following tests, the processing machine had an impeller with four equally spaced paddles, a ten horsepower motor operating at 75 hertz across the line, a scalloped slicing knife with a 3/16 inch slice thickness, a circular knife assembly, and a cross cut knife assembly. The circular knife assembly had dulled circular blades spaced 3¾ inches from each end of the rotatable shaft and feed discs positioned at the remaining spaces between the ¾ inch spacers. The cross cut knife assembly had two dulled cross cut blades positioned on opposite sides of the assembly. Two pieces of bulk meat product were used in the tests.
  • Test Meat Temp. Prep. Result
    24 Ham 33° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    25 Ham 33° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    26 Ham 33° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    27 Ham 33° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    28 Turkey 33° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
    29 Turkey 33° F. Whole, drained Very Good Slices of
    juices Irregular Shape and Size
  • For the foregoing, it will be appreciated that apparatus and methods are described herein for manufacturing irregularly shaped and sized food products. While the figures and description herein are illustrative of certain aspects of methods and apparatus for manufacturing irregularly shaped and sized food products, the apparatus and methods are not limited to the aspects illustrated in the figures and described hereinabove. For example, while the description generally refers to meat as the product being produced in irregular shapes and sizes, it is understood that a process according to the present description may be used for other suitable products.
  • Turning now to the preparation of the sliced meat, FIG. 7 illustrates a process 200 for producing a shaped home-style meat product having an irregular appearance. Such home-style meat products may have a variety of irregular shapes, sizes, and textures, to note but a few of the varied characteristics. By one approach, a package of such home-style meat products may have individual meat slices or pieces with irregular shapes, sizes, textured surfaces, and density. Further, it is anticipated that although each of the individual slices is varied from one slice to the next, the various parameters of each of the slices may fall within a predetermined range. For example, though the shape of the meat slices may be irregular, the shape may nonetheless, fall into a range such that a majority of the slices in a package may have a small, diced configuration or all of the slices in a package may be flat with a relatively thin depth compared to the width, to note but a few shape options.
  • To produce such varied slices, the rotary processing machine 10, as discussed above, may be employed to mass produce slices of meat having an irregular appearance. Process 200 also may be used to that end. Further, process 200 may be used to produce such a home-style meat product having an irregular appearance with conventional slicing equipment. Indeed, process 200 may be used, either in combination with the rotary processing machine 10 discussed above or in combination with other slicing equipment such as a reciprocating-carriage slicer, among others. Thus, if a high degree of irregularity between the meat slices is desired, the rotary processing machine 10 may be used to slice meat prepared according to process 200.
  • Prior to slicing the whole muscle meat, process 200 formulates a whole muscle meat mixture having a low-salt, no-phosphate solution mixed therein such that when the meat mixture is cooked and chilled, this formulation produces a whole muscle meat structure characterized by individual meat fibers that bind modest amounts of water and fat. Further, such a mixture may be loosely stuffed, as detailed below. Thus, when such formulated meat products are sliced, such as by the rotary processing machine 10 or other slicing equipment, the cut surface of the whole muscle meat is typically fractured along the lines between weakly bound fibers, thereby resulting in a sliced meat product having a rough irregular surface that displays the natural structure of the meat. Such an irregular surface is commonly found in whole muscle meats that have been prepared in the home.
  • Alternatively, in conventional meat processing applications, product formulations are designed to maximize protein functionality and when such a formulation is combined with conventional slicing technology, a meat product with smooth, regular surface cuts is produced. To create such a standardized product, conventional processing indicates that once the deboned whole muscle meat is supplied, it is then mixed with a pickle solution having a relatively high salt concentration and phosphates to increase functionality. Phosphates function like ATP in the muscle structure. They temporarily break the chemical bonds between protein bundles and allow the protein structure to open up and hold water. By one approach, the deboned whole muscle meat is treated in a pickle injector that injects pickle solution into the meat. The injector uses hypodermic-type needles to puncture the meat and to inject a pickle solution through needles into the meat, as the meat travels through the pickle injector on a conveyor. The injection step helps diffuse pickle solution through the meat and also serves to tenderize the meat. Various pickle solutions may be employed for meat processing. Conventional pickle solutions include a mixture of: water, salt, nitrite, phosphate, ascorbate, erythorbate, and sugar to note but a few ingredients. A typical curing solution contains 10% salt, 2.3% sodium phosphate, 62% water, 0.3% sodium ascorbate, 0.09% sodium nitrite, 3.5% sugar, 20% sodium lactate. In a typical product, such as a deli-shaved meats, we add around 20 lbs of pickle to 100 lbs of meat. This will result in having 2 lbs of salt per 100 lbs of meat.
  • Additional pickle solution may be added to the whole muscle meat after the injector step if desired. Once the meat has been combined with the solution, the conventional batch is mixed for a specified period of time, typically about 60 minutes. Once mixed, the meat mixture is allowed to cure for between approximately 24-48 hours.
  • Once the meat has cured, the conventional meat is tightly stuffed into casings. Conventional wisdom encouraged stuffing the casings tightly to avoid creating void spaces inside the casings, which resulted in excess moisture being expelled from the meat. Once stuffed, the meat is cooked just above 155° F., anywhere from between 3 and 6 hours. Then, the meat is cooled, and sliced. Such conventionally prepared meat may be sliced in a variety of slicing equipment including the rotary processing machine 10 discussed above. Slicing such conventionally prepared meat on conventional slicing equipment produced a meat product having regular, standardized appearance. Such a meat product typically has little variations between shape, surface, and texture of the slices or pieces produced. Alternatively, if the conventional meat product is sliced using the rotary processing machine 10, the resulting product exhibits a moderate degree of irregularity between the meat pieces and avoids the meat product having the standardized regular appearance typically resulting from meat processing.
  • In another embodiment, to mass produce a home-style product having an intentionally differentiated texture and appearance with a high degree of irregularity between the meat pieces, process 200 may be employed with the rotary processing machine 10. Further, as discussed below, process 200 may also be employed with other slicing equipment to provide a moderate degree of irregularity between the meat pieces. In determining how to prepare and slice the whole muscle meat, the desired product including the desired level of irregularity and differentiation between the various meat slices should be considered.
  • As illustrated in FIG. 7, process 200 includes receiving or providing 201 deboned whole muscle meat at a processing plant. Further, the whole muscle meat is combined 203 with a mixture or solution having a small amount of salt and having no phosphates. By one approach, the whole muscle meat provided 201 undergoes a pickle injection step 202. Such a pickle injection step, as discussed above, delivers the pickle solution to the whole muscle meat via hypodermic-type needles. However, unlike the conventional process, the whole muscle meat is not combined with phosphates in process 200. Thus, the pickle solution of process 200 has no phosphates and, further, has a limited amount of salt therein. By one approach, the pickle solution added to the whole muscle meat will be less than 2 lbs. of salt per 100 lbs. of meat. In one illustrative embodiment, approximately half the amount of salt used in a conventional product is added to the whole muscle meat in process 200. For example, about 10 lbs. of pickle solution having a 10% salt concentration may be added to 100 lbs of meat to end up with 1 lbs of salt in 100 lbs. of meat. Once the pickle injection step is complete, the whole muscle meat may be further combined with additional pickle solution having a small amount of salt and lacking any phosphates.
  • Once the whole muscle meat has been combined 203 with the low-salt, phosphate-free solution, the combination may be mixed 204 together such as in a tumbler or other mixing apparatus. The combined whole muscle meat may be mixed 204 for a specified of time period. By one approach, the mixing step is approximately 30 minutes or less. Alternatively, the mixing step may be between 30 and 60 minutes, depending on the desired end product. However, it is important that the meat not be over mixed and, thus, it is desirable to have the mixing extend no longer than 60 minutes and preferably closer to 30 minutes. Significant mixing promotes binding of the muscle structure such that the structure binds more tightly. In turn, the cut surface of the meat slices will not fracture along the irregular protein strand seams but will slice smoothly and have a more conventional sliced meat appearance. Once the whole muscle meat has undergone sufficient mixing, the meat is collected in a vat for a period of time to permit the salt and other ingredients to diffuse uniformly throughout the meat pieces. The length of the cure time may depend on the desired final product. In one illustrative embodiment, the whole muscle meat is retained in a cooler for between 24 and 48 hours.
  • The whole muscle meat may then be stuffed 206 into casings in which the meat is cooked. Unlike conventional processing where the meat is tightly packed into the casing, however, process 200 loosely stuffs 206 the meat product into the casings. As used herein, the term loosely stuffs indicates that the whole muscle meat is stuffed into the casings such that voids are permitted to occur between the individual whole muscle meat pieces and between the pieces and the casing. Further, such voids create irregularities in the meat product during the cooking phase via moisture expulsion. The low-salt, no-phosphate solution is a relatively poor water binder and thereby encourages water loss through evaporation and expulsion, similar to what occurs in home-style cooking. Comparatively, a conventional product having a higher salt solution and phosphates is relatively a good water binder, which results in a higher product yield. However, such a product produces a very regular appearance. By allowing the water to escape form the system, irregularities in the final product are further introduced.
  • Since the low-salt, no phosphate solution does not promote significant water binding, the casing is relied upon to retain some of the moisture within the meat structure. However, certain casings may retain too much water or may not permit expansion of the product, thereby unduly increasing the pressure inside the casing, while others may permit too much water loss. The meat cooked in the average home-oven produces a significant amount of steam and meat juices collect in the pan, which is the result of moisture evaporation and expulsion from the meat. Thus, the casing used in process 200 typically permits significant amounts of moisture loss.
  • As mentioned, the water loss occurs through the casings, which may be comprised of a variety of natural or synthetic materials. For example, a thin mesh fabric or wire mesh may be used, to note but a few. Whatever the material, it is desirable for the casing to permit some expansion of the meat product and also permit loss of water, both of which relieve some of the pressure created in the product. By one approach, the casings are pre-stuck casings that have openings, such as slits or holes, created therein prior to stuffing and cooking. These openings allow the water to escape from the casing.
  • In sum, some void space is deliberately left within the casing once it is filled with the meat product. This void space permits moisture expulsion and keeps the pieces from “gluing” together to thereby help create a meat product with a home-style appearance by creating surfaces with an irregular texture. To that end, the casings selected also encourage some amount of water loss. Thus, the manner of stuffing the casings and the casings themselves contribute to the irregularities in the final cooked product.
  • Further, once the casings have been loosely stuffed 206, the casings may be thermally processed 207 such as through cooking at a temperature of at least 155° F. In one illustrative embodiment, a series of temperature steps are employed, where the temperature gradually increases to reach the final temperature, just over 155° F. For example, by one approach, the final product temperature at the end of the cooking cycle is approximately in between the 155°-170° F. range, whereas and the air temperature in the final cook step is in the range of approximately 180°-210° F., depending on the product. Comparatively, such temps are a bit higher than those conventionally used and this drives off more moisture by evaporation. A loss of between 22-28% of the total ingoing product weight is targeted. For example, for 100 lbs. of product that is introduced into the smokehouse, approximately 72-78 lbs. of product will exit the smokehouse after cooking. Such loss, as described above, results from evaporation and expulsion. This is quite different from conventional products, where as much water as possible is retained.
  • The cook process takes about 6 hours, while conventional cook times range from 3 to 6 hours. Thus, the cook time of process 200 is at the long end of the spectrum. Further, as mentioned above, the cook temperature is at the higher end, as well. Thus, water loss is encouraged, which contributes to the final product's varied texture. Encouraging such water loss is possible because the solution does not have a high salt concentration or phosphates that bind the water.
  • After the meat produce has been cooked, the casings of meat products are cooled 208. By one approach, such cooling occurs by showering the casings with chilled water. By yet another approach, the casings and meat product are permitted to chill by removing the casings from the heat source and exposing the outside of the casings to chilled air. The water shower, if used, will expose the casings to water at approximately 34-38° F. for about 30 minutes. The air chill takes about 7 hours and uses 18-25° F. air to reduce the product temperature to the desired slicing temperature of 29-31° F.
  • Once the casings and meat product have cooled, the prepared meat may undergo slicing 209 to produce the home-style meat with individual pieces have an irregular appearance. Such slicing 209 may occur in a variety of slicing equipment. Since process 200 prepares the whole muscle meat in a manner such as to purposefully create irregularities in the final product, such a prepared meat mixture may be sliced in a conventional slicer and may still exhibit a degree of irregularity between the sliced pieces. In addition, if a high degree of irregularity is desired the whole muscle meat prepared according to process 200 may be sliced in the rotary processing machine 10. As discussed above, the rotary processing machine has an impeller 34 with equally spaced paddles 40 that rotate and carry the meat product to be sliced by slicing knife 56 having a dulled cutting edge. Such a configuration wherein the chunks of whole muscle meat are exposed to the stationary slicing knife from different angles creates further irregularities in the low-salt, phosphate-free meat product. Alternatively, a slicer with a less random and varied manner of slicing would still produce an irregularly textured meat product if process 200 were employed to prepare the meat.
  • For example, a slicer with a reciprocating carriage and a stationary blade typically orients the meat relative to the slicing knife based on the manner of delivery of the meat, such as through a feed tube or hopper. The orientation of the meat product in such a feed tube does not widely vary as the whole muscle meat does not have room to rotate or significantly shift around. Instead, the whole muscle meat slowly advances toward the slicing knife as leading portions of the whole muscle meat are sliced from the unsliced portion. Such a slicer typically produces a sliced meat product having standardized, highly regular characteristics, however, such equipment may be used to produce irregularly textured and shaped meat slices if the sliced meat is prepared according to process 200.
  • Thus, a home-style carved meat product having intentionally irregular and controlled variations, which are within certain parameters including size, shape, texture, and density, may be produced by slicing on a rotary processing machine 10 or by preparing the whole muscle meat according to process 200. Further, a home-style carved meat product having a high degree of irregularity may be produced by preparing whole muscle meat according to process 200 and then slicing the prepared meat in the rotatry processing machine 10.
  • While process 200 illustrated in FIG. 7 may occur in order of the steps listed, such as combining 203 the whole muscle meat with a small amount of salt and without phosphates after the boneless whole muscle meat has been provided 201 to the meat processing plant. It is also contemplated that the steps of process 200 may occur in a variety of other orders as well For example, combining 203 the whole muscle meat with the low-salt, phosphate-free solution may occur prior to providing 201 the whole muscle meat at the processing plant. Further, in such a configuration, curing 205 of the whole muscle meat may occur during several of the other steps. Thus, it is contemplated that the steps of process 200 may occur in a variety of sequences.
  • Sliced meat having a home-style appearance preferably will have increased irregularities in the slice surface, such as an increase in surface roughness, as compared to conventionally prepared meat. In addition, the range of irregularities is higher, such as the range of surface roughness is also larger.
  • To demonstrate the increased surface irregularity, test samples of ham processed according to process 200 were compared with samples of conventionally processed ham. As discussed below, five samples of conventionally produced ham and seven test samples of ham produced according to the invention described herein were examined.
  • To examine the differences between the two samples, digital images of the samples were taken and then the images were evaluating by examining the difference in the contrast between pixels to determine a surface irregularity value. The images were captured by scanning the samples with an EPSON Pro 750 instrument at 300 dpi and then analyzed using Image-Pro Plus Version 5.1. The texture (surface roughness) was examined by comparing the intensity of the light reflected off the surface. Elevated portions of the sample were indicated by a darker pixel and lower portions of the sample were indicated by a lighter pixel. For example, a sample, with a high degree of variation included many high spots (dark) and low spots (light) within a certain area indicated. This variations in pixels indicated that the sample had a rough surface.
  • To evaluate the images, a portion of the image (7 pixel by 7 pixel area) was examined for the variation in brightness, which was interpreted as texture (surface roughness). These 7×7 pixel areas were compared with other 7×7 pixel areas. By one approach, the mean brightness of the various areas was compared with mean brightness of other 7×7 pixel areas. The surface irregularities value listed below refers to local variation in brightness from one area to the next. Both the range (difference between the maximum and minimum brightness values in a neighborhood) and the variance (statistical variance of pixel values in any particular area) were examined.
  • VARIANCE 7 × 7 IMAGE SURFACE IRREGULARITIES VALUE
    Conventional Ham Sample #1 55.65
    Conventional Ham Sample #2 44.60
    Conventional Ham Sample #3 60.81
    Conventional Ham Sample #4 53.91
    Conventional Ham Sample #5 57.67
    Test Ham #1 75.82
    Test Ham #2 76.56
    Test Ham #3 94.16
    Test Ham #4 73.55
    Test Ham #5 68.13
    Test Ham #6 76.35
    Test Ham #7 58.64
  • The five samples of conventionally produced ham had surface irregularity values falling between approximately 44.60 and 60.61. In contrast, images of the seven samples of the test ham had surface irregularity values ranging from approximately 58.64 to 94.16. The mean variance for the conventional ham was 54.53, whereas mean variance for the test ham was 74.74. Thus, the test ham showed significantly more variation in the surface (increased amount of difference between the light and dark pixels). In short, ham according to process 200 has noticeable surface irregularities that help create the home-style appearance desired by many consumers. Thus, in one embodiment, the home-style meat product has a surface irregularity value of above 61. In one example, the home-style meat product has a mean variance surface irregularity value of greater than about 70. In another embodiment, the home-style meat product has a mean variance surface irregularity value of greater than about 75. By yet another approach, the meat produced according to the invention herein has a mean variance of at least 25% more than conventionally produced meat products.
  • In addition, it will be appreciated by those skilled in the art that other modifications to the foregoing preferred embodiments may be made in various aspects. The present invention is set forth with particularity in any appended claims. It is deemed that the spirit and scope of that invention encompasses such modifications and alterations to the preferred embodiment as would be apparent to one of ordinary skill in the art and familiar with the teachings of the present application.

Claims (19)

1. A method of mass-producing a home-style meat product having an irregular appearance, the method comprising:
providing boneless whole muscle meat;
combining the boneless whole muscle meat with a mixture having a limited amount of salt;
mixing the boneless whole muscle meat and the mixture;
curing the boneless whole muscle meat and the mixture;
loosely stuffing the whole muscle meat and the mixture into casing and permitting void space between individual whole muscle meat pieces;
thermally processing the whole muscle meat product and the mixture to produce a prepared whole muscle meat;
cooling the prepared whole muscle meat; and
slicing the prepared whole muscle meat to produce a home-style meat product wherein individual pieces of the home-style meat product have an irregular appearance.
2. The method of claim 1 wherein combining the boneless whole muscle meat with a mixture having a limited amount of salt further comprises combining a mixture having a limited amount of salt and lacking any phosphates with the boneless whole muscle meat.
3. The method of claim 2 wherein a combining a limited amount of salt is an amount of salt less than or equal to 1%, by weight.
4. The method of claim 1 wherein combining the boneless whole muscle meat with comprises injecting the boneless whole muscle meat with the mixture by advancing the boneless whole muscle meat through an injector.
5. The method of claim 1 wherein curing the boneless whole muscle meat and the mixture having a limited amount of salt is permitted for up to 48 hours.
6. The method of claim 1 wherein thermally processing the stuffed whole muscle meat product comprises cooking the whole muscle for approximately six hours, at more than 155° F.
7. The method of claim 1 wherein cooling the thermally processed whole muscle meat comprises showering the whole muscle meat with cool water at a temperature between approximately 34° and 38° F. for about 30 minutes to decrease the temperature of the whole muscle meat.
8. The method of claim 1 wherein cooling the thermally processed whole muscle meat comprises showering the whole muscle meat with cool air at a temperature between approximately 18° to 25° F. for about seven hours to decrease the temperature of the whole muscle meat.
9. The method of claim 1 wherein slicing the prepared whole muscle meat further comprising:
rotating the prepared whole muscle meat using an impeller having a plurality of inwardly extending paddles, the plurality of meat products exceeding the plurality of paddles;
directing one of the prepared whole muscle meats toward a slicing blade during rotation of the impeller by lodging the one of the meat products against one of the paddles and against the impeller using centrifugal force from the rotation of the impeller;
urging the one of the prepared whole muscle meats against the slicing blade using the one of the paddles to cut a slice of meat from the one of the prepared whole muscle meats; and
dislodging the one of the prepared whole muscle meats from against the one of the paddles using others of the plurality of meat products.
10. The method of claim 1 wherein the home-style meat product produced has a surface irregularity value of above 61.
11. The method of claim 1 wherein the home-style meat product produced has a mean variance surface irregularity value of greater than about 70.
12. The method of claim 1 wherein the home-style meat product produced has a mean variance surface irregularity value of greater than about 75.
13. The method of claim 1 wherein the home-style meat product produced has a mean variance of at least 25% more than conventionally produced meat products.
14. A plurality of home-style meat slices made accordingly to the process of claim 1.
15. A mass producing a packaged meat product comprising:
mass producing a plurality of meat pieces wherein individual meat pieces are intentionally configured to differentiate from one another in texture and appearance;
collecting the individual meat pieces and filling a flexible container with the individual meat pieces; and
sealing the flexible container having the individual meat pieces therein.
16. The method of claim 15 wherein mass producing a plurality of meat pieces that are intentionally configured to differentiate from one another further comprises, at least in part, mixing boneless whole muscle meat with a solution having a limited amount of salt.
17. The method of claim 15 wherein a solution having a limited amount of salt includes less than 1% of salt, by weight.
18. The method of claim 15 wherein mass producing a plurality of meat pieces that are intentionally configured to differentiate from one another further comprises, at least in part, loosely stuffing boneless whole muscle meat into casings in which the meat is cooked.
19. The method of claim 15 wherein the plurality of meat pieces have surface irregularity values of at least 58.6.
US12/614,249 2008-11-07 2009-11-06 Home-style meat product and method of producing same Active 2031-01-19 US9848631B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/614,249 US9848631B2 (en) 2008-11-07 2009-11-06 Home-style meat product and method of producing same
US13/157,711 US9629374B2 (en) 2008-11-07 2011-06-10 Home-style meat product and method of producing same
US15/460,355 US10154683B2 (en) 2008-11-07 2017-03-16 Home-style meat product and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/267,356 US9675089B2 (en) 2008-11-07 2008-11-07 Method and apparatus to mechanically reduce food products into irregular shapes and sizes
US12/614,249 US9848631B2 (en) 2008-11-07 2009-11-06 Home-style meat product and method of producing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/267,356 Continuation-In-Part US9675089B2 (en) 2008-11-07 2008-11-07 Method and apparatus to mechanically reduce food products into irregular shapes and sizes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/157,711 Continuation-In-Part US9629374B2 (en) 2008-11-07 2011-06-10 Home-style meat product and method of producing same

