US20080279223A1 - Method for Synchronizing Charging Processes Involved in Performance of Service on Network Elements in Communication Network - Google Patents

Method for Synchronizing Charging Processes Involved in Performance of Service on Network Elements in Communication Network Download PDF

Info

Publication number
US20080279223A1
US20080279223A1 US11/597,583 US59758304A US2008279223A1 US 20080279223 A1 US20080279223 A1 US 20080279223A1 US 59758304 A US59758304 A US 59758304A US 2008279223 A1 US2008279223 A1 US 2008279223A1
Authority
US
United States
Prior art keywords
service
network element
metering process
charging
primary metering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/597,583
Other languages
English (en)
Inventor
Uwe Foll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AG reassignment SIEMENS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOELL, UWE
Assigned to SIEMENS AG reassignment SIEMENS AG RE-RECORD TO CORRECT THE ADDRESS OF THE RECEIVING PARTY ON A DOCUMENT PREVIOUSLY RECORDED AT REEL 019913, FRAME 0590. (ASSIGNMENT OF ASSIGNOR'S INTEREST) Assignors: FOELL, UWE
Publication of US20080279223A1 publication Critical patent/US20080279223A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/141Indication of costs
    • H04L12/1414Indication of costs in real-time
    • H04L12/1417Advice of charge with threshold, e.g. user indicating maximum cost
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications

Definitions

  • the method described below relates to synchronizing charging processes involved in the performance of a service on network elements in a communication network.
  • the service or the application is generally a packet-based service or a packet service.
  • Existing packet services operate on what is known as an IP layer 3 based on the OSI model within the communication network.
  • IP layer 3 based on the OSI model within the communication network.
  • Currently existing and practiced processes and methods for charge metering for such a service in communication networks are based on normally independent and unsynchronized metering when the service of used resources is performed by the charging processes involved in the performance of the service on the various network elements.
  • Charge data gathered in the process are merged, following use, in network elements provided specifically for this purpose in order to produce a service-oriented or service-specific bill. In the case of what are known as prepaid subscribers who wish to use the service, this process needs to take place during exhaust use. For some services, the data cannot currently be merged.
  • This correlation identifier clearly identifies all use data which are associated with a specific service use and needs to be entered into the use data so that they can be combined by a central entity and can be processed together.
  • the network elements involved in the performance of a service can operate on different network layers, for example, such as on what is known as layer 2, 3 or 7. In addition, they may also be arranged in various network areas or domains, such as in what is known as a PS (Packet Switched) domain or in what is known as an IMS (IP Multimedia Subsystem). It is also conceivable for the network elements involved in the performance of a service to be separated from one another by technological boundaries too.
  • PS Packet Switched
  • IMS IP Multimedia Subsystem
  • some of the network elements may be based on UMTS (Universal Mobile Telecommunication System), and another portion of the network elements may be based on WLAN (Wireless Local Area Network).
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Network
  • Another problem is the inefficiency of existing methods. These gather charge data in all network elements involved and forward the resulting charge data records to a central entity. This central entity has to find the associated charge data records from an incoming flood of data. The important charge data records are then evaluated and the rest are discarded.
  • a method which can be used to synchronize charging processes involved in the performance of a service on network elements in a communication network.
  • the method described below synchronizes charging processes involved in the performance of a service or an application on individual network elements in a communication network, where a control protocol using mechanisms of a transport protocol is used which is used to distribute control messages containing dedicated information which is specific to each charging process involved in the performance of the service or the application to each charging process involved in the performance of the service or the application.
  • control protocol used is preferably a signaling protocol which is based on what is known as an NSIS Transport Layer Protocol (NTLP).
  • NTLP NSIS Transport Layer Protocol
  • the NSIS (Next Step In Signaling) “Working Group” has already standardized a fundamental concept for controlling network elements along a data path for a service or an application. This concept is currently used to control the quality of service QoS of what is known as an “end-to-end” link or a portion thereof.
  • the fundamental concept is described indraft-ietf-nsis-fw-05.txt, available from the Internet Engineering Task Force (IETF).
  • IETF Internet Engineering Task Force
  • this respective state is in relation to a data flow and is installed and maintained on the NSIS entities (NEs) through which the data flow passes or which are arranged along the data flow path.
  • This fundamental transport protocol NTLP can then be taken as a basis by various users using a respective specific NSIS Signaling Layer Protocol “NSLP”.
  • NSIS signaling is not related to general superordinate network operation but rather to the specific data flow for a service and that also network elements in a communication network are included in the signaling and the signaling does not proceed transparently between the terminal points.
  • NSIS Signaling Layer Protocol QoS-NSLP which is based on the general NSIS concept. This is described in an internet draft from the IETF, draft-ietf-nsis-qos-nslp-03.txt.
  • the QoS-NSLP developed in this context is not tied down to supporting a specific QoS model, but rather is suitable for forwarding information for various QoS models.
  • control protocol is then a specific NSIS Service Layer Protocol (NSLP), which is subsequently called the Accounting NSLP.
  • NSLP NSIS Service Layer Protocol
  • This control protocol uses mechanisms of a transport protocol, such as those of the NTLP, in order to send or distribute control messages to all charging processes involved in the performance of the service.
  • the charging processes which are implemented on the individual network elements are controlled using these control messages.
  • a charging process corresponds to what is known as an NSIS Entity NE and the messages correspond to signaling messages based on the NSIS concept.
  • an NE is a function within the network element which (function) implements or supports an NSIS protocol.
  • control messages are forwarded from one network element to the next network element along a data path initiated by the service.
  • the charging processes which are implemented on the respective network elements and which are involved in the performance of the service or the application are controlled using the control messages.
  • the control messages can be used to transmit instructions about the charging processes' further behavior to the charging processes.
  • individual charging processes can be asked to forward data which they have metered to another charging process or to an appropriate network element on which the charging process is implemented.
  • control messages are originally transmitted by a charging process involved in the performance of the service.
  • a charging process involved in the performance of the service it is conceivable for an arbitrary charging process arranged on the data path initiated by the service to send control messages to all other charging processes in the service.
  • another particularly embodiment of the disclosed method prescribes a hierarchic stipulation for the individual charging processes involved in the performance of the service. This hierarchic stipulation governs how to handle the control messages transmitted by the respective charging processes and/or the instructions inserted into the control messages by the respective charging processes. This means that the hierarchic stipulation prescribes restrictions and rules regarding how control messages are to be classified or handled by individual charging processes. Precise information is given about which control messages are to be considered and handled as having priority by which charging process.
  • the hierarchic stipulation is prescribed for each service on a service-specific basis.
  • the hierarchic stipulation is distributed to all charging processes involved in the performance of the service on the individual network elements, preferably using a control message.
  • the hierarchic stipulation is distributed by a network element which is authorized to do so on the basis of a table stored in each network element on which a charging process involved in the performance of the service is implemented.
  • the hierarchic stipulation is met by a network administrator. Network elements which receive a control message can then use their stored table to establish whether or not the sending element, that is to say the sender is authorized.
  • Charging processes are synchronized whenever a service is performed. Accordingly, a different configuration for the charge metering is possible on the basis of specifically relevant parameters whenever a service is performed.
  • relevant parameters may be user data, utilization level of the communication network or nature of the terminal point or terminal.
  • the control protocol is used to send all charging processes involved in the performance of the service a data request message which includes a listing of data required for service-oriented charging and a destination address for a charging process, which is specifically selected as the metering process and which is involved in the performance of the service, to which the requested data need to be sent.
  • the charging processes respectively react to the data request message by sending the requested use data, which they are respectively able to provide, in the form of a transport message using a transport protocol directly to the metering process. This means that provision is preferably made for use data for a service to be metered by precisely one charging process or metering process. This metering process is subsequently called the primary metering process.
  • the primary metering process sometimes requires use data which can be provided only by other charging processes.
  • an application computer could have neither the transfer volume nor the type of access network or the “MSISDN” of a subscriber in question. Since these data are indispensable for service-oriented charging, however, these data need to be transported to the primary metering process, these being requested in line with the disclosed method by the control protocol.
  • a method is known from 3GPP in which data from an SGSN can be transported to a GGSN using a signaling message.
  • the signaling message is transported via a Gn interface existing within the context of PDP context signaling.
  • the disclosed method does not involve the use data being transported by signaling messages via the entire data path initiated by the service, but rather involves them being routed from the respective charging processes directly to the metering process.
  • the required data are sent to the metering process using a standard transport protocol, particularly what is known as an IPFIX.
  • the data required for service-oriented charging are metered and processed or evaluated by the primary metering process.
  • a primary metering process needs to be started.
  • This primary metering process does not necessarily need to take place on the NI.
  • an overload or lack of power at the network node on which the NI is situated may require the function of the charging process, as primary metering process, to be moved to another node of the same type which has sufficient power.
  • the characteristics of the NI may mean that the NI is not able to run a primary metering process. In this case, it is necessary to move the primary metering process to a different kind of network node. It may be necessary to move a charging process before and during the service's runtime.
  • the need to transfer a primary metering process can be established by the NI or the network node, subsequently called the “transferrer”, on which the charging process is currently situated from the fact that the transferrer or the NI is overloaded, for example.
  • a request from another network node for transfer may also result in the primary metering process being transferred.
  • the transferrer that is to say the network node on which the primary metering process is currently situated, has established that the primary metering process needs to be transferred, it needs to ascertain a network node to which it can transfer the primary metering process. This network node is subsequently called the “recipient”.
  • network-element-specific characteristics and/or prescribed rules mean that a network element is selected as a recipient on which the primary metering process is arranged or to which the primary metering process is transferred by a first network element, that is to say the transferrer.
  • the recipient is in this case stipulated by a rule. This applies particularly when the need for moving has been stipulated by a rule.
  • the rule may also be used when the transfer on account of overload or missing functions is taking place, however.
  • the rule preferably also contains statements indicating how the transfer needs to be made.
  • the rule can contain the destination address of the recipient, inter alia.
  • the transferrer sends a “transfer request message” to the destination address of the recipient.
  • the recipient responds with a “transfer response message” and notifies the transferrer whether it wants to execute the primary metering process. If this is the case then the transferrer sends all data required for this to the recipient using a data transfer message. When the recipient has acknowledged receipt, the transfer operation is complete. Should the first recipient asked not wish to undertake the primary metering process then it is possible to apply other methods, for example stipulated by the rule. Should the primary metering process not be able to be transferred then the service can be terminated or performed at no charge.
  • the rule stipulates an address range for which a request is to be made.
  • the “transfer request message” is then sent to this address range.
  • the rest of the process then takes place as described in the previous paragraph. All recipients can then respond to the request and hence request the transfer of the primary metering process.
  • the transferrer decides to which possible recipient the primary metering process is to be transferred. This can be done according to the order in which the responses arrive, for example.
  • the rule stipulates the type of recipient, such as a routing computer.
  • the “transfer request message” is sent only to this type of network node.
  • a bit string describing the various types of network nodes is stipulated, for example. Each network node which receives the message can evaluate the bit string so as easily to establish whether the message was intended for this type of network node. The rest of the process then takes place as described above.
  • the transferrer can send a “general request message” through the network. This message is then distributed by the entire network. All recipients are than able to respond to the request and hence to request transfer of the primary metering process. The transferrer decides to which recipient the primary metering process is to be transferred. This can be done according to the order in which the responses arrive, for example.
  • the recipient sends a “start message” to the transferrer and in so doing notifies it of the point from which the recipient started charge metering.
  • the transferrer then sends the recipient the resource use ascertained up to this time.
  • the “transfer request message” specifies the full requirements to the recipient. This ensures that the recipient can actually execute the primary metering process.
  • the disclosed method is thus complex.
  • the actual charging process involves fewer network elements, which means that, possibly even several times, it would be necessary to gather less data relevant to charging overall. Efficiency is also higher in this case.
  • the disclosed method involves only data which are actually required being gathered.
  • the disclosed method is very flexible—new services can quickly be integrated into the communication network when the basic method described is supported. Since the disclosed method can operate on the IP 3 layer, which is common to all packet services, it is universally applicable and does not need to be adapted to suit each packet service.
  • FIG. 1 is a schematic illustration of an embodiment of a cycle of a method described below;
  • FIG. 2 is a schematic illustration of another embodiment of a cycle of the method.
  • FIG. 1 shows a schematic illustration of very simple possible signaling in a GPRS communication network.
  • a terminal point 1 acting as recipient, and a terminal point 2 , as sender, there runs a simple data stream initiated by a service, which is then identified by a thin black arrow.
  • the figure shows only those network elements or network nodes in which it is possible to meter charges incurred on the basis of performance of the service—that is to say that respective charging processes are implemented in these network elements.
  • the charging processes are NSIS Entities NE, which support an NSIS signaling protocol NSLP (NSIS Signaling Layer Protocol) and are able to interchange NSIS messages.
  • NSIS signaling protocol NSLP NSIS Signaling Layer Protocol
  • terminal points 1 and 2 include a respective charging process GP 1 and GP 5 .
  • a control protocol is used, e.g. an “Accounting NSLP”. This can be used to interchange control messages between the individual charging processes GP 1 -GP 5 , which is indicated by the thick light arrows running between the individual network elements, including the terminal points 1 and 2 .
  • This control protocol uses the mechanisms of a general transport protocol, e.g. of the NTLP, to distribute the control messages to all charging processes GP 1 -GP 5 along the data path. In this case, the transport protocol is shown by a dark, thick arrow passing through all network elements. The control messages are forwarded from one network element to the next along the data path for the application or service.
  • the charging processes GP 1 -GP 5 taking place on the individual network elements are controlled by the control messages in the control protocol.
  • the charging processes GP 1 -GP 5 can be sent instructions about their further behavior. For example some of the charging processes can be turned off and others can be requested to perform actions, such as metering transfer volumes.
  • the individual charging processes GP 1 -GP 5 can insert additional information or instructions into the control messages.
  • individual charging processes can be asked to send metered data to another network element.
  • the control messages may be sent in the connection setup phase or else during the connection or when it is cleared down. In principle, any charging process GP 1 -GP 5 on the data path can send control messages to all charging processes GP 1 -GP 5 .
  • Hierarchic stipulation can be made which stipulates restrictions and rules. This hierarchic stipulation may be prescribed for each service and distributed using a control message.
  • hierarchic stipulations can be distributed only by specific network elements or charging processes. Network elements or charging processes which receive a control message may then use an internal table stored on them, for example, to stipulate whether or not the sender of the control message is authorized.
  • FIG. 2 shows another of a cycle in the disclosed method.
  • This figure also shows a schematic illustration of very simple possible signaling in a GPRS communication network.
  • a terminal point 1 acting as recipient, and a terminal point 2 , as sender, there runs a simple data stream initiated by a service.
  • the figure shows only those network elements or network nodes in which it is possible to meter charges incurred as a result of performance of the service—that is to say that respective charging processes GP 2 -GP 4 are implemented in these network elements.
  • the terminal points 1 and 2 likewise include charging processes GP 1 and GP 5 .
  • a control protocol is used, e.g. an “Accounting NSLP”. This can be used to interchange control messages between the individual charging processes GP 1 -GP 5 , which is indicated by the thick light arrows running between the individual network elements, including the terminal points 1 and 2 .
  • This control protocol uses the mechanisms of a general transport protocol, e.g. of the NTLP, to distribute the control messages to all charging processes GP 1 -GP 5 along the data path. In this case, the transport protocol is shown by a dark, thick arrow passing through all network elements.
  • the control messages are forwarded from one network element to the next along the data path for the application or service.
  • the charging processes GP 1 -GP 5 taking place on the individual network elements are controlled using the control messages in the control protocol.
  • an application computer can have neither the transfer volume nor the type of access network or what is known as a subscriber's MSISDN. Since these data are indispensable for service-oriented charging, however, these data need to be transported to the selected primary metering process.
  • the use data are not transported by signaling messages via the entire data path initiated by the service but rather are transferred from the respective charging processes GP 1 -GP 4 directly to the metering process, which in this case is implemented in the terminal point 2 .
  • the charging process which undertook metering that is to say the primary metering process, notifies the other charging processes GP 1 -GP 4 of which data they need to transfer to it.
  • the primary metering process asks GP 1 for information about the type of access network, asks GP 2 for the user's MSISDN and asks GP 3 for the transfer volume, for example.
  • the other charging processes GP 1 -GP 4 can send the data to the primary metering process, the latter notifies them of its address, which in this case is indicated by the character string 192.68.99.105.
  • the data request and the destination address are transferred to the charging processes GP 1 -GP 4 using the control protocol, such as an Accounting NSLP.
  • the charging processes GP 1 -GP 4 then send the requested data to the primary metering process in the form of transport messages using a standard transport protocol, such as IPFIX (IP Flow Information Export).
  • IPFIX IP Flow Information Export

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Meter Arrangements (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
US11/597,583 2004-03-26 2004-06-11 Method for Synchronizing Charging Processes Involved in Performance of Service on Network Elements in Communication Network Abandoned US20080279223A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004026140.7 2004-05-26
DE102004026140A DE102004026140A1 (de) 2004-05-26 2004-05-26 Anordnung zum Erstellen von dienstorientierten Gebührendaten in einem Kommunikationsnetz
PCT/DE2004/001238 WO2005117340A1 (de) 2004-05-26 2004-06-11 Verfahren zur synchronization von bei durchführung eines dienstes beteiligten gebührenprozessen auf netzelementen in einem kommunikationsnetz

Publications (1)

Publication Number Publication Date
US20080279223A1 true US20080279223A1 (en) 2008-11-13

Family

ID=35058318

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/597,583 Abandoned US20080279223A1 (en) 2004-03-26 2004-06-11 Method for Synchronizing Charging Processes Involved in Performance of Service on Network Elements in Communication Network
US10/566,718 Active US7623636B2 (en) 2004-05-26 2005-05-19 System for generating service-oriented call-charge data in a communication network

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/566,718 Active US7623636B2 (en) 2004-05-26 2005-05-19 System for generating service-oriented call-charge data in a communication network

Country Status (10)

Country Link
US (2) US20080279223A1 (de)
EP (1) EP1749368B1 (de)
KR (1) KR100763665B1 (de)
CN (1) CN100484008C (de)
AT (1) ATE374480T1 (de)
DE (2) DE102004026140A1 (de)
ES (1) ES2293588T3 (de)
PL (1) PL1749368T3 (de)
RU (1) RU2316902C2 (de)
WO (3) WO2005117339A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110055063A1 (en) * 2008-05-13 2011-03-03 Huawei Technologies Co., Ltd. Method, Centralized Control Device, and System for Charging Service

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902594A1 (fr) * 2006-06-16 2007-12-21 France Telecom Unite et procede de definition d'une regle de session dans un reseau
DE102006051169B3 (de) * 2006-10-26 2008-04-24 Siemens Ag Verfahren und Anordnung zur automatischen Vergebührung
CN101316242B (zh) * 2008-07-17 2010-12-01 上海交通大学 面向服务的智能体平台
EP3101926B1 (de) * 2014-01-29 2021-03-10 Huawei Technologies Co., Ltd. Verrechnungsverarbeitungsverfahren, zentralisierter netzwerksteuerknoten und funktionsknoten
CN107959576B (zh) * 2016-10-18 2020-07-28 中国电信股份有限公司 流量计费方法和***以及缓存装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873030A (en) * 1996-06-28 1999-02-16 Mci Communications Corporation Method and system for nationwide mobile telecommunications billing
US6338046B1 (en) * 1997-10-06 2002-01-08 Nokia Telecommunications, Oy System and method for determining charges for usage of a network connection
US20020127995A1 (en) * 2000-05-24 2002-09-12 Stefano Faccinn Common charging identifier for communication networks
US6463275B1 (en) * 1999-05-12 2002-10-08 Motorola, Inc. System and method for billing in a radio telecommunications network
US20030133418A1 (en) * 1998-06-11 2003-07-17 Robert Marshall Wireless system for broadcasting, receiving, storing and selectively printing coupons and the like in a retail enviroment
US20050129017A1 (en) * 2003-12-11 2005-06-16 Alcatel Multicast flow accounting
US20060050711A1 (en) * 2002-09-20 2006-03-09 Elena Lialiamou Method for charging of data reaching a network element of a communication network during a data session
US7889662B2 (en) * 2001-05-28 2011-02-15 Nokia Corporation Charging in telecommunications network

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222165B1 (en) * 1998-05-26 2007-05-22 British Telecommunications Plc Service provision support system
KR100340022B1 (ko) * 1999-12-11 2002-06-10 이상철 요금 청구서 발행을 위한 통화 기록 메시지 처리 방법및장치
GB2365680B (en) * 2000-03-21 2004-01-28 Ericsson Telefon Ab L M Transmission of call detail records in a telecommunications system
US7330717B2 (en) * 2001-02-23 2008-02-12 Lucent Technologies Inc. Rule-based system and method for managing the provisioning of user applications on limited-resource and/or wireless devices
KR100419291B1 (ko) * 2001-08-18 2004-02-18 박상준 인터넷에서 동적인 과금 결정 방법 및 그 시스템
KR100777579B1 (ko) * 2001-09-28 2007-11-16 주식회사 케이티 차별화된 서비스를 제공하는 ip vpn 네트워크에서음성 서비스를 위한 과금 산정 방법
CN1141822C (zh) 2002-01-08 2004-03-10 广东省电信科学技术研究院 分布式认证/计费服务器***及其实现方法
US20030152039A1 (en) * 2002-02-08 2003-08-14 Timothy Roberts Customer billing in a communications network
WO2004036825A1 (en) * 2002-10-15 2004-04-29 Telefonaktiebolaget Lm Ericsson (Publ) System for providing flexible charging in a network
US7721296B2 (en) * 2003-06-13 2010-05-18 Ericsson Ab Event based charging in a communications system
KR100523402B1 (ko) * 2004-01-08 2005-10-24 주식회사 케이티프리텔 과금용 통화 기록 처리 방법 및 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873030A (en) * 1996-06-28 1999-02-16 Mci Communications Corporation Method and system for nationwide mobile telecommunications billing
US6338046B1 (en) * 1997-10-06 2002-01-08 Nokia Telecommunications, Oy System and method for determining charges for usage of a network connection
US20030133418A1 (en) * 1998-06-11 2003-07-17 Robert Marshall Wireless system for broadcasting, receiving, storing and selectively printing coupons and the like in a retail enviroment
US6463275B1 (en) * 1999-05-12 2002-10-08 Motorola, Inc. System and method for billing in a radio telecommunications network
US20020127995A1 (en) * 2000-05-24 2002-09-12 Stefano Faccinn Common charging identifier for communication networks
US7889662B2 (en) * 2001-05-28 2011-02-15 Nokia Corporation Charging in telecommunications network
US20060050711A1 (en) * 2002-09-20 2006-03-09 Elena Lialiamou Method for charging of data reaching a network element of a communication network during a data session
US20050129017A1 (en) * 2003-12-11 2005-06-16 Alcatel Multicast flow accounting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110055063A1 (en) * 2008-05-13 2011-03-03 Huawei Technologies Co., Ltd. Method, Centralized Control Device, and System for Charging Service

Also Published As

Publication number Publication date
WO2005117340A1 (de) 2005-12-08
US20070127646A1 (en) 2007-06-07
US7623636B2 (en) 2009-11-24
RU2316902C2 (ru) 2008-02-10
RU2006102851A (ru) 2007-08-10
CN1820455A (zh) 2006-08-16
CN100484008C (zh) 2009-04-29
KR20060060667A (ko) 2006-06-05
DE102004026140A1 (de) 2005-12-22
KR100763665B1 (ko) 2007-10-04
DE502005001583D1 (de) 2007-11-08
EP1749368B1 (de) 2007-09-26
ES2293588T3 (es) 2008-03-16
PL1749368T3 (pl) 2008-02-29
EP1749368A1 (de) 2007-02-07
WO2005117339A1 (de) 2005-12-08
ATE374480T1 (de) 2007-10-15
WO2005117341A1 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
CN100531158C (zh) 一种无线接入网关支持透明代理的***及方法
US6661780B2 (en) Mechanisms for policy based UMTS QoS and IP QoS management in mobile IP networks
CN103385033B (zh) 用于在网络单元中分配会话束的方法和设备
CN101766017B (zh) 为移动订户台支持voip呼叫的设备和方法
CN1902877B (zh) 控制去往无线通信设备的未请求业务的设备及方法
CN101374260B (zh) Pcc规则和承载关联的实现方法、装置和***
WO2006000628A1 (en) Method and system for controlling services in a packet data network
WO2011137644A1 (zh) 终端访问业务的方法、装置及***
CN101296169A (zh) 一种用户会话承载业务建立方法、***及设备
CN102308531A (zh) 多接入***
US20070263538A1 (en) Directed Pppoe Session Initiation Over a Switched Ethernet
WO2007082446A1 (fr) Procede et systeme de taxation hors ligne
CN101166153B (zh) 一种控制网络业务的方法
US20090041043A1 (en) Communication system, switching node computer and method for determining a control node
CN110601989A (zh) 一种网络流量均衡方法及装置
US20080279223A1 (en) Method for Synchronizing Charging Processes Involved in Performance of Service on Network Elements in Communication Network
CN103475595A (zh) 一种ParlayX网关的过载控制***和方法
CN101352004A (zh) 在建立二级pdp上下文之前将二级pdp的数据流重定向到一级pdp
CN101316176B (zh) 基于服务质量策略计费方法以及资源接纳控制子***
CN105580425A (zh) 用于数据连接的按需QoS
CN105376174A (zh) 执行lte/epc中基于服务链的策略的方法与设备
EP3292655B1 (de) Verfahren und netzwerkeinheit zur steuerung von mehrwertdiensten (vas)
AU2010231947B2 (en) A system and method operable to enable shortest connection route
CN101447878B (zh) 一种预付费业务的计费方法与***
KR100764168B1 (ko) 휴대 인터넷 시스템에서의 과금 장치 및 방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOELL, UWE;REEL/FRAME:019913/0590

Effective date: 20070124

AS Assignment

Owner name: SIEMENS AG, GERMANY

Free format text: RE-RECORD TO CORRECT THE ADDRESS OF THE RECEIVING PARTY ON A DOCUMENT PREVIOUSLY RECORDED AT REEL 019913, FRAME 0590. (ASSIGNMENT OF ASSIGNOR'S INTEREST);ASSIGNOR:FOELL, UWE;REEL/FRAME:020351/0974

Effective date: 20070124

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION