US20090252618A1 - Suction Jet Pump - Google Patents

Suction Jet Pump Download PDF

Info

Publication number
US20090252618A1
US20090252618A1 US12/227,665 US22766507A US2009252618A1 US 20090252618 A1 US20090252618 A1 US 20090252618A1 US 22766507 A US22766507 A US 22766507A US 2009252618 A1 US2009252618 A1 US 2009252618A1
Authority
US
United States
Prior art keywords
valve body
spring
throughflow opening
jet pump
suction jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/227,665
Inventor
Heiko Gensert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Assigned to CONTINENTAL AUTOMOTIVE GMBH reassignment CONTINENTAL AUTOMOTIVE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENSERT, HEIKO
Publication of US20090252618A1 publication Critical patent/US20090252618A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0023Valves in the fuel supply and return system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/10Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0052Details on the fuel return circuit; Arrangement of pressure regulators
    • F02M37/0058Returnless fuel systems, i.e. the fuel return lines are not entering the fuel tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • F02M37/0088Multiple separate fuel tanks or tanks being at least partially partitioned
    • F02M37/0094Saddle tanks; Tanks having partition walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/02Feeding by means of suction apparatus, e.g. by air flow through carburettors
    • F02M37/025Feeding by means of a liquid fuel-driven jet pump

Definitions

  • the subject matter of the invention is a suction jet pump, comprising a driving jet nozzle, a mixing tube, an intake opening, a working-fluid line connected to the driving jet nozzle and a valve which is arranged in the working-fluid line.
  • Suction jet pumps are used in fuel tanks of motor vehicles.
  • Such suction jet pumps are used in fuel tanks in order to supply fuel from various regions of the fuel tank to a feed unit, which feed unit feeds fuel from the fuel tank to an internal combustion engine of the motor vehicle.
  • a portion of the fuel fed by the fuel pump is branched off and supplied via the working-fluid line of the suction jet pump.
  • the fuel pump should feed fuel in a sufficient quantity to the internal combustion engine as fast as possible.
  • a valve is arranged in the working-fluid line, which valve only opens when the system pressure is reached so that, particularly in the event of a starting process, all the fed fuel is first supplied to the internal combustion engine.
  • the fuel pump In order to nevertheless ensure a sufficient supply of the internal combustion engine with fuel during a starting process, the fuel pump must be dimensioned such that it, as well as the increased demand on the internal combustion engine, also supplies the increased feed quantity for the suction jet pump as a result of the opened valve. These two increased feed quantities lead to an overdimensioning of the fuel pump. Such fuel pumps require significantly more space and are more costly.
  • the object of the invention is therefore to create a suction jet pump which only operates when the fuel supply system operates with system pressure.
  • the object is achieved in that a throughflow opening is arranged in the housing, that a valve body is arranged on both sides of the throughflow opening such that the throughflow opening can be closed both on the inlet side and on the outlet side, and that at least one spring is arranged within the housing such that it holds the valve body in a position closing the throughflow opening on the outlet side until the system pressure is reached.
  • the valve arranged in the working-fluid line of the suction jet pump is closed in the depressurized state in that the spring holds the valve body on the outlet side in a position closing the throughflow opening.
  • the force acting on the valve body is larger than the spring force, as a result of which the valve body is moved out of the position closing the throughflow opening on the outlet side.
  • the valve is thus open and fuel can reach the suction jet pump. If the pressure rises above the system pressure during a starting process, the valve body is moved further counter to the spring force until it reaches a position closing the throughflow opening on the inlet side, as a result of which the valve closes.
  • the valve according to the invention allows operation of the suction jet pump in a presettable pressure range, wherein the suction jet pump is switched off above and below this pressure range.
  • the fuel pump can thus be of smaller dimensions since the flow rate of the fuel pump is only determined by the internal combustion engine and the suction jet pump in the case of system pressure, while in the case of operation of the fuel pump above the system pressure the flow rate is exclusively determined by the internal combustion engine as a result of the switching off of the suction jet pump.
  • the throughflow opening is of a particularly simple configuration if it is embodied as a diaphragm.
  • valve body possesses two sealing elements which interact on the inlet side and the outlet side with a sealing seat at the throughflow opening.
  • the sealing elements of the valve body respectively comprise in a simple and thus low-cost formation an annular disk, which annular disks are arranged on the valve body.
  • valve body The structure of the valve body is simplified according to another configuration if the sealing elements are arranged on both sides of the diaphragm relative to the direction of flow such that they surround the throughflow opening.
  • a defined position of the valve body in the open position in the case of system pressure is achieved in a further configuration in that a second spring is arranged relative to the first spring, wherein the first spring is designed with respect to the opening pressure and the second spring allows a further movement of the valve body only above the system pressure. In this manner, a movement of the valve body is prevented in the case of a system pressure in the open position.
  • the springs used can be both pressure springs and tension springs, wherein the springs are arranged between the housing and the valve body.
  • pressure springs are used, these can also be arranged in a different configuration between the valve body and the throughflow opening.
  • a shoulder is formed on the valve body in a further configuration.
  • FIG. 1 shows a schematic representation of a fuel tank with a feed unit and a suction jet pump according to the invention
  • FIGS. 2 to 4 show a schematic representation of the valve of the suction jet pump from FIG. 1 in various positions and
  • FIGS. 5 to 7 show further embodiments of the valve according to FIG. 2 .
  • FIG. 1 shows schematically a fuel tank 1 of a motor vehicle with a feed unit 2 arranged therein for feeding fuel to an internal combustion engine 3 .
  • Feed unit 2 has a fuel pump 5 driven by an electric motor 4 and is connected via a feed line 6 to internal combustion engine 3 .
  • a working-fluid line 7 leads from feed line 6 to a suction jet pump 8 which feeds fuel to feed unit 2 .
  • suction jet pump 8 comprises a valve 9 arranged in working-fluid line 7 , a driving jet nozzle 10 connected to working-fluid line 7 , a mixing tube 11 and an intake opening 12 , by means of which fuel is sucked into mixing tube 11 by the fuel escaping from driving jet nozzle 10 .
  • FIG. 2 shows schematically a first embodiment of valve 9 from FIG. 1 .
  • the direction of flow is marked by an arrow.
  • Valve 9 comprises a valve housing 13 with an inlet 14 and an outlet 15 .
  • a diaphragm 16 is arranged in valve housing 13 , which diaphragm 16 has a throughflow opening 17 .
  • Valve 9 possesses a valve body 18 with two disk-like regions 19 , 20 which are connected to one another via a central part penetrating through throughflow opening 17 such that disk-shaped regions 19 , 20 are arranged on the inlet side and outlet side of throughflow opening 17 .
  • Both regions 19 , 20 have disk-shaped sealing elements 21 , 22 which interact with sealing seats 23 , 24 of diaphragm 16 .
  • a pressure spring 25 is arranged on the outlet side, which pressure spring 25 moves valve body 18 counter to the direction of flow.
  • the representation shows the depressurized state in which no fuel flows through valve 9 .
  • valve body 18 lies on the outlet side against diaphragm 16 , wherein sealing element 21 interacts with sealing seat 23 and thus closes throughflow opening 17 .
  • FIG. 3 shows valve 9 in the case of system pressure.
  • the fuel flowing in with system pressure via inlet 14 generates a force acting in the direction of flow, which force opposes the spring force.
  • Pressure spring 25 is therein designed such that in the case of system pressure valve body 18 is moved so far in the direction of flow that both sealing elements 21 , 22 are not in contact with sealing seats 23 , 24 .
  • Throughflow opening 17 is thus free and the fuel can flow through valve 9 to outlet 15 and further to the suction jet pump.
  • FIG. 4 shows valve 9 during a starting process of the internal combustion engine.
  • the fuel pump is actuated such that the pressure in the feed line is increased for a short time.
  • the increased pressure thus also acts in the working-fluid line and in inlet 14 of valve 9 .
  • valve body 18 is moved further in the direction of flow until sealing element 22 of region 20 lies against inlet-side sealing seat 24 of diaphragm 16 .
  • Throughflow opening 17 is thus closed so that no fuel reaches the suction jet pump during the starting process.
  • Valve 9 shown in FIG. 5 differs from the valve according to FIG. 2 in the arrangement of pressure spring 25 .
  • Pressure spring 25 is supported between diaphragm 16 and region 20 of valve body 18 .
  • Region 20 possesses a shoulder 26 for this purpose.
  • Shoulder 26 is used on the one hand as a guide for pressure spring 25 and ensures on the other hand sufficient space in the axial extension if pressure spring 25 is compressed.
  • FIG. 6 shows valve 9 with a tension spring 27 which is fastened on the inlet side between housing 13 and valve body 18 and moves valve body 18 in the depressurized state counter to the direction of flow such that sealing element 21 interacts with sealing seat 23 of diaphragm 16 such that valve 9 is closed.
  • FIG. 7 shows valve 9 in the case of system pressure.
  • two pressure springs 25 , 28 are arranged on the outlet side.
  • Pressure spring 25 behaves in accordance with its design as in FIGS. 2 to 4 .
  • Pressure spring 28 is harder and is designed with a shorter length, wherein the length and the spring rigidity of pressure spring 28 are selected such that, in the case of system pressure, valve body 18 is moved in the direction of flow as a result of the force acting on it until it lies against pressure spring 28 without pressure spring 28 being compressed.
  • Valve 9 in an open position is located in this position. In this manner, a defined position is created for valve body 18 in the case of system pressure.
  • the force acting on valve body 18 is larger than the spring forces of pressure springs 25 , 28 such that the valve behaves as in FIG. 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Safety Valves (AREA)
  • External Artificial Organs (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

The invention relates to a suction jet pump (8), consisting of a driving jet nozzle (10), a mixing tube (11), an intake opening (12), a working-fluid line (7) connected to the driving jet nozzle (10), and a valve (9) which is arranged with the working-fluid line (7) and whose housing (13) has an inlet (14) and an outlet (15). A throughflow opening (17) with a valve body (18) on both sides of the throughflow opening (17) is arranged in the housing (13) in such a way that the throughflow opening (17) can be closed on both the inlet side and the outlet side, and that at least one spring (25, 27, 28) is arranged inside the housing (13) in such a way that it holds the valve body (18) in a position closing the throughflow opening (17) on the outlet side until the system pressure is reached.

Description

  • The subject matter of the invention is a suction jet pump, comprising a driving jet nozzle, a mixing tube, an intake opening, a working-fluid line connected to the driving jet nozzle and a valve which is arranged in the working-fluid line. Suction jet pumps are used in fuel tanks of motor vehicles.
  • Such suction jet pumps are used in fuel tanks in order to supply fuel from various regions of the fuel tank to a feed unit, which feed unit feeds fuel from the fuel tank to an internal combustion engine of the motor vehicle. In order to drive the suction jet pump, a portion of the fuel fed by the fuel pump is branched off and supplied via the working-fluid line of the suction jet pump. When starting the internal combustion engine, the fuel pump should feed fuel in a sufficient quantity to the internal combustion engine as fast as possible. To this end, a valve is arranged in the working-fluid line, which valve only opens when the system pressure is reached so that, particularly in the event of a starting process, all the fed fuel is first supplied to the internal combustion engine.
  • In order to improve the starting behavior of the motor vehicle, it is known to increase the pressure in the feed line for a short time. To this end, the flow rate of the fuel pump is increased for a short time during the starting process. However, the effect of the valve in the working-fluid line is thus cancelled out, which valve is supposed to release the working-fluid line only when the system pressure is reached. This has the disadvantage that, as a result of the increase in pressure, the valve opens, which valve is supposed to separate the suction jet pump from the fuel supply for the starting process. A portion of the fuel thus reaches the suction jet pump and is not available for the internal combustion engine. In order to nevertheless ensure a sufficient supply of the internal combustion engine with fuel during a starting process, the fuel pump must be dimensioned such that it, as well as the increased demand on the internal combustion engine, also supplies the increased feed quantity for the suction jet pump as a result of the opened valve. These two increased feed quantities lead to an overdimensioning of the fuel pump. Such fuel pumps require significantly more space and are more costly.
  • The object of the invention is therefore to create a suction jet pump which only operates when the fuel supply system operates with system pressure.
  • According to the invention, the object is achieved in that a throughflow opening is arranged in the housing, that a valve body is arranged on both sides of the throughflow opening such that the throughflow opening can be closed both on the inlet side and on the outlet side, and that at least one spring is arranged within the housing such that it holds the valve body in a position closing the throughflow opening on the outlet side until the system pressure is reached.
  • The valve arranged in the working-fluid line of the suction jet pump is closed in the depressurized state in that the spring holds the valve body on the outlet side in a position closing the throughflow opening. As soon as the fuel pump reaches system pressure, the force acting on the valve body is larger than the spring force, as a result of which the valve body is moved out of the position closing the throughflow opening on the outlet side. The valve is thus open and fuel can reach the suction jet pump. If the pressure rises above the system pressure during a starting process, the valve body is moved further counter to the spring force until it reaches a position closing the throughflow opening on the inlet side, as a result of which the valve closes. The valve according to the invention allows operation of the suction jet pump in a presettable pressure range, wherein the suction jet pump is switched off above and below this pressure range. This means that the suction jet pump operates only under normal conditions, while, in critical situations in which the supply of the internal combustion engine with fuel is supposed to be ensured, the fuel fed by the fuel pump only reaches the internal combustion engine. The fuel pump can thus be of smaller dimensions since the flow rate of the fuel pump is only determined by the internal combustion engine and the suction jet pump in the case of system pressure, while in the case of operation of the fuel pump above the system pressure the flow rate is exclusively determined by the internal combustion engine as a result of the switching off of the suction jet pump.
  • The throughflow opening is of a particularly simple configuration if it is embodied as a diaphragm.
  • A reliable sealing off is achieved according to another advantageous configuration in that the valve body possesses two sealing elements which interact on the inlet side and the outlet side with a sealing seat at the throughflow opening.
  • The sealing elements of the valve body respectively comprise in a simple and thus low-cost formation an annular disk, which annular disks are arranged on the valve body.
  • The structure of the valve body is simplified according to another configuration if the sealing elements are arranged on both sides of the diaphragm relative to the direction of flow such that they surround the throughflow opening.
  • A defined position of the valve body in the open position in the case of system pressure is achieved in a further configuration in that a second spring is arranged relative to the first spring, wherein the first spring is designed with respect to the opening pressure and the second spring allows a further movement of the valve body only above the system pressure. In this manner, a movement of the valve body is prevented in the case of a system pressure in the open position.
  • The springs used can be both pressure springs and tension springs, wherein the springs are arranged between the housing and the valve body.
  • Insofar as pressure springs are used, these can also be arranged in a different configuration between the valve body and the throughflow opening. For improved guidance and receiving of the pressure springs, a shoulder is formed on the valve body in a further configuration.
  • The invention is described in greater detail with reference to several exemplary embodiments. In the drawings
  • FIG. 1: shows a schematic representation of a fuel tank with a feed unit and a suction jet pump according to the invention,
  • FIGS. 2 to 4: show a schematic representation of the valve of the suction jet pump from FIG. 1 in various positions and
  • FIGS. 5 to 7: show further embodiments of the valve according to FIG. 2.
  • FIG. 1 shows schematically a fuel tank 1 of a motor vehicle with a feed unit 2 arranged therein for feeding fuel to an internal combustion engine 3. Feed unit 2 has a fuel pump 5 driven by an electric motor 4 and is connected via a feed line 6 to internal combustion engine 3. A working-fluid line 7 leads from feed line 6 to a suction jet pump 8 which feeds fuel to feed unit 2. As well as working-fluid line 7, suction jet pump 8 comprises a valve 9 arranged in working-fluid line 7, a driving jet nozzle 10 connected to working-fluid line 7, a mixing tube 11 and an intake opening 12, by means of which fuel is sucked into mixing tube 11 by the fuel escaping from driving jet nozzle 10.
  • FIG. 2 shows schematically a first embodiment of valve 9 from FIG. 1. The direction of flow is marked by an arrow. Valve 9 comprises a valve housing 13 with an inlet 14 and an outlet 15. A diaphragm 16 is arranged in valve housing 13, which diaphragm 16 has a throughflow opening 17. Valve 9 possesses a valve body 18 with two disk- like regions 19, 20 which are connected to one another via a central part penetrating through throughflow opening 17 such that disk- shaped regions 19, 20 are arranged on the inlet side and outlet side of throughflow opening 17. Both regions 19, 20 have disk- shaped sealing elements 21, 22 which interact with sealing seats 23, 24 of diaphragm 16. A pressure spring 25 is arranged on the outlet side, which pressure spring 25 moves valve body 18 counter to the direction of flow. The representation shows the depressurized state in which no fuel flows through valve 9. As a result of the spring force, valve body 18 lies on the outlet side against diaphragm 16, wherein sealing element 21 interacts with sealing seat 23 and thus closes throughflow opening 17.
  • FIG. 3 shows valve 9 in the case of system pressure. The fuel flowing in with system pressure via inlet 14 generates a force acting in the direction of flow, which force opposes the spring force. Pressure spring 25 is therein designed such that in the case of system pressure valve body 18 is moved so far in the direction of flow that both sealing elements 21, 22 are not in contact with sealing seats 23, 24. Throughflow opening 17 is thus free and the fuel can flow through valve 9 to outlet 15 and further to the suction jet pump.
  • FIG. 4 shows valve 9 during a starting process of the internal combustion engine. Herein, the fuel pump is actuated such that the pressure in the feed line is increased for a short time. The increased pressure thus also acts in the working-fluid line and in inlet 14 of valve 9. Since the spring force generated by pressure spring 25 is smaller than the force acting on valve body 18 as a result of the increased pressure, valve body 18 is moved further in the direction of flow until sealing element 22 of region 20 lies against inlet-side sealing seat 24 of diaphragm 16. Throughflow opening 17 is thus closed so that no fuel reaches the suction jet pump during the starting process.
  • Valve 9 shown in FIG. 5 differs from the valve according to FIG. 2 in the arrangement of pressure spring 25. Pressure spring 25 is supported between diaphragm 16 and region 20 of valve body 18. Region 20 possesses a shoulder 26 for this purpose. Shoulder 26 is used on the one hand as a guide for pressure spring 25 and ensures on the other hand sufficient space in the axial extension if pressure spring 25 is compressed.
  • FIG. 6 shows valve 9 with a tension spring 27 which is fastened on the inlet side between housing 13 and valve body 18 and moves valve body 18 in the depressurized state counter to the direction of flow such that sealing element 21 interacts with sealing seat 23 of diaphragm 16 such that valve 9 is closed.
  • In a further configuration, FIG. 7 shows valve 9 in the case of system pressure. Herein, two pressure springs 25, 28 are arranged on the outlet side. Pressure spring 25 behaves in accordance with its design as in FIGS. 2 to 4. Pressure spring 28 is harder and is designed with a shorter length, wherein the length and the spring rigidity of pressure spring 28 are selected such that, in the case of system pressure, valve body 18 is moved in the direction of flow as a result of the force acting on it until it lies against pressure spring 28 without pressure spring 28 being compressed. Valve 9 in an open position is located in this position. In this manner, a defined position is created for valve body 18 in the case of system pressure. In the case of a further pressure increase in the event of a starting process, the force acting on valve body 18 is larger than the spring forces of pressure springs 25, 28 such that the valve behaves as in FIG. 4.

Claims (18)

1.-10. (canceled)
11. A suction jet pump, the suction jet comprising:
a driving jet nozzle;
a mixing tube arranged downstream of the driving jet nozzle;
an intake opening arranged between the mixing tube and the driving jet nozzle;
a working-fluid line coupled to the driving jet nozzle; and
a valve arranged in the working-fluid line, the valve comprising:
a valve housing, having an inlet and an outlet,
a throughflow opening arranged in the housing between the inlet and the outlet;
a valve body arranged on both sides of the throughflow opening, the valve body adapted to close the throughflow opening on an inlet side and on an outlet side; and
at least one spring arranged within the housing and coupled to the valve body,
wherein the at least one spring is adapted to hold the valve body in a position closing the throughflow opening until the system pressure is reached.
12. The suction jet pump according to claim 11, wherein the throughflow opening is a diaphragm.
13. The suction jet pump according to claim 11, wherein the valve body comprises:
a first sealing element; and
a second sealing element,
wherein the first sealing element and the second sealing element are adapted to cooperate with a respective inlet sealing seat and output sealing seat on the inlet side and the outlet side of the throughflow opening.
14. The suction jet pump according to claim 13, wherein the first sealing element and the second sealing element are annular disks.
15. The suction jet pump according to claim 12, wherein a first sealing element and a second sealing element are arranged on both sides of the diaphragm relative to the direction of flow such that the first sealing element and the second sealing element surround the throughflow opening
16. The suction jet pump according to claim 11, further comprising a second spring arranged within the housing and coupled to the valve body, wherein the first spring is designed with respect to the opening pressure of the valve and the second spring allows a further movement of the valve body only above the system pressure.
17. The suction jet pump according to claim 11, wherein the at least one spring is a pressure spring.
18. The suction jet pump according to claim 11, wherein the at least one spring is a tension spring.
19. The suction jet pump according to claim 17, wherein the at least one spring is arranged between the housing and the valve body.
20. The suction jet pump according to claim 17, wherein the at least one spring is arranged between the valve body and the throughflow opening.
21. The suction jet pump according to claim 11, further comprising a shoulder formed on the valve body for receiving the at least one spring.
22. The suction jet pump according to claim 11, wherein the at least one spring is adapted to hold the valve body in a position closing the throughflow opening on the outlet side until the system pressure is reached.
23. The suction jet pump according to claim 18, wherein the at least one spring is arranged between the housing and the valve body.
24. The suction jet pump according to claim 11, wherein the at least one spring is adapted to hold the valve body in a position closing the throughflow opening on the inlet side until the system pressure is reached.
25. A suction jet pump, the suction jet comprising:
a driving jet nozzle;
a mixing tube arranged downstream of the driving jet nozzle;
an intake opening arranged between the mixing tube and the driving jet nozzle; and
a valve coupled to the driving jet nozzle in the working-fluid line, the valve comprising:
a valve housing having an inlet and an outlet,
a throughflow opening arranged in the housing between the inlet and the outlet, the throughflow opening having an inlet sealing seat on an inlet side and an output sealing seat and an outlet side of the throughflow opening;
a valve body having a first sealing element arranged on the first side of the throughflow opening and a second sealing element arranged on the second side of the throughflow opening, the first sealing element and the second sealing element are adapted to cooperate with the respective inlet sealing seat and output sealing seat to close the throughflow opening on one of the inlet side and the outlet side of the throughflow opening; and
at least one spring arranged within the housing and coupled to the valve body,
wherein the at least one spring adapted to hold the valve body in a position closing the throughflow opening until the system pressure is reached.
26. The suction jet pump according to claim 25, wherein the at least one spring adapted to hold the valve body in a position closing the throughflow opening on the outlet side until the system pressure is reached.
27. The suction jet pump according to claim 25, wherein the at least one spring adapted to hold the valve body in a position closing the throughflow opening on the inlet side until the system pressure is reached.
US12/227,665 2006-05-24 2007-05-22 Suction Jet Pump Abandoned US20090252618A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006024456.7 2006-05-24
DE102006024456A DE102006024456A1 (en) 2006-05-24 2006-05-24 eductor
PCT/EP2007/054945 WO2007135149A1 (en) 2006-05-24 2007-05-22 Suction jet pump

Publications (1)

Publication Number Publication Date
US20090252618A1 true US20090252618A1 (en) 2009-10-08

Family

ID=38231095

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/227,665 Abandoned US20090252618A1 (en) 2006-05-24 2007-05-22 Suction Jet Pump

Country Status (7)

Country Link
US (1) US20090252618A1 (en)
EP (1) EP2029884B1 (en)
JP (1) JP4637264B2 (en)
CN (1) CN101454562B (en)
BR (1) BRPI0712266B8 (en)
DE (2) DE102006024456A1 (en)
WO (1) WO2007135149A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080319687A1 (en) * 2007-06-21 2008-12-25 Yamaha Hatsudoki Kabushiki Kaisha Remaining gas amount calculating device
US8726886B2 (en) 2011-08-24 2014-05-20 Robert Bosch Gmbh Fuel supply system and anti-siphon jet pump
US11408383B2 (en) * 2018-11-20 2022-08-09 Walbro Llc Fuel pump assembly with electric motor fuel pump and fluid driven fuel pump

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044904A1 (en) * 2008-08-29 2010-03-04 Continental Automotive Gmbh Fuel supply system for a motor vehicle
JP2012132383A (en) * 2010-12-22 2012-07-12 Denso Corp Fuel supply device
IN2014DN06497A (en) * 2012-02-02 2015-06-12 Toyota Motor Co Ltd
DE102016218294B3 (en) 2016-09-23 2018-03-08 Continental Automotive Gmbh Fuel delivery unit
US10190550B2 (en) * 2016-11-30 2019-01-29 GM Global Technology Operations LLC Condensate dispersion assembly
US10982633B2 (en) * 2017-07-03 2021-04-20 Continental Automotive Systems, Inc. Fuel pump solenoid assembly method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131235A (en) * 1976-11-01 1978-12-26 Irrigation Specialties Company Dual-function valve
US5289810A (en) * 1992-07-29 1994-03-01 Robert Bosch Gmbh Arrangement for supplying fuel from supply tank to internal combustion engine of motor vehicle
US6026850A (en) * 1996-02-27 2000-02-22 Global Agricultural Technology And Engineering, Llc Pressure regulating valve
US6209578B1 (en) * 1998-12-23 2001-04-03 Global Agricultural Technology And Engineering, Llc Constant flow valve
US6343589B1 (en) * 2000-02-01 2002-02-05 Walbro Corporation Fuel system with jet pump switching regulator
WO2005070719A1 (en) * 2004-01-21 2005-08-04 Siemens Aktiengesellschaft Fuel feed unit
US20050241621A1 (en) * 2002-08-09 2005-11-03 Siemens Akiengesellschaft Suction jet pump
US7278404B2 (en) * 2004-02-18 2007-10-09 Ti Automotive (Neuss) Gmbh Fuel supply system and a method for controlling the fuel supply
US20080095642A1 (en) * 2004-10-09 2008-04-24 Peter Schelhas Device for Pumping Fuel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255711A (en) * 1992-08-28 1993-10-26 Hughes Aircraft Company Spring-loaded pressure regulating valve including rolling diaphragm and compensation for variation of spring force with diaphragm displacement
JP3303708B2 (en) * 1997-01-31 2002-07-22 三菱電機株式会社 Vehicle fuel supply system
JPH1150925A (en) * 1997-07-30 1999-02-23 Unisia Jecs Corp Fuel suction pump
JPH11294299A (en) * 1998-04-10 1999-10-26 Toyota Autom Loom Works Ltd Fuel injection valve
JP2000045909A (en) * 1998-08-04 2000-02-15 Makita:Kk Pre-injection fuel injection valve with two-stage nozzle port area characteristics
DE10222895A1 (en) * 2002-05-23 2003-12-11 Bosch Gmbh Robert High pressure accumulator for fuel injection systems with integrated pressure control valve

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131235A (en) * 1976-11-01 1978-12-26 Irrigation Specialties Company Dual-function valve
US5289810A (en) * 1992-07-29 1994-03-01 Robert Bosch Gmbh Arrangement for supplying fuel from supply tank to internal combustion engine of motor vehicle
US6026850A (en) * 1996-02-27 2000-02-22 Global Agricultural Technology And Engineering, Llc Pressure regulating valve
US6209578B1 (en) * 1998-12-23 2001-04-03 Global Agricultural Technology And Engineering, Llc Constant flow valve
US6343589B1 (en) * 2000-02-01 2002-02-05 Walbro Corporation Fuel system with jet pump switching regulator
US20050241621A1 (en) * 2002-08-09 2005-11-03 Siemens Akiengesellschaft Suction jet pump
WO2005070719A1 (en) * 2004-01-21 2005-08-04 Siemens Aktiengesellschaft Fuel feed unit
US20070151609A1 (en) * 2004-01-21 2007-07-05 Lothar Dickenscheid Fuel feed unit
US7370640B2 (en) * 2004-01-21 2008-05-13 Siemens Aktiengesellschaft Fuel feed unit
US7278404B2 (en) * 2004-02-18 2007-10-09 Ti Automotive (Neuss) Gmbh Fuel supply system and a method for controlling the fuel supply
US20080095642A1 (en) * 2004-10-09 2008-04-24 Peter Schelhas Device for Pumping Fuel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080319687A1 (en) * 2007-06-21 2008-12-25 Yamaha Hatsudoki Kabushiki Kaisha Remaining gas amount calculating device
US7885783B2 (en) * 2007-06-21 2011-02-08 Yamaha Hatsudoki Kabushiki Kaisha Remaining gas amount calculating device
US8726886B2 (en) 2011-08-24 2014-05-20 Robert Bosch Gmbh Fuel supply system and anti-siphon jet pump
US11408383B2 (en) * 2018-11-20 2022-08-09 Walbro Llc Fuel pump assembly with electric motor fuel pump and fluid driven fuel pump

Also Published As

Publication number Publication date
EP2029884B1 (en) 2009-10-14
DE502007001750D1 (en) 2009-11-26
CN101454562A (en) 2009-06-10
BRPI0712266B1 (en) 2019-04-09
JP4637264B2 (en) 2011-02-23
DE102006024456A1 (en) 2007-11-29
JP2009537744A (en) 2009-10-29
WO2007135149A1 (en) 2007-11-29
BRPI0712266B8 (en) 2023-01-17
EP2029884A1 (en) 2009-03-04
BRPI0712266A2 (en) 2012-01-17
CN101454562B (en) 2012-06-20

Similar Documents

Publication Publication Date Title
US20090252618A1 (en) Suction Jet Pump
JP4681004B2 (en) Additive pump unit
JP6275634B2 (en) Flow control valve and evaporated fuel processing device
US10934976B2 (en) Evaporated fuel treatment device
US5765538A (en) Pump device for a fuel vapor retention system of an internal combustion engine
JP2008138785A (en) Pressure regulating valve
JPH0849615A (en) Feeding device for fuel to internal combustion engine of automobile from fuel tank
US20110135505A1 (en) Pump Device For Feeding Fuel In A Fuel Tank
JP6275633B2 (en) Flow control valve and evaporated fuel processing device
US10495232B2 (en) Dual path dual purge valve system and valve assembly for turbo boosted engine
US9765898B2 (en) Valve device for switching or metering a fluid
US20180180001A1 (en) Fuel tank system
JP4877845B2 (en) Fuel supply device
US7017557B2 (en) Feed device
US9551310B2 (en) Valve device
JP2001140719A (en) Fuel supply device for internal combustion engine of automobile
US9970337B2 (en) Actuator for valves in internal combustion engines
US11458834B2 (en) Fluid control valve and evaporated fuel processing device
JPS62113878A (en) Fuel feeder supplying internal combustion engine with fuel from fuel tank
CN102770661A (en) Compact flow-through fuel pressure regulator
US8066030B2 (en) Fuel conveying device
US9027594B2 (en) Fuel system valve assembly
EP3645330B1 (en) A ventilation flow rate regulator for a pressurized vehicle tank
US11378200B2 (en) Electromagnetically operated valve
JP7488475B2 (en) Flow Control Valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTINENTAL AUTOMOTIVE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENSERT, HEIKO;REEL/FRAME:021904/0071

Effective date: 20081103

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION