US20090028552A1 - System and Method for Wavelength Monitoring and Control - Google Patents

System and Method for Wavelength Monitoring and Control Download PDF

Info

Publication number
US20090028552A1
US20090028552A1 US11/829,458 US82945807A US2009028552A1 US 20090028552 A1 US20090028552 A1 US 20090028552A1 US 82945807 A US82945807 A US 82945807A US 2009028552 A1 US2009028552 A1 US 2009028552A1
Authority
US
United States
Prior art keywords
crosstalk
channel
aggregate
optical signal
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/829,458
Other versions
US7778550B2 (en
Inventor
Hongbin Zhang
Ralph Brian Jander
Carl R. Davidson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SubCom LLC
Original Assignee
Tyco Telecommunication US Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Telecommunication US Inc filed Critical Tyco Telecommunication US Inc
Priority to US11/829,458 priority Critical patent/US7778550B2/en
Assigned to TYCO TELECOMMUNICATIONS (US) INC. reassignment TYCO TELECOMMUNICATIONS (US) INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAVIDSON, CARL R., JANDER, RALPH BRIAN, ZHANG, HONGBIN
Priority to EP08782469.4A priority patent/EP2174391A4/en
Priority to CN200880100729.9A priority patent/CN101765948B/en
Priority to JP2010520121A priority patent/JP2010535006A/en
Priority to PCT/US2008/071396 priority patent/WO2009018237A1/en
Priority to AU2008282342A priority patent/AU2008282342A1/en
Publication of US20090028552A1 publication Critical patent/US20090028552A1/en
Assigned to TYCO ELECTRONICS SUBSEA COMMUNICATIONS LLC reassignment TYCO ELECTRONICS SUBSEA COMMUNICATIONS LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO TELECOMMUNICATIONS (US) INC.
Publication of US7778550B2 publication Critical patent/US7778550B2/en
Application granted granted Critical
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Definitions

  • the present application relates to communication systems and, more particularly, to a system and method for wavelength monitoring and control in optical communication systems.
  • WDM wavelength division multiplexed
  • several optical channels may be transmitted on a single optical fiber with narrow channel spacing, for example, less than 25-35 GHz.
  • narrow channel spacing for example, less than 25-35 GHz.
  • the frequency grid might be an absolute grid, e.g., based on International Telecommunication Union (ITU) standards, or a relative grid determined, for example, by one or more filters.
  • ITU International Telecommunication Union
  • a wavelength monitor may be used to position channel frequencies. In general, it may be desirable that a wavelength monitor position channel frequencies without creating significant system transmission penalties. It may also be desirable for a wavelength monitor to co-operate with combinations of various equipment generations and configurations. For example, it may be useful for a wavelength monitor to establish channel frequencies in mixed systems with signals of different modulation formats, such as On-Off-Keying (OOK) and differential phase-shift-keying (DPSK).
  • OOK On-Off-Keying
  • DPSK differential phase-shift-keying
  • FIG. 3 includes of plot frequency vs. relative power illustrating operation of an aggregate channel monitor consistent with the present disclosure
  • FIG. 4 is a simplified block diagram of another exemplary aggregate channel monitor consistent with the present disclosure.
  • FIG. 5 is a simplified block diagram of an exemplary comb filter consistent with the present disclosure
  • FIG. 6 includes plots of frequency detuning vs. crosstalk power in a system consistent with the present disclosure with different amounts of pre-emphasis;
  • FIG. 7 includes plots of frequency detuning vs. Q performance of a center channel in a system consistent with the present disclosure
  • FIG. 8 is a block flow diagram illustrating one example of a wavelength adjustment algorithm consistent with the present disclosure
  • FIG. 9 is a block flow diagram illustrating another example of a wavelength adjustment algorithm consistent with the present disclosure.
  • FIG. 10 includes plots of frequency detuning vs. crosstalk power in a system consistent with the present disclosure showing changes in crosstalk power associated with detuning of a center channel and three consecutive channels;
  • FIG. 11 is a block flow diagram illustrating another example of a wavelength adjustment algorithm consistent with the present disclosure.
  • FIG. 12 is a plot of an input signal to an aggregate channel monitor consistent with the present disclosure wherein the input signal includes different pre-emphasis between adjacent channels;
  • FIG. 13 includes plots of frequency detuning vs. crosstalk power in a system consistent with the present disclosure having an input to an aggregate channel monitor as shown in FIG. 12 ;
  • FIG. 14 includes plots of frequency detuning vs. crosstalk power in another system consistent with the present disclosure with different amounts of pre-emphasis.
  • FIG. 15 includes plots of frequency detuning vs. crosstalk power in another system consistent with the present disclosure showing changes in crosstalk power associated with detuning of a center channel and three consecutive channels.
  • each of a plurality of transmitters TX 1 , TX 2 . . . TXN receive a data signal on an associated input port 108 - 1 , 108 - 2 . . . 108 -N, and transmit the data signal on associated wavelength ⁇ 1 , ⁇ 2 . . . ⁇ N .
  • the transmitters are shown in highly simplified form for ease of explanation. Those skilled in the art will recognize that each transmitter may include electrical and optical components configured for transmitting the data signal at its associated wavelength with a desired amplitude and modulation.
  • the transmitted wavelengths or channels may by separated by a predetermined channel separation, e.g. 25 or 35 GHz, corresponding to an International Telecommunication Union (ITU) frequency grid.
  • a predetermined channel separation e.g. 25 or 35 GHz
  • One or more of the transmitters TX 1 , TX 2 . . . TXN may be configured to modulate data on associated wavelengths with a first modulation format, e.g. OOK, while one or more of the other transmitters TX 1 , TX 2 . . . TXN may be configured to modulate data on associated wavelengths with a second modulation format, e.g. DPSK, different from the first modulation format.
  • a second modulation format e.g. DPSK
  • the transmitted wavelengths or channels are respectively carried on a plurality of paths 110 - 1 , 110 - 2 . . . 110 -N.
  • the channels are combined into an aggregate signal on optical communication path 102 by a multiplexer 112 .
  • the optical communication path 102 may include optical fiber waveguides, optical amplifiers, optical filters, dispersion compensating modules, and other active and passive components.
  • the aggregate signal may be received at one or more remote receiving terminals 106 .
  • a demultiplexer 114 separates the transmitted channels at wavelengths ⁇ 1 , ⁇ 2 . . . ⁇ N onto associated paths 116 - 1 , 116 - 2 . . . 116 -N coupled to associated receivers RX 1 , RX 2 . . . RXN.
  • the receivers RX 1 , RX 2 . . . RXN may be configured to demodulate the signals to provide associated output data signals on associated output paths 118 - 1 , 118 - 2 , 118 - 3 , 118 -N.
  • the system 100 includes an aggregate channel monitor 120 and an element management system 122 .
  • the aggregate signal on path 102 may be coupled, e.g. using a 10% tap, to an input of the aggregate channel monitor 120 through path 126 .
  • the term “coupled” as used herein refers to any connection, coupling, link or the like by which signals carried by one system element are imparted to the “coupled” element. Such “coupled” devices are not necessarily directly connected to one another and may be separated by intermediate components or devices that may manipulate or modify such signals.
  • the aggregate channel monitor 120 may be configured to provide an output 128 to the element management system 122 representative of the crosstalk, i.e. adjacent channel interference, occurring between respective channels of the aggregate signal on path 102 .
  • the element management system 122 may be configured to provide one or more outputs 124 - 1 , 124 - 2 . . . 124 -N to the transmitters TX 1 , TX 2 . . . TXN for modifying the wavelengths ⁇ 1 , ⁇ 2 . . . ⁇ N in response to the output 128 while keeping the channels within a defined tolerance associated with the predetermined channel separation.
  • the wavelengths may be maintained within 2.25 GHz or less of the wavelengths ⁇ 1 , ⁇ 2 . . . ⁇ N associated with the predetermined channel separation.
  • the aggregate channel monitor 120 may provide an output 128 representative crosstalk between the channels in the aggregate signal using optical components.
  • the output 128 may be established using a comb filter having a transmission characteristic with center frequencies centered on the crosstalk between adjacent channels.
  • the comb filter may therefore establish a periodic, thermal-stable grid corresponding to the predetermined channel separation for transmitting crosstalk between channels.
  • the output 128 of the aggregate channel monitor may cause the element management system to establish a relative channel spacing in the aggregate signal on path 102 to minimize or equalize crosstalk, thereby positioning the channels according to the grid defined by the comb-filter.
  • FIG. 2 there is illustrated a simplified block diagram of one exemplary embodiment 120 a of an aggregate channel monitor consistent with the present disclosure.
  • the illustrated exemplary embodiment includes a comb filter 200 coupled to a crosstalk detector 202 .
  • the aggregate signal from path 102 may be provided as an input 204 to the comb filter 200 .
  • the comb filter 200 may receive the aggregate signal and provide an output 208 to the crosstalk detector 202 representative of the crosstalk between adjacent channels in the aggregate signal.
  • the crosstalk detector 202 may take a known detector configuration and may receive the comb filter output 208 and detect the power and/or level of the crosstalk between adjacent channels to provide an output 206 representative of the crosstalk between adjacent channels.
  • the crosstalk detector output 206 may be coupled to the element management system 122 , which may modify transmitter settings to position the wavelengths ⁇ 1 , ⁇ 2 . . . ⁇ N in a manner that minimizes or equalizes crosstalk between adjacent channels.
  • FIG. 3 for example includes plots 300 of frequency vs. relative power illustrating operation of an aggregate channel monitor 120 consistent with the present disclosure.
  • Plot 302 illustrates the power spectrum of first 304 and second 306 odd numbered channels, e.g. of an aggregate channel on path 102 , centered at 192.7 THz and 192.7666 THz, respectively, and plot 308 illustrates the power spectrum of first 310 and second 312 even numbered channels centered at 192.7333 THz and 192.7999 THz, respectively.
  • Plot 314 illustrates the crosstalk power spectrum for the crosstalk between the channels 304 , 306 , 310 and 312 .
  • section 316 of plot 314 illustrates the crosstalk power between channels 304 and 310
  • section 318 of plot 314 illustrates the crosstalk power between channels 310 and 306
  • section 320 of plot 314 illustrates the crosstalk power between channels 306 and 312 .
  • Each channel in the aggregate signal on path 102 may be said to have associated low and high frequency crosstalk side bands associated therewith.
  • portion 316 of plot 314 represents a low-frequency crosstalk side band associated with channel 310 and portion 318 represents a high-frequency crosstalk side band associated with channel 310 .
  • portions 318 and 320 of plot 314 represent the low and high frequency side bands associated with channel 306 .
  • the comb filter 200 may have a transmission characteristic with center frequencies centered on each of the crosstalk sidebands.
  • the transmission characteristic of the comb filter 200 may have center frequencies at f 1 , f 2 , f 3 . . . , etc. to provide an output as illustrated, for example, in plot 314 .
  • the center frequencies f 1 , f 2 , f 3 . . . may be positioned mid-way between channel center frequencies associated with the predetermined channel separation.
  • a comb filter 200 having a transmission characteristic centered on the crosstalk between adjacent channels may be provided in a variety of configurations.
  • FIG. 4 illustrates one exemplary embodiment 120 b of an aggregate channel monitor consistent with the present disclosure, wherein a comb filter 200 a is established using an optical circulator 400 and an optical interleaver 402 .
  • an optical circulator 400 and interleaver 402 configurations are known to those of ordinary skill in the art.
  • an optical circulator may be a passive optical device with three or more ports configured such that when a signal is fed into any port it is transferred to the next port.
  • An optical interleaver may be a passive device that may be used to combine odd and even sets of WDM channels provided at respective ports, into an aggregate signal at another port in an interleaving manner, or divide an aggregate WDM signal into odd and even channels at respective output ports.
  • the interleaver 402 may have the same period as the predetermined channel spacing. In one embodiment, for example, in a system with predetermined channel spacing of 33 Ghz, the interleaver may be a 33 GHz interleaver available from Optoplex Corporation of Fremont, Calif.
  • the aggregate signal from path 102 is provided at a first input port 404 of the circulator 400 and transferred to another port 406 coupled to an aggregate channel port 412 of the interleaver 402 .
  • the odd channel port 408 of the interleaver 402 may output the odd channels of the aggregate signal and the even channel port 410 of the interleaver 402 may output the even channels of the aggregate signal.
  • plot 304 may represent the output at odd channel port 408 and plot 308 may represent the output at the even channel port 410 .
  • the interleaver odd 408 and even 410 channel ports may be directly coupled, e.g. by path 409 .
  • the odd channels may be input to the even channel port 410 and the even channels may be input to the odd channel port 408 .
  • the output at the aggregate channel port 412 therefore is an aggregate signal including the intersection between the even channel and the odd channel frequency grid associated with the odd port 408 interleaved with the intersection between the odd channels and the even channel frequency grid associated with the even port 410 .
  • the output of the interleaver 412 provided as an input to the port 406 of the circulator 400 represents the crosstalk between adjacent channels in the aggregate signal on path 102 .
  • the plot 314 may represent the output of the interleaver provided at the input to port 406 of the circulator.
  • the output of the interleaver provided at port 406 of the circulator 400 may be transferred to port 414 of the circulator 400 .
  • a tunable filter 416 is coupled to port 414 .
  • the tunable filter 416 may be configured to scan the output at port 414 across the transmission bandwidth of the aggregate signal to provide an output 418 to a crosstalk detector 202 a.
  • the crosstalk detector 202 a may receive the filter output 418 and detect the crosstalk power between adjacent channels of the aggregate signal.
  • the crosstalk detector 202 a may provide an output 206 including data representing the crosstalk power and/or peak level between adjacent channels across the entire transmission bandwidth of the aggregate signal.
  • FIG. 5 illustrates a comb filter 200 b including first 500 and second 502 interleavers wherein an odd port 504 of the first interleaver 500 is coupled to an even port 506 of the second interleaver 502 and an even port 508 of the first interleaver 500 is coupled to an odd port 510 of the second interleaver 502 .
  • the illustrated configuration may receive an aggregate signal on input 512 and provide an output 514 representing the crosstalk between adjacent signals of the aggregate signal.
  • FIG. 6 illustrates measured sensitivity of crosstalk power vs. center wavelength detuning in an exemplary system consistent with the present disclosure.
  • Plot 602 is a plot of frequency detuning (GHz) for a center channel vs. relative crosstalk power when neighboring channels have no power pre-emphasis relative to the center channel.
  • Plot 604 is a plot of frequency detuning (GHz) for a center channel vs. relative crosstalk power when neighboring channels have a 5 dB power pre-emphasis relative to the center channel.
  • the center wavelength was detuned from 1550.65 nm, and the wavelength of the neighboring channels was fixed.
  • the data was obtained using a configuration consistent with the embodiment illustrated in FIG. 4 .
  • the interleaver carrier-to-side band ratio was to 7 dB.
  • the transmission format for all channels was DPSK.
  • a center channel that is detuned by 1 GHz may cause a crosstalk power increase of about 0.5 dB (with neighboring channels on).
  • an appropriate crosstalk detector 202 e.g., including a logarithm amplifier that can deliver ⁇ 0.1 dB power accuracy
  • less than 200 MHz wavelength positioning accuracy may be achieved in the illustrated exemplary system.
  • plot 604 illustrates that a significant degree of interchannel pre-emphasis may be accommodated without significantly affecting the crosstalk power measurement. Plots 602 and 604 show a negligible difference between 5 dB pre-emphasis and 0 dB pre-emphasis of the neighboring channels when the wavelength is detuned less than ⁇ 1 GHz.
  • One consideration in a system consistent with the present disclosure may be alignment of the aggregate signal channel spacing with the demultiplexer 114 at the receiver 106 . Offset in the grid frequency established by an aggregate channel monitor 120 consistent with the present disclosure and the demultiplexer 114 in the receiver may introduce linear crosstalk. FIG. 7 , however, illustrates that there may be only a minimal penalty when five consecutive 33 GHz spaced data channels are simultaneously detuned by ⁇ 4 GHz relative to the demultiplexer 114 in an exemplary system consistent with the present disclosure.
  • Plot 702 is a plot of channel frequency detuning vs. Q performance of a center channel at 1550.65 nm when the wavelengths of five consecutive channels after the center channel were simultaneously detuned. Plot 702 thus shows the Q-penalty with simulated misalignment between aggregate channel monitor 120 and the demultiplexer 114 in the receiver.
  • Plot 704 is a plot of channel frequency detuning vs. Q performance of the center channel when only the center channel was detuned. Plot 704 thus shows the Q-penalty when the channel spacing between neighboring channels is less than nominal frequency grid.
  • the data illustrated in FIG. 7 was obtained from a trans-Atlantic system using a configuration consistent with the embodiment illustrated in FIG. 1 , a 33 GHz channel spacing, parallel launch, and return-to-zero (RZ)-DPSK modulation format.
  • the center channel Q performance may be relatively insensitive to an offset between the grid frequency established by an aggregate channel monitor 120 and a demultiplexer 114 in the receiver.
  • Nonlinear transmission crosstalk effects e.g. from cross phase modulation (XPM) and/or four wave mixing (FWM), may induce a higher penalty than offset between aggregate channel monitor grid and the receiver demultiplexer.
  • This insensitivity may be achieved using presently available interleaver technology, which may deliver less than 2 GHz grid frequency error.
  • the output of the aggregate channel monitor 120 may be coupled to the element management system 122 , which may apply a wavelength adjustment algorithm to modify transmitter wavelengths to position the channels in the aggregate signal.
  • the wavelength adjustment algorithm may take a variety of configurations and may be implemented as one or more computer programs or applications, for example, running on a computer system of the element management system 122 .
  • Computer programs or applications, such as the wavelength adjustment algorithms may be stored on a memory in the element management system, or other machine readable medium (e.g., a hard disk, a CD Rom, a system memory, optical memory, etc.) and may be executed by a processor to cause the processor to perform all or part of the functions described herein as being performed by the element management system 122 .
  • the wavelength adjustment algorithm may be a wavelength dithering algorithm for minimizing crosstalk power in the output of the aggregate channel monitor.
  • FIG. 8 is a block flow diagram of one exemplary wavelength adjustment algorithm 800 consistent with the present disclosure.
  • the block flow diagrams used herein to describe various embodiments include particular sequences of steps. It can be appreciated, however, that the sequence of steps merely provides an example of how the general functionality described herein can be implemented. Further, each sequence of steps does not have to be executed in the order presented unless otherwise indicated.
  • the element management system 122 may determine 802 the total crosstalk power for each channel, i.e. the total power in the low and high frequency crosstalk side bands associated with the channel.
  • the channel wavelength may then be dithered 804 while keeping the rest of channels fixed to minimize the total crosstalk power for the channel. This process may be repeated 806 for each channel in the system.
  • FIG. 9 is a block flow diagram illustrating another embodiment of a wavelength adjustment algorithm consistent with the present disclosure.
  • the element management system 122 may move 902 all channels such that the interchannel spacing is not changed (reduced) during the tuning process. All of the channels may be moved in the same direction by the same offset while measuring crosstalk for each channel. This may approach may be described as all-channel-synchronous dithering. As illustrated in FIG. 9 , simultaneous dithering of consecutive channels by ⁇ 2 GHz may introduce a small Q penalty.
  • crosstalk vs. frequency offset data from the aggregate channel monitor may be obtained 904 and analyzed. Each channel may be moved 906 to an optimum channel frequency in response to the data. For example, for each channel a 2nd-order curve fit to the crosstalk power curve may be used to find an optimum channel frequency.
  • plot 1002 is a plot of frequency detuning (GHz) vs. relative crosstalk power when only the measured channel was moved
  • plot 1004 is a plot of frequency detuning (GHz) vs. relative crosstalk power when three consecutive channels were moved.
  • the data illustrated in FIG. 10 was obtained using a system configuration as described in connection with FIG. 6 .
  • plot 1004 high crosstalk power sensitivity vs. wavelength movement may be achieved using all-channel-synchronous dithering consistent with the present disclosure.
  • FIG. 11 is a block flow diagram illustrating another embodiment 1100 of a wavelength adjustment algorithm consistent with the present disclosure.
  • the illustrated exemplary embodiment may be a non-dithering algorithm configured to equalize linear crosstalk power between a channel and each of its neighboring channels, i.e. as opposed to minimizing the total crosstalk.
  • Minimizing total crosstalk power may locate channel frequencies on the exact frequency grid of the comb filter of the aggregate channel monitor, while equalizing neighboring crosstalk may locate a frequency slightly offset from the comb filter grid in a preferable direction.
  • the peak level of the high and low frequency crosstalk sidebands for each channel may be determined 1102 .
  • the channel wavelength may then be moved 1104 to equalize the peak level of the associated crosstalk side bands.
  • Crosstalk side band peak level equalization may be repeated 1106 for each channel in the system.
  • a minimum total crosstalk power may occur when the crosstalk sideband power levels are equal.
  • the peak level of the low-frequency sideband e.g. portion 316 of plot 314 in FIG. 3
  • the peak level high-frequency sideband e.g. portion 318 in FIG. 3
  • the channel frequency may be moved in a high frequency direction to equalize the two sideband crosstalk peaks.
  • FIG. 12 includes a plot 1200 of frequency vs. optical power for three channels, 1202 , 1204 , 1206 , with approximately a 3 dB power difference between each of the neighboring channels entering an aggregate channel monitor consistent with the configuration of FIG. 4 .
  • FIG. 13 includes plots of frequency detuning vs. crosstalk power for the input channels illustrated in FIG. 12 .
  • Plot 1300 illustrates a total measured total crosstalk power of the center channel.
  • Plots 1302 and 1304 illustrate the crosstalk power for each sideband as the center channel frequency is detuned.
  • the sideband crosstalk powers intersect at a frequency approximately 1 GHz offset from the minimum total crosstalk power point shown in plot 1300 . Also, the equalization point of the plots 1302 and 1304 is shifted in the high frequency direction away from the higher-power channel 1202 .
  • the aggregate channel monitor 120 may scan an aggregate signal and provide the crosstalk sideband spectrum (or the peaks vs. frequency) at an input to the element management system 122 .
  • the non-dithering wavelength adjustment algorithm may then step-wise select two transmitters associated with the highest sideband power and move the frequencies of these transmitters a small frequency step away from the center frequency of the highest sideband power.
  • the algorithm may then obtain an updated crosstalk sideband spectrum from the aggregate channel monitor to operate again on the transmitters associated with the highest sideband peak. The process may continue until all sideband peaks in the crosstalk spectrum have substantially similar magnitudes.
  • FIGS. 14 and 15 illustrate performance of a system consistent with the present disclosure using 12.5 Gbs DPSK formatted signals and 25 GHz channel spacing. That data plotted in FIGS. 14 and 15 was obtained using a configuration as shown in FIG. 4 , and an interleaver and tunable filter as described above in connection with FIG. 6 .
  • the interleaver CSR was optimized to 12 dB.
  • plot 1402 is a plot of frequency detuning (GHz) for a center channel vs. relative crosstalk power when neighboring channels have no power pre-emphasis relative to the center channel.
  • Plot 1404 is a plot of frequency detuning (GHz) for a center channel vs. relative crosstalk power when neighboring channels have a 5 dB power pre-emphasis relative to the center channel.
  • crosstalk sensitivity for 25 GHz channel separation using a 12 dB CSR ratio is improved compared to the sensitivity illustrated in FIG. 6 corresponding to a 33 GHz channel separation and a 7 dB CSR.
  • FIG. 15 includes plots of measured crosstalk power when three consecutive channels of the same power were offset together.
  • Plot 1502 is a plot of frequency detuning (GHz) vs. relative crosstalk power when only the center channel was moved.
  • Plot 1504 is a plot of frequency detuning (GHz) vs. relative crosstalk power when three consecutive channels were moved.
  • high crosstalk power sensitivity vs. wavelength movement may be achieved in a system using a 25 GHz channel separation consistent with the present disclosure.
  • an aggregate channel monitor for an optical communication system includes: a comb filter configured to receive an aggregate signal from the communication system, the aggregate signal including a plurality of optical signal channels, the comb filter having a transmission characteristic configured to provide an output signal representative of crosstalk between the optical signal channels; and a crosstalk detector coupled to the comb filter, the crosstalk power detector being configured to detect the crosstalk between the optical signal channels and provide crosstalk output data representative of the crosstalk.
  • an optical communication system including: a transmitter configured for transmitting an aggregate signal including a plurality of optical signal channels; a receiver coupled to the transmitter through an optical communication path; an aggregate channel monitor including a comb filter configured to receive at least a portion of the aggregate signal, the comb filter having a transmission characteristic configured to provide an output signal representative of crosstalk between the optical signal channels, and a crosstalk detector coupled to the comb filter, the crosstalk power detector being configured to detect the crosstalk between the optical signal channels and provide crosstalk output data representative of the crosstalk; and an element management system coupled to the crosstalk detector and the transmitter, the element management being configured to establish channel spacing in the aggregate signal in response to the crosstalk output data.
  • a method of establishing channel spacing in an aggregate optical signal including a plurality of optical signal channels, the method including: filtering the aggregate signal to provide a filter output representative of crosstalk between the optical signal channels; detecting the crosstalk to provide output data representative of the crosstalk between the optical signal channels; and modifying the channel spacing in response to the output data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)

Abstract

A system and method using for wavelength monitoring and control in a WDM optical communication system. An aggregate channel monitor detects crosstalk between channels in the aggregate signal. Channel spacing may be modified by an element management system in response to the output of the aggregate channel monitor.

Description

    TECHNICAL FIELD
  • The present application relates to communication systems and, more particularly, to a system and method for wavelength monitoring and control in optical communication systems.
  • BACKGROUND
  • In wavelength division multiplexed (WDM) optical communication systems several optical channels may be transmitted on a single optical fiber with narrow channel spacing, for example, less than 25-35 GHz. To mitigate crosstalk between channels, it may be important to accurately and reliably position the frequency for each channel within a small range around a fixed frequency grid. The frequency grid might be an absolute grid, e.g., based on International Telecommunication Union (ITU) standards, or a relative grid determined, for example, by one or more filters.
  • To position channel frequencies, a wavelength monitor may be used. In general, it may be desirable that a wavelength monitor position channel frequencies without creating significant system transmission penalties. It may also be desirable for a wavelength monitor to co-operate with combinations of various equipment generations and configurations. For example, it may be useful for a wavelength monitor to establish channel frequencies in mixed systems with signals of different modulation formats, such as On-Off-Keying (OOK) and differential phase-shift-keying (DPSK).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Reference should be made to the following detailed description which should be read in conjunction with the following figures, wherein like numerals represent like parts:
  • FIG. 1 is a simplified block diagram of one exemplary embodiment of a system consistent with the present disclosure;
  • FIG. 2 is a simplified block diagram of one exemplary aggregate channel monitor consistent with the present disclosure;
  • FIG. 3 includes of plot frequency vs. relative power illustrating operation of an aggregate channel monitor consistent with the present disclosure;
  • FIG. 4 is a simplified block diagram of another exemplary aggregate channel monitor consistent with the present disclosure;
  • FIG. 5 is a simplified block diagram of an exemplary comb filter consistent with the present disclosure;
  • FIG. 6 includes plots of frequency detuning vs. crosstalk power in a system consistent with the present disclosure with different amounts of pre-emphasis;
  • FIG. 7 includes plots of frequency detuning vs. Q performance of a center channel in a system consistent with the present disclosure;
  • FIG. 8 is a block flow diagram illustrating one example of a wavelength adjustment algorithm consistent with the present disclosure;
  • FIG. 9 is a block flow diagram illustrating another example of a wavelength adjustment algorithm consistent with the present disclosure;
  • FIG. 10 includes plots of frequency detuning vs. crosstalk power in a system consistent with the present disclosure showing changes in crosstalk power associated with detuning of a center channel and three consecutive channels;
  • FIG. 11 is a block flow diagram illustrating another example of a wavelength adjustment algorithm consistent with the present disclosure;
  • FIG. 12 is a plot of an input signal to an aggregate channel monitor consistent with the present disclosure wherein the input signal includes different pre-emphasis between adjacent channels;
  • FIG. 13 includes plots of frequency detuning vs. crosstalk power in a system consistent with the present disclosure having an input to an aggregate channel monitor as shown in FIG. 12;
  • FIG. 14 includes plots of frequency detuning vs. crosstalk power in another system consistent with the present disclosure with different amounts of pre-emphasis; and
  • FIG. 15 includes plots of frequency detuning vs. crosstalk power in another system consistent with the present disclosure showing changes in crosstalk power associated with detuning of a center channel and three consecutive channels.
  • DETAILED DESCRIPTION
  • FIG. 1 is a simplified block diagram of one exemplary embodiment of a WDM transmission system 100 consistent with the present disclosure. The transmission system serves to transmit a plurality of optical channels over an optical communication path 102 from a transmitting terminal 104 to one or more remotely located receiving terminals 106. Those of ordinary skilled in the art will recognize that the system 100 has been depicted as a highly simplified point-to-point system for ease of explanation. For example, the transmitting terminal 104 and receiving terminal 106 may, of course, both be configured as transceivers, whereby each may be configured to perform both transmitting and receiving functions. For ease of explanation, however, the terminals are depicted and described herein with respect to only a transmitting or receiving function. It is to be understood that a system and method consistent with the present disclosure may be incorporated into a wide variety of network components and configurations. The illustrated exemplary embodiments herein are provided only by way of explanation, not of limitation.
  • In the illustrated exemplary embodiment, each of a plurality of transmitters TX1, TX2 . . . TXN receive a data signal on an associated input port 108-1, 108-2 . . . 108-N, and transmit the data signal on associated wavelength λ1, λ2 . . . λN. The transmitters, of course, are shown in highly simplified form for ease of explanation. Those skilled in the art will recognize that each transmitter may include electrical and optical components configured for transmitting the data signal at its associated wavelength with a desired amplitude and modulation.
  • The transmitted wavelengths or channels may by separated by a predetermined channel separation, e.g. 25 or 35 GHz, corresponding to an International Telecommunication Union (ITU) frequency grid. One or more of the transmitters TX1, TX2 . . . TXN may be configured to modulate data on associated wavelengths with a first modulation format, e.g. OOK, while one or more of the other transmitters TX1, TX2 . . . TXN may be configured to modulate data on associated wavelengths with a second modulation format, e.g. DPSK, different from the first modulation format. Such a configuration may be provided, for example, in an upgrade configuration, wherein new channels are added with a modulation format different from the previously installed channels.
  • The transmitted wavelengths or channels are respectively carried on a plurality of paths 110-1, 110-2 . . . 110-N. The channels are combined into an aggregate signal on optical communication path 102 by a multiplexer 112. The optical communication path 102 may include optical fiber waveguides, optical amplifiers, optical filters, dispersion compensating modules, and other active and passive components.
  • The aggregate signal may be received at one or more remote receiving terminals 106. A demultiplexer 114 separates the transmitted channels at wavelengths λ1, λ2 . . . λN onto associated paths 116-1, 116-2 . . . 116-N coupled to associated receivers RX1, RX2 . . . RXN. The receivers RX1, RX2 . . . RXN may be configured to demodulate the signals to provide associated output data signals on associated output paths 118-1, 118-2, 118-3, 118-N.
  • Consistent with the present disclosure, the system 100 includes an aggregate channel monitor 120 and an element management system 122. In general, the aggregate signal on path 102 may be coupled, e.g. using a 10% tap, to an input of the aggregate channel monitor 120 through path 126. The term “coupled” as used herein refers to any connection, coupling, link or the like by which signals carried by one system element are imparted to the “coupled” element. Such “coupled” devices are not necessarily directly connected to one another and may be separated by intermediate components or devices that may manipulate or modify such signals.
  • The aggregate channel monitor 120 may be configured to provide an output 128 to the element management system 122 representative of the crosstalk, i.e. adjacent channel interference, occurring between respective channels of the aggregate signal on path 102. The element management system 122 may be configured to provide one or more outputs 124-1, 124-2 . . . 124-N to the transmitters TX1, TX2 . . . TXN for modifying the wavelengths λ1, λ2 . . . λN in response to the output 128 while keeping the channels within a defined tolerance associated with the predetermined channel separation. In one embodiment, the wavelengths may be maintained within 2.25 GHz or less of the wavelengths λ1, λ2 . . . λN associated with the predetermined channel separation.
  • The aggregate channel monitor 120 may provide an output 128 representative crosstalk between the channels in the aggregate signal using optical components. The output 128 may be established using a comb filter having a transmission characteristic with center frequencies centered on the crosstalk between adjacent channels. The comb filter may therefore establish a periodic, thermal-stable grid corresponding to the predetermined channel separation for transmitting crosstalk between channels. The output 128 of the aggregate channel monitor may cause the element management system to establish a relative channel spacing in the aggregate signal on path 102 to minimize or equalize crosstalk, thereby positioning the channels according to the grid defined by the comb-filter.
  • Turning to FIG. 2, for example, there is illustrated a simplified block diagram of one exemplary embodiment 120 a of an aggregate channel monitor consistent with the present disclosure. The illustrated exemplary embodiment includes a comb filter 200 coupled to a crosstalk detector 202. The aggregate signal from path 102 may be provided as an input 204 to the comb filter 200. The comb filter 200 may receive the aggregate signal and provide an output 208 to the crosstalk detector 202 representative of the crosstalk between adjacent channels in the aggregate signal.
  • The crosstalk detector 202 may take a known detector configuration and may receive the comb filter output 208 and detect the power and/or level of the crosstalk between adjacent channels to provide an output 206 representative of the crosstalk between adjacent channels. The crosstalk detector output 206 may be coupled to the element management system 122, which may modify transmitter settings to position the wavelengths λ1, λ2 . . . λN in a manner that minimizes or equalizes crosstalk between adjacent channels.
  • FIG. 3 for example includes plots 300 of frequency vs. relative power illustrating operation of an aggregate channel monitor 120 consistent with the present disclosure. Plot 302 illustrates the power spectrum of first 304 and second 306 odd numbered channels, e.g. of an aggregate channel on path 102, centered at 192.7 THz and 192.7666 THz, respectively, and plot 308 illustrates the power spectrum of first 310 and second 312 even numbered channels centered at 192.7333 THz and 192.7999 THz, respectively. Plot 314 illustrates the crosstalk power spectrum for the crosstalk between the channels 304, 306, 310 and 312. In particular, section 316 of plot 314 illustrates the crosstalk power between channels 304 and 310, section 318 of plot 314 illustrates the crosstalk power between channels 310 and 306, and section 320 of plot 314 illustrates the crosstalk power between channels 306 and 312.
  • Each channel in the aggregate signal on path 102 may be said to have associated low and high frequency crosstalk side bands associated therewith. In the FIG. 3, for example, portion 316 of plot 314 represents a low-frequency crosstalk side band associated with channel 310 and portion 318 represents a high-frequency crosstalk side band associated with channel 310. Likewise, portions 318 and 320 of plot 314 represent the low and high frequency side bands associated with channel 306.
  • The comb filter 200 may have a transmission characteristic with center frequencies centered on each of the crosstalk sidebands. With reference to the exemplary embodiment of FIG. 3, for example the transmission characteristic of the comb filter 200 may have center frequencies at f1, f2, f3 . . . , etc. to provide an output as illustrated, for example, in plot 314. The center frequencies f1, f2, f3 . . . , may be positioned mid-way between channel center frequencies associated with the predetermined channel separation.
  • A comb filter 200 having a transmission characteristic centered on the crosstalk between adjacent channels may be provided in a variety of configurations. FIG. 4, for example, illustrates one exemplary embodiment 120 b of an aggregate channel monitor consistent with the present disclosure, wherein a comb filter 200 a is established using an optical circulator 400 and an optical interleaver 402.
  • A variety of optical circulator 400 and interleaver 402 configurations are known to those of ordinary skill in the art. In general, an optical circulator may be a passive optical device with three or more ports configured such that when a signal is fed into any port it is transferred to the next port. An optical interleaver may be a passive device that may be used to combine odd and even sets of WDM channels provided at respective ports, into an aggregate signal at another port in an interleaving manner, or divide an aggregate WDM signal into odd and even channels at respective output ports. In the illustrated exemplary embodiment, the interleaver 402 may have the same period as the predetermined channel spacing. In one embodiment, for example, in a system with predetermined channel spacing of 33 Ghz, the interleaver may be a 33 GHz interleaver available from Optoplex Corporation of Fremont, Calif.
  • In the illustrated exemplary embodiment, the aggregate signal from path 102 is provided at a first input port 404 of the circulator 400 and transferred to another port 406 coupled to an aggregate channel port 412 of the interleaver 402. The odd channel port 408 of the interleaver 402 may output the odd channels of the aggregate signal and the even channel port 410 of the interleaver 402 may output the even channels of the aggregate signal. With reference to FIG. 3, for example, plot 304 may represent the output at odd channel port 408 and plot 308 may represent the output at the even channel port 410.
  • As shown, the interleaver odd 408 and even 410 channel ports may be directly coupled, e.g. by path 409. In this configuration, the odd channels may be input to the even channel port 410 and the even channels may be input to the odd channel port 408. The output at the aggregate channel port 412 therefore is an aggregate signal including the intersection between the even channel and the odd channel frequency grid associated with the odd port 408 interleaved with the intersection between the odd channels and the even channel frequency grid associated with the even port 410. In other words, the output of the interleaver 412 provided as an input to the port 406 of the circulator 400 represents the crosstalk between adjacent channels in the aggregate signal on path 102. The combination of the circulator 400 and interleaver 402 with the interleaver odd 408 and even 410 ports coupled, as shown, establishes a comb filter 200 a having a transmission characteristic with center frequencies centered on the crosstalk between adjacent channels. With reference to FIG. 3, for example, the plot 314 may represent the output of the interleaver provided at the input to port 406 of the circulator.
  • The output of the interleaver provided at port 406 of the circulator 400 may be transferred to port 414 of the circulator 400. In the illustrated exemplary embodiment, a tunable filter 416 is coupled to port 414. The tunable filter 416 may be configured to scan the output at port 414 across the transmission bandwidth of the aggregate signal to provide an output 418 to a crosstalk detector 202 a. The crosstalk detector 202 a may receive the filter output 418 and detect the crosstalk power between adjacent channels of the aggregate signal. The crosstalk detector 202 a may provide an output 206 including data representing the crosstalk power and/or peak level between adjacent channels across the entire transmission bandwidth of the aggregate signal.
  • Other configurations for achieving a comb filter 200 having a transmission characteristic with center frequencies centered on the crosstalk between adjacent channels are possible. FIG. 5, for example, illustrates a comb filter 200 b including first 500 and second 502 interleavers wherein an odd port 504 of the first interleaver 500 is coupled to an even port 506 of the second interleaver 502 and an even port 508 of the first interleaver 500 is coupled to an odd port 510 of the second interleaver 502. The illustrated configuration may receive an aggregate signal on input 512 and provide an output 514 representing the crosstalk between adjacent signals of the aggregate signal.
  • FIG. 6 illustrates measured sensitivity of crosstalk power vs. center wavelength detuning in an exemplary system consistent with the present disclosure. Plot 602 is a plot of frequency detuning (GHz) for a center channel vs. relative crosstalk power when neighboring channels have no power pre-emphasis relative to the center channel. Plot 604 is a plot of frequency detuning (GHz) for a center channel vs. relative crosstalk power when neighboring channels have a 5 dB power pre-emphasis relative to the center channel. In obtaining the data associated with plots 602 and 604, the center wavelength was detuned from 1550.65 nm, and the wavelength of the neighboring channels was fixed. The data was obtained using a configuration consistent with the embodiment illustrated in FIG. 4. An optical spectrum analyzer (OSA) with a 0.2 nm BW, produced by Ando Electric Company, Ltd. of Tokyo, JP, was used as a tunable filter 416, and an Optoplex 33 GHz interleaver was used as the interleaver 402. The interleaver carrier-to-side band ratio was to 7 dB. The transmission format for all channels was DPSK.
  • As shown in plot 602, a center channel that is detuned by 1 GHz may cause a crosstalk power increase of about 0.5 dB (with neighboring channels on). In such a system using an appropriate crosstalk detector 202, e.g., including a logarithm amplifier that can deliver ±0.1 dB power accuracy, less than 200 MHz wavelength positioning accuracy may be achieved in the illustrated exemplary system. Also, plot 604 illustrates that a significant degree of interchannel pre-emphasis may be accommodated without significantly affecting the crosstalk power measurement. Plots 602 and 604 show a negligible difference between 5 dB pre-emphasis and 0 dB pre-emphasis of the neighboring channels when the wavelength is detuned less than ±1 GHz.
  • One consideration in a system consistent with the present disclosure may be alignment of the aggregate signal channel spacing with the demultiplexer 114 at the receiver 106. Offset in the grid frequency established by an aggregate channel monitor 120 consistent with the present disclosure and the demultiplexer 114 in the receiver may introduce linear crosstalk. FIG. 7, however, illustrates that there may be only a minimal penalty when five consecutive 33 GHz spaced data channels are simultaneously detuned by ±4 GHz relative to the demultiplexer 114 in an exemplary system consistent with the present disclosure.
  • Plot 702 is a plot of channel frequency detuning vs. Q performance of a center channel at 1550.65 nm when the wavelengths of five consecutive channels after the center channel were simultaneously detuned. Plot 702 thus shows the Q-penalty with simulated misalignment between aggregate channel monitor 120 and the demultiplexer 114 in the receiver. Plot 704 is a plot of channel frequency detuning vs. Q performance of the center channel when only the center channel was detuned. Plot 704 thus shows the Q-penalty when the channel spacing between neighboring channels is less than nominal frequency grid. The data illustrated in FIG. 7 was obtained from a trans-Atlantic system using a configuration consistent with the embodiment illustrated in FIG. 1, a 33 GHz channel spacing, parallel launch, and return-to-zero (RZ)-DPSK modulation format.
  • As shown, the center channel Q performance may be relatively insensitive to an offset between the grid frequency established by an aggregate channel monitor 120 and a demultiplexer 114 in the receiver. Nonlinear transmission crosstalk effects, e.g. from cross phase modulation (XPM) and/or four wave mixing (FWM), may induce a higher penalty than offset between aggregate channel monitor grid and the receiver demultiplexer. This insensitivity may be achieved using presently available interleaver technology, which may deliver less than 2 GHz grid frequency error.
  • With reference again to FIG. 1, the output of the aggregate channel monitor 120 may be coupled to the element management system 122, which may apply a wavelength adjustment algorithm to modify transmitter wavelengths to position the channels in the aggregate signal. The wavelength adjustment algorithm may take a variety of configurations and may be implemented as one or more computer programs or applications, for example, running on a computer system of the element management system 122. Computer programs or applications, such as the wavelength adjustment algorithms, may be stored on a memory in the element management system, or other machine readable medium (e.g., a hard disk, a CD Rom, a system memory, optical memory, etc.) and may be executed by a processor to cause the processor to perform all or part of the functions described herein as being performed by the element management system 122. It is expected that such a computer program product may be distributed as a removable machine-readable medium (e.g., a diskette, CD-ROM), preloaded with a system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over a network (e.g., the Internet or World Wide Web). Those of ordinary skill in the art will recognize that the element management system functionality may be implemented using any combination of hardware, software, and/or firmware to provide such functionality.
  • In one exemplary embodiment, the wavelength adjustment algorithm may be a wavelength dithering algorithm for minimizing crosstalk power in the output of the aggregate channel monitor. FIG. 8 is a block flow diagram of one exemplary wavelength adjustment algorithm 800 consistent with the present disclosure. The block flow diagrams used herein to describe various embodiments include particular sequences of steps. It can be appreciated, however, that the sequence of steps merely provides an example of how the general functionality described herein can be implemented. Further, each sequence of steps does not have to be executed in the order presented unless otherwise indicated.
  • In the exemplary embodiment illustrated in FIG. 8, the element management system 122 may determine 802 the total crosstalk power for each channel, i.e. the total power in the low and high frequency crosstalk side bands associated with the channel. The channel wavelength may then be dithered 804 while keeping the rest of channels fixed to minimize the total crosstalk power for the channel. This process may be repeated 806 for each channel in the system.
  • FIG. 9 is a block flow diagram illustrating another embodiment of a wavelength adjustment algorithm consistent with the present disclosure. As shown, the element management system 122 may move 902 all channels such that the interchannel spacing is not changed (reduced) during the tuning process. All of the channels may be moved in the same direction by the same offset while measuring crosstalk for each channel. This may approach may be described as all-channel-synchronous dithering. As illustrated in FIG. 9, simultaneous dithering of consecutive channels by ±2 GHz may introduce a small Q penalty. After moving all channels while measuring crosstalk, crosstalk vs. frequency offset data from the aggregate channel monitor may be obtained 904 and analyzed. Each channel may be moved 906 to an optimum channel frequency in response to the data. For example, for each channel a 2nd-order curve fit to the crosstalk power curve may be used to find an optimum channel frequency.
  • In FIG. 10, plot 1002 is a plot of frequency detuning (GHz) vs. relative crosstalk power when only the measured channel was moved, and plot 1004 is a plot of frequency detuning (GHz) vs. relative crosstalk power when three consecutive channels were moved. The data illustrated in FIG. 10 was obtained using a system configuration as described in connection with FIG. 6. As illustrated by plot 1004, high crosstalk power sensitivity vs. wavelength movement may be achieved using all-channel-synchronous dithering consistent with the present disclosure.
  • FIG. 11 is a block flow diagram illustrating another embodiment 1100 of a wavelength adjustment algorithm consistent with the present disclosure. The illustrated exemplary embodiment may be a non-dithering algorithm configured to equalize linear crosstalk power between a channel and each of its neighboring channels, i.e. as opposed to minimizing the total crosstalk. Minimizing total crosstalk power may locate channel frequencies on the exact frequency grid of the comb filter of the aggregate channel monitor, while equalizing neighboring crosstalk may locate a frequency slightly offset from the comb filter grid in a preferable direction.
  • As shown, the peak level of the high and low frequency crosstalk sidebands for each channel may be determined 1102. The channel wavelength may then be moved 1104 to equalize the peak level of the associated crosstalk side bands. Crosstalk side band peak level equalization may be repeated 1106 for each channel in the system. When all channels in the aggregate channel have equal pre-emphasis a minimum total crosstalk power may occur when the crosstalk sideband power levels are equal. If the peak level of the low-frequency sideband (e.g. portion 316 of plot 314 in FIG. 3) is greater than the peak level high-frequency sideband (e.g. portion 318 in FIG. 3) for a given channel (e.g. channel 310 in FIG. 3) the channel frequency may be moved in a high frequency direction to equalize the two sideband crosstalk peaks.
  • This approach may be applied to systems wherein pre-emphasis exists in the aggregate channel. FIG. 12 includes a plot 1200 of frequency vs. optical power for three channels, 1202, 1204, 1206, with approximately a 3 dB power difference between each of the neighboring channels entering an aggregate channel monitor consistent with the configuration of FIG. 4. FIG. 13 includes plots of frequency detuning vs. crosstalk power for the input channels illustrated in FIG. 12. Plot 1300 illustrates a total measured total crosstalk power of the center channel. Plots 1302 and 1304 illustrate the crosstalk power for each sideband as the center channel frequency is detuned. As shown, the sideband crosstalk powers intersect at a frequency approximately 1 GHz offset from the minimum total crosstalk power point shown in plot 1300. Also, the equalization point of the plots 1302 and 1304 is shifted in the high frequency direction away from the higher-power channel 1202.
  • In one embodiment, the aggregate channel monitor 120 may scan an aggregate signal and provide the crosstalk sideband spectrum (or the peaks vs. frequency) at an input to the element management system 122. The non-dithering wavelength adjustment algorithm may then step-wise select two transmitters associated with the highest sideband power and move the frequencies of these transmitters a small frequency step away from the center frequency of the highest sideband power. The algorithm may then obtain an updated crosstalk sideband spectrum from the aggregate channel monitor to operate again on the transmitters associated with the highest sideband peak. The process may continue until all sideband peaks in the crosstalk spectrum have substantially similar magnitudes.
  • A system consistent with the present disclosure may be configured for operation with narrow channel spacing. FIGS. 14 and 15, for example illustrate performance of a system consistent with the present disclosure using 12.5 Gbs DPSK formatted signals and 25 GHz channel spacing. That data plotted in FIGS. 14 and 15 was obtained using a configuration as shown in FIG. 4, and an interleaver and tunable filter as described above in connection with FIG. 6. The interleaver CSR was optimized to 12 dB.
  • In FIG. 14, plot 1402 is a plot of frequency detuning (GHz) for a center channel vs. relative crosstalk power when neighboring channels have no power pre-emphasis relative to the center channel. Plot 1404 is a plot of frequency detuning (GHz) for a center channel vs. relative crosstalk power when neighboring channels have a 5 dB power pre-emphasis relative to the center channel. As shown, crosstalk sensitivity for 25 GHz channel separation using a 12 dB CSR ratio is improved compared to the sensitivity illustrated in FIG. 6 corresponding to a 33 GHz channel separation and a 7 dB CSR.
  • FIG. 15 includes plots of measured crosstalk power when three consecutive channels of the same power were offset together. Plot 1502 is a plot of frequency detuning (GHz) vs. relative crosstalk power when only the center channel was moved. Plot 1504 is a plot of frequency detuning (GHz) vs. relative crosstalk power when three consecutive channels were moved. As shown, high crosstalk power sensitivity vs. wavelength movement may be achieved in a system using a 25 GHz channel separation consistent with the present disclosure.
  • There is thus provided a system and method for wavelength monitoring and control in a WDM optical communication system. According to one aspect of the disclosure, there is provided an aggregate channel monitor for an optical communication system, the aggregate channel monitor includes: a comb filter configured to receive an aggregate signal from the communication system, the aggregate signal including a plurality of optical signal channels, the comb filter having a transmission characteristic configured to provide an output signal representative of crosstalk between the optical signal channels; and a crosstalk detector coupled to the comb filter, the crosstalk power detector being configured to detect the crosstalk between the optical signal channels and provide crosstalk output data representative of the crosstalk.
  • According to another aspect of the disclosure, there is provided an optical communication system including: a transmitter configured for transmitting an aggregate signal including a plurality of optical signal channels; a receiver coupled to the transmitter through an optical communication path; an aggregate channel monitor including a comb filter configured to receive at least a portion of the aggregate signal, the comb filter having a transmission characteristic configured to provide an output signal representative of crosstalk between the optical signal channels, and a crosstalk detector coupled to the comb filter, the crosstalk power detector being configured to detect the crosstalk between the optical signal channels and provide crosstalk output data representative of the crosstalk; and an element management system coupled to the crosstalk detector and the transmitter, the element management being configured to establish channel spacing in the aggregate signal in response to the crosstalk output data.
  • According to yet another aspect of the disclosure, there is provided a method of establishing channel spacing in an aggregate optical signal including a plurality of optical signal channels, the method including: filtering the aggregate signal to provide a filter output representative of crosstalk between the optical signal channels; detecting the crosstalk to provide output data representative of the crosstalk between the optical signal channels; and modifying the channel spacing in response to the output data.
  • The embodiments that have been described herein but some of the several which utilize this invention and are set forth here by way of illustration but not of limitation. Many other embodiments, which will be readily apparent to those of ordinary skill in the art, may be made without departing materially from the spirit and scope of the invention

Claims (20)

1. An aggregate channel monitor for an optical communication system, said aggregate channel monitor comprising:
a comb filter configured to receive an aggregate signal from the communication system, the aggregate signal comprising a plurality of optical signal channels, said comb filter having a transmission characteristic configured to provide an output signal representative of crosstalk between said optical signal channels; and
a crosstalk detector coupled to said comb filter, said crosstalk detector being configured to detect said crosstalk between said optical signal channels and provide crosstalk output data representative of said crosstalk.
2. An aggregate channel monitor according to claim 1, wherein said transmission characteristic of said comb filter has center frequencies centered on center frequencies of said crosstalk between said optical signal channels.
3. An aggregate channel monitor according to claim 1, wherein said comb filter comprises an optical interleaver having odd and even channel ports, said odd and even channel ports being directly coupled to each other.
4. An aggregate channel monitor according to claim 3, wherein said comb filter comprises an optical circulator having a first port configured for receiving said aggregate signal, a second port coupled to an aggregate signal input of said interleaver, and a third port providing said output signal representative of crosstalk between said optical signal channels.
5. An aggregate channel monitor according to claim 4, said aggregate channel monitor further comprising a tunable filter coupled between said comb filter and said crosstalk detector.
6. An aggregate channel monitor according to claim 1, wherein said comb filter comprises first and second optical interleavers each having odd and even channel ports, said odd channel port of said first interleaver being coupled to said even channel port of said second interleaver and said even channel port of said first interleaver being coupled to an odd channel port of said second interleaver.
7. An aggregate channel monitor according to claim 1, wherein plurality of optical signal channels are separated by a channel spacing of about 33 GHz.
8. An aggregate channel monitor according to claim 1, wherein plurality of optical signal channels are separated by a channel spacing of about 25 GHz.
9. An optical communication system comprising:
a transmitter configured for transmitting an aggregate signal comprising a plurality of optical signal channels;
a receiver coupled to said transmitter through an optical communication path;
an aggregate channel monitor comprising
a comb filter configured to receive at least a portion of said aggregate signal, said comb filter having a transmission characteristic configured to provide an output signal representative of crosstalk between said optical signal channels, and
a crosstalk detector coupled to said comb filter, said crosstalk power detector being configured to detect said crosstalk between said optical signal channels and provide crosstalk output data representative of said crosstalk; and
an element management system coupled to said crosstalk detector and said transmitter, said element management being configured to establish channel spacing in said aggregate signal in response to said crosstalk output data.
10. A system according to claim 9, wherein said transmission characteristic of said comb filter has center frequencies centered on center frequencies of said crosstalk between said optical signal channels.
11. A system according to claim 9, wherein said comb filter comprises an optical interleaver having odd and even channel ports, said odd and even channel ports being directly coupled to each other.
12. A system according to claim 11, wherein said comb filter comprises an optical circulator having a first port configured for receiving said aggregate signal, a second port coupled to an aggregate signal input of said interleaver, and a third port providing said output signal representative of crosstalk between said optical signal channels.
13. A system according to claim 12, said aggregate channel monitor further comprising a tunable filter coupled between said comb filter and said crosstalk detector.
14. A system according to claim 9, wherein said comb filter comprises first and second optical interleavers each having odd and even channel ports, said odd channel port of said first interleaver being coupled to said even channel port of said second interleaver and said even channel port of said first interleaver being coupled to an odd channel port of said second interleaver.
15. A system according to claim 9, wherein plurality of optical signal channels are separated by a channel spacing of about 33 GHz.
16. A system according to claim 9, wherein plurality of optical signal channels are separated by a channel spacing of about 25 GHz.
17. A method of establishing channel spacing in an aggregate optical signal including a plurality of optical signal channels, said method comprising:
filtering said aggregate signal to provide a filter output representative of crosstalk between said optical signal channels;
detecting said crosstalk to provide output data representative of said crosstalk between said optical signal channels; and
modifying said channel spacing in response to said output data.
18. A method according to claim 17, wherein said output data is representative of a low frequency crosstalk side band and a high frequency crosstalk side band for each of said plurality of said optical signal channels.
19. A method according to claim 18, wherein said modifying comprises modifying a frequency of at least one of said plurality of optical signal channels to minimize said low and high frequency crosstalk side bands associated with said at least one of said plurality of optical signal channels.
20. A method according to claim 18, wherein said modifying comprises modifying a frequency of at least one of said plurality of optical signal channels to equalize said low and high frequency crosstalk side bands associated with said at least one of said plurality of optical signal channels.
US11/829,458 2007-07-27 2007-07-27 System and method for wavelength monitoring and control Expired - Fee Related US7778550B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/829,458 US7778550B2 (en) 2007-07-27 2007-07-27 System and method for wavelength monitoring and control
PCT/US2008/071396 WO2009018237A1 (en) 2007-07-27 2008-07-28 System and method for wavelength monitoring and control
CN200880100729.9A CN101765948B (en) 2007-07-27 2008-07-28 System and method for wavelength monitoring and control
JP2010520121A JP2010535006A (en) 2007-07-27 2008-07-28 System and method for wavelength monitoring and wavelength control
EP08782469.4A EP2174391A4 (en) 2007-07-27 2008-07-28 System and method for wavelength monitoring and control
AU2008282342A AU2008282342A1 (en) 2007-07-27 2008-07-28 System and method for wavelength monitoring and control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/829,458 US7778550B2 (en) 2007-07-27 2007-07-27 System and method for wavelength monitoring and control

Publications (2)

Publication Number Publication Date
US20090028552A1 true US20090028552A1 (en) 2009-01-29
US7778550B2 US7778550B2 (en) 2010-08-17

Family

ID=40295454

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/829,458 Expired - Fee Related US7778550B2 (en) 2007-07-27 2007-07-27 System and method for wavelength monitoring and control

Country Status (6)

Country Link
US (1) US7778550B2 (en)
EP (1) EP2174391A4 (en)
JP (1) JP2010535006A (en)
CN (1) CN101765948B (en)
AU (1) AU2008282342A1 (en)
WO (1) WO2009018237A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070081582A1 (en) * 2001-06-01 2007-04-12 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
US20080075463A1 (en) * 2006-09-21 2008-03-27 Fujitsu Limited WDM optical transmission system and WDM optical transmission method
US20100239260A1 (en) * 2009-03-19 2010-09-23 Fujitsu Limited Optical transmission apparatus, optical communication method, and optical communication system
US20110044689A1 (en) * 2009-08-21 2011-02-24 Vassilieva Olga I Method and system for cross-phase-modulation noise reduced transmission in hybrid networks
US20130077973A1 (en) * 2011-09-26 2013-03-28 Alcatel-Lucent Usa Inc. Spectrally efficient modulation for an optical-transport system
US20130259480A1 (en) * 2012-03-29 2013-10-03 Fujitsu Limited Optical transmission apparatus
US20140140692A1 (en) * 2012-11-21 2014-05-22 Fujitsu Limited Optical transmission device, node device, optical transmission method, and optical transmission system
WO2014176086A1 (en) * 2013-04-26 2014-10-30 Tyco Electronics Subsea Communications Llc System and method for applying system policies in an optical communication system having user-allocated bandwidth
WO2017052514A1 (en) * 2015-09-22 2017-03-30 Halliburton Energy Services, Inc. Scalable communication system for hydrocarbon wells
WO2018099300A1 (en) 2016-12-01 2018-06-07 Huawei Technologies Co., Ltd. Systems and methods for reducing adjacent channel leakage ratio
US10230468B2 (en) * 2016-06-02 2019-03-12 Huawei Technologies Co., Ltd. Transmission adjustment for space division multiplexing of optical signals
US10491294B2 (en) 2016-04-22 2019-11-26 Fujitsu Limited Signal processing apparatus, apparatus and method for monitoring channel spacing and system
CN111183598A (en) * 2017-10-06 2020-05-19 华为技术有限公司 Low cost Intensity Modulated and Direct Detection (IMDD) optical transmitter and receiver
US11988854B2 (en) 2015-08-24 2024-05-21 Akonia Holographics Llc Wide field-of-view holographic skew mirrors

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466657B2 (en) * 2011-02-18 2014-04-09 日本電信電話株式会社 Wavelength tuning system and method
JP5824912B2 (en) * 2011-06-29 2015-12-02 富士通株式会社 Optical transmission apparatus and optical interleave control method
US8923696B2 (en) * 2011-11-09 2014-12-30 Alcatel Lucent Method and apparatus for raman cross-talk mitigation
JP6244706B2 (en) * 2013-07-11 2017-12-13 富士通株式会社 Multiplex optical communication device, multiple optical communication method, and multiple optical communication program
US20150381305A1 (en) * 2014-06-27 2015-12-31 Calix, Inc. Self-calibrating tunable laser for optical network
CN109478934B (en) * 2016-07-21 2021-12-24 三菱电机株式会社 Optical communication apparatus and frequency control method
CN107065619B (en) * 2017-05-15 2019-10-29 武汉光迅科技股份有限公司 A kind of the wavelength control electrode parameter setting method and device of tunable laser
CN109600179B (en) * 2017-09-30 2021-04-27 富士通株式会社 Method and device for estimating linear crosstalk between channels and receiver
CN109782394A (en) * 2019-03-15 2019-05-21 杭州芯耘光电科技有限公司 A kind of single fiber bidirectional light receiving and transmitting component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989201A (en) * 1987-06-09 1991-01-29 At&T Bell Laboratories Optical communication system with a stabilized "comb" of frequencies
US5243474A (en) * 1989-03-28 1993-09-07 Mitsubishi Denki Kabushiki Kaisha Automatic tracking control system which utilizes a crosstalk envelope signal to vary a tracking control signal
US6281995B1 (en) * 2000-04-11 2001-08-28 Lockheed Martin Corporation Use of cross tap equalization to reduce crosstalk arising from inadequate optical filtering in a wavelength division multiplexed optical link
US6396603B1 (en) * 1998-07-30 2002-05-28 Samsung Electronics Co., Ltd. Monitoring the stability of the wavelength of a light signal in an optical communications system employing wavelength division multiplexing and having a wavelength stabilization circuit
US20030007246A1 (en) * 2001-06-07 2003-01-09 Bin Zhao Low dispersion filters
US6567198B1 (en) * 1998-10-22 2003-05-20 Samsung Electronics Co., Ltd. Wavelength stabilizer in WDM optical transmission system
US6829410B1 (en) * 2002-02-26 2004-12-07 Wavesplitter Technologies, Inc. Optical signal interleaving comb filter with reduced chromatic dispersion and applications therefor
US20060159002A1 (en) * 2003-08-07 2006-07-20 Quellan, Inc. Method and system for crosstalk cancellation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441955B1 (en) * 1998-02-27 2002-08-27 Fujitsu Limited Light wavelength-multiplexing systems
JP4571054B2 (en) 2005-09-30 2010-10-27 富士通株式会社 Optical wavelength control method and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989201A (en) * 1987-06-09 1991-01-29 At&T Bell Laboratories Optical communication system with a stabilized "comb" of frequencies
US5243474A (en) * 1989-03-28 1993-09-07 Mitsubishi Denki Kabushiki Kaisha Automatic tracking control system which utilizes a crosstalk envelope signal to vary a tracking control signal
US6396603B1 (en) * 1998-07-30 2002-05-28 Samsung Electronics Co., Ltd. Monitoring the stability of the wavelength of a light signal in an optical communications system employing wavelength division multiplexing and having a wavelength stabilization circuit
US6567198B1 (en) * 1998-10-22 2003-05-20 Samsung Electronics Co., Ltd. Wavelength stabilizer in WDM optical transmission system
US6281995B1 (en) * 2000-04-11 2001-08-28 Lockheed Martin Corporation Use of cross tap equalization to reduce crosstalk arising from inadequate optical filtering in a wavelength division multiplexed optical link
US20030007246A1 (en) * 2001-06-07 2003-01-09 Bin Zhao Low dispersion filters
US6829410B1 (en) * 2002-02-26 2004-12-07 Wavesplitter Technologies, Inc. Optical signal interleaving comb filter with reduced chromatic dispersion and applications therefor
US20060159002A1 (en) * 2003-08-07 2006-07-20 Quellan, Inc. Method and system for crosstalk cancellation

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081704B2 (en) * 2001-06-01 2011-12-20 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
US20120063531A1 (en) * 2001-06-01 2012-03-15 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
US20070081582A1 (en) * 2001-06-01 2007-04-12 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
US20080075463A1 (en) * 2006-09-21 2008-03-27 Fujitsu Limited WDM optical transmission system and WDM optical transmission method
US7796897B2 (en) * 2006-09-21 2010-09-14 Fujitsu Limited WDM optical transmission system and WDM optical transmission method
US20100239260A1 (en) * 2009-03-19 2010-09-23 Fujitsu Limited Optical transmission apparatus, optical communication method, and optical communication system
US20110044689A1 (en) * 2009-08-21 2011-02-24 Vassilieva Olga I Method and system for cross-phase-modulation noise reduced transmission in hybrid networks
US20130077973A1 (en) * 2011-09-26 2013-03-28 Alcatel-Lucent Usa Inc. Spectrally efficient modulation for an optical-transport system
US20130259480A1 (en) * 2012-03-29 2013-10-03 Fujitsu Limited Optical transmission apparatus
US9094121B2 (en) * 2012-03-29 2015-07-28 Fujistu Limited Optical transmission apparatus
US9559771B2 (en) * 2012-11-21 2017-01-31 Fujitsu Limited Optical transmission device, node device, optical transmission method, and optical transmission system
US20140140692A1 (en) * 2012-11-21 2014-05-22 Fujitsu Limited Optical transmission device, node device, optical transmission method, and optical transmission system
WO2014176086A1 (en) * 2013-04-26 2014-10-30 Tyco Electronics Subsea Communications Llc System and method for applying system policies in an optical communication system having user-allocated bandwidth
US9559801B2 (en) 2013-04-26 2017-01-31 Tyco Electronics Subsea Communications Llc System and method for applying system policies in an optical communication system having user-allocated bandwidth
US10523355B2 (en) 2013-04-26 2019-12-31 Subcom, Llc System and method for applying system policies in an optical communication system having user-allocated bandwidth
US11988854B2 (en) 2015-08-24 2024-05-21 Akonia Holographics Llc Wide field-of-view holographic skew mirrors
WO2017052514A1 (en) * 2015-09-22 2017-03-30 Halliburton Energy Services, Inc. Scalable communication system for hydrocarbon wells
US10491294B2 (en) 2016-04-22 2019-11-26 Fujitsu Limited Signal processing apparatus, apparatus and method for monitoring channel spacing and system
US10230468B2 (en) * 2016-06-02 2019-03-12 Huawei Technologies Co., Ltd. Transmission adjustment for space division multiplexing of optical signals
WO2018099300A1 (en) 2016-12-01 2018-06-07 Huawei Technologies Co., Ltd. Systems and methods for reducing adjacent channel leakage ratio
US10097268B2 (en) 2016-12-01 2018-10-09 Huawei Technologies Co., Ltd. Systems and methods for reducing adjacent channel leakage ratio
EP3420652A4 (en) * 2016-12-01 2019-03-20 Huawei Technologies Co., Ltd. Systems and methods for reducing adjacent channel leakage ratio
CN111183598A (en) * 2017-10-06 2020-05-19 华为技术有限公司 Low cost Intensity Modulated and Direct Detection (IMDD) optical transmitter and receiver

Also Published As

Publication number Publication date
WO2009018237A1 (en) 2009-02-05
CN101765948B (en) 2012-08-29
EP2174391A1 (en) 2010-04-14
AU2008282342A1 (en) 2009-02-05
JP2010535006A (en) 2010-11-11
CN101765948A (en) 2010-06-30
EP2174391A4 (en) 2014-04-30
US7778550B2 (en) 2010-08-17

Similar Documents

Publication Publication Date Title
US7778550B2 (en) System and method for wavelength monitoring and control
EP1624595B1 (en) Transmission of optical signals of different modulation formats in discrete wavelength bands
US7035538B2 (en) Monitoring optical dispersion based on vestigial side band optical filtering
US7209664B1 (en) Frequency agile transmitter and receiver architecture for DWDM systems
JP5557399B2 (en) Spatial division multiplexing apparatus including multi-core fiber and self-homodyne detection method
US8331786B2 (en) Transmission method of WDM light and WDM optical transmission system
US6292598B1 (en) Optical transmission apparatuses, methods, and systems
US8090270B2 (en) Frequency offset polarization multiplexing modulation format and system incorporating the same
US8073325B2 (en) OSNR measuring apparatus and OSNR measuring method
US8412054B2 (en) DQPSK/DPSK optical receiver with tunable optical filters
US20070274728A1 (en) Optical communication system and method using optical channels with pair-wise orthogonal relationship
CN101449493A (en) A depolarised WDM source
CA2028966C (en) Distortion canceling fiber optic transmission system
US6714739B1 (en) Optical transmission systems and optical receivers and receiving methods for use therein
US20080080805A1 (en) Compensating method and compensator of first-order polarization mode dispersion, and optical transmission system using same
US7474854B2 (en) Optical transmission system
US7068944B2 (en) Multi-function optical performance monitor
US6577423B1 (en) Optical transmission systems, optical receivers, and receiving methods
Toba et al. Design and performance of FSK-direct detection scheme for optical FDM systems
US6529305B1 (en) Optical transmission apparatuses, methods, and systems
US7123835B2 (en) Method and system for increasing the capacity and spectral efficiency of optical transmission
Skold et al. Field trial of polarization-assisted optical performance monitoring operating in an 820 km WDM system

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO TELECOMMUNICATIONS (US) INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, HONGBIN;JANDER, RALPH BRIAN;DAVIDSON, CARL R.;REEL/FRAME:020448/0155;SIGNING DATES FROM 20071010 TO 20071011

Owner name: TYCO TELECOMMUNICATIONS (US) INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, HONGBIN;JANDER, RALPH BRIAN;DAVIDSON, CARL R.;SIGNING DATES FROM 20071010 TO 20071011;REEL/FRAME:020448/0155

AS Assignment

Owner name: TYCO ELECTRONICS SUBSEA COMMUNICATIONS LLC,NEW JER

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO TELECOMMUNICATIONS (US) INC.;REEL/FRAME:024213/0531

Effective date: 20091228

Owner name: TYCO ELECTRONICS SUBSEA COMMUNICATIONS LLC, NEW JE

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO TELECOMMUNICATIONS (US) INC.;REEL/FRAME:024213/0531

Effective date: 20091228

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180817