Publications (2)

Publication Number Publication Date
US20100119665A1 true US20100119665A1 (en) 2010-05-13
US9848631B2 US9848631B2 (en) 2017-12-26

Family

ID=42165416

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/614,249 Active 2031-01-19 US9848631B2 (en) 2008-11-07 2009-11-06 Home-style meat product and method of producing same

Country Status (1)

Country Link
US (1) US9848631B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014180712A (en) * 2013-03-19 2014-09-29 Nantsune:Kk Food slicing method and its device
US9629374B2 (en) 2008-11-07 2017-04-25 Kraft Foods Group Brands Llc Home-style meat product and method of producing same
US9848631B2 (en) 2008-11-07 2017-12-26 Kraft Foods Group Brands Llc Home-style meat product and method of producing same
US20190124962A1 (en) * 2017-10-26 2019-05-02 The Paget Group, Inc. Raw, frozen ground beef (and/or other meat), method for making same, and packaging for displaying same
US11252981B1 (en) 2017-10-26 2022-02-22 Swift Beef Company Raw, frozen ground beef (and/or other meat), method for making same, and packaging for displaying same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591206B2 (en) * 2016-04-04 2020-03-17 C. Nelson Manufacturing Company Method and system for device with eutectic plate

Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615704A (en) * 1966-12-09 1971-10-26 Slagteriernes Forskningsinst Method of injecting pickling medium into foods
US3627542A (en) * 1967-10-13 1971-12-14 Tee Pak Inc Edible collagen casing containing monoglyceride or acetylated monoglyceride softener
US3853999A (en) * 1972-12-06 1974-12-10 Servbest Foods Inc Process for shaping comminuted meat products
US4463027A (en) * 1982-03-16 1984-07-31 Diamond Crystal Salt Company Method of forming a meat curing brine
US4800094A (en) * 1985-08-06 1989-01-24 C & F Packing, Inc. Method for processing a cooked food product
US4868002A (en) * 1987-03-10 1989-09-19 Nabisco Brands, Inc. Process for preparing a meat jerky product
US4975294A (en) * 1987-10-27 1990-12-04 Cohen Morton R Process for making a restructured meat product
US5048405A (en) * 1989-07-10 1991-09-17 Nippon Suisan Kaisha, Ltd. Apparatus for manufacturing fibrous fish or shellfish "neriseihin" product
US5053237A (en) * 1987-03-23 1991-10-01 Hendricks Deloy G Method for tenderizing and upgrading the sensory qualities of red meat
US5067645A (en) * 1988-08-01 1991-11-26 Nestec S.A. Apparatus for sizing elongated food pieces
US5129299A (en) * 1988-10-07 1992-07-14 Urschel Laboratories Incorporated Dicing machine
US5163865A (en) * 1991-05-08 1992-11-17 Innerspace Technologies Of Alaska, Inc. Method and apparatus for processing fish fillets and other food items into predetermined portions
US5343623A (en) * 1992-05-11 1994-09-06 Urschel Laboratories, Inc. Knife assembly for cutting a food product
US5346711A (en) * 1992-10-15 1994-09-13 Designer Foods Method of making an animal muscle strip product
US5370573A (en) * 1993-05-26 1994-12-06 B. C. Rogers Poultry, Inc. Chicken breast slicing method and apparatus
US5387424A (en) * 1994-03-23 1995-02-07 Utah State University Process for bonding formed meat to bone
US5472725A (en) * 1990-08-27 1995-12-05 Utah State University Ultra-high temperature treatment of low-fat formed meat products
US5534279A (en) * 1993-02-03 1996-07-09 Gemi Aliment, S.A. Process for producing a low sodium meat product
US5567466A (en) * 1994-01-24 1996-10-22 Nestec S.A. Animal food compositions and preparation thereof
US5694824A (en) * 1994-04-18 1997-12-09 Urschel Laboratories Incorporated Cutting head for slicing a food product
US5896801A (en) * 1994-05-31 1999-04-27 Urschel Laboratories, Inc. Rotary apparatus for cutting a food product
US5958477A (en) * 1996-11-15 1999-09-28 Kyowa Hakko Kogyo Co., Ltd. Whey mineral containing at least 0.8 g/kg zinc
US5965191A (en) * 1995-03-06 1999-10-12 Kabushiki Kaisha Katayama Processed fish flesh, fish flesh material using the same and method of preparing processed fish flesh
US5992284A (en) * 1997-11-17 1999-11-30 Urschel Laboratories Incorporated Knife and cutting wheel for a food product slicing apparatus
US6027756A (en) * 1997-03-11 2000-02-22 Sara Lee Corporation Method for forming a bone-in ham and a ham formed by the method
US6129624A (en) * 1999-07-16 2000-10-10 Niklason; Peter Method and apparatus for preparation of fish for minced muscle products and surimi
US6148702A (en) * 1998-04-20 2000-11-21 Urschel Laboratories Incorporated Method and apparatus for uniformly slicing food products
US6314849B1 (en) * 1997-09-19 2001-11-13 Urschel Laboratories Inc. Dicing machine with improved cutting squareness
US20010043962A1 (en) * 1999-08-19 2001-11-22 Mcfarland Archie Rae Apparatus for producing stranded, ground, meat products and the products so produced
US20020048623A1 (en) * 2000-09-06 2002-04-25 Konrad Baarda Composite meat product and method for the manufacture thereof
US6792841B2 (en) * 1999-12-08 2004-09-21 Urschel Laboratories Incorporated Transverse food product slicer with inclined shear edge support surface enabling production of uniform thickness slices
US6883411B2 (en) * 2001-04-10 2005-04-26 Urschel Laboratories Incorporated Impeller for rotary slicing machine
US20050120844A1 (en) * 2001-06-29 2005-06-09 Gunther Weber Slicing method and device
US20050163912A1 (en) * 2004-01-26 2005-07-28 Randall White Method for making beef jerky
US20050199115A1 (en) * 2004-03-13 2005-09-15 Veltrop Loren J. Manual food slicer
US6952989B2 (en) * 2002-10-07 2005-10-11 Urschel Laboratories, Inc. Apparatus for cutting food product
US7000518B2 (en) * 2002-06-04 2006-02-21 Urschel Laboratories, Inc. Apparatus for cutting food product
US7178440B2 (en) * 2004-01-13 2007-02-20 Urschel Laboratories Inc. Knife and cutting wheel for a food product slicing apparatus
US7263923B2 (en) * 2002-12-19 2007-09-04 Urschel Laboratories, Inc. Food product cutting apparatus and process
US20070218107A1 (en) * 2006-03-14 2007-09-20 Schnur Steven A Method of dieting and tools for implementing same
US20070240550A1 (en) * 2006-04-18 2007-10-18 Urschel Laboratories, Inc. Apparatus for cutting food product
US20080022822A1 (en) * 2006-04-18 2008-01-31 Urschel Laboratories, Inc. Apparatus for cutting food product
US20080134850A1 (en) * 2006-12-08 2008-06-12 J. R. Simplot Company Machine and process for producing random shaped potato pieces
US20080190255A1 (en) * 2007-02-13 2008-08-14 Urschel Laboratories Inc. Apparatus and method for slicing food products
US20090004353A1 (en) * 2007-06-27 2009-01-01 Topps Chris J Method of processing meat to enhance moisture retention
US20090220652A1 (en) * 2006-03-16 2009-09-03 Cargill Incorporated Meat Brines

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2253733A (en) 1938-03-31 1941-08-26 Impact pulverizer
US2232089A (en) 1938-04-20 1941-02-18 Frank A Wool Fruit cutting apparatus and method
US2252733A (en) 1938-08-25 1941-08-19 Sherman Form bursting and stacking apparatus
US3521688A (en) 1967-03-06 1970-07-28 Gerald W Urschel Rotatable knife assembly
US3635731A (en) 1969-03-18 1972-01-18 Campbell Soup Co Process for tenderizing meat
US3857310A (en) 1972-12-18 1974-12-31 Hobart Mfg Co Food cutting and dicing apparatus
US4041822A (en) 1976-06-11 1977-08-16 Gabel Floyd S Sausage slicing machine
US4258068A (en) 1978-01-24 1981-03-24 Auburn Research Foundation Process for production of a restructured fresh meat product
US4210677A (en) 1978-01-24 1980-07-01 Auburn Research Foundation Process for production of a restructured fresh meat product
US4484374A (en) 1982-03-16 1984-11-27 Melvin Herschberger Apparatus for stuffing ground meat into casings
US4680186A (en) 1983-03-07 1987-07-14 Granite State Packing Company, Inc. Portion controlled sliced fresh whole muscle meat product
US4728524A (en) 1984-04-04 1988-03-01 Creativators, Inc. Restructured meat products and methods of making same
US4680187A (en) 1984-11-09 1987-07-14 Granite State Packing Company, Inc. Portion controlled sliced cooked whole muscle meat product
US4614489A (en) 1985-01-07 1986-09-30 Star-Kist Foods, Inc. Simultaneous extrusion of multiple streams of a fibrous food product
US4625606A (en) 1985-05-28 1986-12-02 J. R. Simplot Company Rotary cutting apparatus
US4780327A (en) 1986-10-02 1988-10-25 Oscar Mayer Foods Corporation Method of producing cooked meat product suitable for shreading
US4999204A (en) 1986-12-05 1991-03-12 Tendapak Technologies Pty. Ltd. Helically shaped meat product
US4946085A (en) 1987-03-02 1990-08-07 Svecia Antiqua Limited Apparatus for producing paper with decorative edges
US5022299A (en) 1987-10-19 1991-06-11 Urschel Laboratories Incorporated Method of making a knife having a scalloped cutting edge
JPH0616668B2 (en) 1990-03-15 1994-03-09 株式会社伊勢魚問屋 A highly-preservative method for making black squid
DE9100346U1 (en) 1991-01-12 1992-05-14 Herbort Maschinenbau Gmbh, 3300 Braunschweig, De
US5405632A (en) 1991-04-02 1995-04-11 Mahboob; Saba Process for the production of low fat meats
US5097735A (en) 1991-05-06 1992-03-24 Mendenhall George A Helical spiral food product and apparatus for making the same
JP3266935B2 (en) 1991-08-28 2002-03-18 住友金属工業株式会社 Winding mandrel and winding device and method
JPH0746980B2 (en) 1992-01-17 1995-05-24 株式会社山政 Fish delicacy food
US5340354A (en) 1993-02-24 1994-08-23 Thomas Anderson Meat tenderizing apparatus and process for tenderizing meat
AU703527B2 (en) 1994-01-31 1999-03-25 Kabushiki Kaisha Katayama Processed meat, meat food material using the same, and production method for processed meat
IT1279031B1 (en) 1994-04-12 1997-12-02 Brunhilda Mach PROCESS FOR THE PRODUCTION OF SLICED, SEASONED, RAW MEAT.
US5499575A (en) 1994-05-26 1996-03-19 Oscar Mayer Foods Corporation Food loaf shaping and texturizing rack
JPH08112080A (en) 1994-10-17 1996-05-07 Namiza Bussan Kesennuma Kojo:Kk Production of salted squid gut and meat
IT1283800B1 (en) 1995-09-01 1998-04-30 Burr Oak Tool & Gauge STATIONARY CUTTING DEVICE AND GRADUALLY MOVABLE
HU212837B (en) 1995-10-06 1997-02-28 Farsang Sodium-poor, containing, magnesium and potassimum vegetables and spice mixture repast salt mixture
US5765768A (en) 1996-03-06 1998-06-16 Visionary Design, Inc. Plate for use on the outlet of a food grinder for making sheets of food
US5775986A (en) 1996-03-29 1998-07-07 Carruthers Equipment Co. Cooked meat pulling apparatus
GB9805445D0 (en) 1998-03-16 1998-05-13 Whitehouse John A Product scanner
EP0950358A1 (en) 1998-03-20 1999-10-20 Societe Des Produits Nestle S.A. Culinary aid in form of a bar
GB2347845A (en) 1999-03-19 2000-09-20 York Fabrications Limited Meat shredding machine
US20050170056A1 (en) 1999-04-08 2005-08-04 Weber Maschinenbau Gmbh & Co. Kg Method for the slicing of food products
DE19935055A1 (en) 1999-07-26 2001-02-01 Biforce Anstalt Vaduz Method and device for irregular product placement
AU2001231089A1 (en) 2000-01-21 2001-07-31 Eatem Corporation Complete meal formulation
US6536691B2 (en) 2001-02-23 2003-03-25 Leprino Foods Company Apparatus for and method of shredding a product
JP3605799B2 (en) 2001-12-11 2004-12-22 若女食品株式会社 Method for producing taraba meat-like kamaboko and taraba meat-like kamaboko product produced by the method
IES20020234A2 (en) 2002-03-28 2003-05-14 Devrone Ltd A meat forming process
US6895846B2 (en) 2002-10-29 2005-05-24 J.R. Simplot Company Slicing machine with tapered slicing gate
WO2005046359A1 (en) 2003-11-14 2005-05-26 Meat & Livestock Australia Limited Restricted meat product and process
EP1582103A1 (en) 2004-03-31 2005-10-05 Ajinomoto Co., Inc. Novel food and production method thereof
US7429010B2 (en) 2005-05-16 2008-09-30 Mccormick Michael S Methods and apparatus to mechanically reduce food products into irregular shapes and sizes
US20060286273A1 (en) 2005-05-18 2006-12-21 Gary Rohwer Method of forming a reconstituted meat product
DE102006031794A1 (en) 2006-07-10 2008-01-17 Mars Inc. Process for the preparation of a feed or food and thereafter obtained product
WO2009085022A1 (en) 2007-12-31 2009-07-09 Güçtek Mühendislik Makina Insaat Elektronik Bilgisayar Sanayi Ticaret Limited Sirketi Microcontroller controlled doner meat broiler and cutter machine, operated by individual motion forms, with stepper motors and optical scanners
US8069953B2 (en) 2008-03-25 2011-12-06 Restaurant Technology, Inc. Food item cooking, assembly and packaging system and method
US9848631B2 (en) 2008-11-07 2017-12-26 Kraft Foods Group Brands Llc Home-style meat product and method of producing same
US9675089B2 (en) 2008-11-07 2017-06-13 Kraft Foods Group Brands Llc Method and apparatus to mechanically reduce food products into irregular shapes and sizes
US9629374B2 (en) 2008-11-07 2017-04-25 Kraft Foods Group Brands Llc Home-style meat product and method of producing same

Patent Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615704A (en) * 1966-12-09 1971-10-26 Slagteriernes Forskningsinst Method of injecting pickling medium into foods
US3627542A (en) * 1967-10-13 1971-12-14 Tee Pak Inc Edible collagen casing containing monoglyceride or acetylated monoglyceride softener
US3853999A (en) * 1972-12-06 1974-12-10 Servbest Foods Inc Process for shaping comminuted meat products
US4463027A (en) * 1982-03-16 1984-07-31 Diamond Crystal Salt Company Method of forming a meat curing brine
US4800094A (en) * 1985-08-06 1989-01-24 C & F Packing, Inc. Method for processing a cooked food product
US4868002A (en) * 1987-03-10 1989-09-19 Nabisco Brands, Inc. Process for preparing a meat jerky product
US5053237A (en) * 1987-03-23 1991-10-01 Hendricks Deloy G Method for tenderizing and upgrading the sensory qualities of red meat
US4975294A (en) * 1987-10-27 1990-12-04 Cohen Morton R Process for making a restructured meat product
US5067645A (en) * 1988-08-01 1991-11-26 Nestec S.A. Apparatus for sizing elongated food pieces
US5129299A (en) * 1988-10-07 1992-07-14 Urschel Laboratories Incorporated Dicing machine
US5048405A (en) * 1989-07-10 1991-09-17 Nippon Suisan Kaisha, Ltd. Apparatus for manufacturing fibrous fish or shellfish "neriseihin" product
US5472725A (en) * 1990-08-27 1995-12-05 Utah State University Ultra-high temperature treatment of low-fat formed meat products
US5163865A (en) * 1991-05-08 1992-11-17 Innerspace Technologies Of Alaska, Inc. Method and apparatus for processing fish fillets and other food items into predetermined portions
US5343623A (en) * 1992-05-11 1994-09-06 Urschel Laboratories, Inc. Knife assembly for cutting a food product
US5346711A (en) * 1992-10-15 1994-09-13 Designer Foods Method of making an animal muscle strip product
US5534279A (en) * 1993-02-03 1996-07-09 Gemi Aliment, S.A. Process for producing a low sodium meat product
US5370573A (en) * 1993-05-26 1994-12-06 B. C. Rogers Poultry, Inc. Chicken breast slicing method and apparatus
US5567466A (en) * 1994-01-24 1996-10-22 Nestec S.A. Animal food compositions and preparation thereof
US5387424A (en) * 1994-03-23 1995-02-07 Utah State University Process for bonding formed meat to bone
US5694824A (en) * 1994-04-18 1997-12-09 Urschel Laboratories Incorporated Cutting head for slicing a food product
US5896801A (en) * 1994-05-31 1999-04-27 Urschel Laboratories, Inc. Rotary apparatus for cutting a food product
US6460444B2 (en) * 1994-05-31 2002-10-08 Urschel Laboratories, Inc. Rotary apparatus for cutting a food product
US5965191A (en) * 1995-03-06 1999-10-12 Kabushiki Kaisha Katayama Processed fish flesh, fish flesh material using the same and method of preparing processed fish flesh
US5958477A (en) * 1996-11-15 1999-09-28 Kyowa Hakko Kogyo Co., Ltd. Whey mineral containing at least 0.8 g/kg zinc
US6027756A (en) * 1997-03-11 2000-02-22 Sara Lee Corporation Method for forming a bone-in ham and a ham formed by the method
US6314849B1 (en) * 1997-09-19 2001-11-13 Urschel Laboratories Inc. Dicing machine with improved cutting squareness
US6561067B2 (en) * 1997-09-19 2003-05-13 Urschel Laboratories, Inc. Food dicing machine with adjustable stripper
US5992284A (en) * 1997-11-17 1999-11-30 Urschel Laboratories Incorporated Knife and cutting wheel for a food product slicing apparatus
US6148702A (en) * 1998-04-20 2000-11-21 Urschel Laboratories Incorporated Method and apparatus for uniformly slicing food products
US6129624A (en) * 1999-07-16 2000-10-10 Niklason; Peter Method and apparatus for preparation of fish for minced muscle products and surimi
US20010043962A1 (en) * 1999-08-19 2001-11-22 Mcfarland Archie Rae Apparatus for producing stranded, ground, meat products and the products so produced
US6792841B2 (en) * 1999-12-08 2004-09-21 Urschel Laboratories Incorporated Transverse food product slicer with inclined shear edge support surface enabling production of uniform thickness slices
US6920813B2 (en) * 1999-12-08 2005-07-26 Urschel Laboratories, Inc. Method for slicing food products
US20020048623A1 (en) * 2000-09-06 2002-04-25 Konrad Baarda Composite meat product and method for the manufacture thereof
US6883411B2 (en) * 2001-04-10 2005-04-26 Urschel Laboratories Incorporated Impeller for rotary slicing machine
US20050120844A1 (en) * 2001-06-29 2005-06-09 Gunther Weber Slicing method and device
US20060163792A1 (en) * 2002-06-04 2006-07-27 Urschel Laboratories, Inc. Apparatus for cutting food product
US7000518B2 (en) * 2002-06-04 2006-02-21 Urschel Laboratories, Inc. Apparatus for cutting food product
US6952989B2 (en) * 2002-10-07 2005-10-11 Urschel Laboratories, Inc. Apparatus for cutting food product
US7263923B2 (en) * 2002-12-19 2007-09-04 Urschel Laboratories, Inc. Food product cutting apparatus and process
US20070227325A1 (en) * 2002-12-19 2007-10-04 Urschel Laboratories, Inc. Food product cutting process and apparatus
US7178440B2 (en) * 2004-01-13 2007-02-20 Urschel Laboratories Inc. Knife and cutting wheel for a food product slicing apparatus
US20050163912A1 (en) * 2004-01-26 2005-07-28 Randall White Method for making beef jerky
US20050199115A1 (en) * 2004-03-13 2005-09-15 Veltrop Loren J. Manual food slicer
US20070218107A1 (en) * 2006-03-14 2007-09-20 Schnur Steven A Method of dieting and tools for implementing same
US20090220652A1 (en) * 2006-03-16 2009-09-03 Cargill Incorporated Meat Brines
US20070240550A1 (en) * 2006-04-18 2007-10-18 Urschel Laboratories, Inc. Apparatus for cutting food product
US20080022822A1 (en) * 2006-04-18 2008-01-31 Urschel Laboratories, Inc. Apparatus for cutting food product
US20080134850A1 (en) * 2006-12-08 2008-06-12 J. R. Simplot Company Machine and process for producing random shaped potato pieces
US20080190255A1 (en) * 2007-02-13 2008-08-14 Urschel Laboratories Inc. Apparatus and method for slicing food products
US20090004353A1 (en) * 2007-06-27 2009-01-01 Topps Chris J Method of processing meat to enhance moisture retention

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9629374B2 (en) 2008-11-07 2017-04-25 Kraft Foods Group Brands Llc Home-style meat product and method of producing same
US9848631B2 (en) 2008-11-07 2017-12-26 Kraft Foods Group Brands Llc Home-style meat product and method of producing same
US10154683B2 (en) 2008-11-07 2018-12-18 Kraft Foods Group Brands Llc Home-style meat product and method of producing same
JP2014180712A (en) * 2013-03-19 2014-09-29 Nantsune:Kk Food slicing method and its device
US20190124962A1 (en) * 2017-10-26 2019-05-02 The Paget Group, Inc. Raw, frozen ground beef (and/or other meat), method for making same, and packaging for displaying same
US11252981B1 (en) 2017-10-26 2022-02-22 Swift Beef Company Raw, frozen ground beef (and/or other meat), method for making same, and packaging for displaying same

Also Published As

Publication number Publication date
US9848631B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
US10154683B2 (en) Home-style meat product and method of producing same
CA2683521C (en) Method and apparatus to mechanically reduce food products into irregular shapes and sizes
US9848631B2 (en) Home-style meat product and method of producing same
US5482730A (en) Process for preparing a meat-based food product and the meat-based food product
RU2638523C2 (en) Method for treatment of food products with using of heating process
US9380791B2 (en) Apparatus and method for macerating meat-type products
US2752252A (en) Method of producing a frozen meat product
US8337934B2 (en) Method of making bacon pieces
DK2352380T3 (en) Process for large-scale automated production of frozen thin kebab slices
CA2994010C (en) Home-style meat product and method of producing same
US20080317935A1 (en) Shredded meat processing method
US20190116853A1 (en) Ham and porcine products and process for preparing the same
US20100028506A1 (en) Process for producing ham without resting periods for curing
EP0091981B1 (en) Process and machine for disintegrating materials
CA2714316C (en) Method for processing whole muscle meat
RU2137381C1 (en) Method for producing smoked meat
BE1024334B1 (en) Methods for preparing fresh croquettes
BE1024251B1 (en) Methods for preparing fresh croquettes
RU2211598C1 (en) Uncooked smoked cut and packaged braunschweiger sausage and method of producing the same
CA3163495A1 (en) Method for producing cooked egg product having controlled curd size and/or shape
RU2211597C1 (en) Uncooked smoked granular cut and packaged sausage and method of producing the same
IES85265Y1 (en) A process and apparatus for producing ham
RU2212167C1 (en) Method of producing cooked top-grade sausage "stolichnaya" and cooked top- grade sausage "stolichnaya"
CN112826035A (en) Method for making high-fiber plant protein sausage
RU2211596C1 (en) Cut and packaged uncooked smoked sausage, in particular, pepperoni, cervelat (versions), garlic, salami-type vienna sausage and method of producing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: KRAFT FOODS GLOBAL BRANDS LLC,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PAINTER, CORY;KUSMIDER, EDWARD A.;HUMKE, SARAH;AND OTHERS;SIGNING DATES FROM 20100111 TO 20100113;REEL/FRAME:023797/0445

Owner name: KRAFT FOODS GLOBAL BRANDS LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PAINTER, CORY;KUSMIDER, EDWARD A.;HUMKE, SARAH;AND OTHERS;SIGNING DATES FROM 20100111 TO 20100113;REEL/FRAME:023797/0445

AS Assignment

Owner name: KRAFT FOODS GROUP BRANDS LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRAFT FOODS GLOBAL BRANDS LLC;REEL/FRAME:029579/0546

Effective date: 20121001

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4