US20090206946A1 - Apparatus and method for reducing propagation delay in a conductor - Google Patents

Apparatus and method for reducing propagation delay in a conductor Download PDF

Info

Publication number
US20090206946A1
US20090206946A1 US12/378,073 US37807309A US2009206946A1 US 20090206946 A1 US20090206946 A1 US 20090206946A1 US 37807309 A US37807309 A US 37807309A US 2009206946 A1 US2009206946 A1 US 2009206946A1
Authority
US
United States
Prior art keywords
conductor
conductors
selectively
electrical signal
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/378,073
Inventor
James Brady
Duane Giles Laurent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/378,073 priority Critical patent/US20090206946A1/en
Publication of US20090206946A1 publication Critical patent/US20090206946A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5225Shielding layers formed together with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to electrical and integrated circuits and, in particular, to an electrical conductor for an electrical and/or integrated circuit.
  • the transmission speed of an electrical signal along a conductor medium in an electrical circuit is dependent on several factors.
  • the propagation delay of the pulse depends on the length of the medium and the wave velocity.
  • the wave velocity, in rum is related to the dielectric constant of the surrounding medium and the speed of light.
  • the RC time constant Another factor that delays the signal is caused by the resistance and capacitance of the conductor medium, commonly called the RC time constant.
  • the speed of an electrical signal decreases when capacitance increases. Similarly, speed increases when capacitance decreases.
  • the capacitance of the conductor medium depends on several factors, mainly the environment surrounding the conductor medium.
  • an apparatus for decreasing the propagation delay time of an electrical signal transmitted along a conductor in a circuit includes a first conductor having a length extending from a first area of the circuit to a second area of the circuit and for carrying the electrical signal.
  • a second conductor located proximate the first conductor extends substantially parallel and along the first conductor, with the second conductor electrically coupled to the first conductor.
  • a conductor for transmitting a clocking signal from a first area to a second area of an integrated circuit.
  • the conductor has a first elongated conductive portion extending from the first area to the second area and a second elongated conductive portion located proximate and spaced apart from the first conductive portion and extending substantially parallel with the first conductive portion.
  • the conductor also includes a third elongated conductive portion located proximate and spaced apart from the first conductive portion and extending substantially parallel with the first conductive portion.
  • the first conductive portion is electrically connected to the second conductive portion and the third conductive portion.
  • a method of forming an electrical conductor in a circuit that increases the speed of an electrical signal transmitted along the conductor.
  • the method includes the steps of fabricating a first conductor having a length extending from a first area of the circuit to a second area of the circuit, and fabricating a second conductor proximate the first conductor and extending substantially parallel and along the first conductor, the second conductor electrically coupled to the first conductor.
  • FIG. 1 is cross-sectional view of a semiconductor (or printed circuit board) substrate illustrating the capacitance between three signal lines (i.e., conductors) in the substrate;
  • FIG. 2 is a diagram illustrating a conductor in accordance with the present invention.
  • FIG. 3A is a more detailed diagram and top view of the conductor set forth in FIG. 2 ;
  • FIG. 3B is a cross-sectional view along line 3 B- 3 B of FIG. 3A ;
  • FIGS. 4A-4C illustrate different configurations or embodiments of the conductor in accordance with the present invention
  • FIGS. 5A-5C illustrate cross sectional views of different embodiments of the conductor of the present invention.
  • FIG. 6A is a graph illustrating the improvement in rise time (i.e. showing propagation delays) of a signal on a conductor in accordance with the present invention.
  • FIGS. 6B-6D illustrate each of the configurations for the signal waveforms shown in FIG. 6A .
  • FIG. 1 there is shown a cross-sectional view of a medium (semiconductor integrated circuit or printed circuit board, or the like) 8 having a substrate layer 20 , an insulation layer 10 , a first conductor 12 (also referenced as conductor A), a conductor 14 (also referenced as conductor D) and a conductor 16 (also referenced as conductor E) formed in the insulation layer 10 .
  • a medium 8 semiconductor integrated circuit or printed circuit board, or the like
  • FIG. 1 also shows capacitance paths 18 (illustrated in dotted lines) between the first conductor 12 and the conductors 14 , 16 . Additionally shown in FIG.
  • the substrate layer 20 (which may include a conductive layer or other elements) and capacitance paths between the conductor 12 and the substrate layer 20 .
  • capacitance paths may exist between the conductor 12 and other elements or materials located proximate (above, beside, below) the conductor 12 , but are not shown for convenience.
  • the conductor 12 extends through the medium 8 , many different conductors or elements having different (and dynamic) electrical signals thereon will be positioned proximate the conductor 12 . These couple capacitively to the conductor 12 . It is readily understood that the amount of capacitive coupling depends on several factors, including the distance from the conductor 12 , the length of the coupling region, the rate of change of the potential difference between conductor 12 and each proximate conductor, and the dielectric constant(s) of the material(s) therebetween. The total value of the capacitance is one factor that determines the “speed” and/or propagation delay of an electrical signal transmitted along the conductor 12 . As the capacitance increases, the speed decreases (or propagation delay increases). Therefore, reducing the capacitance that an electrical signal “sees” as it propagates along the conductor 12 will increase its speed (or decrease its propagation delay).
  • a signal on one conductor increasing in voltage while a signal on another conductor decreases in voltage generates the maximum capacitive effect, while two signals increasing (or decreasing) together generates the least capacitive effect.
  • the capacitive effect is great between non-shielded conductor lines when both signals are active and opposite in direction. This effect remains substantial when one signal is active (increasing or decreasing) and the other signal is static (e.g., one signal is rising to a logic one and the other signal is held at a logic zero).
  • FIG. 2 there is illustrated a circuit 100 having a conductor 120 extending from a first circuit 112 located in a first area 114 of an integrated circuit 100 to a second circuit 116 located in a second area 118 of the integrated circuit 100 .
  • the conductor 120 has a length L, as shown in FIG. 2 .
  • the conductor 120 in accordance with the present invention reduces or decreases the propagation delay time (increases the speed) of an electrical signal transmitted along the conductor 120 .
  • the circuit 100 may also be any other electrical circuit, including a printed circuit board. Accordingly, the description of the present invention with respect to integrated circuits is also applicable to printed circuit boards and the like.
  • the signal transmitted on the conductor 120 is a clocking signal and the propagation delay of the signal is reduced or decreased, thus increasing the speed of the signal.
  • the length L of the conductor 120 should be more than about 250 microns, and preferably about 1000 microns or more. As will be appreciated, when used in an integrated circuit, the length L will most likely be less than 50,000 microns, depending on the size of the integrated circuit substrate.
  • the signal(s) transmitted on the conductor 120 are generally about 10 MHz or greater and, preferably, about 200 MHz or greater, to obtain the many advantages of the present invention.
  • the conductor 120 includes a first conductor 120 a, a second conductor (or conductive portion) 120 b extending substantially parallel and along the first conductor 120 a, and a third conductor (or conductive portion) 120 c extending substantially parallel and along the first conductor 120 a.
  • the conductors 120 a, 120 b, 120 c are shown extending from the first circuit 112 (in the first area 114 ) to the second circuit 116 (in the second area 118 ) (see also FIG. 2 ).
  • Each of the conductors 120 a, 120 b, 120 c are made of any conductive metal or material, preferably of low resistance, including copper, tungsten, aluminum, polysilicon or other material, or combination thereof.
  • the additional conductor(s) may not run along the conductor 120 a the entire distance L, but instead substantial portions may run along the conductor 120 a.
  • FIG. 3B there is shown a cross-sectional view cut along line A-A of FIG. 3A .
  • the conductors 120 a, 120 b , 120 c are formed in a insulating layer 200 (of an integrated circuit or printed circuit board, or the like). Additional layers of substrate may be provided, such as a substrate layer 202 .
  • the conductors 120 b and 120 c are each spaced apart substantially laterally from the conductor 120 a , with the conductor 120 b positioned along one side of the conductor 120 a and the conductor 120 c positioned along the other side of the conductor 120 a.
  • the width of each of the conductors is generally about 0.7 microns and the spacing therebetween is about 0.7 microns.
  • the width and spacing dimensions may vary, and elements/dimensions in the figure may vary and may not be drawn to scale. It is expected that next generation processes will generate widths on the order of 0.2 to 0.4 microns, and perhaps even smaller.
  • FIGS. 4A-4C there are illustrated different configurations or embodiments for electrically connecting the conductors 120 b, 120 c to the main conductor 120 a .
  • the conductors 120 a, 120 b, 120 c are electrically connected at or near the source end, as illustrated, using a conductive material, such as the material used to fabricate the conductors.
  • a conductive material such as the material used to fabricate the conductors.
  • the designations “source” and “destination” are used for convenience and illustrative purposes only, and that the designations could be switched, such that the source end may refer to the first circuit 112 or first area 114 , or the second circuit 116 or second area 118 .
  • the conductor 120 (or 120 a ) may be bi-directional, depending on the desired circuitry and functioning of the integrated circuit (or electrical circuit).
  • FIG. 4B there is illustrated another configuration or embodiment of the conductor 120 wherein the conductor 120 a is electrically connected at one end to three separate drivers 210 .
  • Each driver 210 drives the respective conductors 120 a, 120 b, 120 c.
  • the drivers 210 may include any other type of circuitry, and are not limited to inverters.
  • FIG. 4C there is illustrated yet another configuration or embodiment of the conductor 120 wherein a plurality of switches 220 are used to electrically connect the conductor 120 a to the conductor 120 b, and to electrically connect the conductor 120 a to the conductor 120 c.
  • the switches could also be tri-state devices. It will be understood to those skilled in the art that other circuits and methods may be used to electrically connect the conductor 120 a to the conductors 120 b, 120 c.
  • the conductors 120 b and 120 c could also be utilized by other circuitry (connected as indicated in the figure by the label “TO OTHER CIRCUITRY”) when the conductor 120 a is not active, unused, or when a signal is transmitted whose speed or propagation delay is unimportant. This is accomplished using switches and/or tri-state devices with appropriate control lines, and can be implemented by those skilled in the art.
  • the conductor 120 includes a first conductor 120 a, a second conductor (or conductive portion) 120 b extending substantially parallel and along the first conductor 120 a, and a third conductor (or conductive portion) 120 c extending substantially parallel and along the first conductor 120 a.
  • the conductors 120 b and 120 c are each spaced apart substantially vertically from the conductor 120 a, with the conductor 120 b positioned along the top side of the conductor 120 a and the conductor 120 c positioned along the bottom side of the conductor 120 a.
  • the conductor 120 includes a first conductor 120 a and a plurality of conductors (or conductive portions) 120 b , 120 c, 120 d, 120 e, whereby the conductors 120 b, 120 c, 120 d, 120 e each extend substantially parallel and along the first conductor 120 a.
  • the conductors 120 b and 120 c are each spaced apart substantially laterally from the conductor 120 a, with the conductor 120 b positioned along one side of the conductor 120 a and the conductor 120 c positioned along the other side of the conductor 120 a.
  • the conductors 120 d and 120 e are each spaced apart substantially vertically from the conductor 120 a, with the conductor 120 d positioned along the top side of the conductor 120 a and the conductor 120 e positioned along the bottom side of the conductor 120 a.
  • the conductor 120 in includes the conductors 120 b, 120 c, 120 d, 120 e as set forth in FIG. 5B , and also includes a conductor 120 f, a conductor 120 g, a conductor 120 h , and a conductor 120 i, as shown in FIG. 5C .
  • FIGS. 6A-6D there are shown in FIG. 6A signal waveforms in graphical representation illustrating rise times for a prior art conductor shown in FIG. 6B , for one embodiment of the present invention shown in FIG. 6C , and for another embodiment of the present invention shown in FIG. 6D .
  • FIG. 6B there is shown the prior art conductor 12 with additional conductors 14 and 16 .
  • the width of each conductor 12 , 14 , 16 is about 0.7 microns and the spacing therebetween is about 2.1 microns.
  • the conductors 14 and 16 are not electrically connected to the conductors 14 and 16 .
  • FIG. 6C there is shown one embodiment of the present invention having the conductor 120 including the conductor 120 a and 120 b.
  • the width of each conductor 120 a, 120 b , 14 , 16 is about 0.7 microns and the spacing between the conductors 14 , 120 b and 120 a is about 0.7 microns while the spacing between the conductors 120 a and 16 is about 2.1 microns.
  • the conductors 120 a and 120 b are electrically connected while the conductors 14 and 16 are not electrically connected to the conductor 120 .
  • FIG. 6D there is shown one embodiment of the present invention having the conductor 120 including the conductor 120 a and 120 b.
  • the width of each conductor 120 a, 120 b , 120 c, 14 , 16 is about 0.7 microns and the spacing therebetween is about 0.7 microns.
  • the conductors 120 a and 120 b are electrically connected while the conductors 14 and 16 are not electrically connected to the conductor 120 .
  • FIG. 6A there is shown a graph of voltage (volts) versus time (nanoseconds) comparing simulation results of the present invention with a prior art conductor.
  • An ideal signal waveform for a signal transition from a logic zero (about 0 volts) to a logic one (about 3.3 volts) is identified by reference numeral 600 , and illustrated with an instantaneous rise time.
  • the waveform of a signal on the conductor 12 is identified by reference numeral 602 , with the conductors 14 and 16 held at a logic zero.
  • the prior art conductor 12 has a rise time (measured at about 90% of the logic one level of about 3.3 volts) of approximately 0.28 nanoseconds due to the capacitive effects of the conductors 14 and 16 on the conductor 12 .
  • the conductor 120 a corresponds to the prior art conductor 12 shown in FIG. 6B .
  • the waveform of the signal on the conductor 120 a is identified by reference numeral 604 , with the conductors 14 and 16 held at a logic zero.
  • the conductor 120 a has a rise time of approximately 0.16 nanoseconds due to the capacitive effects of the conductors 14 and 16 on the conductor 12 .
  • the conductor 120 a is “shielded” from some of the capacitive effects of the conductors 14 and 16 on the conductor 120 a.
  • the conductor 120 results in an increase in speed and decrease in rise time (with a corresponding decrease in propagation delay) of a signal transmitted on the conductor 120 .
  • the waveform of the signal on the conductor 120 a is identified by reference numeral 606 , with the conductors 14 and 16 held at a logic zero.
  • the conductor 120 a has a rise time of approximately 0.13 nanoseconds due to the capacitive effects of the conductors 14 and 16 on the conductor 12 .
  • the conductor 120 a is “shielded” from some of the capacitive effects of the conductors 14 and 16 on the conductor 120 a.
  • the conductor 120 results in an increase in speed and decrease in rise time (with a corresponding decrease in propagation delay) of a signal transmitted on the conductor 120 .
  • the decrease/gain in rise time is about 0.15 nanoseconds. As shown, the decrease in rise time (increase in speed) is greater than a factor of two (and the corresponding reduction in propagation delay is greater than 50%).
  • the signal on the conductors 120 b and 120 c will have slower rise time in voltage at the end of the conductor line than the conductor 120 a. It will also be understood that the advantages of the present invention are also present for decreases in voltage (fall time) and not limited to increases in voltage (rise time).
  • the capacitive effect (which causes delay) becomes-greater as the dimensions of the integrated circuit (including printed circuit boards) decreases, and the next smaller generation of integrated circuits will incur a greater capacitive effect from line to line. Therefore, the present invention will be of increased benefit for future generation devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

An apparatus and method is provided that reduces the propagation delay in a conductor carrying an electrical signal from a first area of a circuit to a second area of the circuit. The conductor is fabricated to include a first conductor extending from the first area to the second area. The conductor also includes a second conductor extending substantially parallel and along the first conductor and electrically connected to the first conductor. A third and additional conductors may also be used which extend substantially parallel and along the first conductor and are electrically connected to the first conductor. The additional second conductor (and any additional conductors) reduces the capacitance of the conductor thereby reducing the propagation delay in the conductor (increasing the speed of the signal). The additional conductor(s) effectively “shield” the first conductor from some capacitance that the first conductor would normally “see” without the use of such additional conductors.

Description

  • This application is a continuation application of prior pending U.S. patent application Ser. No. 10/997,089 filed Nov. 23, 2004, which is a divisional of prior pending U.S. patent application Ser. No. 09/757,378 filed on Jan. 9, 2001, which is a continuation of prior U.S. patent application Ser. No. 09/127,050 filed Jul. 31, 1998.
  • TECHNICAL FIELD
  • The present invention relates to electrical and integrated circuits and, in particular, to an electrical conductor for an electrical and/or integrated circuit.
  • BACKGROUND
  • The transmission speed of an electrical signal along a conductor medium in an electrical circuit (including an integrated circuit and/or semiconductor device) is dependent on several factors. For a pulse transmitted through a conductor medium having a given length and wave velocity, the propagation delay of the pulse depends on the length of the medium and the wave velocity. The wave velocity, in rum, is related to the dielectric constant of the surrounding medium and the speed of light.
  • Another factor that delays the signal is caused by the resistance and capacitance of the conductor medium, commonly called the RC time constant. The speed of an electrical signal decreases when capacitance increases. Similarly, speed increases when capacitance decreases. The capacitance of the conductor medium depends on several factors, mainly the environment surrounding the conductor medium.
  • Accordingly, there exists a need for an apparatus and method for reducing the effective capacitance in a conductor of an electrical circuit thereby increasing the speed of an electrical signal transmitted along the conductor. Further, there is needed a conductor with relatively low capacitance for increasing the speed of an electrical signal transmitted therealong. Additionally, there is needed a method of constructing a conductor in an electrical circuit that reduces the capacitive effects surrounding the conductor and increases the speed of an electrical signal transmitted on the conductor.
  • SUMMARY OF THE INVENTION
  • According to the present invention, there is provided an apparatus for decreasing the propagation delay time of an electrical signal transmitted along a conductor in a circuit. The apparatus includes a first conductor having a length extending from a first area of the circuit to a second area of the circuit and for carrying the electrical signal. A second conductor located proximate the first conductor extends substantially parallel and along the first conductor, with the second conductor electrically coupled to the first conductor.
  • In another embodiment of the present invention, there is provided a conductor for transmitting a clocking signal from a first area to a second area of an integrated circuit. The conductor has a first elongated conductive portion extending from the first area to the second area and a second elongated conductive portion located proximate and spaced apart from the first conductive portion and extending substantially parallel with the first conductive portion. The conductor also includes a third elongated conductive portion located proximate and spaced apart from the first conductive portion and extending substantially parallel with the first conductive portion. The first conductive portion is electrically connected to the second conductive portion and the third conductive portion.
  • In yet another embodiment of the present invention, there is provided a method of forming an electrical conductor in a circuit that increases the speed of an electrical signal transmitted along the conductor. The method includes the steps of fabricating a first conductor having a length extending from a first area of the circuit to a second area of the circuit, and fabricating a second conductor proximate the first conductor and extending substantially parallel and along the first conductor, the second conductor electrically coupled to the first conductor.
  • The foregoing has outlined rather broadly the features and technical advantage of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention, and the advantages thereof, reference is made to the following description taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is cross-sectional view of a semiconductor (or printed circuit board) substrate illustrating the capacitance between three signal lines (i.e., conductors) in the substrate;
  • FIG. 2 is a diagram illustrating a conductor in accordance with the present invention;
  • FIG. 3A is a more detailed diagram and top view of the conductor set forth in FIG. 2;
  • FIG. 3B is a cross-sectional view along line 3B-3B of FIG. 3A;
  • FIGS. 4A-4C illustrate different configurations or embodiments of the conductor in accordance with the present invention;
  • FIGS. 5A-5C illustrate cross sectional views of different embodiments of the conductor of the present invention;
  • FIG. 6A is a graph illustrating the improvement in rise time (i.e. showing propagation delays) of a signal on a conductor in accordance with the present invention; and
  • FIGS. 6B-6D illustrate each of the configurations for the signal waveforms shown in FIG. 6A.
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to the drawings, like reference characters designate like or similar elements throughout the drawings.
  • Now referring to FIG. 1, there is shown a cross-sectional view of a medium (semiconductor integrated circuit or printed circuit board, or the like) 8 having a substrate layer 20, an insulation layer 10, a first conductor 12 (also referenced as conductor A), a conductor 14 (also referenced as conductor D) and a conductor 16 (also referenced as conductor E) formed in the insulation layer 10. As will be appreciated, if the medium 8 is printed circuit board, the substrate layer 20 may not be present. FIG. 1 also shows capacitance paths 18 (illustrated in dotted lines) between the first conductor 12 and the conductors 14, 16. Additionally shown in FIG. 1 are the substrate layer 20 (which may include a conductive layer or other elements) and capacitance paths between the conductor 12 and the substrate layer 20. In addition, capacitance paths may exist between the conductor 12 and other elements or materials located proximate (above, beside, below) the conductor 12, but are not shown for convenience.
  • As will be appreciated, as the conductor 12 extends through the medium 8, many different conductors or elements having different (and dynamic) electrical signals thereon will be positioned proximate the conductor 12. These couple capacitively to the conductor 12. It is readily understood that the amount of capacitive coupling depends on several factors, including the distance from the conductor 12, the length of the coupling region, the rate of change of the potential difference between conductor 12 and each proximate conductor, and the dielectric constant(s) of the material(s) therebetween. The total value of the capacitance is one factor that determines the “speed” and/or propagation delay of an electrical signal transmitted along the conductor 12. As the capacitance increases, the speed decreases (or propagation delay increases). Therefore, reducing the capacitance that an electrical signal “sees” as it propagates along the conductor 12 will increase its speed (or decrease its propagation delay).
  • In general terms, a signal on one conductor increasing in voltage while a signal on another conductor decreases in voltage (resulting in an increase in the voltage difference or “delta” voltage delta over time) generates the maximum capacitive effect, while two signals increasing (or decreasing) together generates the least capacitive effect. In other words, the capacitive effect is great between non-shielded conductor lines when both signals are active and opposite in direction. This effect remains substantial when one signal is active (increasing or decreasing) and the other signal is static (e.g., one signal is rising to a logic one and the other signal is held at a logic zero).
  • Now referring to FIG. 2, there is illustrated a circuit 100 having a conductor 120 extending from a first circuit 112 located in a first area 114 of an integrated circuit 100 to a second circuit 116 located in a second area 118 of the integrated circuit 100. The conductor 120 has a length L, as shown in FIG. 2. The conductor 120 in accordance with the present invention reduces or decreases the propagation delay time (increases the speed) of an electrical signal transmitted along the conductor 120. As will be appreciated, the circuit 100 may also be any other electrical circuit, including a printed circuit board. Accordingly, the description of the present invention with respect to integrated circuits is also applicable to printed circuit boards and the like. In the preferred embodiment, the signal transmitted on the conductor 120 is a clocking signal and the propagation delay of the signal is reduced or decreased, thus increasing the speed of the signal. To obtain most of the benefits and advantages of the present invention, the length L of the conductor 120 should be more than about 250 microns, and preferably about 1000 microns or more. As will be appreciated, when used in an integrated circuit, the length L will most likely be less than 50,000 microns, depending on the size of the integrated circuit substrate. The signal(s) transmitted on the conductor 120 are generally about 10 MHz or greater and, preferably, about 200 MHz or greater, to obtain the many advantages of the present invention.
  • Now referring to FIG. 3A, there is illustrated a more detailed diagram of the conductor 120 of the present invention. The conductor 120 includes a first conductor 120 a, a second conductor (or conductive portion) 120 b extending substantially parallel and along the first conductor 120 a, and a third conductor (or conductive portion) 120 c extending substantially parallel and along the first conductor 120 a. The conductors 120 a, 120 b, 120 c are shown extending from the first circuit 112 (in the first area 114) to the second circuit 116 (in the second area 118) (see also FIG. 2). Each of the conductors 120 a, 120 b, 120 c are made of any conductive metal or material, preferably of low resistance, including copper, tungsten, aluminum, polysilicon or other material, or combination thereof.
  • It will be understood that due to routing and process constraints and requirements, the additional conductor(s) may not run along the conductor 120 a the entire distance L, but instead substantial portions may run along the conductor 120 a. Now referring to FIG. 3B, there is shown a cross-sectional view cut along line A-A of FIG. 3A. The conductors 120 a, 120 b, 120 c are formed in a insulating layer 200 (of an integrated circuit or printed circuit board, or the like). Additional layers of substrate may be provided, such as a substrate layer 202. The conductors 120 b and 120 c are each spaced apart substantially laterally from the conductor 120 a, with the conductor 120 b positioned along one side of the conductor 120 a and the conductor 120 c positioned along the other side of the conductor 120 a. As will be appreciated, using present processes and methods, the width of each of the conductors is generally about 0.7 microns and the spacing therebetween is about 0.7 microns. However, the width and spacing dimensions may vary, and elements/dimensions in the figure may vary and may not be drawn to scale. It is expected that next generation processes will generate widths on the order of 0.2 to 0.4 microns, and perhaps even smaller.
  • Now referring to FIGS. 4A-4C, there are illustrated different configurations or embodiments for electrically connecting the conductors 120 b, 120 c to the main conductor 120 a. In FIG. 4A, the conductors 120 a, 120 b, 120 c are electrically connected at or near the source end, as illustrated, using a conductive material, such as the material used to fabricate the conductors. It will be understood that the designations “source” and “destination” are used for convenience and illustrative purposes only, and that the designations could be switched, such that the source end may refer to the first circuit 112 or first area 114, or the second circuit 116 or second area 118. Moreover, the conductor 120 (or 120 a) may be bi-directional, depending on the desired circuitry and functioning of the integrated circuit (or electrical circuit).
  • Now referring to FIG. 4B, there is illustrated another configuration or embodiment of the conductor 120 wherein the conductor 120 a is electrically connected at one end to three separate drivers 210. Each driver 210 drives the respective conductors 120 a, 120 b, 120 c. The drivers 210 may include any other type of circuitry, and are not limited to inverters.
  • Now referring to FIG. 4C, there is illustrated yet another configuration or embodiment of the conductor 120 wherein a plurality of switches 220 are used to electrically connect the conductor 120 a to the conductor 120 b, and to electrically connect the conductor 120 a to the conductor 120 c. The switches could also be tri-state devices. It will be understood to those skilled in the art that other circuits and methods may be used to electrically connect the conductor 120 a to the conductors 120 b, 120 c.
  • As shown in FIG. 4C, the conductors 120 b and 120 c could also be utilized by other circuitry (connected as indicated in the figure by the label “TO OTHER CIRCUITRY”) when the conductor 120 a is not active, unused, or when a signal is transmitted whose speed or propagation delay is unimportant. This is accomplished using switches and/or tri-state devices with appropriate control lines, and can be implemented by those skilled in the art.
  • Now referring to FIGS. 5A-5C, there are shown cross-sectional views of several embodiments of the conductor 120 alternative to the embodiment shown in FIGS. 3A and 3B. In FIG. 5A, the conductor 120 includes a first conductor 120 a, a second conductor (or conductive portion) 120 b extending substantially parallel and along the first conductor 120 a, and a third conductor (or conductive portion) 120 c extending substantially parallel and along the first conductor 120 a. The conductors 120 b and 120 c are each spaced apart substantially vertically from the conductor 120 a, with the conductor 120 b positioned along the top side of the conductor 120 a and the conductor 120 c positioned along the bottom side of the conductor 120 a.
  • Now referring to FIG. 5B, there is shown another alternative embodiment of the present invention that includes the features illustrated in FIGS. 3B and 5A. The conductor 120 includes a first conductor 120 a and a plurality of conductors (or conductive portions) 120 b, 120 c, 120 d, 120 e, whereby the conductors 120 b, 120 c, 120 d, 120 e each extend substantially parallel and along the first conductor 120 a. The conductors 120 b and 120 c are each spaced apart substantially laterally from the conductor 120 a, with the conductor 120 b positioned along one side of the conductor 120 a and the conductor 120 c positioned along the other side of the conductor 120 a. The conductors 120 d and 120 e are each spaced apart substantially vertically from the conductor 120 a, with the conductor 120 d positioned along the top side of the conductor 120 a and the conductor 120 e positioned along the bottom side of the conductor 120 a.
  • Now referring to FIG. 5C, there is shown yet another alternative embodiment of the present invention. The conductor 120 in includes the conductors 120 b, 120 c, 120 d, 120 e as set forth in FIG. 5B, and also includes a conductor 120 f, a conductor 120 g, a conductor 120 h, and a conductor 120 i, as shown in FIG. 5C.
  • Now referring to FIGS. 6A-6D, there are shown in FIG. 6A signal waveforms in graphical representation illustrating rise times for a prior art conductor shown in FIG. 6B, for one embodiment of the present invention shown in FIG. 6C, and for another embodiment of the present invention shown in FIG. 6D.
  • In FIG. 6B, there is shown the prior art conductor 12 with additional conductors 14 and 16. The width of each conductor 12, 14, 16 is about 0.7 microns and the spacing therebetween is about 2.1 microns. The conductors 14 and 16 are not electrically connected to the conductors 14 and 16.
  • In FIG. 6C, there is shown one embodiment of the present invention having the conductor 120 including the conductor 120 a and 120 b. The width of each conductor 120 a, 120 b, 14, 16 is about 0.7 microns and the spacing between the conductors 14, 120 b and 120 a is about 0.7 microns while the spacing between the conductors 120 a and 16 is about 2.1 microns. The conductors 120 a and 120 b are electrically connected while the conductors 14 and 16 are not electrically connected to the conductor 120.
  • In FIG. 6D, there is shown one embodiment of the present invention having the conductor 120 including the conductor 120 a and 120 b. The width of each conductor 120 a, 120 b, 120 c, 14, 16 is about 0.7 microns and the spacing therebetween is about 0.7 microns. The conductors 120 a and 120 b are electrically connected while the conductors 14 and 16 are not electrically connected to the conductor 120.
  • Now referring to FIG. 6A, there is shown a graph of voltage (volts) versus time (nanoseconds) comparing simulation results of the present invention with a prior art conductor. An ideal signal waveform for a signal transition from a logic zero (about 0 volts) to a logic one (about 3.3 volts) is identified by reference numeral 600, and illustrated with an instantaneous rise time. For the prior art conductor illustrated in FIG. 6B, the waveform of a signal on the conductor 12 is identified by reference numeral 602, with the conductors 14 and 16 held at a logic zero. As is shown, the prior art conductor 12 has a rise time (measured at about 90% of the logic one level of about 3.3 volts) of approximately 0.28 nanoseconds due to the capacitive effects of the conductors 14 and 16 on the conductor 12.
  • Now referring to two of the embodiments of the present invention as illustrated in FIGS. 6C and 6D, there is a substantial decrease in the rise time and corresponding decrease in the propagation delay (or increase in speed) for the conductor 120 of the present invention. As will be appreciated, the conductor 120 a corresponds to the prior art conductor 12 shown in FIG. 6B. For the conductor 120 (including the conductors 120 a and 120 b) illustrated in FIG. 6C, the waveform of the signal on the conductor 120 a is identified by reference numeral 604, with the conductors 14 and 16 held at a logic zero. As is shown, the conductor 120 a has a rise time of approximately 0.16 nanoseconds due to the capacitive effects of the conductors 14 and 16 on the conductor 12. By adding the additional conductor 120 b substantially parallel and along the conductor 120 a, the conductor 120 a is “shielded” from some of the capacitive effects of the conductors 14 and 16 on the conductor 120 a. The conductor 120 results in an increase in speed and decrease in rise time (with a corresponding decrease in propagation delay) of a signal transmitted on the conductor 120.
  • For the conductor 120 (including the conductors 120 a, 120 b and 120 c) illustrated in FIG. 6D, the waveform of the signal on the conductor 120 a is identified by reference numeral 606, with the conductors 14 and 16 held at a logic zero. As is shown, the conductor 120 a has a rise time of approximately 0.13 nanoseconds due to the capacitive effects of the conductors 14 and 16 on the conductor 12. By adding the additional conductors 120 b and 120 c substantially parallel and along the conductor 120 a, the conductor 120 a is “shielded” from some of the capacitive effects of the conductors 14 and 16 on the conductor 120 a. The conductor 120 results in an increase in speed and decrease in rise time (with a corresponding decrease in propagation delay) of a signal transmitted on the conductor 120. The decrease/gain in rise time is about 0.15 nanoseconds. As shown, the decrease in rise time (increase in speed) is greater than a factor of two (and the corresponding reduction in propagation delay is greater than 50%).
  • As will be appreciated, the signal on the conductors 120 b and 120 c will have slower rise time in voltage at the end of the conductor line than the conductor 120 a. It will also be understood that the advantages of the present invention are also present for decreases in voltage (fall time) and not limited to increases in voltage (rise time).
  • The capacitive effect (which causes delay) becomes-greater as the dimensions of the integrated circuit (including printed circuit boards) decreases, and the next smaller generation of integrated circuits will incur a greater capacitive effect from line to line. Therefore, the present invention will be of increased benefit for future generation devices.
  • Although the present invention and its advantages have been described in the foregoing detailed description and illustrated in the accompanying drawings, it will be understood by those skilled in the art that the invention is not limited to the embodiment(s) disclosed but is capable of numerous rearrangements, substitutions and modifications without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (21)

1-20. (canceled)
21. A method of transmitting electrical signals along a first conductor disposed within an integrated circuit and having a length in excess of 10,000 microns, the integrated circuit including a second conductor proximate the first conductor and extending substantially parallel and along the first conductor, the method comprising:
selectively transmitting a single electrical signal at a frequency greater than 200 mega-Hertz (MHz) on both of the first and second conductors; and
selectively transmitting independent electrical signals on the first and second conductors.
22. The method of claim 21, further comprising:
closing a first switch selectively connecting a first end of the first conductor to a first end of the second conductor when selectively transmitting the single electrical signal on both of the first and second conductors; and
opening the first switch when selectively transmitting independent electrical signals on the first and second conductors.
23. The method of claim 22, further comprising:
closing a second switch selectively connecting a second end of the first conductor to a second end of the second conductor when selectively transmitting the single electrical signal on both of the first and second conductors; and
opening the second switch when selectively transmitting independent electrical signals on the first and second conductors.
24. The method of claim 21, further comprising:
selectively transmitting the single electrical signal concurrently on a third conductor as well as on both of the first and second conductors, the third conductor proximate to the first and second conductors and extending substantially parallel and along the first and second conductors.
25. The method of claim 24, further comprising:
selectively transmitting the single electrical signal concurrently on a fourth conductor as well as on all of the first, second and third conductors, the fourth conductor proximate to the first, second and third conductors and extending substantially parallel and along the first, second and third conductors.
26. The method of claim 24, wherein the first, second and third conductors are arranged vertically with respect to each other.
27. The method of claim 24, wherein the first, second and third conductors are arranged horizontally with respect to each other.
28. The method of claim 24, wherein the first, second and third conductors are arranged diagonally with respect to each other.
29. A method of switching electrical signals within an integrated circuit, the method comprising:
selectively switching a single electrical signal having a frequency greater than 200 mega-Hertz (MHz) onto both of first and second conductors each having a length greater than 10,000 microns and disposed proximate to and extending substantially parallel and along each other; and
selectively switching independent electrical signals onto the first and second conductors.
30. The method of claim 29, further comprising:
closing both of a first switch selectively connecting a first end of the first conductor to a first end of the second conductor and a second switch selectively connecting a second end of the first conductor to a second end of the second conductor when selectively transmitting the single electrical signal on both of the first and second conductors.
31. The method of claim 29, further comprising:
disconnecting at least one of the first end of the first conductor from the first end of the second conductor and the second end of the first conductor from the second end of the second conductor when transmitting the independent electrical signals on the first and second conductors.
32. The method of claim 29, further comprising:
disconnecting both the first end of the first conductor from the first end of the second conductor and the second end of the first conductor from the second end of the second conductor when transmitting the independent electrical signals on the first and second conductors.
33. An integrated circuit, comprising:
a first conductor having a length in excess of 10,000 microns; and
a second conductor proximate the first conductor and extending substantially parallel and along the first conductor,
wherein a single electrical signal having a frequency greater than 200 mega-Hertz (MHz) is selectively transmitted on both of the first and second conductors and independent electrical signals are selectively transmitted on the first and second conductors.
34. The integrated circuit of claim 33, further comprising:
a first switch selectively connecting a first end of the first conductor to a first end of the second conductor when selectively transmitting the single electrical signal on both of the first and second conductors.
35. The integrated circuit of claim 34, further comprising:
a second switch selectively connecting a second end of the first conductor to a second end of the second conductor when selectively transmitting the single electrical signal on both of the first and second conductors.
36. The integrated circuit of claim 33, further comprising:
a third conductor selectively carrying the single electrical signal concurrently with both of the first and second conductors, the third conductor proximate to the first and second conductors and extending substantially parallel and along the first and second conductors.
37. The integrated circuit of claim 36, further comprising:
a fourth conductor selectively carrying the single electrical signal concurrently with the first, second and third conductors, the fourth conductor proximate to the first, second and third conductors and extending substantially parallel and along the first, second and third conductors.
38. The integrated circuit of claim 36, wherein the first, second and third conductors are arranged vertically with respect to each other.
39. The integrated circuit of claim 36, wherein the first, second and third conductors are arranged horizontally with respect to each other.
40. The integrated circuit of claim 36, wherein the first, second and third conductors are arranged diagonally with respect to each other.
US12/378,073 1998-07-31 2009-02-11 Apparatus and method for reducing propagation delay in a conductor Abandoned US20090206946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/378,073 US20090206946A1 (en) 1998-07-31 2009-02-11 Apparatus and method for reducing propagation delay in a conductor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12705098A 1998-07-31 1998-07-31
US09/757,378 US6842092B2 (en) 1998-07-31 2001-01-09 Apparatus and method for reducing propagation delay in a conductor
US10/997,089 US7495526B2 (en) 1998-07-31 2004-11-23 Apparatus and method for reducing propagation delay in a conductor system selectable to carry a single signal or independent signals
US12/378,073 US20090206946A1 (en) 1998-07-31 2009-02-11 Apparatus and method for reducing propagation delay in a conductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/997,089 Continuation US7495526B2 (en) 1998-07-31 2004-11-23 Apparatus and method for reducing propagation delay in a conductor system selectable to carry a single signal or independent signals

Publications (1)

Publication Number Publication Date
US20090206946A1 true US20090206946A1 (en) 2009-08-20

Family

ID=22428070

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/757,378 Expired - Lifetime US6842092B2 (en) 1998-07-31 2001-01-09 Apparatus and method for reducing propagation delay in a conductor
US10/997,089 Expired - Fee Related US7495526B2 (en) 1998-07-31 2004-11-23 Apparatus and method for reducing propagation delay in a conductor system selectable to carry a single signal or independent signals
US12/378,073 Abandoned US20090206946A1 (en) 1998-07-31 2009-02-11 Apparatus and method for reducing propagation delay in a conductor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/757,378 Expired - Lifetime US6842092B2 (en) 1998-07-31 2001-01-09 Apparatus and method for reducing propagation delay in a conductor
US10/997,089 Expired - Fee Related US7495526B2 (en) 1998-07-31 2004-11-23 Apparatus and method for reducing propagation delay in a conductor system selectable to carry a single signal or independent signals

Country Status (3)

Country Link
US (3) US6842092B2 (en)
EP (1) EP0977263A3 (en)
JP (1) JP2000174017A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977263A3 (en) * 1998-07-31 2002-07-10 STMicroelectronics, Inc. Apparatus and method for reducing propagation delay in a conductor
KR20030028563A (en) * 2001-06-07 2003-04-08 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Controllable delay circuit for delaying an electric signal
US8212634B2 (en) * 2009-06-04 2012-07-03 International Business Machines Corporation Vertical coplanar waveguide with tunable characteristic impedance design structure and method of fabricating the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659227A (en) * 1970-09-08 1972-04-25 Gen Electric Switch-controlled directional coupler
US3678415A (en) * 1969-06-30 1972-07-18 Nippon Electric Co Multiple port hybrid circuit
US5027088A (en) * 1989-03-14 1991-06-25 Kabushiki Kaisha Toshiba Signal wiring board
US5043792A (en) * 1989-04-17 1991-08-27 Nec Corporation Integrated circuit having wiring strips for propagating in-phase signals
US5689217A (en) * 1996-03-14 1997-11-18 Motorola, Inc. Directional coupler and method of forming same
US5742210A (en) * 1997-02-12 1998-04-21 Motorola Inc. Narrow-band overcoupled directional coupler in multilayer package
US5815031A (en) * 1993-10-21 1998-09-29 Advanced Micro Devices, Inc. High density dynamic bus routing scheme
US7495526B2 (en) * 1998-07-31 2009-02-24 Stmicroelectronics, Inc. Apparatus and method for reducing propagation delay in a conductor system selectable to carry a single signal or independent signals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119060A (en) * 1984-11-14 1986-06-06 Toshiba Corp Signal propagation path for semiconductor integrated circuit
JPH0237763A (en) * 1988-07-27 1990-02-07 Nec Corp Semiconductor integrated circuit
JPH0473951A (en) * 1990-07-16 1992-03-09 Nec Ic Microcomput Syst Ltd Semiconductor device
JPH04142074A (en) * 1990-10-02 1992-05-15 Seiko Epson Corp Semiconductor device
JPH05136125A (en) * 1991-11-14 1993-06-01 Hitachi Ltd Clock wiring and semiconductor integrated circuit device having clock wiring
JPH09237870A (en) * 1996-03-01 1997-09-09 Hitachi Ltd Signal-line driving device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678415A (en) * 1969-06-30 1972-07-18 Nippon Electric Co Multiple port hybrid circuit
US3659227A (en) * 1970-09-08 1972-04-25 Gen Electric Switch-controlled directional coupler
US5027088A (en) * 1989-03-14 1991-06-25 Kabushiki Kaisha Toshiba Signal wiring board
US5043792A (en) * 1989-04-17 1991-08-27 Nec Corporation Integrated circuit having wiring strips for propagating in-phase signals
US5815031A (en) * 1993-10-21 1998-09-29 Advanced Micro Devices, Inc. High density dynamic bus routing scheme
US5689217A (en) * 1996-03-14 1997-11-18 Motorola, Inc. Directional coupler and method of forming same
US5742210A (en) * 1997-02-12 1998-04-21 Motorola Inc. Narrow-band overcoupled directional coupler in multilayer package
US7495526B2 (en) * 1998-07-31 2009-02-24 Stmicroelectronics, Inc. Apparatus and method for reducing propagation delay in a conductor system selectable to carry a single signal or independent signals

Also Published As

Publication number Publication date
JP2000174017A (en) 2000-06-23
US7495526B2 (en) 2009-02-24
US20050093640A1 (en) 2005-05-05
US6842092B2 (en) 2005-01-11
EP0977263A3 (en) 2002-07-10
US20010018988A1 (en) 2001-09-06
EP0977263A2 (en) 2000-02-02

Similar Documents

Publication Publication Date Title
US4514749A (en) VLSI Chip with ground shielding
US6281704B2 (en) High-performance interconnect
US5194833A (en) Airbridge compensated microwave conductors
KR100283508B1 (en) Non-solid reference plane with bidirectional impedance control
JP4373531B2 (en) Differential balanced signal transmission board
JPH0685459B2 (en) Connection pattern structure of printed circuit and its routing method
KR100394255B1 (en) Wiring structure of semiconductor device
US7309906B1 (en) Apparatus and methods for providing highly effective and area efficient decoupling capacitance in programmable logic devices
US20090206946A1 (en) Apparatus and method for reducing propagation delay in a conductor
US6242796B1 (en) Wiring structure of semiconductor memory device and formation method thereof
JP2002252298A (en) Wiring substrate and semiconductor device using it
US7199445B2 (en) Integrated capacitor on packaging substrate
CA1252223A (en) Improvements in or relating to wafer-scale- integrated assemblies
EP0181600B1 (en) Signal transmission circuit in a semiconductor integrated circuit
KR100246592B1 (en) Semiconductor integrated circuit chip
CN110071092B (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
JPS61290794A (en) Wiring board
JPH08274127A (en) Semiconductor device
EP0837503A2 (en) Reference plane metallization on an integrated circuit
JP2004304134A (en) Wiring board and manufacturing method of the same
KR19980070981A (en) Semiconductor integrated circuit device
JPH07135407A (en) High frequency line
JPH0691324B2 (en) Wiring board
KR100669354B1 (en) A pad structure of semiconductor integrated circuit
JPS62259500A (en) Circuit board

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION