US20100012389A1 - Methods of forming polycrystalline diamond cutters - Google Patents

Methods of forming polycrystalline diamond cutters Download PDF

Info

Publication number
US20100012389A1
US20100012389A1 US12/505,297 US50529709A US2010012389A1 US 20100012389 A1 US20100012389 A1 US 20100012389A1 US 50529709 A US50529709 A US 50529709A US 2010012389 A1 US2010012389 A1 US 2010012389A1
Authority
US
United States
Prior art keywords
substrate
polycrystalline
diamond
cavity
abrasive body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/505,297
Inventor
Youhe Zhang
Yuelin Shen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smith International Inc
Original Assignee
Smith International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smith International Inc filed Critical Smith International Inc
Priority to US12/505,297 priority Critical patent/US20100012389A1/en
Assigned to SMITH INTERNATIONAL, INC. reassignment SMITH INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHEN, YUELIN, ZHANG, YOUHE
Publication of US20100012389A1 publication Critical patent/US20100012389A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • E21B10/573Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
    • E21B10/5735Interface between the substrate and the cutting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D99/00Subject matter not provided for in other groups of this subclass
    • B24D99/005Segments of abrasive wheels
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • E21B10/573Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element

Definitions

  • the invention relates generally to polycrystalline diamond composites and cutting structures. More particularly, this invention relates to polycrystalline diamond cutting structures that having non-planar interfaces and method of forming such non-planar interfaces.
  • PCD polycrystalline diamond
  • substrate material typically a sintered metal-carbide
  • PCD comprises a polycrystalline mass of diamonds (typically synthetic) that are bonded together to form an integral, tough, high-strength mass or lattice.
  • the resulting PCD structure produces enhanced properties of wear resistance and hardness, making PCD materials extremely useful in aggressive wear and cutting applications where high levels of wear resistance and hardness are desired.
  • a PDC cutter may be formed by placing a cemented carbide substrate into the container of a press.
  • a mixture of diamond grains or diamond grains and catalyst binder is placed atop the substrate and treated under high pressure, high temperature conditions.
  • metal binder (often cobalt) migrates from the substrate and passes through the diamond grains to promote intergrowth between the diamond grains.
  • the diamond grains become bonded to each other to form the diamond layer, and the diamond layer is in turn bonded to the substrate.
  • the substrate often comprises a metal-carbide composite material, such as tungsten carbide.
  • the deposited diamond layer is often referred to as the “diamond table” or “abrasive layer.”
  • FIG. 1 shows a rotary drill bit 10 having a bit body 12 .
  • the lower face of the bit body 12 is formed with a plurality of blades 14 , which extend generally outwardly away from a central longitudinal axis of rotation 16 of the drill bit.
  • a plurality of PDC cutters 18 are disposed side by side along the length of each blade. The number of PDC cutters 18 carried by each blade may vary.
  • the PDC cutters 18 are individually brazed to a stud-like carrier (or substrate), which may be formed from tungsten carbide, and are received and secured within sockets in the respective blade.
  • the cemented carbide substrate has a higher coefficient of thermal expansion than the diamond.
  • both the cemented carbide body and diamond layer are heated to elevated temperatures forming a bond between the diamond layer and the cemented carbide substrate.
  • the substrate shrinks more than the diamond because of its higher coefficient of thermal expansion. Consequently, stresses referred to as thermally induced stresses are formed at the interface between the diamond and the body.
  • embodiments disclosed herein relate to a method for forming a cutting element that includes forming at least one cavity in at least one surface of a polycrystalline abrasive body; placing the polycrystalline abrasive body adjacent a substrate such that an opening of at least one cavity is adjacent the substrate at an interface, wherein an interface surface of the substrate is non-mating with the polycrystalline abrasive body; and subjecting the polycrystalline abrasive body and substrate to high pressure/high temperature conditions.
  • embodiments disclosed herein relate to a method for forming a cutting element that includes forming a polycrystalline diamond compact of a polycrystalline diamond body attached to a substrate, where the formation of the polycrystalline diamond compact includes placing a mixture of diamond particles and a catalyst material adjacent a substrate; and subjecting the mixture and substrate to high-pressure/high temperature conditions; then, once the polycrystalline diamond compact is formed, detaching the polycrystalline diamond body from the substrate; forming at least one cavity in at least one surface of the detached polycrystalline diamond body; placing the polycrystalline abrasive body adjacent a substrate material such that an opening of at least one cavity is adjacent the substrate material; and subjecting the polycrystalline abrasive body and substrate material to high temperature/high pressure conditions.
  • embodiments disclosed herein relate to a method for forming a cutting element that includes forming at least one cavity in at least one surface of a polycrystalline abrasive body; placing the polycrystalline abrasive body adjacent a substrate precursor material such that an opening of at least one cavity is adjacent the substrate precursor; and subjecting the polycrystalline abrasive body and substrate precursor materials to high pressure/high temperature conditions.
  • a cutting element that includes a polycrystalline abrasive body; and a substrate attached to the polycrystalline abrasive body, wherein the polycrystalline abrasive body comprises, at the interface between the polycrystalline abrasive body and the substrate, at least one cavity formed therein, the at least one cavity having an opening with at least one dimension of less than 1 mm; and wherein the substrate comprises at least one projection mating the at least one cavity.
  • embodiments disclosed herein relate to a cutting element that includes a polycrystalline abrasive body; and a substrate attached to the polycrystalline abrasive body, wherein the polycrystalline abrasive body comprises, at the interface between the polycrystalline abrasive body and the substrate, at least one cavity formed therein; and wherein the substrate comprises at least one projection mating the at least one cavity, the at least one projection comprising a material composition distinct from the remaining substrate.
  • FIG. 1 is an illustration of a PDC drill bit.
  • FIGS. 2A-2E show cross-sectional side views of various embodiments of the present disclosure.
  • FIGS. 3A-3B show top views of various embodiments of the present disclosure.
  • FIGS. 4A-4C is an illustration of steps for forming a PDC cutter in accordance with an embodiment of the present disclosure.
  • FIGS. 5A-5D is an illustration of steps for forming a PDC cutter in accordance with an embodiment of the present disclosure.
  • FIGS. 6A-6E is an illustration of steps for forming a PDC cutter in accordance with an embodiment of the present disclosure.
  • embodiments disclosed herein relate to polycrystalline diamond (or other polycrystalline abrasive bodied) cutting elements and methods of forming non-planar interfaces between the polycrystalline diamond layer and a substrate. More specifically, embodiments disclosed herein are directed to non-planar interfaces resulting from forming cavities in a polycrystalline abrasive body and attaching the body to a substrate.
  • PCD refers to polycrystalline diamond that has been formed, at high pressure/high temperature (HPHT) conditions, through the use of a solvent metal catalyst, such as those included in Group VIII of the Periodic table.
  • HPHT high pressure/high temperature
  • the present disclosure is also directed to polycrystalline cubic boron nitride (formed from subjecting boron nitride particles to HPHT conditions) as well as thermally stable polycrystalline diamond.
  • thermally stable polycrystalline diamond refers to intercrystalline bonded diamond that includes a volume or region that has been rendered substantially free of the solvent metal catalyst used to form PCD, or the solvent metal catalyst used to form PCD remains in the region of the diamond body but is otherwise reacted or rendered ineffective in its ability to adversely impact the bonded diamond at elevated temperatures as discussed above.
  • a polycrystalline diamond body may be formed in a conventional manner, such as by a high pressure, high temperature sintering of “green” particles to create intercrystalline bonding between the particles.
  • “Sintering” may involve a high pressure, high temperature (HPHT) process.
  • HPHT high pressure, high temperature
  • Examples of high pressure, high temperature (HPHT) process can be found, for example, in U.S. Pat. Nos. 4,694,918; 5,370,195; and 4,525,178.
  • HPHT high pressure, high temperature
  • an unsintered mass of diamond crystalline particles is placed within a metal enclosure of the reaction cell of a HPHT apparatus.
  • a suitable HPHT apparatus for this process is described in U.S. Pat. Nos.
  • a metal catalyst such as cobalt or other Group VIII metals, may be included with the unsintered mass of crystalline particles to promote intercrystalline diamond-to-diamond bonding.
  • the catalyst material may be provided in the form of powder and mixed with the diamond grains, or may be infiltrated into the diamond grains during HPHT sintering
  • An exemplary minimum temperature is about 1200° C. and an exemplary minimum pressure is about 35 kilobars. Typical processing is at a pressure of about 45 kbar and 1300° C.
  • Diamond grains useful for forming a polycrystalline diamond body may include any type of diamond particle, including natural or synthetic diamond powders having a wide range of grain sizes.
  • such diamond powders may have an average grain size in the range from submicrometer in size to 100 micrometers, and from 1 to 80 micrometers in other embodiments.
  • the diamond powder may include grains having a mono- or multi-modal distribution.
  • the diamond powder used to prepare the PCD body may be synthetic diamond powder or natural diamond powder.
  • Synthetic diamond powder is known to include small amounts of solvent metal catalyst material and other materials entrained within the diamond crystals themselves. Unlike synthetic diamond powder, natural diamond powder does not include such solvent metal catalyst material and other materials entrained within the diamond crystals. It is theorized that that inclusion of materials other than the solvent catalyst in the synthetic diamond powder can operate to impair or limit the extent to which the resulting PCD body can be rendered thermally stable, as these materials along with the solvent catalyst must also be removed or otherwise neutralized. Because natural diamond is largely devoid of these other materials, such materials do not have to be removed from the PCD body and a higher degree of thermal stability may thus be obtained.
  • the diamond grain powder may be combined with or already includes a desired amount of catalyst material to facilitate desired intercrystalline diamond bonding during HPHT processing.
  • Suitable catalyst materials useful for forming the PCD body include those solvent metals selected from the Group VIII of the Periodic table, with cobalt (Co) being the most common, and mixtures or alloys of two or more of these materials.
  • the diamond grain powder and catalyst material mixture may comprise 85 to 95% by volume diamond grain powder and the remaining amount catalyst material.
  • the diamond grain powder can be used without adding a solvent metal catalyst in applications where the solvent metal catalyst can be provided by infiltration during HPHT processing from the adjacent substrate or adjacent other body to be bonded to the PCD body.
  • the diamond powder may be combined with the desired catalyst material, and the reaction cell is then placed under processing conditions sufficient to cause the intercrystalline bonding between the diamond particles.
  • a selected substrate is loaded into the container adjacent the diamond powder mixture prior to HPHT processing.
  • the metal solvent catalyst needed for catalyzing intercrystalline bonding of the diamond may be provided by infiltration, in which case is may not be necessary to mix the diamond powder with a metal solvent catalyst prior to HPHT processing.
  • the device is controlled so that the container is subjected to a HPHT process comprising a pressure in the range of from 5 to 7 GPa and a temperature in the range of from about 1320 to 1600° C., for a sufficient period of time.
  • a HPHT process comprising a pressure in the range of from 5 to 7 GPa and a temperature in the range of from about 1320 to 1600° C., for a sufficient period of time.
  • the catalyst material in the mixture melts and infiltrates the diamond grain powder to facilitate intercrystalline diamond bonding.
  • the catalyst material may migrate into the interstitial regions within the microstructure of the so-formed PCD body that exists between the diamond bonded grains It should be noted that if too much additional non-diamond material is present in the powdered mass of crystalline particles, appreciable intercrystalline bonding is prevented during the sintering process.
  • Such a sintered material where appreciable intercrystalline bonding has not occurred is not within the definition of PCD.
  • a polycrystalline diamond body may be formed that has, in one embodiment, at least about 80 percent by volume diamond, with the remaining balance of the interstitial regions between the diamond grains occupied by the catalyst material.
  • such diamond content may comprise at least 85 percent by volume of the formed diamond body, and at least 90 percent by volume in yet another embodiment.
  • the polycrystalline diamond bodies being used in accordance with the present disclosure include what is frequently referred to in the art as “high density” polycrystalline diamond.
  • a diamond layer is sintered to a carbide substrate by placing the diamond particles on a preformed substrate in the reaction cell and sintering.
  • the present disclosure is not so limited. Rather, the polycrystalline diamond bodies having cavities formed in accordance with the present disclosure may or may not be formed attached to a substrate. If the polycrystalline diamond body is formed attached to a carbide substrate, the substrate may be removed or detached from the polycrystalline diamond body so that cavities may be formed therein, and a non-planar interface may result when the diamond body reattached to a substrate.
  • a formed PCD body having a catalyst material in the interstitial spaces between bonded diamond grains is subjected to a leaching process (before or after formation of the cavities), whereby the catalyst material is removed from the PCD body.
  • a leaching process before or after formation of the cavities
  • the term “removed” refers to the reduced presence of catalyst material in the PCD body, and is understood to mean that a substantial portion of the catalyst material no longer resides in the PCD body.
  • trace amounts of catalyst material may still remain in the microstructure of the PCD body within the interstitial regions and/or adhered to the surface of the diamond grains.
  • the selected region of the PCD body or compact can be rendered thermally stable by treating the catalyst material in a manner that reduces or eliminates the potential for the catalyst material to adversely impact the intercrystalline bonded diamond at elevated temperatures.
  • the catalyst material can be combined chemically with another material to cause it to no longer act as a catalyst material, or can be transformed into another material that again causes it to no longer act as a catalyst material.
  • the terms “removing substantially all” or “substantially free” as used in reference to the catalyst material is intended to cover the different methods in which the catalyst material can be treated to no longer adversely impact the intercrystalline diamond in the PCD body or compact with increasing temperature.
  • the quantity of the catalyst material remaining in the material PCD microstructure after the PCD body has been subjected to a leaching treatment may vary, for example, on factors such as the treatment conditions, including treatment time, as well as whether the cavities are formed before or after leaching.
  • the PCD body may include up to 1-2 percent by weight of the catalyst material.
  • the amount of residual catalyst present in a leached PCD body may depend on the diamond density of the material, and body thickness.
  • a conventional leaching process involves the exposure of an object to be leached with a leaching agent, such as described in U.S. Pat. No. 4,224,380, which is herein incorporated by reference in its entirety.
  • the leaching agent may be a weak, strong, or mixtures of acids.
  • the leaching agent may be a caustic material such as NaOH or KOH.
  • Suitable acids may include, for example, nitric acid, hydrofluoric acid, hydrochloric acid, sulfuric acid, phosphoric acid, or perchloric acid, or combinations of these acids.
  • caustics such as sodium hydroxide and potassium hydroxide, have been used to the carbide industry to digest metallic elements from carbide composites.
  • other acidic and basic leaching agents may be used as desired. Those having ordinary skill in the art will appreciate that the molarity of the leaching agent may be adjusted depending on the time desired to leach, concerns about hazards, etc.
  • PCBN polycrystalline cubic boron nitride
  • CBN boron nitride particles
  • HPHT HPHT process
  • Boron nitride particles typically have a diameter of approximately one micron and appear as a white powder. Boron nitride, when initially formed, has a generally graphite-like, hexagonal plate structure. When compressed at high pressures (such as 106 psi), CBN particles will be formed with a hardness very similar to diamond, and a stability in air at temperatures of up to 1400° C.
  • PCBN may include a content of boron nitride of at least 50% by volume; at least 70% by volume in another embodiment; at least 85% by volume in yet another embodiment.
  • the cubic boron nitride content may range from 50 to 80 percent by volume, and from 80 to 99.9 percent by volume in yet another embodiment.
  • the residual content of the polycrystalline cubic boron nitride composite may include at least one of Al, Si, and mixtures thereof, carbides, nitrides, carbonitrides and borides of Group IVa, Va, and VIa transition metals of the periodic table. Mixtures and solid solutions of Al, Si, carbides, nitrides, carbonitrides and borides of Group IVa, Va, and VIa transition metals of the periodic table may also be included.
  • formation of a cutting element having a non-planar interface between the abrasive cutting layer and substrate may involve any of the above-described abrasive bodies.
  • formation of a non-planar interface involves forming such geometry in the substrate, and combining the substrate with diamond (or other super hard) particles in a reaction can and subjecting the can contents to HPHT conditions to form the polycrystalline structure.
  • the techniques of the present disclosure rely on forming a desired geometry (cavity) in a pre-formed polycrystalline layer, and then attaching the polycrystalline layer with desired interface geometry to a substrate (or forming the substrate attached to the polycrystalline layer having the desired geometry).
  • Cavities formed by removal of PCD material may include partial cavities (cavities extending partially into the diamond layer) and/or through-cavities or channels (cavities extending the entire thickness of the diamond layer).
  • Such cavities may be formed using any technique known in the art of cutting diamond, including, for example, methods such as EDM, laser micro machining, ion beam milling (also referred to as ion bombardment etching), etc.
  • the cavity may be formed by incorporation of an aiding material into the diamond mixture prior to sintering, where the aiding material may be removed by chemical or physical methods prior to leaching, such that once subsequently removed, cavities are present in the polycrystalline diamond body.
  • a tungsten carbide aiding material may be formed in the diamond body, and then subsequently removed by machining or other physical methods so that a cavity remains in the diamond body to allow for the formation of the non-planar interface.
  • aiding materials other than tungsten carbide, such as other ceramics may also easily be used so long as the aiding material is removable by physical or chemical methods. Use of such an aiding material may be desirable if the aiding material is more easily removed than cutting diamond.
  • cavities 35 are through-cavities or channels, extending the entire thickness or depth of PCD body 30 , from a top surface 31 to a bottom surface 33 .
  • cavities 35 are partial cavities, extending partially from bottom surface 33 a depth less than top surface 31 .
  • FIGS. 2A and 2B show cavities 35 formed perpendicular to surfaces 31 , 33 , the present invention is not so limited. Rather, as shown in FIGS. 2C and 2D , such cavities 35 may extend into or through PCD body 30 at an angle to surfaces 31 , 33 .
  • cavities 35 may take any geometrical (regular or irregular) shape or form, including for example, having a generally equal or varying (e.g., cavity 35 may be a dimple as shown in FIGS. 2D and 2E ) diameter along the length of the cavity 35 , as well as any peaks, valleys, grooves, ridges, etc., or any other shape that may be formed in a substrate in conventional non-planar interface techniques. Additionally, as shown by comparing the general representative size of the various cavities 35 shown in FIGS. 2A-2E , cavities 35 may be selected to have different general relative dimensions depending, for example, on the methods by which the cavities 35 are being formed, among other design considerations. Thus, in some embodiments, for example, as shown in FIG.
  • a cavity 35 may be selected to have a generally large diameter at the intersection between the cavity and a surface 33 of the PCD body 30 , ranging as large as the diameter of the cutter or one-half the diameter of the PCD body 30 , or may be smaller as illustrated shown in FIGS. 2A-2D .
  • the diameters (or general dimension for non-circular cavity openings) of the cavities may range from millimeter scale (up to 3 mm in some embodiments) to microscale (less than 1 mm and less than 50 microns) to nanoscale (down to 100, 50, or 10 nm in various embodiments).
  • cavities of diameter ranging from 10 microns to 1 mm may be formed in the diamond body.
  • the selected size may be based on factors such as the size of the PCD body, the techniques by which the cavities are formed, any effect on the material and mechanical properties of the PCD body, etc. It is also within the scope of the present disclosure that various combinations of type, number, shape, size of cavities may be made, such as shown in FIG. 2D .
  • the pathways 35 may take any regular array of even spaced cavities or form a pattern of concentric circles.
  • the cavities may also be randomly distributed across a PCD body.
  • the PCD bodies may be at least 1 mm thick, and at least 1.5 or 2 mm thick in alternate embodiments.
  • the PCD bodies may then be attached (or reattached) to a substrate and form the non-planar interface, to facilitate attached to a bit, cutting tool, or other end use, for example.
  • Such methods of reattachment may include sintering a PCD body with a substrate in a second HPHT sintering step, such as discussed in U.S. Patent Publication No. 2008/0223623, which is assigned to the present assignee and herein incorporated by reference in its entirety.
  • the HPHT sintering used to attach a diamond body to the substrate may be performed in a similar manner as described above with respect to formation of polycrystalline diamond, but in particular embodiments, such conditions may include a temperature ranging from 1350 to 1500° C. and a pressure ranging from 4 to 7 GPa.
  • the PCD body When attaching a PCD body to a substrate, the PCD body may be placed such the surface intersecting the openings of the cavities is placed adjacent the substrate.
  • the substrate may be formed during the attachment stage by placing powder for forming the substrate adjacent the surface intersecting the openings of the cavities, and sintering.
  • attachment or (reattachment) of the PCD body to a substrate may be achieved by placing the two pieces together and subjecting the two to sintering conditions to join the two bodies together.
  • some amount of carbide materials from the substrate may “bulge” into the open space of the cavities which have been formed in the PCD body, forming mechanical locking known in the art of non-planar interfaces.
  • an intermediate material such as a refractory powder (tungsten or tungsten carbide powder in particular embodiments) may be used to fill at least a portion of the cavities in the PCD, such that the refractory powder will be sintered and bond together with the carbide substrate during the sintering conditions.
  • the intermediate material may also include diamond particles provided therewith such that a gradient may exist at the non-planar interface.
  • the inclusion of diamond particles in the cavities may also allow for a chemical locking, through the formation of diamond-to-diamond bonds during the HPHT sintering process.
  • Other intermediate materials may also be used.
  • the substrate may have a substantially planar upper surface or may have a non-planar but non-mating upper surface.
  • a diamond body may have a “larger” cavity than the projections that exist on the substrate upper surface.
  • the surfaces are non-mating (defined herein to mean that there is a gap of at least 10% of one dimension of the cavities between a surface of the diamond body and a surface of the substrate), the geometries would align based on location at the interface.
  • the intermediate material may be used to fill the gaps between the corresponding cavity and projection to aid in the attachment process.
  • substrate precursors a carbide powder and binder material, such as a Group VIII metal
  • a polycrystalline diamond body 30 may be formed or provided.
  • a polycrystalline diamond body 30 may be formed without a substrate. Formation of cavities 35 in the polycrystalline diamond body 30 may be achieved (in FIG. 4B ) as described above. Further, as shown in FIG. 4C , the polycrystalline diamond body 30 may then be attached (or reattached) to a substrate 36 through sintering. During this attachment, the openings of cavities 35 are placed adjacent the substrate so that after reattachment sintering, a non-planar interface may be formed with a portion of substrate 37 filling any previously open space of cavities 35 .
  • the portion of substrate 37 filling the previously open space of cavities 35 may vary in some manner from the remaining portion of substrate 36 .
  • Such variations may result depending on the attachment technique selected.
  • the intermediate material when an intermediate material is used to fill at least a portion of cavities 35 , the intermediate material may vary in some manner as compared to the preformed substrate being attached (or from precursor substrate materials). Such distinctions may lie in the binder content, powder type (e.g., tungsten or tungsten carbide alone or in combination with diamond powder) in amount, particle size, carbide type, etc.
  • a gradient may be formed at the interface, as described above.
  • the portion 37 of substrate may be identical to the remaining portion of substrate 36 .
  • a polycrystalline diamond body 30 having a catalyzing material found in the interstitial regions between the diamond grains (as described above) may be formed attached to a carbide substrate 34 .
  • the polycrystalline diamond body 30 may be detached (shown in FIG. 5B ) from the substrate 34 prior to formation of cavities 35 by techniques disclosed herein (shown in 5 C).
  • the polycrystalline diamond body 30 may then be attached (or reattached) to a substrate 36 through sintering, and form a non-planar interface.
  • the portion 37 of substrate filling any previously open space of pathways 35 may be identical to the remaining portion of substrate 36 .
  • a polycrystalline diamond body 30 having a catalyzing material found in the interstitial regions between the diamond grains (as described above) may be formed attached to a carbide substrate 34 .
  • the polycrystalline diamond body 30 may be detached (shown in FIG. 6B ) from the substrate 34 prior to formation of cavities 35 (shown in FIG. 6C ) by techniques disclosed herein. Leaching of polycrystalline diamond body 30 removes at least a substantial portion of the catalyzing material from the interstitial regions, leaving a polycrystalline diamond body 32 (shown in FIG.
  • the polycrystalline diamond body 32 may then be attached (or reattached) to a substrate 36 through sintering, and form a non-planar interface.
  • the portion 37 of substrate filling any previously open space of pathways 35 may be identical to the remaining portion of substrate 36 .
  • Embodiments of the present disclosure may provide for at least one of the following advantages.
  • Conventional non-planar interfaces may be formed through formation of a geometrical surface in the substrate, and then placing diamond powder adjacent the geometrical surface to form a diamond layer having a mating surface during HPHT conditions.
  • a non-planar interface may be achieved by forming such geometrical surface in the diamond or other abrasive layer, and then attaching a substrate to the preformed diamond layer.
  • Such methods may be particularly useful when a non-planar interface for a thermally stable cutting element formed by treating a “free-standing” PCD wafer is desired to increase the impact strength and reduce incidence of delamination.

Abstract

A method for forming a cutting element that includes forming at least one cavity in at least one surface of a polycrystalline abrasive body; placing the polycrystalline abrasive body adjacent a substrate such that an opening of at least one cavity is adjacent the substrate at an interface, wherein an interface surface of the substrate is non-mating with the polycrystalline abrasive body; and subjecting the polycrystalline abrasive body and substrate to high pressure/high temperature conditions is disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority, under 35 U.S.C. §119, to U.S. Patent Application No. 61/081,619, filed on Jul. 17, 2008, which is herein incorporated by reference in its entirety.
  • BACKGROUND OF INVENTION
  • 1. Field of the Invention
  • The invention relates generally to polycrystalline diamond composites and cutting structures. More particularly, this invention relates to polycrystalline diamond cutting structures that having non-planar interfaces and method of forming such non-planar interfaces.
  • 2. Background Art
  • Polycrystalline diamond compact (“PDC”) cutters have been used in industrial applications including rock drilling and metal machining for many years. In a typical application, a compact of polycrystalline diamond (PCD) (or other superhard material) is bonded to a substrate material, which is typically a sintered metal-carbide to form a cutting structure. PCD comprises a polycrystalline mass of diamonds (typically synthetic) that are bonded together to form an integral, tough, high-strength mass or lattice. The resulting PCD structure produces enhanced properties of wear resistance and hardness, making PCD materials extremely useful in aggressive wear and cutting applications where high levels of wear resistance and hardness are desired.
  • A PDC cutter may be formed by placing a cemented carbide substrate into the container of a press. A mixture of diamond grains or diamond grains and catalyst binder is placed atop the substrate and treated under high pressure, high temperature conditions. In doing so, metal binder (often cobalt) migrates from the substrate and passes through the diamond grains to promote intergrowth between the diamond grains. As a result, the diamond grains become bonded to each other to form the diamond layer, and the diamond layer is in turn bonded to the substrate. The substrate often comprises a metal-carbide composite material, such as tungsten carbide. The deposited diamond layer is often referred to as the “diamond table” or “abrasive layer.”
  • An example of a drag bit for earth formation drilling using PDC cutters is shown in FIG. 1. FIG. 1 shows a rotary drill bit 10 having a bit body 12. The lower face of the bit body 12 is formed with a plurality of blades 14, which extend generally outwardly away from a central longitudinal axis of rotation 16 of the drill bit. A plurality of PDC cutters 18 are disposed side by side along the length of each blade. The number of PDC cutters 18 carried by each blade may vary. The PDC cutters 18 are individually brazed to a stud-like carrier (or substrate), which may be formed from tungsten carbide, and are received and secured within sockets in the respective blade.
  • Common problems that plague cutting elements and specifically cutters having an ultra hard diamond-like cutting table such as PCD, polycrystalline cubic boron nitride (PCBN), or thermally stable polycrystalline diamond (TSP) bonded on a cemented carbide substrate are chipping, spalling, partial fracturing, cracking or exfoliation of the cutting table. These problems result in the early failure of the cutting table and thus, in a shorter operating life for the cutter.
  • It has been thought that these problems, i.e., chipping, spalling, partial fracturing, cracking, and exfoliation of the diamond layer may be caused in part by the difference in the coefficient of thermal expansion between the diamond and the substrate. Specifically, the problems are thought to be caused by the abrupt shift in the coefficient of thermal expansion on the interface between the substrate and the diamond. This abrupt shift causes the build-up of residual stresses on the cutting layer.
  • The cemented carbide substrate has a higher coefficient of thermal expansion than the diamond. During sintering, both the cemented carbide body and diamond layer are heated to elevated temperatures forming a bond between the diamond layer and the cemented carbide substrate. As the diamond layer and substrate cool down, the substrate shrinks more than the diamond because of its higher coefficient of thermal expansion. Consequently, stresses referred to as thermally induced stresses are formed at the interface between the diamond and the body.
  • Moreover, residual stresses are formed on the diamond layer from decompression after sintering. The high pressure applied during the sintering process causes the carbide to compress more than the diamond layer. After the diamond is sintered onto the carbide and the pressure is removed, the carbide tries to expand more than the diamond imposing a tensile residual stress on the diamond layer.
  • In an attempt to overcome these problems, many have turned to use of non-planar interfaces between the substrate and the cutting layer. The belief being, that a non-planar interface allows for a more gradual shift in the coefficient of thermal expansion from the substrate to the diamond table, thus, reducing the magnitude of the residual stresses on the diamond. Similarly, it is believed that the non-planar interface allow for a more gradual shift in the compression from the diamond layer to the carbide substrate.
  • Accordingly, there exists a continuing need for developments in non-planar interfaces, and methods of forming non-planar interfaces, for cutting elements having a polycrystalline abrasive cutting layer attached to a substrate.
  • SUMMARY OF INVENTION
  • In one aspect, embodiments disclosed herein relate to a method for forming a cutting element that includes forming at least one cavity in at least one surface of a polycrystalline abrasive body; placing the polycrystalline abrasive body adjacent a substrate such that an opening of at least one cavity is adjacent the substrate at an interface, wherein an interface surface of the substrate is non-mating with the polycrystalline abrasive body; and subjecting the polycrystalline abrasive body and substrate to high pressure/high temperature conditions.
  • In another aspect, embodiments disclosed herein relate to a method for forming a cutting element that includes forming a polycrystalline diamond compact of a polycrystalline diamond body attached to a substrate, where the formation of the polycrystalline diamond compact includes placing a mixture of diamond particles and a catalyst material adjacent a substrate; and subjecting the mixture and substrate to high-pressure/high temperature conditions; then, once the polycrystalline diamond compact is formed, detaching the polycrystalline diamond body from the substrate; forming at least one cavity in at least one surface of the detached polycrystalline diamond body; placing the polycrystalline abrasive body adjacent a substrate material such that an opening of at least one cavity is adjacent the substrate material; and subjecting the polycrystalline abrasive body and substrate material to high temperature/high pressure conditions.
  • In another aspect, embodiments disclosed herein relate to a method for forming a cutting element that includes forming at least one cavity in at least one surface of a polycrystalline abrasive body; placing the polycrystalline abrasive body adjacent a substrate precursor material such that an opening of at least one cavity is adjacent the substrate precursor; and subjecting the polycrystalline abrasive body and substrate precursor materials to high pressure/high temperature conditions.
  • In another aspect, embodiments disclosed herein relate to a cutting element that includes a polycrystalline abrasive body; and a substrate attached to the polycrystalline abrasive body, wherein the polycrystalline abrasive body comprises, at the interface between the polycrystalline abrasive body and the substrate, at least one cavity formed therein, the at least one cavity having an opening with at least one dimension of less than 1 mm; and wherein the substrate comprises at least one projection mating the at least one cavity.
  • In yet another aspect, embodiments disclosed herein relate to a cutting element that includes a polycrystalline abrasive body; and a substrate attached to the polycrystalline abrasive body, wherein the polycrystalline abrasive body comprises, at the interface between the polycrystalline abrasive body and the substrate, at least one cavity formed therein; and wherein the substrate comprises at least one projection mating the at least one cavity, the at least one projection comprising a material composition distinct from the remaining substrate.
  • Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is an illustration of a PDC drill bit.
  • FIGS. 2A-2E show cross-sectional side views of various embodiments of the present disclosure.
  • FIGS. 3A-3B show top views of various embodiments of the present disclosure.
  • FIGS. 4A-4C is an illustration of steps for forming a PDC cutter in accordance with an embodiment of the present disclosure.
  • FIGS. 5A-5D is an illustration of steps for forming a PDC cutter in accordance with an embodiment of the present disclosure.
  • FIGS. 6A-6E is an illustration of steps for forming a PDC cutter in accordance with an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • In one aspect, embodiments disclosed herein relate to polycrystalline diamond (or other polycrystalline abrasive bodied) cutting elements and methods of forming non-planar interfaces between the polycrystalline diamond layer and a substrate. More specifically, embodiments disclosed herein are directed to non-planar interfaces resulting from forming cavities in a polycrystalline abrasive body and attaching the body to a substrate.
  • As used herein, the term “PCD” refers to polycrystalline diamond that has been formed, at high pressure/high temperature (HPHT) conditions, through the use of a solvent metal catalyst, such as those included in Group VIII of the Periodic table. However, the present disclosure is also directed to polycrystalline cubic boron nitride (formed from subjecting boron nitride particles to HPHT conditions) as well as thermally stable polycrystalline diamond. The term “thermally stable polycrystalline diamond,” as used herein, refers to intercrystalline bonded diamond that includes a volume or region that has been rendered substantially free of the solvent metal catalyst used to form PCD, or the solvent metal catalyst used to form PCD remains in the region of the diamond body but is otherwise reacted or rendered ineffective in its ability to adversely impact the bonded diamond at elevated temperatures as discussed above.
  • Forming Polycrystalline Abrasive Bodies
  • A polycrystalline diamond body may be formed in a conventional manner, such as by a high pressure, high temperature sintering of “green” particles to create intercrystalline bonding between the particles. “Sintering” may involve a high pressure, high temperature (HPHT) process. Examples of high pressure, high temperature (HPHT) process can be found, for example, in U.S. Pat. Nos. 4,694,918; 5,370,195; and 4,525,178. Briefly, to form the polycrystalline diamond object, an unsintered mass of diamond crystalline particles is placed within a metal enclosure of the reaction cell of a HPHT apparatus. A suitable HPHT apparatus for this process is described in U.S. Pat. Nos. 2,947,611; 2,941,241; 2,941,248; 3,609,818; 3,767,371; 4,289,503; 4,673,414; and 4,954,139. A metal catalyst, such as cobalt or other Group VIII metals, may be included with the unsintered mass of crystalline particles to promote intercrystalline diamond-to-diamond bonding. The catalyst material may be provided in the form of powder and mixed with the diamond grains, or may be infiltrated into the diamond grains during HPHT sintering An exemplary minimum temperature is about 1200° C. and an exemplary minimum pressure is about 35 kilobars. Typical processing is at a pressure of about 45 kbar and 1300° C. Those of ordinary skill will appreciate that a variety of temperatures and pressures may be used, and the scope of the present invention is not limited to specifically referenced temperatures and pressures.
  • Diamond grains useful for forming a polycrystalline diamond body may include any type of diamond particle, including natural or synthetic diamond powders having a wide range of grain sizes. For example, such diamond powders may have an average grain size in the range from submicrometer in size to 100 micrometers, and from 1 to 80 micrometers in other embodiments. Further, one skilled in the art would appreciate that the diamond powder may include grains having a mono- or multi-modal distribution.
  • Moreover, the diamond powder used to prepare the PCD body may be synthetic diamond powder or natural diamond powder. Synthetic diamond powder is known to include small amounts of solvent metal catalyst material and other materials entrained within the diamond crystals themselves. Unlike synthetic diamond powder, natural diamond powder does not include such solvent metal catalyst material and other materials entrained within the diamond crystals. It is theorized that that inclusion of materials other than the solvent catalyst in the synthetic diamond powder can operate to impair or limit the extent to which the resulting PCD body can be rendered thermally stable, as these materials along with the solvent catalyst must also be removed or otherwise neutralized. Because natural diamond is largely devoid of these other materials, such materials do not have to be removed from the PCD body and a higher degree of thermal stability may thus be obtained. Accordingly, for applications calling for a particularly high degree of thermal stability, one skilled in the art would appreciate that the use of natural diamond for forming the PCD body may be preferred. The diamond grain powder, whether synthetic or natural, may be combined with or already includes a desired amount of catalyst material to facilitate desired intercrystalline diamond bonding during HPHT processing. Suitable catalyst materials useful for forming the PCD body include those solvent metals selected from the Group VIII of the Periodic table, with cobalt (Co) being the most common, and mixtures or alloys of two or more of these materials. In a particular embodiment, the diamond grain powder and catalyst material mixture may comprise 85 to 95% by volume diamond grain powder and the remaining amount catalyst material. Alternatively, the diamond grain powder can be used without adding a solvent metal catalyst in applications where the solvent metal catalyst can be provided by infiltration during HPHT processing from the adjacent substrate or adjacent other body to be bonded to the PCD body.
  • The diamond powder may be combined with the desired catalyst material, and the reaction cell is then placed under processing conditions sufficient to cause the intercrystalline bonding between the diamond particles. In the event that the formation of a PCD compact comprising a substrate bonded to the PCD body is desired, a selected substrate is loaded into the container adjacent the diamond powder mixture prior to HPHT processing. Additionally, in the event that the PCD body is to be bonded to a substrate, and the substrate includes a metal solvent catalyst, the metal solvent catalyst needed for catalyzing intercrystalline bonding of the diamond may be provided by infiltration, in which case is may not be necessary to mix the diamond powder with a metal solvent catalyst prior to HPHT processing.
  • In an example embodiment, the device is controlled so that the container is subjected to a HPHT process comprising a pressure in the range of from 5 to 7 GPa and a temperature in the range of from about 1320 to 1600° C., for a sufficient period of time. During this HPHT process, the catalyst material in the mixture melts and infiltrates the diamond grain powder to facilitate intercrystalline diamond bonding. During the formation of such intercrystalline diamond bonding, the catalyst material may migrate into the interstitial regions within the microstructure of the so-formed PCD body that exists between the diamond bonded grains It should be noted that if too much additional non-diamond material is present in the powdered mass of crystalline particles, appreciable intercrystalline bonding is prevented during the sintering process. Such a sintered material where appreciable intercrystalline bonding has not occurred is not within the definition of PCD. Following such formation of intercrystalline bonding, a polycrystalline diamond body may be formed that has, in one embodiment, at least about 80 percent by volume diamond, with the remaining balance of the interstitial regions between the diamond grains occupied by the catalyst material. In other embodiments, such diamond content may comprise at least 85 percent by volume of the formed diamond body, and at least 90 percent by volume in yet another embodiment. However, one skilled in the art would appreciate that other diamond densities may be used in alternative embodiments. Thus, the polycrystalline diamond bodies being used in accordance with the present disclosure include what is frequently referred to in the art as “high density” polycrystalline diamond.
  • Further, one skilled in the art would appreciate that, frequently, a diamond layer is sintered to a carbide substrate by placing the diamond particles on a preformed substrate in the reaction cell and sintering. However the present disclosure is not so limited. Rather, the polycrystalline diamond bodies having cavities formed in accordance with the present disclosure may or may not be formed attached to a substrate. If the polycrystalline diamond body is formed attached to a carbide substrate, the substrate may be removed or detached from the polycrystalline diamond body so that cavities may be formed therein, and a non-planar interface may result when the diamond body reattached to a substrate.
  • In various embodiments, a formed PCD body having a catalyst material in the interstitial spaces between bonded diamond grains is subjected to a leaching process (before or after formation of the cavities), whereby the catalyst material is removed from the PCD body. As used herein, the term “removed” refers to the reduced presence of catalyst material in the PCD body, and is understood to mean that a substantial portion of the catalyst material no longer resides in the PCD body. However, one skilled in the art would appreciate that trace amounts of catalyst material may still remain in the microstructure of the PCD body within the interstitial regions and/or adhered to the surface of the diamond grains. Alternatively, rather than actually removing the catalyst material from the PCD body or compact, the selected region of the PCD body or compact can be rendered thermally stable by treating the catalyst material in a manner that reduces or eliminates the potential for the catalyst material to adversely impact the intercrystalline bonded diamond at elevated temperatures. For example, the catalyst material can be combined chemically with another material to cause it to no longer act as a catalyst material, or can be transformed into another material that again causes it to no longer act as a catalyst material. Accordingly, as used herein, the terms “removing substantially all” or “substantially free” as used in reference to the catalyst material is intended to cover the different methods in which the catalyst material can be treated to no longer adversely impact the intercrystalline diamond in the PCD body or compact with increasing temperature.
  • The quantity of the catalyst material remaining in the material PCD microstructure after the PCD body has been subjected to a leaching treatment may vary, for example, on factors such as the treatment conditions, including treatment time, as well as whether the cavities are formed before or after leaching. A U.S. Patent Application entitled “Methods of Forming Thermally Stable Polycrystalline Diamond Cutters,” filed concurrently herewith (Attorney Docket No. 05516/392001), which is assigned to the present assignee and herein incorporated by reference in its entirety, is directed to the use of forming cavities or other acid infusion pathways to reduce leaching times. Further, one skilled in the art would appreciate that it may be desired in certain applications to allow a small amount of catalyst material to stay in the PCD body. In a particular embodiment, the PCD body may include up to 1-2 percent by weight of the catalyst material. However, one skilled in the art would appreciate that the amount of residual catalyst present in a leached PCD body may depend on the diamond density of the material, and body thickness.
  • A conventional leaching process involves the exposure of an object to be leached with a leaching agent, such as described in U.S. Pat. No. 4,224,380, which is herein incorporated by reference in its entirety. In select embodiments, the leaching agent may be a weak, strong, or mixtures of acids. In other embodiments, the leaching agent may be a caustic material such as NaOH or KOH. Suitable acids may include, for example, nitric acid, hydrofluoric acid, hydrochloric acid, sulfuric acid, phosphoric acid, or perchloric acid, or combinations of these acids. In addition, caustics, such as sodium hydroxide and potassium hydroxide, have been used to the carbide industry to digest metallic elements from carbide composites. In addition, other acidic and basic leaching agents may be used as desired. Those having ordinary skill in the art will appreciate that the molarity of the leaching agent may be adjusted depending on the time desired to leach, concerns about hazards, etc.
  • Further, one skilled in the art would appreciate that the same techniques used with polycrystalline diamond may be applied to polycrystalline cubic boron nitride (PCBN). Similar to polycrystalline diamond, PCBN may be formed by sintering boron nitride particles (typically CBN) via a HPHT process, similar to those for PCD, to sinter “green” particles to create intercrystalline bonding between the particles. CBN refers to an internal crystal structure of boron atoms and nitrogen atoms in which the equivalent lattice points are at the corner of each cell. Boron nitride particles typically have a diameter of approximately one micron and appear as a white powder. Boron nitride, when initially formed, has a generally graphite-like, hexagonal plate structure. When compressed at high pressures (such as 106 psi), CBN particles will be formed with a hardness very similar to diamond, and a stability in air at temperatures of up to 1400° C.
  • According to one embodiment of the invention, PCBN may include a content of boron nitride of at least 50% by volume; at least 70% by volume in another embodiment; at least 85% by volume in yet another embodiment. In another embodiment, the cubic boron nitride content may range from 50 to 80 percent by volume, and from 80 to 99.9 percent by volume in yet another embodiment. The residual content of the polycrystalline cubic boron nitride composite may include at least one of Al, Si, and mixtures thereof, carbides, nitrides, carbonitrides and borides of Group IVa, Va, and VIa transition metals of the periodic table. Mixtures and solid solutions of Al, Si, carbides, nitrides, carbonitrides and borides of Group IVa, Va, and VIa transition metals of the periodic table may also be included.
  • Formation on Non-Planar Interface
  • Thus, formation of a cutting element having a non-planar interface between the abrasive cutting layer and substrate may involve any of the above-described abrasive bodies. Conventionally, formation of a non-planar interface involves forming such geometry in the substrate, and combining the substrate with diamond (or other super hard) particles in a reaction can and subjecting the can contents to HPHT conditions to form the polycrystalline structure. However, the techniques of the present disclosure rely on forming a desired geometry (cavity) in a pre-formed polycrystalline layer, and then attaching the polycrystalline layer with desired interface geometry to a substrate (or forming the substrate attached to the polycrystalline layer having the desired geometry).
  • Cavities formed by removal of PCD material may include partial cavities (cavities extending partially into the diamond layer) and/or through-cavities or channels (cavities extending the entire thickness of the diamond layer). Such cavities may be formed using any technique known in the art of cutting diamond, including, for example, methods such as EDM, laser micro machining, ion beam milling (also referred to as ion bombardment etching), etc. Alternatively, the cavity may be formed by incorporation of an aiding material into the diamond mixture prior to sintering, where the aiding material may be removed by chemical or physical methods prior to leaching, such that once subsequently removed, cavities are present in the polycrystalline diamond body. For example, a tungsten carbide aiding material may be formed in the diamond body, and then subsequently removed by machining or other physical methods so that a cavity remains in the diamond body to allow for the formation of the non-planar interface. Further, aiding materials other than tungsten carbide, such as other ceramics, may also easily be used so long as the aiding material is removable by physical or chemical methods. Use of such an aiding material may be desirable if the aiding material is more easily removed than cutting diamond.
  • Referring to FIGS. 2A-2E, various embodiments of PCD bodies 30 having cavities 35 formed therein are shown. As shown in FIG. 2A, cavities 35 are through-cavities or channels, extending the entire thickness or depth of PCD body 30, from a top surface 31 to a bottom surface 33. In FIG. 2B, cavities 35 are partial cavities, extending partially from bottom surface 33 a depth less than top surface 31. Moreover, while FIGS. 2A and 2B show cavities 35 formed perpendicular to surfaces 31, 33, the present invention is not so limited. Rather, as shown in FIGS. 2C and 2D, such cavities 35 may extend into or through PCD body 30 at an angle to surfaces 31, 33. Additionally, such cavities 35 may take any geometrical (regular or irregular) shape or form, including for example, having a generally equal or varying (e.g., cavity 35 may be a dimple as shown in FIGS. 2D and 2E) diameter along the length of the cavity 35, as well as any peaks, valleys, grooves, ridges, etc., or any other shape that may be formed in a substrate in conventional non-planar interface techniques. Additionally, as shown by comparing the general representative size of the various cavities 35 shown in FIGS. 2A-2E, cavities 35 may be selected to have different general relative dimensions depending, for example, on the methods by which the cavities 35 are being formed, among other design considerations. Thus, in some embodiments, for example, as shown in FIG. 2E, a cavity 35 may be selected to have a generally large diameter at the intersection between the cavity and a surface 33 of the PCD body 30, ranging as large as the diameter of the cutter or one-half the diameter of the PCD body 30, or may be smaller as illustrated shown in FIGS. 2A-2D. In particular embodiments, the diameters (or general dimension for non-circular cavity openings) of the cavities may range from millimeter scale (up to 3 mm in some embodiments) to microscale (less than 1 mm and less than 50 microns) to nanoscale (down to 100, 50, or 10 nm in various embodiments). In an even more particular embodiment, cavities of diameter ranging from 10 microns to 1 mm (or to 0.5 mm in another embodiment) may be formed in the diamond body. However, one skilled in the art would appreciate that the selected size may be based on factors such as the size of the PCD body, the techniques by which the cavities are formed, any effect on the material and mechanical properties of the PCD body, etc. It is also within the scope of the present disclosure that various combinations of type, number, shape, size of cavities may be made, such as shown in FIG. 2D.
  • Moreover, there is also no limit on the placement or pattern of the cavities formed in the PCD body. For example, as shown in FIGS. 3A and 3B, the pathways 35 may take any regular array of even spaced cavities or form a pattern of concentric circles. However, the cavities may also be randomly distributed across a PCD body.
  • Further, as mentioned above, while the above discussion has applied to PCD cutting elements or bodies, those having ordinary skill in the art will appreciate that these techniques may be more generally applied to any material that has a need for a non-planar interface. In a particular embodiment, the PCD bodies may be at least 1 mm thick, and at least 1.5 or 2 mm thick in alternate embodiments.
  • Further after such “free-standing” PCD bodies are having cavities formed therein, the PCD bodies may then be attached (or reattached) to a substrate and form the non-planar interface, to facilitate attached to a bit, cutting tool, or other end use, for example. Such methods of reattachment may include sintering a PCD body with a substrate in a second HPHT sintering step, such as discussed in U.S. Patent Publication No. 2008/0223623, which is assigned to the present assignee and herein incorporated by reference in its entirety. The HPHT sintering used to attach a diamond body to the substrate may be performed in a similar manner as described above with respect to formation of polycrystalline diamond, but in particular embodiments, such conditions may include a temperature ranging from 1350 to 1500° C. and a pressure ranging from 4 to 7 GPa. When attaching a PCD body to a substrate, the PCD body may be placed such the surface intersecting the openings of the cavities is placed adjacent the substrate. Alternatively, the substrate may be formed during the attachment stage by placing powder for forming the substrate adjacent the surface intersecting the openings of the cavities, and sintering.
  • Thus, attachment or (reattachment) of the PCD body to a substrate may be achieved by placing the two pieces together and subjecting the two to sintering conditions to join the two bodies together. In embodiments in which the pathway openings are placed adjacent the substrate upper surface, during and due to the sintering conditions, some amount of carbide materials from the substrate may “bulge” into the open space of the cavities which have been formed in the PCD body, forming mechanical locking known in the art of non-planar interfaces. Alternatively, an intermediate material such as a refractory powder (tungsten or tungsten carbide powder in particular embodiments) may be used to fill at least a portion of the cavities in the PCD, such that the refractory powder will be sintered and bond together with the carbide substrate during the sintering conditions. In some embodiments, the intermediate material may also include diamond particles provided therewith such that a gradient may exist at the non-planar interface. In addition to a mechanical locking, the inclusion of diamond particles in the cavities may also allow for a chemical locking, through the formation of diamond-to-diamond bonds during the HPHT sintering process. Other intermediate materials may also be used.
  • In such embodiments, the substrate may have a substantially planar upper surface or may have a non-planar but non-mating upper surface. In the embodiment having the non-planar, but non-mating upper surface to the substrate, a diamond body may have a “larger” cavity than the projections that exist on the substrate upper surface. Thus, while the surfaces are non-mating (defined herein to mean that there is a gap of at least 10% of one dimension of the cavities between a surface of the diamond body and a surface of the substrate), the geometries would align based on location at the interface. Further, in such an embodiment, the intermediate material may be used to fill the gaps between the corresponding cavity and projection to aid in the attachment process. Yet another alternative may rely on addition of substrate precursors (a carbide powder and binder material, such as a Group VIII metal) to the PCD body, forming the substrate body during the attachment process.
  • Referring to FIGS. 4A-4C, collectively, an embodiment of the process steps of the present disclosure is shown. As shown in FIG. 4A, a polycrystalline diamond body 30 may be formed or provided. Alternatively, a polycrystalline diamond body 30 may be formed without a substrate. Formation of cavities 35 in the polycrystalline diamond body 30 may be achieved (in FIG. 4B) as described above. Further, as shown in FIG. 4C, the polycrystalline diamond body 30 may then be attached (or reattached) to a substrate 36 through sintering. During this attachment, the openings of cavities 35 are placed adjacent the substrate so that after reattachment sintering, a non-planar interface may be formed with a portion of substrate 37 filling any previously open space of cavities 35. As shown in FIG. 4C, the portion of substrate 37 filling the previously open space of cavities 35 may vary in some manner from the remaining portion of substrate 36. Such variations may result depending on the attachment technique selected. Specifically, when an intermediate material is used to fill at least a portion of cavities 35, the intermediate material may vary in some manner as compared to the preformed substrate being attached (or from precursor substrate materials). Such distinctions may lie in the binder content, powder type (e.g., tungsten or tungsten carbide alone or in combination with diamond powder) in amount, particle size, carbide type, etc. By using an intermediate material that varies from the remaining substrate, a gradient may be formed at the interface, as described above. Alternatively, the portion 37 of substrate may be identical to the remaining portion of substrate 36.
  • Referring to FIGS. 5A-5D, collectively, another embodiment of the process steps of the present disclosure is shown. As shown in FIG. SA, a polycrystalline diamond body 30 having a catalyzing material found in the interstitial regions between the diamond grains (as described above) may be formed attached to a carbide substrate 34. The polycrystalline diamond body 30 may be detached (shown in FIG. 5B) from the substrate 34 prior to formation of cavities 35 by techniques disclosed herein (shown in 5C). Further, as shown in FIG. 5D, the polycrystalline diamond body 30 may then be attached (or reattached) to a substrate 36 through sintering, and form a non-planar interface. In the embodiment shown in FIG. 5D, the portion 37 of substrate filling any previously open space of pathways 35 may be identical to the remaining portion of substrate 36.
  • Referring to FIGS. 6A-6E, collectively, yet another embodiment of the process steps of the present disclosure is shown. As shown in FIG. 6A, a polycrystalline diamond body 30 having a catalyzing material found in the interstitial regions between the diamond grains (as described above) may be formed attached to a carbide substrate 34. The polycrystalline diamond body 30 may be detached (shown in FIG. 6B) from the substrate 34 prior to formation of cavities 35 (shown in FIG. 6C) by techniques disclosed herein. Leaching of polycrystalline diamond body 30 removes at least a substantial portion of the catalyzing material from the interstitial regions, leaving a polycrystalline diamond body 32 (shown in FIG. 6D) having voids (other than cavities 35) dispersed in the diamond matrix or regions that were previously occupied by catalyzing material. Alternatively, leaching may occur prior to formation of cavities 35 in polycrystalline diamond body 30. Further, as shown in FIG. 6E, the polycrystalline diamond body 32 may then be attached (or reattached) to a substrate 36 through sintering, and form a non-planar interface. In the embodiment shown in FIG. 5D, the portion 37 of substrate filling any previously open space of pathways 35 may be identical to the remaining portion of substrate 36.
  • Embodiments of the present disclosure may provide for at least one of the following advantages. Conventional non-planar interfaces may be formed through formation of a geometrical surface in the substrate, and then placing diamond powder adjacent the geometrical surface to form a diamond layer having a mating surface during HPHT conditions. In accordance with embodiments of the present disclosure, a non-planar interface may be achieved by forming such geometrical surface in the diamond or other abrasive layer, and then attaching a substrate to the preformed diamond layer. Such methods may be particularly useful when a non-planar interface for a thermally stable cutting element formed by treating a “free-standing” PCD wafer is desired to increase the impact strength and reduce incidence of delamination.
  • While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.

Claims (35)

1. A method for forming a cutting element, comprising:
forming at least one cavity in at least one surface of a polycrystalline abrasive body;
placing the polycrystalline abrasive body adjacent a substrate such that an opening of at least one cavity is adjacent the substrate at an interface, wherein an interface surface of the substrate is non-mating with the polycrystalline abrasive body; and
subjecting the polycrystalline abrasive body and substrate to high pressure/high temperature conditions.
2. The method of claim 1, wherein the polycrystalline abrasive body comprises at least one of polycrystalline diamond, polycrystalline diamond having at least a portion of catalyzing material removed therefrom, or polycrystalline cubic boron nitride.
3. The method of claim 2, wherein the portion of catalyzing material is removed before the forming.
4. The method of claim 2, wherein the portion of catalyzing material is removed after the forming.
5. The method of claim 1, further comprising:
adding an intermediate material in at least a portion of the at least one cavity.
6. The method of claim 5, wherein the intermediate material comprises at least one of tungsten, tungsten carbide, or diamond powder.
7. The method of claim 1, wherein the opening of the at least one cavity is less than 3 mm in diameter.
8. The method of claim 7, wherein the opening of the at least one cavity is less than 1 mm in diameter.
9. The method of claim 8, wherein the opening of the at least one cavity is less than 50 microns in diameter.
10. The method of claim 1, wherein prior to placement adjacent the polycrystalline abrasive body, an upper surface of the substrate is substantially planar.
11. The method of claim 1, wherein prior to placement adjacent the polycrystalline abrasive body, an upper surface of the substrate is non-planar.
12. A method for forming a cutting element, comprising:
forming a polycrystalline diamond compact of a polycrystalline diamond body attached to a substrate comprising:
placing a mixture of diamond particles and a catalyst material adjacent a substrate; and
subjecting the mixture and substrate to high-pressure/high temperature conditions;
detaching the polycrystalline diamond body from the substrate;
forming at least one cavity in at least one surface of the detached polycrystalline diamond body;
placing the polycrystalline abrasive body adjacent a substrate material such that an opening of at least one cavity is adjacent the substrate material; and
subjecting the polycrystalline abrasive body and substrate material to high temperature/high pressure conditions.
13. The method of claim 12, further comprising:
removing at least a portion of the catalyst material from the polycrystalline diamond body.
14. The method of claim 12, further comprising:
filling at least a portion of the at least one cavity with an intermediate material.
15. The method of claim 14, wherein the intermediate material comprises at least one of tungsten, tungsten carbide, or diamond powder.
16. The method of claim 12, wherein the opening of the at least one cavity is less than 3 mm in diameter.
17. The method of claim 16, wherein the opening of the at least one cavity is less than 1 mm in diameter.
18. A method for forming a cutting element, comprising:
forming at least one cavity in at least one surface of a polycrystalline abrasive body;
placing the polycrystalline abrasive body adjacent a substrate precursor material such that an opening of at least one cavity is adjacent the substrate precursor; and
subjecting the polycrystalline abrasive body and substrate precursor materials to high pressure/high temperature conditions.
19. The method of claim 18, wherein the substrate precursor materials comprise a mixture of tungsten carbide powder and a Group VIII metal.
20. The method of claim 18, further comprising:
contacting the polycrystalline abrasive body with a leaching agent.
21. The method of claim 18, wherein the opening of the at least one cavity is less than 3 mm in diameter.
22. The method of claim 21, wherein the opening of the at least one cavity is less than 1 mm in diameter.
23. A cutting element, comprising:
a polycrystalline abrasive body; and
a substrate attached to the polycrystalline abrasive body,
wherein the polycrystalline abrasive body comprises, at the interface between the polycrystalline abrasive body and the substrate, at least one cavity formed therein, the at least one cavity having an opening with at least one dimension of less than 1 mm; and
wherein the substrate comprises at least one projection mating the at least one cavity.
24. The cutting element of claim 23, wherein the wherein the polycrystalline abrasive body comprises at least one of polycrystalline diamond, polycrystalline diamond having at least a portion of catalyzing material removed therefrom, and polycrystalline cubic boron nitride.
25. The cutting element of claim 23, wherein the cavity comprises a channel extending through an entire thickness of the polycrystalline abrasive body.
26. The cutting element of claim 23, wherein the cavity extends a partial thickness into the polycrystalline abrasive body.
27. The cutting element of claim 23, wherein the opening has at least one dimension of less than 50 microns.
28. A cutting element, comprising:
a polycrystalline abrasive body; and
a substrate attached to the polycrystalline abrasive body,
wherein the polycrystalline abrasive body comprises, at the interface between the polycrystalline abrasive body and the substrate, at least one cavity formed therein; and
wherein the substrate comprises at least one projection mating the at least one cavity, the at least one projection comprising a material composition distinct from the remaining substrate.
29. The cutting element of claim 28, wherein the wherein the polycrystalline abrasive body comprises at least one of polycrystalline diamond, polycrystalline diamond having at least a portion of catalyzing material removed therefrom, and polycrystalline cubic boron nitride.
30. The cutting element of claim 28, wherein the cavity comprises a channel extending through an entire thickness of the polycrystalline abrasive body.
31. The cutting element of claim 28, wherein the cavity extends a partial thickness into the polycrystalline abrasive body.
32. The cutting element of claim 28, wherein the opening has at least one dimension of less than 50 microns.
33. The cutting element of claim 28, wherein the at least one projection comprises a binder content lower than the remaining substrate.
34. The cutting element of claim 28, wherein the at least one projection comprises hard particles distinct from the remaining substrate.
35. The cutting element of claim 28, wherein the at least one projection comprises a tungsten carbide and diamond composite.
US12/505,297 2008-07-17 2009-07-17 Methods of forming polycrystalline diamond cutters Abandoned US20100012389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/505,297 US20100012389A1 (en) 2008-07-17 2009-07-17 Methods of forming polycrystalline diamond cutters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8161908P 2008-07-17 2008-07-17
US12/505,297 US20100012389A1 (en) 2008-07-17 2009-07-17 Methods of forming polycrystalline diamond cutters

Publications (1)

Publication Number Publication Date
US20100012389A1 true US20100012389A1 (en) 2010-01-21

Family

ID=41529297

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/505,297 Abandoned US20100012389A1 (en) 2008-07-17 2009-07-17 Methods of forming polycrystalline diamond cutters

Country Status (5)

Country Link
US (1) US20100012389A1 (en)
CN (1) CN102099541B (en)
GB (1) GB2473995B (en)
WO (1) WO2010009416A2 (en)
ZA (1) ZA201100927B (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243337A1 (en) * 2009-03-31 2010-09-30 Baker Hughes Incorporated Methods for bonding preformed cutting tables to cutting element substrates and cutting elements formed by such processes
US20100300764A1 (en) * 2009-06-02 2010-12-02 Kaveshini Naidoo Polycrystalline diamond
US20110036641A1 (en) * 2009-08-11 2011-02-17 Lyons Nicholas J Methods of forming polycrystalline diamond cutting elements, cutting elements, and earth-boring tools carrying cutting elements
US20110036643A1 (en) * 2009-08-07 2011-02-17 Belnap J Daniel Thermally stable polycrystalline diamond constructions
US20110042147A1 (en) * 2009-08-07 2011-02-24 Smith International, Inc. Functionally graded polycrystalline diamond insert
US20110042149A1 (en) * 2009-08-18 2011-02-24 Baker Hughes Incorporated Methods of forming polycrystalline diamond elements, polycrystalline diamond elements, and earth-boring tools carrying such polycrystalline diamond elements
US7972395B1 (en) * 2009-04-06 2011-07-05 Us Synthetic Corporation Superabrasive articles and methods for removing interstitial materials from superabrasive materials
US20120018223A1 (en) * 2010-07-23 2012-01-26 National Oilwell DHT, L.P. Polycrystalline diamond cutting element and method of using same
CN103696699A (en) * 2014-01-08 2014-04-02 弘元超硬材料(河南)有限公司 Cobalt-free polycrystalline diamond compact (PDC) drill bit and preparation technology thereof
US8753413B1 (en) 2008-03-03 2014-06-17 Us Synthetic Corporation Polycrystalline diamond compacts and applications therefor
US8758463B2 (en) 2009-08-07 2014-06-24 Smith International, Inc. Method of forming a thermally stable diamond cutting element
US8764864B1 (en) 2006-10-10 2014-07-01 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table having copper-containing material therein and applications therefor
US8778040B1 (en) 2006-10-10 2014-07-15 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US8808859B1 (en) 2009-01-30 2014-08-19 Us Synthetic Corporation Polycrystalline diamond compact including pre-sintered polycrystalline diamond table having a thermally-stable region and applications therefor
US8821604B2 (en) 2006-11-20 2014-09-02 Us Synthetic Corporation Polycrystalline diamond compact and method of making same
US20140246252A1 (en) * 2013-03-01 2014-09-04 Baker Hughes Incorporated Polycrystalline compact tables for cutting elements and methods of fabrication
US20140352228A1 (en) * 2011-12-29 2014-12-04 Element Six Abrasives S.A. Method of processing polycrystalline diamond material
US8911521B1 (en) 2008-03-03 2014-12-16 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US8936659B2 (en) 2010-04-14 2015-01-20 Baker Hughes Incorporated Methods of forming diamond particles having organic compounds attached thereto and compositions thereof
US8979956B2 (en) 2006-11-20 2015-03-17 Us Synthetic Corporation Polycrystalline diamond compact
US8985248B2 (en) 2010-08-13 2015-03-24 Baker Hughes Incorporated Cutting elements including nanoparticles in at least one portion thereof, earth-boring tools including such cutting elements, and related methods
US8999025B1 (en) 2008-03-03 2015-04-07 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US9023125B2 (en) 2006-11-20 2015-05-05 Us Synthetic Corporation Polycrystalline diamond compact
US9027675B1 (en) 2011-02-15 2015-05-12 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein and applications therefor
US9140072B2 (en) 2013-02-28 2015-09-22 Baker Hughes Incorporated Cutting elements including non-planar interfaces, earth-boring tools including such cutting elements, and methods of forming cutting elements
US20150285007A1 (en) * 2014-04-08 2015-10-08 Baker Hughes Incorporated Cutting elements including undulating boundaries between catalyst-containing and catalyst-free regions of polycrystalline superabrasive materials and related earth-boring tools and methods
US9272392B2 (en) 2011-10-18 2016-03-01 Us Synthetic Corporation Polycrystalline diamond compacts and related products
US9297211B2 (en) 2007-12-17 2016-03-29 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
US9297212B1 (en) 2013-03-12 2016-03-29 Us Synthetic Corporation Polycrystalline diamond compact including a substrate having a convexly-curved interfacial surface bonded to a polycrystalline diamond table, and related methods and applications
US9297213B2 (en) 2009-03-06 2016-03-29 Baker Hughes Incorporated Polycrystalline diamond element
WO2016000820A3 (en) * 2014-07-01 2016-06-16 Element Six (Uk) Limited Superhard constructions & methods of making same
US9387571B2 (en) 2007-02-06 2016-07-12 Smith International, Inc. Manufacture of thermally stable cutting elements
US9482056B2 (en) 2011-12-30 2016-11-01 Smith International, Inc. Solid PCD cutter
US9487847B2 (en) 2011-10-18 2016-11-08 Us Synthetic Corporation Polycrystalline diamond compacts, related products, and methods of manufacture
US9534450B2 (en) 2013-07-22 2017-01-03 Baker Hughes Incorporated Thermally stable polycrystalline compacts for reduced spalling, earth-boring tools including such compacts, and related methods
US9540885B2 (en) 2011-10-18 2017-01-10 Us Synthetic Corporation Polycrystalline diamond compacts, related products, and methods of manufacture
US9714545B2 (en) 2014-04-08 2017-07-25 Baker Hughes Incorporated Cutting elements having a non-uniform annulus leach depth, earth-boring tools including such cutting elements, and related methods
US9845642B2 (en) 2014-03-17 2017-12-19 Baker Hughes Incorporated Cutting elements having non-planar cutting faces with selectively leached regions, earth-boring tools including such cutting elements, and related methods
US9863189B2 (en) 2014-07-11 2018-01-09 Baker Hughes Incorporated Cutting elements comprising partially leached polycrystalline material, tools comprising such cutting elements, and methods of forming wellbores using such cutting elements
US9962669B2 (en) 2011-09-16 2018-05-08 Baker Hughes Incorporated Cutting elements and earth-boring tools including a polycrystalline diamond material
US20180126516A1 (en) * 2013-03-31 2018-05-10 Element Six Abrasives S.A. Superhard constructions & methods of making same
US10005672B2 (en) 2010-04-14 2018-06-26 Baker Hughes, A Ge Company, Llc Method of forming particles comprising carbon and articles therefrom
US10046441B2 (en) 2013-12-30 2018-08-14 Smith International, Inc. PCD wafer without substrate for high pressure / high temperature sintering
US10060192B1 (en) * 2014-08-14 2018-08-28 Us Synthetic Corporation Methods of making polycrystalline diamond compacts and polycrystalline diamond compacts made using the same
US10066441B2 (en) 2010-04-14 2018-09-04 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US10087685B1 (en) * 2015-07-02 2018-10-02 Us Synthetic Corporation Shear-resistant joint between a superabrasive body and a substrate
US10132121B2 (en) 2007-03-21 2018-11-20 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US10280687B1 (en) 2013-03-12 2019-05-07 Us Synthetic Corporation Polycrystalline diamond compacts including infiltrated polycrystalline diamond table and methods of making same
US10301882B2 (en) 2010-12-07 2019-05-28 Us Synthetic Corporation Polycrystalline diamond compacts
US10358705B2 (en) 2014-12-17 2019-07-23 Smith International, Inc. Polycrystalline diamond sintered/rebonded on carbide substrate containing low tungsten
US10472899B2 (en) 2011-12-05 2019-11-12 Smith International, Inc. Cutting tools with rotating elements
US10871037B2 (en) 2015-12-14 2020-12-22 Smith International, Inc. Mechanical locking of ovoid cutting element with carbide matrix
US10883317B2 (en) 2016-03-04 2021-01-05 Baker Hughes Incorporated Polycrystalline diamond compacts and earth-boring tools including such compacts
US11014157B2 (en) 2014-12-17 2021-05-25 Schlumberger Technology Corporation Solid PCD with transition layers to accelerate full leaching of catalyst
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246110A (en) * 2011-12-29 2014-12-24 史密斯国际有限公司 Split sleeves for rolling cutters
CA2872871A1 (en) * 2012-05-11 2013-11-14 Ulterra Drilling Technologies, L.P. Diamond cutting elements for drill bits seeded with hcp crystalline material
CN108147407A (en) * 2018-01-05 2018-06-12 李伟 A kind of optimization diamond compact and its feedstock optimization method

Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941241A (en) * 1955-02-14 1960-06-21 Gen Electric High temperature high pressure apparatus
US2941248A (en) * 1958-01-06 1960-06-21 Gen Electric High temperature high pressure apparatus
US2947611A (en) * 1958-01-06 1960-08-02 Gen Electric Diamond synthesis
US3609818A (en) * 1970-01-02 1971-10-05 Gen Electric Reaction vessel for high pressure apparatus
US3767371A (en) * 1971-07-01 1973-10-23 Gen Electric Cubic boron nitride/sintered carbide abrasive bodies
US4104344A (en) * 1975-09-12 1978-08-01 Brigham Young University High thermal conductivity substrate
US4224380A (en) * 1978-03-28 1980-09-23 General Electric Company Temperature resistant abrasive compact and method for making same
US4288248A (en) * 1978-03-28 1981-09-08 General Electric Company Temperature resistant abrasive compact and method for making same
US4289503A (en) * 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst
US4525178A (en) * 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
US4572722A (en) * 1982-10-21 1986-02-25 Dyer Henry B Abrasive compacts
US4629373A (en) * 1983-06-22 1986-12-16 Megadiamond Industries, Inc. Polycrystalline diamond body with enhanced surface irregularities
US4673414A (en) * 1986-01-29 1987-06-16 General Electric Company Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same
US4694918A (en) * 1985-04-29 1987-09-22 Smith International, Inc. Rock bit with diamond tip inserts
US4784023A (en) * 1985-12-05 1988-11-15 Diamant Boart-Stratabit (Usa) Inc. Cutting element having composite formed of cemented carbide substrate and diamond layer and method of making same
US4944772A (en) * 1988-11-30 1990-07-31 General Electric Company Fabrication of supported polycrystalline abrasive compacts
US4954139A (en) * 1989-03-31 1990-09-04 The General Electric Company Method for producing polycrystalline compact tool blanks with flat carbide support/diamond or CBN interfaces
US4984642A (en) * 1989-05-17 1991-01-15 Societe Industrielle De Combustible Nucleaire Composite tool comprising a polycrystalline diamond active part
US4987800A (en) * 1988-06-28 1991-01-29 Reed Tool Company Limited Cutter elements for rotary drill bits
US5011515A (en) * 1989-08-07 1991-04-30 Frushour Robert H Composite polycrystalline diamond compact with improved impact resistance
US5127923A (en) * 1985-01-10 1992-07-07 U.S. Synthetic Corporation Composite abrasive compact having high thermal stability
US5351772A (en) * 1993-02-10 1994-10-04 Baker Hughes, Incorporated Polycrystalline diamond cutting element
US5355969A (en) * 1993-03-22 1994-10-18 U.S. Synthetic Corporation Composite polycrystalline cutting element with improved fracture and delamination resistance
US5370195A (en) * 1993-09-20 1994-12-06 Smith International, Inc. Drill bit inserts enhanced with polycrystalline diamond
US5469927A (en) * 1992-12-10 1995-11-28 Camco International Inc. Cutting elements for rotary drill bits
US5494477A (en) * 1993-08-11 1996-02-27 General Electric Company Abrasive tool insert
US5564511A (en) * 1995-05-15 1996-10-15 Frushour; Robert H. Composite polycrystalline compact with improved fracture and delamination resistance
US5605198A (en) * 1993-12-09 1997-02-25 Baker Hughes Incorporated Stress related placement of engineered superabrasive cutting elements on rotary drag bits
US5875862A (en) * 1995-07-14 1999-03-02 U.S. Synthetic Corporation Polycrystalline diamond cutter with integral carbide/diamond transition layer
US6009963A (en) * 1997-01-14 2000-01-04 Baker Hughes Incorporated Superabrasive cutting element with enhanced stiffness, thermal conductivity and cutting efficiency
US6041875A (en) * 1996-12-06 2000-03-28 Smith International, Inc. Non-planar interfaces for cutting elements
US6106585A (en) * 1996-02-14 2000-08-22 Smith International, Inc. Process for making diamond and cubic boron nitride cutting elements
US6131678A (en) * 1998-02-14 2000-10-17 Camco International (Uk) Limited Preform elements and mountings therefor
US6196341B1 (en) * 1998-05-20 2001-03-06 Baker Hughes Incorporated Reduced residual tensile stress superabrasive cutters for earth boring and drill bits so equipped
US6209185B1 (en) * 1993-04-16 2001-04-03 Baker Hughes Incorporated Earth-boring bit with improved rigid face seal
US6298930B1 (en) * 1999-08-26 2001-10-09 Baker Hughes Incorporated Drill bits with controlled cutter loading and depth of cut
US6314836B1 (en) * 1997-10-14 2001-11-13 General Electric Company Wire drawing die with non-cylindrical interface configuration for reducing stresses
US20020034631A1 (en) * 2000-09-20 2002-03-21 Griffin Nigel Dennis High volume density polycrystalline diamond with working surfaces depleted of catalyzing material
US6410085B1 (en) * 2000-09-20 2002-06-25 Camco International (Uk) Limited Method of machining of polycrystalline diamond
US6447560B2 (en) * 1999-02-19 2002-09-10 Us Synthetic Corporation Method for forming a superabrasive polycrystalline cutting tool with an integral chipbreaker feature
US6605798B1 (en) * 1998-12-22 2003-08-12 Barry James Cullen Cutting of ultra-hard materials
US6641861B2 (en) * 1998-01-16 2003-11-04 Sumitomo Electric Industries, Ltd. Heatsink and fabrication method thereof
US6892836B1 (en) * 1998-03-25 2005-05-17 Smith International, Inc. Cutting element having a substrate, a transition layer and an ultra hard material layer
US20050263328A1 (en) * 2004-05-06 2005-12-01 Smith International, Inc. Thermally stable diamond bonded materials and compacts
US20060110575A1 (en) * 2002-04-24 2006-05-25 Diaccon Gmbh Slide element and method for production of said slide element
US20060157285A1 (en) * 2005-01-17 2006-07-20 Us Synthetic Corporation Polycrystalline diamond insert, drill bit including same, and method of operation
US20060191723A1 (en) * 2005-02-23 2006-08-31 Keshavan Madapusi K Thermally stable polycrystalline diamond materials, cutting elements incorporating the same and bits incorporating such cutting elements
US7108598B1 (en) * 2001-07-09 2006-09-19 U.S. Synthetic Corporation PDC interface incorporating a closed network of features
US20060207802A1 (en) * 2005-02-08 2006-09-21 Youhe Zhang Thermally stable polycrystalline diamond cutting elements and bits incorporating the same
US20060266559A1 (en) * 2005-05-26 2006-11-30 Smith International, Inc. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance
US20070181348A1 (en) * 2003-05-27 2007-08-09 Brett Lancaster Polycrystalline diamond abrasive elements
US7316279B2 (en) * 2004-10-28 2008-01-08 Diamond Innovations, Inc. Polycrystalline cutter with multiple cutting edges
US20080085407A1 (en) * 2006-10-10 2008-04-10 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US7377341B2 (en) * 2005-05-26 2008-05-27 Smith International, Inc. Thermally stable ultra-hard material compact construction
US20080142276A1 (en) * 2006-05-09 2008-06-19 Smith International, Inc. Thermally stable ultra-hard material compact constructions
US20080185189A1 (en) * 2007-02-06 2008-08-07 Smith International, Inc. Manufacture of thermally stable cutting elements
US7464973B1 (en) * 2003-02-04 2008-12-16 U.S. Synthetic Corporation Apparatus for traction control having diamond and carbide enhanced traction surfaces and method of making the same
US20090090563A1 (en) * 2007-10-04 2009-04-09 Smith International, Inc. Diamond-bonded constrcutions with improved thermal and mechanical properties
US20090152017A1 (en) * 2007-12-17 2009-06-18 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
US20110023375A1 (en) * 2008-10-30 2011-02-03 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US8236074B1 (en) * 2006-10-10 2012-08-07 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2398660C2 (en) * 2004-05-12 2010-09-10 Бейкер Хьюз Инкорпорейтед Abrasive element for cutting tool

Patent Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941241A (en) * 1955-02-14 1960-06-21 Gen Electric High temperature high pressure apparatus
US2941248A (en) * 1958-01-06 1960-06-21 Gen Electric High temperature high pressure apparatus
US2947611A (en) * 1958-01-06 1960-08-02 Gen Electric Diamond synthesis
US3609818A (en) * 1970-01-02 1971-10-05 Gen Electric Reaction vessel for high pressure apparatus
US3767371A (en) * 1971-07-01 1973-10-23 Gen Electric Cubic boron nitride/sintered carbide abrasive bodies
US4104344A (en) * 1975-09-12 1978-08-01 Brigham Young University High thermal conductivity substrate
US4224380A (en) * 1978-03-28 1980-09-23 General Electric Company Temperature resistant abrasive compact and method for making same
US4288248A (en) * 1978-03-28 1981-09-08 General Electric Company Temperature resistant abrasive compact and method for making same
US4289503A (en) * 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst
US4572722A (en) * 1982-10-21 1986-02-25 Dyer Henry B Abrasive compacts
US4629373A (en) * 1983-06-22 1986-12-16 Megadiamond Industries, Inc. Polycrystalline diamond body with enhanced surface irregularities
US4525178A (en) * 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
US4525178B1 (en) * 1984-04-16 1990-03-27 Megadiamond Ind Inc
US5127923A (en) * 1985-01-10 1992-07-07 U.S. Synthetic Corporation Composite abrasive compact having high thermal stability
US4694918A (en) * 1985-04-29 1987-09-22 Smith International, Inc. Rock bit with diamond tip inserts
US4784023A (en) * 1985-12-05 1988-11-15 Diamant Boart-Stratabit (Usa) Inc. Cutting element having composite formed of cemented carbide substrate and diamond layer and method of making same
US4673414A (en) * 1986-01-29 1987-06-16 General Electric Company Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same
US4987800A (en) * 1988-06-28 1991-01-29 Reed Tool Company Limited Cutter elements for rotary drill bits
US4944772A (en) * 1988-11-30 1990-07-31 General Electric Company Fabrication of supported polycrystalline abrasive compacts
US4954139A (en) * 1989-03-31 1990-09-04 The General Electric Company Method for producing polycrystalline compact tool blanks with flat carbide support/diamond or CBN interfaces
US4984642A (en) * 1989-05-17 1991-01-15 Societe Industrielle De Combustible Nucleaire Composite tool comprising a polycrystalline diamond active part
US5011515A (en) * 1989-08-07 1991-04-30 Frushour Robert H Composite polycrystalline diamond compact with improved impact resistance
US5011515B1 (en) * 1989-08-07 1999-07-06 Robert H Frushour Composite polycrystalline diamond compact with improved impact resistance
US5469927A (en) * 1992-12-10 1995-11-28 Camco International Inc. Cutting elements for rotary drill bits
US5351772A (en) * 1993-02-10 1994-10-04 Baker Hughes, Incorporated Polycrystalline diamond cutting element
US5355969A (en) * 1993-03-22 1994-10-18 U.S. Synthetic Corporation Composite polycrystalline cutting element with improved fracture and delamination resistance
US6209185B1 (en) * 1993-04-16 2001-04-03 Baker Hughes Incorporated Earth-boring bit with improved rigid face seal
US5494477A (en) * 1993-08-11 1996-02-27 General Electric Company Abrasive tool insert
US5370195A (en) * 1993-09-20 1994-12-06 Smith International, Inc. Drill bit inserts enhanced with polycrystalline diamond
US5605198A (en) * 1993-12-09 1997-02-25 Baker Hughes Incorporated Stress related placement of engineered superabrasive cutting elements on rotary drag bits
US5564511A (en) * 1995-05-15 1996-10-15 Frushour; Robert H. Composite polycrystalline compact with improved fracture and delamination resistance
US5875862A (en) * 1995-07-14 1999-03-02 U.S. Synthetic Corporation Polycrystalline diamond cutter with integral carbide/diamond transition layer
US6106585A (en) * 1996-02-14 2000-08-22 Smith International, Inc. Process for making diamond and cubic boron nitride cutting elements
US6041875A (en) * 1996-12-06 2000-03-28 Smith International, Inc. Non-planar interfaces for cutting elements
US6009963A (en) * 1997-01-14 2000-01-04 Baker Hughes Incorporated Superabrasive cutting element with enhanced stiffness, thermal conductivity and cutting efficiency
US6314836B1 (en) * 1997-10-14 2001-11-13 General Electric Company Wire drawing die with non-cylindrical interface configuration for reducing stresses
US6641861B2 (en) * 1998-01-16 2003-11-04 Sumitomo Electric Industries, Ltd. Heatsink and fabrication method thereof
US6131678A (en) * 1998-02-14 2000-10-17 Camco International (Uk) Limited Preform elements and mountings therefor
US6892836B1 (en) * 1998-03-25 2005-05-17 Smith International, Inc. Cutting element having a substrate, a transition layer and an ultra hard material layer
US6196341B1 (en) * 1998-05-20 2001-03-06 Baker Hughes Incorporated Reduced residual tensile stress superabrasive cutters for earth boring and drill bits so equipped
US6605798B1 (en) * 1998-12-22 2003-08-12 Barry James Cullen Cutting of ultra-hard materials
US6447560B2 (en) * 1999-02-19 2002-09-10 Us Synthetic Corporation Method for forming a superabrasive polycrystalline cutting tool with an integral chipbreaker feature
US6298930B1 (en) * 1999-08-26 2001-10-09 Baker Hughes Incorporated Drill bits with controlled cutter loading and depth of cut
US20020034631A1 (en) * 2000-09-20 2002-03-21 Griffin Nigel Dennis High volume density polycrystalline diamond with working surfaces depleted of catalyzing material
US20020034632A1 (en) * 2000-09-20 2002-03-21 Griffin Nigel Dennis Polycrystalline diamond partially depleted of catalyzing material
US6410085B1 (en) * 2000-09-20 2002-06-25 Camco International (Uk) Limited Method of machining of polycrystalline diamond
US7108598B1 (en) * 2001-07-09 2006-09-19 U.S. Synthetic Corporation PDC interface incorporating a closed network of features
US20060110575A1 (en) * 2002-04-24 2006-05-25 Diaccon Gmbh Slide element and method for production of said slide element
US7464973B1 (en) * 2003-02-04 2008-12-16 U.S. Synthetic Corporation Apparatus for traction control having diamond and carbide enhanced traction surfaces and method of making the same
US20070181348A1 (en) * 2003-05-27 2007-08-09 Brett Lancaster Polycrystalline diamond abrasive elements
US20050263328A1 (en) * 2004-05-06 2005-12-01 Smith International, Inc. Thermally stable diamond bonded materials and compacts
US7316279B2 (en) * 2004-10-28 2008-01-08 Diamond Innovations, Inc. Polycrystalline cutter with multiple cutting edges
US20060157285A1 (en) * 2005-01-17 2006-07-20 Us Synthetic Corporation Polycrystalline diamond insert, drill bit including same, and method of operation
US20060207802A1 (en) * 2005-02-08 2006-09-21 Youhe Zhang Thermally stable polycrystalline diamond cutting elements and bits incorporating the same
US20060191723A1 (en) * 2005-02-23 2006-08-31 Keshavan Madapusi K Thermally stable polycrystalline diamond materials, cutting elements incorporating the same and bits incorporating such cutting elements
US20080223621A1 (en) * 2005-05-26 2008-09-18 Smith International, Inc. Thermally stable ultra-hard material compact construction
US7377341B2 (en) * 2005-05-26 2008-05-27 Smith International, Inc. Thermally stable ultra-hard material compact construction
US20060266559A1 (en) * 2005-05-26 2006-11-30 Smith International, Inc. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance
US20080142276A1 (en) * 2006-05-09 2008-06-19 Smith International, Inc. Thermally stable ultra-hard material compact constructions
US20080085407A1 (en) * 2006-10-10 2008-04-10 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US8236074B1 (en) * 2006-10-10 2012-08-07 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US20080185189A1 (en) * 2007-02-06 2008-08-07 Smith International, Inc. Manufacture of thermally stable cutting elements
US20080223623A1 (en) * 2007-02-06 2008-09-18 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US20090090563A1 (en) * 2007-10-04 2009-04-09 Smith International, Inc. Diamond-bonded constrcutions with improved thermal and mechanical properties
US20090152017A1 (en) * 2007-12-17 2009-06-18 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
US20110023375A1 (en) * 2008-10-30 2011-02-03 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764864B1 (en) 2006-10-10 2014-07-01 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table having copper-containing material therein and applications therefor
US9623542B1 (en) 2006-10-10 2017-04-18 Us Synthetic Corporation Methods of making a polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material
US9951566B1 (en) 2006-10-10 2018-04-24 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US9017438B1 (en) 2006-10-10 2015-04-28 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor
US8814966B1 (en) 2006-10-10 2014-08-26 Us Synthetic Corporation Polycrystalline diamond compact formed by iniltrating a polycrystalline diamond body with an infiltrant having one or more carbide formers
US8790430B1 (en) 2006-10-10 2014-07-29 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having a copper-containing material and applications therefor
US8778040B1 (en) 2006-10-10 2014-07-15 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US8821604B2 (en) 2006-11-20 2014-09-02 Us Synthetic Corporation Polycrystalline diamond compact and method of making same
US9808910B2 (en) 2006-11-20 2017-11-07 Us Synthetic Corporation Polycrystalline diamond compacts
US9023125B2 (en) 2006-11-20 2015-05-05 Us Synthetic Corporation Polycrystalline diamond compact
US9663994B2 (en) 2006-11-20 2017-05-30 Us Synthetic Corporation Polycrystalline diamond compact
US8979956B2 (en) 2006-11-20 2015-03-17 Us Synthetic Corporation Polycrystalline diamond compact
US9387571B2 (en) 2007-02-06 2016-07-12 Smith International, Inc. Manufacture of thermally stable cutting elements
US10124468B2 (en) 2007-02-06 2018-11-13 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US10132121B2 (en) 2007-03-21 2018-11-20 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US9297211B2 (en) 2007-12-17 2016-03-29 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
US10076824B2 (en) 2007-12-17 2018-09-18 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
US8999025B1 (en) 2008-03-03 2015-04-07 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US9643293B1 (en) 2008-03-03 2017-05-09 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US9381620B1 (en) 2008-03-03 2016-07-05 Us Synthetic Corporation Methods of fabricating polycrystalline diamond compacts
US8911521B1 (en) 2008-03-03 2014-12-16 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US8753413B1 (en) 2008-03-03 2014-06-17 Us Synthetic Corporation Polycrystalline diamond compacts and applications therefor
US9376868B1 (en) 2009-01-30 2016-06-28 Us Synthetic Corporation Polycrystalline diamond compact including pre-sintered polycrystalline diamond table having a thermally-stable region and applications therefor
US8808859B1 (en) 2009-01-30 2014-08-19 Us Synthetic Corporation Polycrystalline diamond compact including pre-sintered polycrystalline diamond table having a thermally-stable region and applications therefor
US9297213B2 (en) 2009-03-06 2016-03-29 Baker Hughes Incorporated Polycrystalline diamond element
US8573333B2 (en) * 2009-03-31 2013-11-05 Baker Hughes Incorporated Methods for bonding preformed cutting tables to cutting element substrates and cutting elements formed by such processes
US8851208B2 (en) 2009-03-31 2014-10-07 Baker Hughes Incorporated Cutting elements including adhesion materials, earth-boring tools including such cutting elements, and related methods
US20100243337A1 (en) * 2009-03-31 2010-09-30 Baker Hughes Incorporated Methods for bonding preformed cutting tables to cutting element substrates and cutting elements formed by such processes
US9839989B2 (en) 2009-03-31 2017-12-12 Baker Hughes Incorporated Methods of fabricating cutting elements including adhesion materials for earth-boring tools
US7972395B1 (en) * 2009-04-06 2011-07-05 Us Synthetic Corporation Superabrasive articles and methods for removing interstitial materials from superabrasive materials
US20100300764A1 (en) * 2009-06-02 2010-12-02 Kaveshini Naidoo Polycrystalline diamond
US8490721B2 (en) 2009-06-02 2013-07-23 Element Six Abrasives S.A. Polycrystalline diamond
US8695733B2 (en) 2009-08-07 2014-04-15 Smith International, Inc. Functionally graded polycrystalline diamond insert
US20110036643A1 (en) * 2009-08-07 2011-02-17 Belnap J Daniel Thermally stable polycrystalline diamond constructions
US8758463B2 (en) 2009-08-07 2014-06-24 Smith International, Inc. Method of forming a thermally stable diamond cutting element
US20110042147A1 (en) * 2009-08-07 2011-02-24 Smith International, Inc. Functionally graded polycrystalline diamond insert
US20110036641A1 (en) * 2009-08-11 2011-02-17 Lyons Nicholas J Methods of forming polycrystalline diamond cutting elements, cutting elements, and earth-boring tools carrying cutting elements
US8267204B2 (en) * 2009-08-11 2012-09-18 Baker Hughes Incorporated Methods of forming polycrystalline diamond cutting elements, cutting elements, and earth-boring tools carrying cutting elements
US20110042149A1 (en) * 2009-08-18 2011-02-24 Baker Hughes Incorporated Methods of forming polycrystalline diamond elements, polycrystalline diamond elements, and earth-boring tools carrying such polycrystalline diamond elements
US9701877B2 (en) 2010-04-14 2017-07-11 Baker Hughes Incorporated Compositions of diamond particles having organic compounds attached thereto
US10005672B2 (en) 2010-04-14 2018-06-26 Baker Hughes, A Ge Company, Llc Method of forming particles comprising carbon and articles therefrom
US8936659B2 (en) 2010-04-14 2015-01-20 Baker Hughes Incorporated Methods of forming diamond particles having organic compounds attached thereto and compositions thereof
US10066441B2 (en) 2010-04-14 2018-09-04 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US8875812B2 (en) * 2010-07-23 2014-11-04 National Oilwell DHT, L.P. Polycrystalline diamond cutting element and method of using same
US20120018223A1 (en) * 2010-07-23 2012-01-26 National Oilwell DHT, L.P. Polycrystalline diamond cutting element and method of using same
US8985248B2 (en) 2010-08-13 2015-03-24 Baker Hughes Incorporated Cutting elements including nanoparticles in at least one portion thereof, earth-boring tools including such cutting elements, and related methods
US9797201B2 (en) 2010-08-13 2017-10-24 Baker Hughes Incorporated Cutting elements including nanoparticles in at least one region thereof, earth-boring tools including such cutting elements, and related methods
US10309158B2 (en) 2010-12-07 2019-06-04 Us Synthetic Corporation Method of partially infiltrating an at least partially leached polycrystalline diamond table and resultant polycrystalline diamond compacts
US10301882B2 (en) 2010-12-07 2019-05-28 Us Synthetic Corporation Polycrystalline diamond compacts
US9027675B1 (en) 2011-02-15 2015-05-12 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein and applications therefor
US10155301B1 (en) 2011-02-15 2018-12-18 Us Synthetic Corporation Methods of manufacturing a polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein
US9962669B2 (en) 2011-09-16 2018-05-08 Baker Hughes Incorporated Cutting elements and earth-boring tools including a polycrystalline diamond material
US9272392B2 (en) 2011-10-18 2016-03-01 Us Synthetic Corporation Polycrystalline diamond compacts and related products
US10179390B2 (en) 2011-10-18 2019-01-15 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond compact
US9540885B2 (en) 2011-10-18 2017-01-10 Us Synthetic Corporation Polycrystalline diamond compacts, related products, and methods of manufacture
US9487847B2 (en) 2011-10-18 2016-11-08 Us Synthetic Corporation Polycrystalline diamond compacts, related products, and methods of manufacture
US10472899B2 (en) 2011-12-05 2019-11-12 Smith International, Inc. Cutting tools with rotating elements
US20140352228A1 (en) * 2011-12-29 2014-12-04 Element Six Abrasives S.A. Method of processing polycrystalline diamond material
US9482056B2 (en) 2011-12-30 2016-11-01 Smith International, Inc. Solid PCD cutter
US9140072B2 (en) 2013-02-28 2015-09-22 Baker Hughes Incorporated Cutting elements including non-planar interfaces, earth-boring tools including such cutting elements, and methods of forming cutting elements
US20140246252A1 (en) * 2013-03-01 2014-09-04 Baker Hughes Incorporated Polycrystalline compact tables for cutting elements and methods of fabrication
US9428967B2 (en) * 2013-03-01 2016-08-30 Baker Hughes Incorporated Polycrystalline compact tables for cutting elements and methods of fabrication
CN105026678A (en) * 2013-03-01 2015-11-04 贝克休斯公司 Polycrystalline compact tables for cutting elements and methods of fabrication
US10094173B2 (en) 2013-03-01 2018-10-09 Baker Hughes Incorporated Polycrystalline compacts for cutting elements, related earth-boring tools, and related methods
US10280687B1 (en) 2013-03-12 2019-05-07 Us Synthetic Corporation Polycrystalline diamond compacts including infiltrated polycrystalline diamond table and methods of making same
US9297212B1 (en) 2013-03-12 2016-03-29 Us Synthetic Corporation Polycrystalline diamond compact including a substrate having a convexly-curved interfacial surface bonded to a polycrystalline diamond table, and related methods and applications
US9938776B1 (en) 2013-03-12 2018-04-10 Us Synthetic Corporation Polycrystalline diamond compact including a substrate having a convexly-curved interfacial surface bonded to a polycrystalline diamond table, and related applications
US20180126516A1 (en) * 2013-03-31 2018-05-10 Element Six Abrasives S.A. Superhard constructions & methods of making same
US9534450B2 (en) 2013-07-22 2017-01-03 Baker Hughes Incorporated Thermally stable polycrystalline compacts for reduced spalling, earth-boring tools including such compacts, and related methods
US10259101B2 (en) 2013-07-22 2019-04-16 Baker Hughes Incorporated Methods of forming thermally stable polycrystalline compacts for reduced spalling
US10046441B2 (en) 2013-12-30 2018-08-14 Smith International, Inc. PCD wafer without substrate for high pressure / high temperature sintering
CN103696699A (en) * 2014-01-08 2014-04-02 弘元超硬材料(河南)有限公司 Cobalt-free polycrystalline diamond compact (PDC) drill bit and preparation technology thereof
US9845642B2 (en) 2014-03-17 2017-12-19 Baker Hughes Incorporated Cutting elements having non-planar cutting faces with selectively leached regions, earth-boring tools including such cutting elements, and related methods
US10378289B2 (en) 2014-03-17 2019-08-13 Baker Hughes, A Ge Company, Llc Cutting elements having non-planar cutting faces with selectively leached regions and earth-boring tools including such cutting elements
US10024113B2 (en) 2014-04-08 2018-07-17 Baker Hughes Incorporated Cutting elements having a non-uniform annulus leach depth, earth-boring tools including such cutting elements, and related methods
US10612312B2 (en) 2014-04-08 2020-04-07 Baker Hughes, A Ge Company, Llc Cutting elements including undulating boundaries between catalyst-containing and catalyst-free regions of polycrystalline superabrasive materials and related earth-boring tools and methods
US9605488B2 (en) * 2014-04-08 2017-03-28 Baker Hughes Incorporated Cutting elements including undulating boundaries between catalyst-containing and catalyst-free regions of polycrystalline superabrasive materials and related earth-boring tools and methods
US9714545B2 (en) 2014-04-08 2017-07-25 Baker Hughes Incorporated Cutting elements having a non-uniform annulus leach depth, earth-boring tools including such cutting elements, and related methods
US20150285007A1 (en) * 2014-04-08 2015-10-08 Baker Hughes Incorporated Cutting elements including undulating boundaries between catalyst-containing and catalyst-free regions of polycrystalline superabrasive materials and related earth-boring tools and methods
WO2016000820A3 (en) * 2014-07-01 2016-06-16 Element Six (Uk) Limited Superhard constructions & methods of making same
US10329848B2 (en) 2014-07-01 2019-06-25 Element Six (Uk) Limited Superhard constructions and methods of making same
US9863189B2 (en) 2014-07-11 2018-01-09 Baker Hughes Incorporated Cutting elements comprising partially leached polycrystalline material, tools comprising such cutting elements, and methods of forming wellbores using such cutting elements
US10060192B1 (en) * 2014-08-14 2018-08-28 Us Synthetic Corporation Methods of making polycrystalline diamond compacts and polycrystalline diamond compacts made using the same
US10358705B2 (en) 2014-12-17 2019-07-23 Smith International, Inc. Polycrystalline diamond sintered/rebonded on carbide substrate containing low tungsten
US11014157B2 (en) 2014-12-17 2021-05-25 Schlumberger Technology Corporation Solid PCD with transition layers to accelerate full leaching of catalyst
US10087685B1 (en) * 2015-07-02 2018-10-02 Us Synthetic Corporation Shear-resistant joint between a superabrasive body and a substrate
US11021913B2 (en) 2015-12-14 2021-06-01 Schlumberger Technology Corporation Direct casting of ultrahard insert in bit body
US10871037B2 (en) 2015-12-14 2020-12-22 Smith International, Inc. Mechanical locking of ovoid cutting element with carbide matrix
US11492852B2 (en) 2015-12-14 2022-11-08 Schlumberger Technology Corporation Mechanical locking of cutting element with carbide matrix
US10883317B2 (en) 2016-03-04 2021-01-05 Baker Hughes Incorporated Polycrystalline diamond compacts and earth-boring tools including such compacts
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
US11807920B2 (en) 2017-05-12 2023-11-07 Baker Hughes Holdings Llc Methods of forming cutting elements and supporting substrates for cutting elements
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods
US11885182B2 (en) 2018-05-30 2024-01-30 Baker Hughes Holdings Llc Methods of forming cutting elements

Also Published As

Publication number Publication date
WO2010009416A2 (en) 2010-01-21
ZA201100927B (en) 2011-10-26
GB2473995A (en) 2011-03-30
CN102099541B (en) 2015-06-17
GB2473995B (en) 2013-01-09
GB201101214D0 (en) 2011-03-09
CN102099541A (en) 2011-06-15
WO2010009416A3 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US20100012389A1 (en) Methods of forming polycrystalline diamond cutters
US11498873B2 (en) Superhard constructions and methods of making same
US8328891B2 (en) Methods of forming thermally stable polycrystalline diamond cutters
US8702825B2 (en) Composite cutter substrate to mitigate residual stress
US8066087B2 (en) Thermally stable ultra-hard material compact constructions
US20220411900A1 (en) Superhard constructions & methods of making
US10329848B2 (en) Superhard constructions and methods of making same
CN105392584B (en) Superhard constructions and methods of making same
US20110036643A1 (en) Thermally stable polycrystalline diamond constructions
US10737327B2 (en) Super hard constructions and methods of making same
US10107042B2 (en) Ultra-hard constructions with erosion resistance
US10046441B2 (en) PCD wafer without substrate for high pressure / high temperature sintering
US20190344350A1 (en) Superhard constructions & methods of making same
GB2512776A (en) Composite cutter substrate to mitigate residual stress
CN111629851A (en) Polycrystalline superhard structures and methods of making same
US20170355017A1 (en) Super hard components and powder metallurgy methods of making the same
US20140144713A1 (en) Eruption control in thermally stable pcd products

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMITH INTERNATIONAL, INC.,TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, YOUHE;SHEN, YUELIN;SIGNING DATES FROM 20090914 TO 20090915;REEL/FRAME:023278/0959

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION