US20090045100A1 - Multi-stage hydrocracker with kerosene recycle - Google Patents

Multi-stage hydrocracker with kerosene recycle Download PDF

Info

Publication number
US20090045100A1
US20090045100A1 US12/256,561 US25656108A US2009045100A1 US 20090045100 A1 US20090045100 A1 US 20090045100A1 US 25656108 A US25656108 A US 25656108A US 2009045100 A1 US2009045100 A1 US 2009045100A1
Authority
US
United States
Prior art keywords
hydroprocessing
range
kerosene
naphtha
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/256,561
Inventor
H. Alex Yoon
Jay B. Parekh
Arthur J. Dahlberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/162,774 external-priority patent/US20030221990A1/en
Application filed by Chevron USA Inc filed Critical Chevron USA Inc
Priority to US12/256,561 priority Critical patent/US20090045100A1/en
Assigned to CHEVRON U.S.A. INC. reassignment CHEVRON U.S.A. INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAHLBERG, ARTHUR J., PAREKH, JAY B., YOON, H. ALEX
Publication of US20090045100A1 publication Critical patent/US20090045100A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps

Definitions

  • This invention relates to a multi-stage hydrocracking process in which light products from the first stage, such as naphtha, kerosene and diesel, are joined with naphtha, kerosene and diesel from other sources and recycled from fractionation to a second stage (or subsequent stage) hydrocracker in order to produce lighter products, such as gas and naphtha.
  • first stage such as naphtha, kerosene and diesel
  • second stage or subsequent stage hydrocracker
  • U.S. Pat. No. 5,447,621 discloses a middle distillate upgrading process.
  • a middle distillate side stream of a conventional single-stage hydrocracking process is circulated to a hydrotreating stage, such as an aromatics saturation reactor and/or a catalytic dewaxing reactor in order to effect middle distillate upgrade.
  • the upgraded product is then finished in a fractionation stage side-stripper column.
  • This invention discloses passing middle distillate to a hydrotreating stage.
  • the middle distillates are being upgraded, not cracked, as in the instant invention.
  • U.S. Pat. No. 4,789,457 discloses a process in which a highly aromatic substantially dealkylated feedstock is processed directly to high octane gasoline by hydrocracking over a catalyst preferably comprising a large pore zeolite such as zeolite Y, in addition to a hydrogenation-dehydrogenation component.
  • the feedstock is preferably a light cycle oil. Light cycle oil is heavier than the kerosene and naphtha cracked in the instant invention, and only one hydrocracking stage is employed in Fischer et al.
  • U.S. Pat. No. 3,037,930 (Mason) is directed to a two stage conversion process for the production of aromatic product fractions.
  • High pressure separators are employed following both the first and second conversion zones.
  • Mason teaches recycle of bottoms from fractionation back to the first conversion zone and recycle of lighter materials to other conversion zones. In the instant invention bottoms are recycled to the second conversion zone from fractionation, as are lighter fractions at times as well.
  • Mason does not contemplate the use of a zeolite hydrocracking catalyst.
  • Mason sends bottoms back to the first conversion zone in order to maximize aromatics.
  • Mason employs an amorphous hydrocracking catalyst and does not contemplate the use of zeolites.
  • the goal of Mason is to produce aromatic hydrocarbon containing product fractions.
  • U.S. Pat. No. 4,921,595 teaches passing fractionator bottoms back to the first zone or to hydrogenation or the second zone.
  • Gruia employs a hydrocracking catalyst which comprises zeolite Y
  • the feed employed is composed of polynuclear aromatics.
  • the goal in Gruia is to prevent condensation reactions resulting from heavy feed.
  • the goal in the instant invention is to maximize the amount of product in the naphtha range that is produced.
  • the invention disclosed herein is a process for the production of light products, such as gas and naphtha, by processing kerosene in a second stage (or a subsequent stage) of a multi-stage hydrocracker.
  • Kerosene, diesel and naphtha from other sources are included in the recycle, and subsequent hydroprocessing stages are maintained at lower pressures than the initial hydroprocessing stage. This results in cost savings.
  • a method for hydroprocessing a hydrocarbon feedstock wherein the amount of naphtha product boiling in the range from 170°-350° F. is maximized, the method employing multiple hydroprocessing zones within a single reaction loop wherein at least one bed in each hydroprocessing zone contains hydrocracking catalyst, and wherein the pressure in the subsequent zone or zones is from 500 to 1000 psig lower than the pressure in the initial zone in order to provide cost savings and minimize overcracking, said method comprising the following steps:
  • the FIGURE illustrates a two-stage hydrocracking process having the capability for recycle of bottoms fractions, diesel fractions, kerosene fraction or naphtha fractions to the second reactor stage.
  • Preheated oil feed in stream 1 is mixed with hydrogen in stream 2 prior to its entrance into first stage or primary hydroprocessing zone 10 .
  • This hydroprocessing zone is preferably a downflow, fixed bed reactor.
  • This reactor contains multiple beds of hydroprocessing catalysts. At least one bed contains hydrocracking catalyst.
  • the effluent 3 of the first stage reactor which has been hydrotreated and partially hydrocracked, comprises a liquid stream and a vapor stream.
  • the vapor stream 3 ( a ) is removed overhead. It comprises hydrogen, hydrogen sulfide and light hydrocarbonaceous gases.
  • the liquid stream 3 ( b ) is combined with the liquid effluent from other process zones, represented by stream 4 .
  • Stream 3 ( b ) and stream 4 are combined to create stream 5 .
  • Stream 5 is passed to the fractionation unit 30 , where it is separated into gas stream 6 , naphtha stream 7 , kerosene stream 8 , diesel stream 9 , and bottoms stream 14 .
  • the naphtha product may alternately be recycled, in whole or in part, through stream 11 to stream 15 , and ultimately to second stage reactor 20 .
  • Kerosene product may alternately be recycled, in whole or in part, through stream 12 to stream 15 , and ultimately to second stage reactor 20 .
  • Diesel product may be alternately recycled, in whole or in part, through stream 13 to stream 15 , and ultimately to second stage reactor 20 .
  • Bottoms material in stream 14 may be passed to further processing (in stream 14 a ) or, alternately, may be recycled in stream 14 ( b ) to second reactor 20 .
  • Second reactor 20 represents hydroprocessing zones subsequent to the first hydroprocessing zone. Each of these zones possesses an environment substantially free of H 2 S, NH 3 or other heteroatom components.
  • feedstocks include any heavy or synthetic oil fraction or process stream having a boiling point above 392° F. (200° C.).
  • feedstocks include vacuum gas oils, heavy atmospheric gas oil, delayed coker gas oil, visbreaker gas oil demetallized oils, vacuum residua, atmospheric residua, deasphalted oil, Fischer-Tropsch streams, and FCC streams.
  • a middle distillate fraction is defined as having an approximate boiling range from about 250° F. to 700° F. At least 75 vol %, preferably 85 vol %, of the components of the middle distillate have a normal boiling point of greater than 250° F. At least about 75 vol %, preferably 85 vol %, of the components of the middle distillate have a normal boiling point of less than 700° F.
  • the term “middle distillate” includes the diesel, jet fuel and kerosene boiling range fractions.
  • the kerosene or jet fuel boiling point range refers to the range between 280° F. and 525° F. (38-274° C.).
  • the term “diesel boiling range” refers to hydrocarbons boiling in the range from 250° F. to 700° F. (121-371° C.).
  • Gasoline and naphtha production is emphasized in the process of this invention.
  • Gasoline or naphtha normally boils in the range below 400° F. (204° C.), or C 10 —.
  • Boiling ranges of various product fractions recovered in any particular refinery will vary with such factors as the characteristics of the crude oil source, local refinery markets, and product prices.
  • Heavy hydrotreated gas oil another product of this invention, usually boils in the range from 550° F. to 700° F.
  • Hydroprocessing conditions is a general term which refers primarily in this application to hydrocracking or hydrotreating, preferably hydrocracking.
  • the first stage reactor as depicted in FIG. 1 , is a partial conversion hydrocracker.
  • Typical hydrocracking conditions include a reaction temperature of from 400° F.-950° F. (204° C.-510° C.), preferably 650° F.-850° F. (343° C.-454° C.).
  • Reaction pressure ranges from 500 to 5000 psig (3.5-4.5 MPa), preferably 1500-3500 psig (10.4-24.2 MPa).
  • LHSV ranges from 0.1 to 15 hr ⁇ 1 (v/v), preferably 0.25-2.5 hr ⁇ 1 .
  • Hydrogen consumption ranges from 500 to 2500 SCF per barrel of liquid hydrocarbon feed (89.1-445 m 3 H 2 /m 3 feed).
  • Reactors subsequent to the first hydroprocessing reactor are operated at a pressure from 500 to 1000 psig lower than the first reactor.
  • Each hydroprocessing zone may contain only one catalyst, or several catalysts in combination.
  • the hydrocracking catalyst generally comprises a cracking component, a hydrogenation component, and a binder.
  • the cracking component may include an amorphous silica/alumina phase and/or a zeolite, such as a Y-type or USY zeolite.
  • Catalysts having high cracking activity often employ REX, REY and USY zeolites.
  • the most suitable zeolites of this invention possess a SiO 2 /Al 2 O 3 ratio of from 3 through 160, preferably of from 5 through 20.
  • the unit cell size of the zeolites of this invention is generally in the range from 24.25 through 24.60, and preferably in the range from 24.30 through 24.55.
  • the binder is generally silica or alumina.
  • the hydrogenation component will be a Group VI, Group VII, or Group VIII metal or oxides or sulfides thereof, preferably one or more of iron, chromium, molybdenum, tungsten, cobalt, or nickel, or the sulfides or oxides thereof. If present in the catalyst, these hydrogenation components generally make up from about 5% to about 40% by weight of the catalyst.
  • noble metals especially platinum and/or palladium, may be present as the hydrogenation component, either alone or in combination with the base metal hydrogenation components iron, chromium molybdenum, tungsten, cobalt, or nickel. If present, the platinum group metals will generally make up from about 0.1% to about 2% by weight of the catalyst.
  • Hydrotreating catalyst usually is designed to remove sulfur and nitrogen and provide a degree of aromatic saturation. It will typically be a composite of a Group VI metal or compound thereof, and a Group VIII metal or compound thereof supported on a porous refractory base such as alumina.
  • Examples of hydrotreating catalysts are alumina supported cobalt-molybdenum, nickel sulfide, nickel-tungsten, cobalt-tungsten and nickel-molybdenum. Typically, such hydrotreating catalysts are presulfided.
  • Catalyst selection is dictated by process needs and product specifications.
  • a noble catalyst may be used in the second stage when there is a low amount of H 2 S present.
  • the “recycle” of kerosene was simulated by passing kerosene from the first hydrocracking stage over the catalyst in the second hydrocracking stage.
  • the first stage kerosene possessed a smoke point of 14 mm and 25 LV % aromatics.

Abstract

This invention relates to a multi-stage process for hydroprocessing gas oils. Preferably, each stage possesses at least one hydrocracking zone. The second stage and any subsequent stages possess an environment having a low heteroatom content. Light products, such as naphtha, kerosene and diesel, may be recycled from fractionation (along with light products from other sources) to the second stage (or a subsequent stage) in order to produce a larger yield of lighter products, such as gas and naphtha. Pressure in the zone or zones subsequent to the initial zone is from 500 to 1000 psig lower than the pressure in the initial zone, in order to provide cost savings and minimize overcracking.

Description

  • This application is a continuation-in-part of the copending application Ser. No. 12/138,384 filed Jun. 12, 2008. Ser. No. 10/922,413 now abandoned was filed Aug. 19, 2004, and is a continuation-in-part of 10/162,774, filed Jun. 4, 2002.
  • FIELD OF THE INVENTION
  • This invention relates to a multi-stage hydrocracking process in which light products from the first stage, such as naphtha, kerosene and diesel, are joined with naphtha, kerosene and diesel from other sources and recycled from fractionation to a second stage (or subsequent stage) hydrocracker in order to produce lighter products, such as gas and naphtha.
  • BACKGROUND OF THE INVENTION
  • Historically, there has been little interest in cracking kerosene or other light products to even lighter products. In the United States, there is little demand for gas or other very light volatile products. Bottoms materials are usually the material recycled in two-stage hydrocracking as practiced in the United States. There is, however, a demand for products such as LPG and LNG in Asia.
  • Although there has been demand for very light products in some parts of the world, there was a belief by many experts that light products would not crack in most reactors (using conventional hydrocracking catalysts as opposed to FCC catalysts) because they are in the vapor phase as opposed to the liquid phase. This belief apparently originated due to the fact that the environment in a single-stage hydrocracker, in the presence of H2S and NH3, is not conducive to cracking of light products.
  • The concept of recycling bottoms material back to an initial hydrocracking stage (rather than a second hydrocracking stage) is well known. U.S. Pat. No. 6,261,441 (Gentry et al.) discloses recycling of bottoms material which has been hydrocracked and dewaxed back to a hydrocracker.
  • U.S. Pat. No. 5,447,621 (Hunter) discloses a middle distillate upgrading process. A middle distillate side stream of a conventional single-stage hydrocracking process is circulated to a hydrotreating stage, such as an aromatics saturation reactor and/or a catalytic dewaxing reactor in order to effect middle distillate upgrade. The upgraded product is then finished in a fractionation stage side-stripper column. This invention discloses passing middle distillate to a hydrotreating stage. The middle distillates are being upgraded, not cracked, as in the instant invention.
  • U.S. Pat. No. 4,789,457 (Fischer et al.) discloses a process in which a highly aromatic substantially dealkylated feedstock is processed directly to high octane gasoline by hydrocracking over a catalyst preferably comprising a large pore zeolite such as zeolite Y, in addition to a hydrogenation-dehydrogenation component. The feedstock is preferably a light cycle oil. Light cycle oil is heavier than the kerosene and naphtha cracked in the instant invention, and only one hydrocracking stage is employed in Fischer et al.
  • U.S. Pat. No. 3,037,930 (Mason) is directed to a two stage conversion process for the production of aromatic product fractions. High pressure separators are employed following both the first and second conversion zones. There is no teaching or suggestion of the maintenance of subsequent zones at lower pressures, as seen in the instant invention. Mason teaches recycle of bottoms from fractionation back to the first conversion zone and recycle of lighter materials to other conversion zones. In the instant invention bottoms are recycled to the second conversion zone from fractionation, as are lighter fractions at times as well. Mason does not contemplate the use of a zeolite hydrocracking catalyst. Mason sends bottoms back to the first conversion zone in order to maximize aromatics. Mason employs an amorphous hydrocracking catalyst and does not contemplate the use of zeolites.
  • The goal of Mason is to produce aromatic hydrocarbon containing product fractions.
  • U.S. Pat. No. 4,921,595 (Gruia) teaches passing fractionator bottoms back to the first zone or to hydrogenation or the second zone. Although Gruia employs a hydrocracking catalyst which comprises zeolite Y, the feed employed is composed of polynuclear aromatics. The goal in Gruia is to prevent condensation reactions resulting from heavy feed. The goal in the instant invention is to maximize the amount of product in the naphtha range that is produced.
  • SUMMARY OF THE INVENTION
  • The Applicants have found that in the environment of a clean second-stage hydrocracker, with heteroatoms removed, light products will crack. The examples demonstrate that the net yield of kerosene decreased when recycled to the second stage on a raw feed blend basis, while the qualities of the middle distillates remained the same. Recycling the kerosene to the second stage increased the yield of 170-350° F. reformer naphtha, the product most highly valued by the customer.
  • The invention disclosed herein is a process for the production of light products, such as gas and naphtha, by processing kerosene in a second stage (or a subsequent stage) of a multi-stage hydrocracker. Kerosene, diesel and naphtha from other sources are included in the recycle, and subsequent hydroprocessing stages are maintained at lower pressures than the initial hydroprocessing stage. This results in cost savings.
  • The instant invention is summarized as follows:
  • A method for hydroprocessing a hydrocarbon feedstock, wherein the amount of naphtha product boiling in the range from 170°-350° F. is maximized, the method employing multiple hydroprocessing zones within a single reaction loop wherein at least one bed in each hydroprocessing zone contains hydrocracking catalyst, and wherein the pressure in the subsequent zone or zones is from 500 to 1000 psig lower than the pressure in the initial zone in order to provide cost savings and minimize overcracking, said method comprising the following steps:
      • (a) passing a hydrocarbonaceous feedstock to a first hydroprocessing zone having one or more beds containing hydroprocessing catalyst, said catalyst comprising a cracking component and a hydrogenation component, wherein the cracking component may be amorphous or zeolitic, the hydroprocessing zone being maintained at hydroprocessing conditions, wherein the feedstock is contacted with catalyst and hydrogen to produce a vapor stream and a liquid stream as effluent;
      • (b) removing the vapor stream of step (a), which comprises hydrogen, hydrogen sulfide and light hydrocarbonaceous gases overhead;
      • (c) combining the liquid stream of step (b) with the liquid effluent from other hydroprocessing zones;
      • (d) passing the liquid stream of step (c), which comprises hydrocarbonaceous compounds boiling in approximately the same range of the hydrocarbonaceous feedstock, to fractionation;
      • (e) separating the liquid stream of step (d), in fractionation, into gas, naphtha, kerosene and diesel fractions, in addition to the bottoms fraction;
      • (f) passing the bottoms fraction of step (e) to further processing or recycling to one or more of the other hydroprocessing zones of step (c);
      • (g) passing one or more of the naphtha, kerosene and diesel fractions to further processing as products or recycling one or more of the fractions to one or more of the other hydroprocessing zones of step (c), the kerosene, naphtha or diesel fractions being in combination with kerosene, naphtha or diesel fractions from other sources, said hydroprocessing zone or zones being maintained at hydroprocessing conditions and at lower pressure than the first hydroprocessing zone, and possessing an environment substantially free of H2S, NH3, or other heteroatom contaminants;
      • (h) passing the effluent of step (g) to fractionation;
      • (i) recovering in fractionation an increased amount of gas and naphtha, and a decreased amount of kerosene, in the fractionation stage of step (h) than in the fractionation step of step (e).
    BRIEF DESCRIPTION OF THE DRAWING
  • The FIGURE illustrates a two-stage hydrocracking process having the capability for recycle of bottoms fractions, diesel fractions, kerosene fraction or naphtha fractions to the second reactor stage.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Preheated oil feed in stream 1 is mixed with hydrogen in stream 2 prior to its entrance into first stage or primary hydroprocessing zone 10. This hydroprocessing zone is preferably a downflow, fixed bed reactor. This reactor contains multiple beds of hydroprocessing catalysts. At least one bed contains hydrocracking catalyst.
  • The effluent 3 of the first stage reactor, which has been hydrotreated and partially hydrocracked, comprises a liquid stream and a vapor stream. The vapor stream 3(a) is removed overhead. It comprises hydrogen, hydrogen sulfide and light hydrocarbonaceous gases. The liquid stream 3(b) is combined with the liquid effluent from other process zones, represented by stream 4. Stream 3(b) and stream 4 are combined to create stream 5. Stream 5 is passed to the fractionation unit 30, where it is separated into gas stream 6, naphtha stream 7, kerosene stream 8, diesel stream 9, and bottoms stream 14. The naphtha product may alternately be recycled, in whole or in part, through stream 11 to stream 15, and ultimately to second stage reactor 20. Kerosene product may alternately be recycled, in whole or in part, through stream 12 to stream 15, and ultimately to second stage reactor 20. Diesel product may be alternately recycled, in whole or in part, through stream 13 to stream 15, and ultimately to second stage reactor 20. Bottoms material in stream 14 may be passed to further processing (in stream 14 a) or, alternately, may be recycled in stream 14(b) to second reactor 20. Second reactor 20 represents hydroprocessing zones subsequent to the first hydroprocessing zone. Each of these zones possesses an environment substantially free of H2S, NH3 or other heteroatom components.
  • Feeds
  • A wide variety of hydrocarbon feeds may be used in the instant invention. Typical feedstocks include any heavy or synthetic oil fraction or process stream having a boiling point above 392° F. (200° C.). Such feedstocks include vacuum gas oils, heavy atmospheric gas oil, delayed coker gas oil, visbreaker gas oil demetallized oils, vacuum residua, atmospheric residua, deasphalted oil, Fischer-Tropsch streams, and FCC streams.
  • Products
  • Although emphasis is placed on the increased production of gas and naphtha, the process of this invention is also useful in the production of middle distillate fractions boiling in the range of about 250-700° F. (121-371° C.). A middle distillate fraction is defined as having an approximate boiling range from about 250° F. to 700° F. At least 75 vol %, preferably 85 vol %, of the components of the middle distillate have a normal boiling point of greater than 250° F. At least about 75 vol %, preferably 85 vol %, of the components of the middle distillate have a normal boiling point of less than 700° F. The term “middle distillate” includes the diesel, jet fuel and kerosene boiling range fractions. The kerosene or jet fuel boiling point range refers to the range between 280° F. and 525° F. (38-274° C.). The term “diesel boiling range” refers to hydrocarbons boiling in the range from 250° F. to 700° F. (121-371° C.).
  • Gasoline and naphtha production is emphasized in the process of this invention. Gasoline or naphtha normally boils in the range below 400° F. (204° C.), or C10—. Boiling ranges of various product fractions recovered in any particular refinery will vary with such factors as the characteristics of the crude oil source, local refinery markets, and product prices.
  • Heavy hydrotreated gas oil, another product of this invention, usually boils in the range from 550° F. to 700° F.
  • Conditions
  • Hydroprocessing conditions is a general term which refers primarily in this application to hydrocracking or hydrotreating, preferably hydrocracking. The first stage reactor, as depicted in FIG. 1, is a partial conversion hydrocracker.
  • Typical hydrocracking conditions include a reaction temperature of from 400° F.-950° F. (204° C.-510° C.), preferably 650° F.-850° F. (343° C.-454° C.). Reaction pressure ranges from 500 to 5000 psig (3.5-4.5 MPa), preferably 1500-3500 psig (10.4-24.2 MPa). LHSV ranges from 0.1 to 15 hr−1 (v/v), preferably 0.25-2.5 hr−1. Hydrogen consumption ranges from 500 to 2500 SCF per barrel of liquid hydrocarbon feed (89.1-445 m3H2/m3 feed). Reactors subsequent to the first hydroprocessing reactor are operated at a pressure from 500 to 1000 psig lower than the first reactor.
  • Catalyst
  • Each hydroprocessing zone may contain only one catalyst, or several catalysts in combination.
  • The hydrocracking catalyst generally comprises a cracking component, a hydrogenation component, and a binder. Such catalysts are well known in the art. The cracking component may include an amorphous silica/alumina phase and/or a zeolite, such as a Y-type or USY zeolite. Catalysts having high cracking activity often employ REX, REY and USY zeolites. The most suitable zeolites of this invention possess a SiO2/Al2O3 ratio of from 3 through 160, preferably of from 5 through 20. The unit cell size of the zeolites of this invention is generally in the range from 24.25 through 24.60, and preferably in the range from 24.30 through 24.55. The binder is generally silica or alumina. The hydrogenation component will be a Group VI, Group VII, or Group VIII metal or oxides or sulfides thereof, preferably one or more of iron, chromium, molybdenum, tungsten, cobalt, or nickel, or the sulfides or oxides thereof. If present in the catalyst, these hydrogenation components generally make up from about 5% to about 40% by weight of the catalyst. Alternatively, noble metals, especially platinum and/or palladium, may be present as the hydrogenation component, either alone or in combination with the base metal hydrogenation components iron, chromium molybdenum, tungsten, cobalt, or nickel. If present, the platinum group metals will generally make up from about 0.1% to about 2% by weight of the catalyst.
  • Hydrotreating catalyst usually is designed to remove sulfur and nitrogen and provide a degree of aromatic saturation. It will typically be a composite of a Group VI metal or compound thereof, and a Group VIII metal or compound thereof supported on a porous refractory base such as alumina. Examples of hydrotreating catalysts are alumina supported cobalt-molybdenum, nickel sulfide, nickel-tungsten, cobalt-tungsten and nickel-molybdenum. Typically, such hydrotreating catalysts are presulfided.
  • Catalyst selection is dictated by process needs and product specifications. In particular, a noble catalyst may be used in the second stage when there is a low amount of H2S present.
  • The Examples below demonstrate the relative effectiveness of recycling kerosene to produce lighter products of high quality, as opposed to not recycling kerosene.
  • EXAMPLE
  • The “recycle” of kerosene was simulated by passing kerosene from the first hydrocracking stage over the catalyst in the second hydrocracking stage. The first stage kerosene possessed a smoke point of 14 mm and 25 LV % aromatics. Net yields from the runs where kerosene was “recycled” have been calculated by deducting the supplemental kerosene feed from the gross, measured kerosene yield (gross weight of kerosene product-weight of kerosene “recycled”=net yield of kerosene product).
  • In kerosene recycle mode, a base metal zeolite hydrocracking catalyst cracked a substantial fraction of the kerosene to naphtha and gas (see Tables 1 and 2). The net yield of kerosene decreased on a raw feed blend basis and the qualities of the middle distillates remained the same. Recycling the kerosene to the second stage did increase the yield of 170-350° F. reformer naphtha, a product in most demand by the customer.
  • TABLE 1
    Two-Stage Hydrocracking of Vacuum Gas Oil/Hydrocracking Gas Oil/
    Light Cycle Oil Feed Blend Using Hydrocracking Catalyst
    Run Hours 600-624
    Reactor 1 Temp, ° F. 725
    Reactor 2 Temp, ° F. 669
    Overall LHSV, hr−1 1.00
    Per Pass Conversion 58
    Total Pressure, PSIG 2297
    No Loss Prod. Yields Wt. % Vol. %
    C1 0.13
    C2 0.18
    C3 0.56
    iC4 0.94 1.62
    nC4 0.63 1.06
    C5-170° F. 3.43 5.04
    170-350° F. 13.04 16.48
    350-550° F. 29.99 33.44
    550-RCP 15.57 16.92
    Recycle Bleed 34.84 38.17
    Recycle Cut Point, ° F. 656
    Total C4 2.44
    Total C5+ 96.87 110.04
    Closure 99.6 //
    Fractionator Bottoms Nitrogen, ppm 24.5
  • TABLE 2
    Two-Stage Hydrocracking of Vacuum Gas Oil/Hydrocracked Gas Oil/
    Light Cycle Oil Feed Blend Using Hydrocracking Catalyst, with
    “Kerosene Recycle”
    Hours 816-840
    Reactor 1 Temperature, ° F. 725
    Reactor 2 Temperature, ° F. 691
    LHSV, 1/Hr 1.00
    Per Pass Conversion, % 60
    Total Pressure, psig 2294
    No Loss Product Yields Wt. % Vol %
    C1 0.13
    C2 0.20
    C3 0.80
    iC4 1.80
    nC4 0.99
    C5-170° F. 6.4 9.5
    170-350° F. 18.0 22.8
    350-550° F. 24.0 26.8
    550-650° F. 15.3 16.6
    650° F.+ 32.4 35.3
    Recycle cut point 650° F.
    Total C5+ 96.1 111.0
    Total C4 3.72
    Chemical H2 Consumption, SCF/B 2080
    Closure, % 99.7
    Fractionator Bottoms Nitrogen, ppm 28

Claims (15)

1. A method for hydroprocessing a hydrocarbon feedstock, wherein the amount of naphtha product boiling in the range from 170°-350° F. is maximized, the method employing multiple hydroprocessing zones within a single reaction loop wherein at least one bed in each hydroprocessing zone contains hydrocracking catalyst, wherein the pressure in the subsequent zone or zones is from 500 to 1000 psig lower than the pressure in the initial zone in order to provide cost savings and minimize overcracking, said method comprising the following steps:
(a) passing a hydrocarbonaceous feedstock to a first hydroprocessing zone having one or more beds containing hydroprocessing catalyst, said catalyst comprising a cracking component and a hydrogenation component, wherein the cracking component is selected from the group consisting of Y, USY, REX and REY zeolites, the hydroprocessing zone being maintained at hydroprocessing conditions, wherein the feedstock is contacted with catalyst and hydrogen to produce a vapor stream and a liquid stream as effluent;
(b) removing the vapor stream of step (a), which comprises hydrogen, hydrogen sulfide and light hydrocarbonaceous gases overhead;
(c) combining the liquid stream of step (b) with the liquid effluent from other hydroprocessing zones;
(d) passing the liquid stream of step (c), which comprises hydrocarbonaceous compounds boiling in approximately the same range of the hydrocarbonaceous feedstock, to fractionation;
(e) separating the liquid stream of step (d), in fractionation, into gas, naphtha, kerosene and diesel fractions, in addition to the bottoms fraction;
(f) passing the bottoms fraction of step (e) to further processing or recycling to one or more of the other hydroprocessing zones of step (c);
(g) passing one or more of the naphtha, kerosene and diesel fractions to further processing as products or recycling one or more of the fractions to one or more of the other hydroprocessing zones of step (c), the kerosene, naphtha or diesel fractions being in combination with kerosene, naphtha or diesel fractions from other sources, said hydroprocessing zone or zones being maintained at hydroprocessing conditions and at a pressure that is 500 to 1000 psig lower than the initial hydroprocessing zone, and possessing an environment substantially free of H2S, NH3, or other heteroatom contaminants;
(h) passing the effluent of step (g) to fractionation;
(i) recovering in fractionation an increased amount of gas and naphtha, and a decreased amount of kerosene, in the fractionation stage of step (h) than in the fractionation step of step (e).
2. The process of claim 1, wherein at least one bed in each hydroprocessing zone contains hydrocracking catalyst.
3. The process of claim 1, wherein the hydroprocessing conditions of claim 1, step (a), and claim 1, step (g), comprise a reaction temperature of from 400° F.-950° F. (204° C.-510° C.), a reaction pressure in the range from 500 to 5000 psig (3.5-34.5 MPa), an LHSV in the range from 0.1 to 15 hr−1 (v/v), and hydrogen consumption in the range from 500 to 2500 scf per barrel of liquid hydrocarbon feed (89.1-445 m3H2/m3 feed).
4. The process of claim 3, wherein the hydroprocessing conditions of claim 1, step (a), and claim 1, step (g), preferably comprise a temperature in the range from 650° F.-850° F. (343° C.-454° C.), reaction pressure in the range from 1500-3500 psig (10.4-24.2 MPa), LHSV in the range from 0.25 to 2.5 hr−1, and hydrogen consumption in the range from 500 to 2500 scf per barrel of liquid hydrocarbon feed (89.1-445 m3H2/m3 feed).
5. The process of claim 1, wherein the feed to claim 1, step (a), comprises hydrocarbons boiling above 392° F.(200° C.).
6. The process of claim 5, wherein the feed is selected from the group consisting of vacuum gas oil, heavy atmospheric gas oil, delayed coker gas oil, visbreaker gas oil, demetallized oils, FCC light cycle oil, vacuum residua deasphalted oil, Fischer-Tropsch streams, and FCC streams.
7. The process of claim 1, wherein the hydrogenation component is selected from Group VI, Group VII or Group VIII metals.
8. The process of claim 7, wherein the hydrogenation component is selected from the group consisting of Ni, Mo, W, Pt and Pd or combinations thereof.
9. The process of claim 7, wherein the Group VI, Group VII or Group VIII metals may exist as either sulfides or oxides.
10. The process of claim 7, wherein the hydrogenation component comprises 5 to 40 wt % of the catalyst.
11. The process of claim 8, wherein noble metals comprise from about 0.1 wt % to about 2 wt % of the catalyst.
12. The process of claim 1, wherein the zeolitic component has a SiO2/Al2O3 molecular ratio in the range from 3 through 60.
13. The process of claim 12, wherein the SiO2/Al2O3 molecular ratio is in the range from 5 through 20.
14. The process of claim 1, wherein the zeolitic component has a unit cell size in the range from 24.25 through 24.60.
15. The process of claim 14, wherein the zeolitic component has a unit cell size in the range from 24.30 through 24.55.
US12/256,561 2002-06-04 2008-10-23 Multi-stage hydrocracker with kerosene recycle Abandoned US20090045100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/256,561 US20090045100A1 (en) 2002-06-04 2008-10-23 Multi-stage hydrocracker with kerosene recycle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/162,774 US20030221990A1 (en) 2002-06-04 2002-06-04 Multi-stage hydrocracker with kerosene recycle
US10/922,413 US20050103682A1 (en) 2002-06-04 2004-08-19 Multi-stage hydrocracker with kerosene recycle
US12/138,384 US20080283444A1 (en) 2002-06-04 2008-06-12 Multi-stage hydrocracker with kerosene recycle
US12/256,561 US20090045100A1 (en) 2002-06-04 2008-10-23 Multi-stage hydrocracker with kerosene recycle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/138,384 Continuation-In-Part US20080283444A1 (en) 2002-06-04 2008-06-12 Multi-stage hydrocracker with kerosene recycle

Publications (1)

Publication Number Publication Date
US20090045100A1 true US20090045100A1 (en) 2009-02-19

Family

ID=40362121

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/256,561 Abandoned US20090045100A1 (en) 2002-06-04 2008-10-23 Multi-stage hydrocracker with kerosene recycle

Country Status (1)

Country Link
US (1) US20090045100A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942327A (en) * 2009-07-09 2011-01-12 中国石油化工股份有限公司抚顺石油化工研究院 Hydrotreatment combination technology for producing ultra low sulfur diesel
WO2012135403A1 (en) * 2011-03-31 2012-10-04 Exxonmobil Research And Engineering Company Fuels hydrocracking with dewaxing of fuel products
WO2012174181A3 (en) * 2011-06-16 2013-02-07 Exxonmobil Research And Engineering Company Catalyst and method for fuels hydrocracking
CN103773473A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Two-stage hydrocracking method used for producing high-quality jet fuel
CN103773450A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Hydrocracking method for processing inferior raw material
CN103773464A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Hydrocracking method of productive high-quality jet fuel
CN103773462A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Two-stage hydrocracking method used for producing high-quality chemical raw materials
CN103773461A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Hydrocracking method used for producing high-quality jet fuel
CN103773452A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Hydrocracking method of high-yield high-quality chemical raw material
US9631150B2 (en) 2013-03-15 2017-04-25 Lummus Technology Inc. Hydroprocessing thermally cracked products
US20200102511A1 (en) * 2018-09-29 2020-04-02 Uop Llc Process for producing a naphtha stream
US20220081628A1 (en) * 2019-01-09 2022-03-17 IFP Energies Nouvelles Two-stage hydrocracking process comprising a hydrogenation stage downstream of the second hydrocracking stage, for the production of middle distillates
WO2022147440A1 (en) * 2020-12-31 2022-07-07 Uop Llc Process for hydrocracking a hydrocarbon feed stream

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509040A (en) * 1968-02-23 1970-04-28 Gulf Research Development Co Process for producing jet fuel
US3551323A (en) * 1968-12-23 1970-12-29 Universal Oil Prod Co Black oil conversion for maximum gasoline production
US4340465A (en) * 1980-09-29 1982-07-20 Chevron Research Company Dual component crystalline silicate cracking catalyst
US6217746B1 (en) * 1999-08-16 2001-04-17 Uop Llc Two stage hydrocracking process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509040A (en) * 1968-02-23 1970-04-28 Gulf Research Development Co Process for producing jet fuel
US3551323A (en) * 1968-12-23 1970-12-29 Universal Oil Prod Co Black oil conversion for maximum gasoline production
US4340465A (en) * 1980-09-29 1982-07-20 Chevron Research Company Dual component crystalline silicate cracking catalyst
US6217746B1 (en) * 1999-08-16 2001-04-17 Uop Llc Two stage hydrocracking process

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942327A (en) * 2009-07-09 2011-01-12 中国石油化工股份有限公司抚顺石油化工研究院 Hydrotreatment combination technology for producing ultra low sulfur diesel
WO2012135403A1 (en) * 2011-03-31 2012-10-04 Exxonmobil Research And Engineering Company Fuels hydrocracking with dewaxing of fuel products
US10017705B2 (en) 2011-03-31 2018-07-10 Exxonmobil Research And Engineering Company Fuels hydrocracking with dewaxing of fuel products
US9200218B2 (en) 2011-03-31 2015-12-01 Exxonmobil Research And Engineering Company Fuels hydrocracking with dewaxing of fuel products
US8999142B2 (en) 2011-06-16 2015-04-07 Exxonmobil Research And Engineering Company Catalyst and method for fuels hydrocracking
WO2012174181A3 (en) * 2011-06-16 2013-02-07 Exxonmobil Research And Engineering Company Catalyst and method for fuels hydrocracking
CN103773450A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Hydrocracking method for processing inferior raw material
CN103773461A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Hydrocracking method used for producing high-quality jet fuel
CN103773452A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Hydrocracking method of high-yield high-quality chemical raw material
CN103773462A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Two-stage hydrocracking method used for producing high-quality chemical raw materials
CN103773464A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Hydrocracking method of productive high-quality jet fuel
CN103773473A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Two-stage hydrocracking method used for producing high-quality jet fuel
US9631150B2 (en) 2013-03-15 2017-04-25 Lummus Technology Inc. Hydroprocessing thermally cracked products
US20200102511A1 (en) * 2018-09-29 2020-04-02 Uop Llc Process for producing a naphtha stream
WO2020069470A1 (en) * 2018-09-29 2020-04-02 Uop Llc Process for producing a naphtha stream
US10829703B2 (en) * 2018-09-29 2020-11-10 Uop Llc Process for producing a naphtha stream
CN112805355A (en) * 2018-09-29 2021-05-14 环球油品有限责任公司 Process for producing naphtha streams
US20220081628A1 (en) * 2019-01-09 2022-03-17 IFP Energies Nouvelles Two-stage hydrocracking process comprising a hydrogenation stage downstream of the second hydrocracking stage, for the production of middle distillates
WO2022147440A1 (en) * 2020-12-31 2022-07-07 Uop Llc Process for hydrocracking a hydrocarbon feed stream

Similar Documents

Publication Publication Date Title
US20080283444A1 (en) Multi-stage hydrocracker with kerosene recycle
US20090045100A1 (en) Multi-stage hydrocracker with kerosene recycle
US6797154B2 (en) Hydrocracking process for the production of high quality distillates from heavy gas oils
US6630066B2 (en) Hydrocracking and hydrotreating separate refinery streams
US7238277B2 (en) High conversion hydroprocessing
US7531082B2 (en) High conversion hydroprocessing using multiple pressure and reaction zones
US6787025B2 (en) Process for the production of high quality middle distillates from mild hydrocrackers and vacuum gas oil hydrotreaters in combination with external feeds in the middle distillate boiling range
US10752848B2 (en) Process integrating two-stage hydrocracking and a hydrotreatment process
US6623623B2 (en) Simultaneous hydroprocessing of two feedstocks
US20090159493A1 (en) Targeted hydrogenation hydrocracking
US20080289996A1 (en) Hydroprocessing in multiple beds with intermediate flash zones
US20090095654A1 (en) Hydroprocessing in multiple beds with intermediate flash zones
US20100200459A1 (en) Selective staging hydrocracking
US20050006280A1 (en) Hydroprocessing in multiple beds with intermediate flash zones
US4404088A (en) Three-stage hydrocracking process
AU2005316715B2 (en) Fuels hydrocracking and distillate feed hydrofining in a single process

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON U.S.A. INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOON, H. ALEX;PAREKH, JAY B.;DAHLBERG, ARTHUR J.;REEL/FRAME:021726/0920;SIGNING DATES FROM 20080908 TO 20080916

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION