US20080229976A1 - Stain and fouling resistant polyurea and polyurethane coatings - Google Patents

Stain and fouling resistant polyurea and polyurethane coatings Download PDF

Info

Publication number
US20080229976A1
US20080229976A1 US11/966,213 US96621307A US2008229976A1 US 20080229976 A1 US20080229976 A1 US 20080229976A1 US 96621307 A US96621307 A US 96621307A US 2008229976 A1 US2008229976 A1 US 2008229976A1
Authority
US
United States
Prior art keywords
trade designation
weight
under
coatings
fluorochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/966,213
Inventor
Stephen Amos
Robert Messner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US11/966,213 priority Critical patent/US20080229976A1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMOS, STEPHEN E., MESSNER, ROBERT P.
Publication of US20080229976A1 publication Critical patent/US20080229976A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/712Monoisocyanates or monoisothiocyanates containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/50Compositions for coatings applied by spraying at least two streams of reaction components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas

Definitions

  • the present invention relates to polyurea compositions and polyurethane compositions for forming coatings and coatings formed from such compositions.
  • the invention relates to stain and fouling resistant coatings, e.g., for use on rail cars, containers, vehicles, etc.
  • a developing energy source is oil from oil sands and tar sands. Such sands tend to stick to equipment and vehicles used to move and process them. As a result, efficiency is reduced as the deposits build up, increasing the weight of moving vehicles, clogging handling chutes, etc. It is common practice today to remove vehicles used in such operations from service for one or two days each week for extensive spray washing to remove the build up of deposits from the vehicle in addition to an extensive solvent wash done on a monthly basis.
  • An established energy source is coal which is mined in one location and then shipped to another location via such means as rail car.
  • coal When removed from the mine, coal commonly contains significant water content and has a temperature of about 40 to about 50° F. (4 to 10° C.).
  • the coal will tend to stick to the surfaces of the rail car.
  • the rail car When the rail car is emptied significant quantities of the load remain stuck to the car. As a result, as much as 25% of the potential load carrying capacity of the rail cars might be lost. Removal is a labor and cost intensive exercise.
  • the present invention provides novel polyurethane compositions and polyurea compositions and novel coatings formed therefrom, and transporters, e.g., carriers, vessels, and vehicles, having such coatings thereon.
  • compositions of the invention comprise reactive precursors for forming a polyurethane or polyurea coating and at least one fluorochemical fluorochemical compound.
  • compositions of the invention can be applied in convenient manner, e.g., spraying, to form films or coatings on substrates.
  • the resultant films or coatings can exhibit exceptional physical properties such as high hardness, flexibility, abrasion resistance, and chemical resistance.
  • Durable and light weight, films and coatings of the invention exhibit oil-repellency, water-repellency, and stain resistance.
  • the invention provides polyurethane and polyurea coatings that provide heretofore unattainable resistance to staining and fouling.
  • compositions of the invention comprise reactive precursors for forming polyurethane and/or polyureas and at least one fluorochemical compound.
  • the fluorochemical compound is reactive with one or more of the reactive precursors.
  • Polyurethanes can be prepared by reacting one or more isocyanates with one or more polyols.
  • Polyureas can be prepared by reacting one or more isocyanates with one or more amines.
  • fluorochemical compounds suitable for use herein include the fluorochemical monoisocyanates disclosed in U.S. Pat. No. 7,081,545 (Klun et al.) which is incorporated herein by reference in its entirety.
  • Fluorochemical alcohols that are useful starting compounds include C 2 F 5 SO 2 NCH 3 (CH 2 ) 2 OH, C 2 F 5 SO 2 NCH 3 (CH 2 ) 3 OH, C 2 F 5 SO 2 NCH 3 (CH 2 ) 4 OH, C 3 F 7 SO 2 NCH 3 (CH 2 ) 2 OH, C 3 F 7 SO 2 NCH 3 (CH 2 ) 3 OH, C 3 F 7 SO 2 NCH 3 (CH 2 ) 4 OH, C 4 F 9 SO 2 NCH 3 (CH 2 ) 2 OH, C 4 F 9 SO 2 NCH 3 (CH 2 ) 3 OH, C 4 F 9 SO 2 NCH 3 (CH 2 ) 4 OH, C 5 F 11 SO 2 NCH 3 (CH 2 ) 2 OH, C 5 F 11 SO 2 NCH 3 (CH 2 ) 3 OH, C 5 F 11 SO 2 NCH 3 (CH 2 ) 4 OH, and mixtures thereof.
  • Preferred fluorochemical alcohols include, for example, C 2 F 5 SO 2 NCH 3 (CH 2 ) 2 OH, C 4 F 9 SO 2 NCH 3 (CH 2 ) 2 OH, C 4 F 9 SO 2 NCH 3 (CH 2 ) 4 OH, and mixtures thereof. More preferred fluorochemical alcohols include, for example, C 4 F 9 SO 2 NCH 3 (CH 2 ) 2 OH, C 4 F 9 SO 2 NCH 3 (CH 2 ) 4 OH, and mixtures thereof. A most preferred fluorochemical alcohol is C 4 F 9 SO 2 NCH 3 (CH 2 ) 2 OH.
  • Useful fluorochemical alcohols can be purchased from 3M (St. Paul, Minn.), or can be prepared essentially as described in U.S. Pat. Nos. 2,803,656 (Ahlbrecht et al.) and 6,664,345 (Savu et al.).
  • the process of the invention can be carried out with a molar ratio of fluorochemical alcohol:MDI from about 1:1 to about 1:2.5.
  • the molar ratio of fluorochemical alcohol:MDI is from about 1:1 to about 1:2. More preferably, the molar ratio is from about 1:1.1 to about 1:1.5.
  • the process of the invention can be carried out in a solvent in which the resulting monoisocyanate is not soluble (that is, the solvent is one in which the monoisocyanate partitions out of so that it no longer participates in the reaction).
  • the solvent is a nonpolar solvent. More preferably, it is a nonpolar non-aromatic hydrocarbon or halogenated solvent.
  • solvents include cyclohexane, n-heptane, hexanes, n-hexane, pentane, n-decane, i-octane, octane, methyl nonafluoroisobutyl ether, methyl nonafluorobutyl ether, petroleum ether, and the like, and mixtures thereof.
  • a mixture of methyl nonafluoroisobutyl ether and methyl nonafluorobutyl ether is available as HFE-7100 NOVECTM Engineered Fluid from 3M.
  • Preferred solvents include, for example, methyl nonafluoroisobutyl ether, methyl nonafluorobutyl ether, petroleum ether, n-heptane, and the like.
  • the solvent has a Hildebrand solubility parameter (6) of less than about 8.3 (cal/cm 3 ) 1/2 (about 17 MPa 1/2 ) and a hydrogen bonding index of less than about 4.
  • Vm molar volume
  • n-heptane has a Hildebrand solubility index of about 7.4 (cal/cm 3 ) 1/2 (about 15 MPa 1/2 ), and water has a Hildebrand solubility index of about 23.4 (cal/cm 3 ) 1/2 (about 48 MPa 1/2 ) ( Principles of Polymer Systems, 2 nd edition, McGraw-Hill Book Company, New York (1982)).
  • the hydrogen bonding index is a numerical value that indicates the strength of the hydrogen bonding that occurs in a solvent. Hydrogen bonding values range from ⁇ 18 to +15. For example, n-heptane has a hydrogen bonding value of about 2.2, and water has a hydrogen bonding value of about 16.2 ( Principles of Polymer Systems, 2 nd edition, McGraw-Hill Book Company, New York (1982)).
  • the reaction can be carried out by combining the fluorochemical alcohol and MDI in the solvent.
  • the fluorochemical alcohol is added to MDI, which is in the solvent, over time.
  • the fluorochemical alcohol can first be dissolved in a solvent such as, for example, toluene, and then added to the MDI in solution.
  • the reaction mixture is agitated.
  • the reaction can generally be carried out at a temperature between about 25° C. and about 70° C. (preferably, between about 25° C. and about 50° C.).
  • the reaction can be carried out in the presence of a catalyst.
  • a catalyst include bases (for example, tertiary amines, alkoxides, and carboxylates), metal salts and chelates, organometallic compounds, acids, and urethanes.
  • the catalyst is an organotin compound (for example, dibutyltin dilaurate (DBTDL)) or a tertiary amine (for example, diazobicyclo[2.2.2]octane (DABCO)), or a combination thereof. More preferably, the catalyst is DBTDL.
  • the reaction product can be filtered out and dried.
  • the reaction product typically comprises greater than about 85% of the desired fluorochemical monoisocyanate (preferably, greater than about 90%; more preferably, greater than about 95%).
  • Preferred fluorochemical monoisocyanates that can be prepared using the process of the invention include, for example: More preferred fluorochemical monoisocyanates prepared using the process of the invention include, for example:
  • Fluorochemical monoisocyanates prepared using the process of the invention can be useful starting compounds in processes for preparing fluorinated acrylic polymers with water- and oil-repellency properties.
  • fluorochemical monoisocyanates prepared using the process of the invention can be reacted with active hydrogen-containing compounds, materials, or surfaces bearing hydroxyl, primary or secondary amines, or thiol groups.
  • the monomer produced by reacting a fluorochemical monoisocyanate prepared by the process of the invention with a hydroxy alkyl acrylate such as hydroxy ethyl acrylate, for example, can be polymerized (alone or with comonomers) to provide polymers that have useful water- and oil-repellency properties.
  • compositions of the invention will further comprise filler materials such as glass microspheres, glass bubbles, ceramic microspheres, or other particles.
  • coatings of the invention can be used as coatings on motor vehicle bodies, undercarriages, truck beds, carriers and vessels used for transporting materials, etc.
  • the coatings exhibit good adhesion to metal substrates coupled with oil-repellency, water-repellency, and stain resistance.
  • compositions and coatings of the invention are on equipment and vehicles used in mining operations, e.g., for oil sands and tar sands.
  • use of coatings of the invention will reduce the maintenance time required to clean conventional equipment and vehicles, thereby reducing downtime and increasing efficiency of operations.
  • costly down-time operations can be reduced, resulting in greater productivity, lower operating costs, etc.
  • railcars can outfitted with coatings of the invention to reduce the build up of coal, resulting in increased transportation efficiency.
  • the invention may be used to advantageous effect in a variety of applications where durable, abrasion-resistant coatings exhibiting oil-repellency, water-repellency, and stain resistance and desired.
  • Coatings of the invention exhibit good adhesion to metal substrates.
  • Coatings of the invention preferably contain glass microspheres and or bubbles to impart improved insulative properties (e.g., thermal insulation, noise dampening, vibration, etc.), reduce effective weight of the coating.
  • coatings of the invention are made in combination with open celled, foamed construction.
  • Coatings of invention can be made with superior abrasion resistance and hardness.
  • compositions of invention can be applied by any of a variety of techniques.
  • compositions of the invention can be applied by such convenient techniques as spraying.
  • Coatings of the invention can applied over other, less durable insulation materials to provide optimized, composite properties.
  • the present invention may be used to provide a polyurea insulation coating sprayed over other insulation materials such as polystyrene or polyurethane open cell foam insulation, or other insulative material.
  • Films and coatings of the invention may be used in conjunction with other materials and layers to make multilayer composite constructions offering desired performance.
  • Compositions of the invention can be coated over blast and tear resistant films to impart improved blast and/or projectile resistance.
  • compositions and coatings of the invention make them well suited for a wide variety of applications.
  • Some examples include protective coatings to protect the cab, passenger compartment, load area, or other chambers of vehicles including aircraft, watercraft and land vehicles.
  • the invention provides advantageous results on wheeled and tracked vehicles, e.g., trucks, HUMVEEs, tanks, etc., airplanes, space vehicles, helicopters, boats and other enclosed cockpit vehicles, from heat from engines or ambient sources.
  • protective coatings on equipment and vehicles or vehicle components that are used in extreme environments, e.g., trucks, tanks, airplanes, space vehicles, helicopters, boats, pipes, bridges, off-shore oil platforms, and other metallic substrates used in extreme environments or washed with bleach and other corrosive materials to provide corrosion resistance for the metal substrates.
  • the invention can be used on a variety of materials handling equipment including wheelbarrows, pipelines, sluices, etc.
  • the treated substrates were tested for their contact angles versus water using an Olympus TGHM goniometer (Olympus Corp, Pompano Beach, Fla.). Contact angles were measured at least 24 hrs after cure. The values are the mean values of 4 measurements and are reported in degrees. The minimum measurable value for a contact angle was 20. A value less than 20 means that the liquid spreads on the surface.
  • Thermal conductivity was measured using a Model 2021 Thermal Conductivity Apparatus (available from Anter Corporation, Pittsburgh, Pa.) following ASTM E 1530 (Test Method for Evaluating the Resistance to Thermal Transmission of Thin Specimens of Materials by the Guarded Flow Meter Technique).
  • a 4 inch ⁇ 6 inch (10.16 cm ⁇ 15.24 cm) rectangular hole was cut in the top of a lab furnace (Econo-Kiln, Model K 14, L & L Manufacturing Co., Twin Oaks, Pa.; maximum temperature of 1832° F. (1000° C.)).
  • the sample to be tested was placed over the rectangular hole in the furnace such that the edges of the sample fully overlapped on all sides of the opening.
  • Two thermocouples (Type K Thermocouple Thermometer, Model 650, Omega Engineering, Inc., Stamford, Conn.) were placed in the center of the sample and held in contact with a foil tape.
  • thermocouple measures the external face temperature (T Outside ) of the sample (that portion outside the oven) and one thermocouple measures the internal face temperature T Inside of the sample (that portion inside the furnace). The furnace oven was turned on and the I Inside of the sample was adjusted to 200° F. (93.3° C.). After several minutes, the T Outside was recorded. Additionally, Model ThermaCAMTM P65 infrared camera, available from Flir Systems Inc., Portland, Oreg., was used to analyze the temperature of the external face surface of the sample.
  • Part A and Part B A two component polyurea was formulated as follows.
  • Part A contained hexamethylene diisocyanate (85.2% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATETM HDT LV2”), glass microspheres (13.5% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”) and a modified polyurea (1.3% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYKTM 410”).
  • hexamethylene diisocyanate 85.2% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATETM HDT LV2”
  • glass microspheres 13.5% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”
  • a modified polyurea (1.3% by weight, obtained from BYK Chemie
  • Part B contained diethyltoluenediamine (32.4% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURETM 100”), polyoxypropylenediamine (39.6% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah under the trade designation “JEFFAMINETM D-2000”), an aromatic secondary diamine (6.5% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y., under the trade designation “UNILINKTM 4200”), a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINETM T-5000”), glass microspheres (18.2% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”), a modified polyurea (0.8% by weight, obtained from BYK Chemie, under the trade designation “BYKTM 410”) and a liquid organic pigment to produce the desired color (0.1%).
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper. The formulation cured within about 20 seconds. After a period of time the sprayed panels were peeled from the metal substrate and waxed paper and tested as described above. The contact angle data is listed in Table 1. Thermal conductivity data is listed in Table 2.
  • Part A and Part B A two component polyurea was formulated as follows.
  • Part A contained hexamethylene diisocyanate (85.2% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATETM HDT LV2”), glass microspheres (13.5% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”) and a modified polyurea (1.3% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYKTM 410”).
  • hexamethylene diisocyanate 85.2% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATETM HDT LV2”
  • glass microspheres 13.5% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”
  • a modified polyurea (1.3% by weight, obtained from BYK Chemie
  • Part B contained diethyltoluenediamine (31.6% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURE 100”), polyoxypropylenediamine (38.7% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah, under the trade designation “JEFFAMINETM D-2000”), an aromatic secondary diamine (6.3% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y.
  • ETHACURE 100 diethyltoluenediamine
  • polyoxypropylenediamine 38.7% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah, under the trade designation “JEFFAMINETM D-2000”
  • an aromatic secondary diamine (6.3% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y.
  • UNILINKTM 4200 a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINETM T-5000”), glass microspheres (17.8% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”), a modified polyurea (0.7% by weight, obtained from BYK Chemie, under the trade designation “BYKTM 410”), deionized water (2.4% by weight) and a liquid organic pigment to produce the desired color (0.1%).
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper. The formulation cured within about 20 seconds. After a period of time the sprayed panels were peeled from the metal substrate and waxed paper. The contact angle data is listed in Table 1. Thermal conductivity data is listed in Table 2.
  • Part A and Part B A two component polyurea was formulated as follows.
  • Part A contained hexamethylene diisocyanate (84.4% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATETM HDT LV2”), glass microspheres (12.3% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”), a modified polyurea (1.3% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYKTM 410”) and a fluorochemical urethane (2% by weight, obtained from 3M Company under the trade designation “SRC-220”.
  • hexamethylene diisocyanate 84.4% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATETM HDT LV2”
  • glass microspheres (12.3% by weight, obtained from 3M Company under the trade designation “3MTM GLAS
  • Part B contained diethyltoluenediamine (32.4% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURETM 100”), polyoxypropylenediamine (39.6% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah under the trade designation “JEFFAMINETM D-2000”), an aromatic secondary diamine (6.5% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y.
  • ETHACURETM 100 diethyltoluenediamine
  • polyoxypropylenediamine 39.6% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah under the trade designation “JEFFAMINETM D-2000”
  • an aromatic secondary diamine (6.5% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y.
  • UNILINKTM 4200 a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINETM T-5000”), glass microspheres (18.2% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”), a modified polyurea (0.8% by weight, obtained from BYK Chemie, under the trade designation “BYKTM 410”), and a liquid organic pigment to produce the desired color (0.1%).
  • UNILINKTM 4200 a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINETM T-5000”), glass microspheres (18.2% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”), a modified polyurea (0.8% by weight, obtained from BYK Chemie, under the trade designation “BYKTM 410”), and a liquid organic pigment to produce the desired color (0.1%).
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper. The formulation cured within about 20 seconds. After a period of time the sprayed panels were peeled from the metal substrate and waxed paper and tested as described above. The data is listed in Table 1.
  • Part A and Part B A two component polyurea (Part A and Part B) was formulated as follows.
  • Part A contained hexamethylene diisocyanate (76.8% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATETM HDT LV2”), glass microspheres (12.2% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”), a modified polyurea (1.0% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYK 410”) and a fluorochemical urethane (10% by weight, obtained from 3M Company under the trade designation “SRC-220”.
  • hexamethylene diisocyanate 76.8% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATETM HDT LV2”
  • glass microspheres (12.2% by weight, obtained from 3M Company under the trade designation
  • Part B contained diethyltoluenediamine (32.4% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURETM 100”), polyoxypropylenediamine (39.6% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah under the trade designation “JEFFAMINETM D-2000”), an aromatic secondary diamine (6.5% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y., under the trade designation “UNILINKTM 4200”), a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINETM T-5000”), glass microspheres (18.2% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”), a modified polyurea (0.8% by weight, obtained from BYK Chemie, under the trade designation “BYKTM 410”), and a liquid organic pigment to produce the desired color (0.1%).
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper. The formulation cured within about 20 seconds. After a period of time the sprayed panels were peeled from the metal substrate and waxed paper and tested as described above. The data is listed in Table 1.
  • Part A and Part B A two component polyurea was formulated as follows.
  • Part A contained hexamethylene diisocyanate (81.8% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATETM HDT LV2”), glass microspheres (13.0% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”), a modified polyurea (1.2% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYKTM 410”) and a fluorochemical monoisocyanate (4% by weight, as prepared in U.S. Pat. No.
  • Part B contained diethyltoluenediamine (32.4% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURETM 100”), polyoxypropylenediamine (39.6% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah under the trade designation “JEFFAMINETM D-2000”), an aromatic secondary diamine (6.5% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y., under the trade designation “UNILINKTM 4200”), a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINETM T-5000”), glass microspheres (18.2% by weight, obtained from 3M Company under the trade designation “3MTM GLASS MICROSPHERES K37”), a modified polyurea (0.8% by weight, obtained from BYK
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper.
  • TK-709 UR release agent

Abstract

Transporters, e.g., ore carriers, vehicles, materials handling equipment, etc. having fluorinated polyurea and fluorinated polyurethane coatings thereon.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application No. 60/882,790, filed Dec. 29, 2006.
  • FIELD
  • The present invention relates to polyurea compositions and polyurethane compositions for forming coatings and coatings formed from such compositions. In particular the invention relates to stain and fouling resistant coatings, e.g., for use on rail cars, containers, vehicles, etc.
  • BACKGROUND
  • It has been known to use polyurethane compositions and polyurea compositions for forming coatings on substrates for a variety of purposes. Such compositions have been applied in a variety of approaches including spraying.
  • Although such coatings have been used in a variety of applications, a deficiency has been the tendency of such coatings to stain and/or foul. Such staining or fouling may be of mere aesthetic concern or may, in some cases, represent an important functional or performance deficiency.
  • A developing energy source is oil from oil sands and tar sands. Such sands tend to stick to equipment and vehicles used to move and process them. As a result, efficiency is reduced as the deposits build up, increasing the weight of moving vehicles, clogging handling chutes, etc. It is common practice today to remove vehicles used in such operations from service for one or two days each week for extensive spray washing to remove the build up of deposits from the vehicle in addition to an extensive solvent wash done on a monthly basis.
  • An established energy source is coal which is mined in one location and then shipped to another location via such means as rail car. When removed from the mine, coal commonly contains significant water content and has a temperature of about 40 to about 50° F. (4 to 10° C.). During cool months when the coal is placed in rail cars which are at an ambient temperature close to or below 32° F. (0° C.), the coal will tend to stick to the surfaces of the rail car. When the rail car is emptied significant quantities of the load remain stuck to the car. As a result, as much as 25% of the potential load carrying capacity of the rail cars might be lost. Removal is a labor and cost intensive exercise.
  • A need exists for conveniently applied polyurethane compositions and polyurea compositions that provide durable, light weight coatings which exhibit oil-repellency, water-repellency, and stain resistance.
  • SUMMARY OF INVENTION
  • The present invention provides novel polyurethane compositions and polyurea compositions and novel coatings formed therefrom, and transporters, e.g., carriers, vessels, and vehicles, having such coatings thereon.
  • In brief summary, the compositions of the invention comprise reactive precursors for forming a polyurethane or polyurea coating and at least one fluorochemical fluorochemical compound.
  • The compositions of the invention can be applied in convenient manner, e.g., spraying, to form films or coatings on substrates. The resultant films or coatings can exhibit exceptional physical properties such as high hardness, flexibility, abrasion resistance, and chemical resistance. Durable and light weight, films and coatings of the invention exhibit oil-repellency, water-repellency, and stain resistance. The invention provides polyurethane and polyurea coatings that provide heretofore unattainable resistance to staining and fouling.
  • DETAILED DESCRIPTION OF INVENTION
  • Compositions of the invention comprise reactive precursors for forming polyurethane and/or polyureas and at least one fluorochemical compound. In preferred embodiments, the fluorochemical compound is reactive with one or more of the reactive precursors.
  • Polyurethanes can be prepared by reacting one or more isocyanates with one or more polyols. Polyureas can be prepared by reacting one or more isocyanates with one or more amines.
  • An illustrative class of fluorochemical compounds suitable for use herein include the fluorochemical monoisocyanates disclosed in U.S. Pat. No. 7,081,545 (Klun et al.) which is incorporated herein by reference in its entirety.
  • Fluorochemical alcohols that are useful in carrying out the invention include those represented by the following formula:
    CnF2n+1SO2NCH3(CH2)mOH
    wherein n=2 to 5, and m=2 to 4 (preferably, n=2 to 4; more preferably, n=4). Fluorochemical alcohols that are useful starting compounds include C2F5SO2NCH3(CH2)2OH, C2F5SO2NCH3(CH2)3OH, C2F5SO2NCH3(CH2)4OH, C3F7SO2NCH3(CH2)2OH, C3F7SO2NCH3(CH2)3OH, C3F7SO2NCH3(CH2)4OH, C4F9SO2NCH3(CH2)2OH, C4F9SO2NCH3(CH2)3OH, C4F9SO2NCH3(CH2)4OH, C5F11SO2NCH3(CH2)2OH, C5F11SO2NCH3(CH2)3OH, C5F11SO2NCH3(CH2)4OH, and mixtures thereof. Preferred fluorochemical alcohols include, for example, C2F5SO2NCH3(CH2)2OH, C4F9SO2NCH3(CH2)2OH, C4F9SO2NCH3(CH2)4OH, and mixtures thereof. More preferred fluorochemical alcohols include, for example, C4F9SO2NCH3(CH2)2OH, C4F9SO2NCH3(CH2)4OH, and mixtures thereof. A most preferred fluorochemical alcohol is C4F9SO2NCH3(CH2)2OH. Useful fluorochemical alcohols can be purchased from 3M (St. Paul, Minn.), or can be prepared essentially as described in U.S. Pat. Nos. 2,803,656 (Ahlbrecht et al.) and 6,664,345 (Savu et al.).
  • The above-described fluorochemical alcohols can be reacted with 4,4′-diphenylmethane diisocyanate in a solvent to form the corresponding monoisocyanates. 4,4′-Diphenylmethane diisocyanate is commonly known as “methylene diisocyanate” or “MDI”. In its pure form, MDI is commercially available as ISONATE™ 125M from the Dow Chemical Company (Midland, Mich.), and as MONDUR™ M from Bayer Polymers (Pittsburgh, Pa.).
  • The process of the invention can be carried out with a molar ratio of fluorochemical alcohol:MDI from about 1:1 to about 1:2.5. Preferably, the molar ratio of fluorochemical alcohol:MDI is from about 1:1 to about 1:2. More preferably, the molar ratio is from about 1:1.1 to about 1:1.5.
  • The process of the invention can be carried out in a solvent in which the resulting monoisocyanate is not soluble (that is, the solvent is one in which the monoisocyanate partitions out of so that it no longer participates in the reaction). Preferably, the solvent is a nonpolar solvent. More preferably, it is a nonpolar non-aromatic hydrocarbon or halogenated solvent.
  • Representative examples of useful solvents include cyclohexane, n-heptane, hexanes, n-hexane, pentane, n-decane, i-octane, octane, methyl nonafluoroisobutyl ether, methyl nonafluorobutyl ether, petroleum ether, and the like, and mixtures thereof. A mixture of methyl nonafluoroisobutyl ether and methyl nonafluorobutyl ether is available as HFE-7100 NOVEC™ Engineered Fluid from 3M. Preferred solvents include, for example, methyl nonafluoroisobutyl ether, methyl nonafluorobutyl ether, petroleum ether, n-heptane, and the like.
  • Preferably, the solvent has a Hildebrand solubility parameter (6) of less than about 8.3 (cal/cm3)1/2 (about 17 MPa1/2) and a hydrogen bonding index of less than about 4. The Hildebrand solubility parameter is a numerical value that indicates the relative solvency behavior of a specific solvent. It is derived from the cohesive energy density (c) of the solvent, which in turn is derived from the heat of vaporization: δ c _ = [ Δ H - RT V m ] 1 2 ( 2 )
  • wherein:
  • ΔH=heat of vaporization,
  • R=gas constant,
  • T=temperature, and
  • Vm=molar volume
  • For example, n-heptane has a Hildebrand solubility index of about 7.4 (cal/cm3)1/2 (about 15 MPa1/2), and water has a Hildebrand solubility index of about 23.4 (cal/cm3)1/2 (about 48 MPa1/2) (Principles of Polymer Systems, 2nd edition, McGraw-Hill Book Company, New York (1982)).
  • The hydrogen bonding index is a numerical value that indicates the strength of the hydrogen bonding that occurs in a solvent. Hydrogen bonding values range from −18 to +15. For example, n-heptane has a hydrogen bonding value of about 2.2, and water has a hydrogen bonding value of about 16.2 (Principles of Polymer Systems, 2nd edition, McGraw-Hill Book Company, New York (1982)).
  • The reaction can be carried out by combining the fluorochemical alcohol and MDI in the solvent. Preferably, the fluorochemical alcohol is added to MDI, which is in the solvent, over time. Optionally, the fluorochemical alcohol can first be dissolved in a solvent such as, for example, toluene, and then added to the MDI in solution. Preferably, the reaction mixture is agitated. The reaction can generally be carried out at a temperature between about 25° C. and about 70° C. (preferably, between about 25° C. and about 50° C.).
  • Optionally, the reaction can be carried out in the presence of a catalyst. Useful catalysts include bases (for example, tertiary amines, alkoxides, and carboxylates), metal salts and chelates, organometallic compounds, acids, and urethanes. Preferably, the catalyst is an organotin compound (for example, dibutyltin dilaurate (DBTDL)) or a tertiary amine (for example, diazobicyclo[2.2.2]octane (DABCO)), or a combination thereof. More preferably, the catalyst is DBTDL.
  • After the reaction is carried out, the reaction product can be filtered out and dried. The reaction product typically comprises greater than about 85% of the desired fluorochemical monoisocyanate (preferably, greater than about 90%; more preferably, greater than about 95%).
  • Fluorochemical monoisocyanates that can be prepared using the process of the invention can be represented by the following formula:
    Figure US20080229976A1-20080925-C00001

    wherein n=2 to 5, and m=2 to 4.
  • Preferred fluorochemical monoisocyanates that can be prepared using the process of the invention include, for example:
    Figure US20080229976A1-20080925-C00002

    More preferred fluorochemical monoisocyanates prepared using the process of the invention include, for example:
    Figure US20080229976A1-20080925-C00003
  • Fluorochemical monoisocyanates prepared using the process of the invention can be useful starting compounds in processes for preparing fluorinated acrylic polymers with water- and oil-repellency properties.
  • For example, fluorochemical monoisocyanates prepared using the process of the invention can be reacted with active hydrogen-containing compounds, materials, or surfaces bearing hydroxyl, primary or secondary amines, or thiol groups. The monomer produced by reacting a fluorochemical monoisocyanate prepared by the process of the invention with a hydroxy alkyl acrylate such as hydroxy ethyl acrylate, for example, can be polymerized (alone or with comonomers) to provide polymers that have useful water- and oil-repellency properties.
  • In some preferred embodiments, compositions of the invention will further comprise filler materials such as glass microspheres, glass bubbles, ceramic microspheres, or other particles.
  • The surprising combination of properties exhibited by films and coatings of the invention makes them advantageously suited for a variety of applications.
  • For example, coatings of the invention can be used as coatings on motor vehicle bodies, undercarriages, truck beds, carriers and vessels used for transporting materials, etc. The coatings exhibit good adhesion to metal substrates coupled with oil-repellency, water-repellency, and stain resistance.
  • An illustrative application of the compositions and coatings of the invention is on equipment and vehicles used in mining operations, e.g., for oil sands and tar sands. Despite the tendency of such sands to stick to equipment and vehicles used to move and process them, use of coatings of the invention will reduce the maintenance time required to clean conventional equipment and vehicles, thereby reducing downtime and increasing efficiency of operations. With the improved release properties achieved in accordance with the present invention, such costly down-time operations can be reduced, resulting in greater productivity, lower operating costs, etc. Similarly, railcars can outfitted with coatings of the invention to reduce the build up of coal, resulting in increased transportation efficiency.
  • The invention may be used to advantageous effect in a variety of applications where durable, abrasion-resistant coatings exhibiting oil-repellency, water-repellency, and stain resistance and desired.
  • Coatings of the invention exhibit good adhesion to metal substrates.
  • Coatings of the invention preferably contain glass microspheres and or bubbles to impart improved insulative properties (e.g., thermal insulation, noise dampening, vibration, etc.), reduce effective weight of the coating. In some embodiments, coatings of the invention are made in combination with open celled, foamed construction.
  • Coatings of invention can be made with superior abrasion resistance and hardness.
  • Compositions of invention can be applied by any of a variety of techniques. In some embodiments, compositions of the invention can be applied by such convenient techniques as spraying.
  • Coatings of the invention can applied over other, less durable insulation materials to provide optimized, composite properties. For example, the present invention may be used to provide a polyurea insulation coating sprayed over other insulation materials such as polystyrene or polyurethane open cell foam insulation, or other insulative material.
  • Films and coatings of the invention may be used in conjunction with other materials and layers to make multilayer composite constructions offering desired performance. For example, Compositions of the invention can be coated over blast and tear resistant films to impart improved blast and/or projectile resistance.
  • The combination of convenient application and high performance provided by compositions and coatings of the invention makes them well suited for a wide variety of applications. Some examples include protective coatings to protect the cab, passenger compartment, load area, or other chambers of vehicles including aircraft, watercraft and land vehicles. For example, the invention provides advantageous results on wheeled and tracked vehicles, e.g., trucks, HUMVEEs, tanks, etc., airplanes, space vehicles, helicopters, boats and other enclosed cockpit vehicles, from heat from engines or ambient sources. Other examples include protective coatings on equipment and vehicles or vehicle components that are used in extreme environments, e.g., trucks, tanks, airplanes, space vehicles, helicopters, boats, pipes, bridges, off-shore oil platforms, and other metallic substrates used in extreme environments or washed with bleach and other corrosive materials to provide corrosion resistance for the metal substrates. The invention can be used on a variety of materials handling equipment including wheelbarrows, pipelines, sluices, etc.
  • EXAMPLES
  • The invention will be further explained with the following illustrative examples.
  • Test Methods
  • Dynamic Contact Angle Measurement
  • Advancing and receding contact angles on the polyurea samples were measured using a CAHN Dynamic Contact Angle Analyzer, Model DCA 322 (a Wilhelmy balance apparatus equipped with a computer for control and data processing, commercially available from ATI, Madison, Wis.). Water was used as the probe liquid.
  • Static Contact Angle Measurement
  • The treated substrates were tested for their contact angles versus water using an Olympus TGHM goniometer (Olympus Corp, Pompano Beach, Fla.). Contact angles were measured at least 24 hrs after cure. The values are the mean values of 4 measurements and are reported in degrees. The minimum measurable value for a contact angle was 20. A value less than 20 means that the liquid spreads on the surface.
  • Thermal Conductivity Test Method 1
  • Thermal conductivity was measured using a Model 2021 Thermal Conductivity Apparatus (available from Anter Corporation, Pittsburgh, Pa.) following ASTM E 1530 (Test Method for Evaluating the Resistance to Thermal Transmission of Thin Specimens of Materials by the Guarded Flow Meter Technique).
  • Thermal Conductivity Test Method 2—Hot Face vs. Cold Face
  • A 4 inch×6 inch (10.16 cm×15.24 cm) rectangular hole was cut in the top of a lab furnace (Econo-Kiln, Model K 14, L & L Manufacturing Co., Twin Oaks, Pa.; maximum temperature of 1832° F. (1000° C.)). The sample to be tested was placed over the rectangular hole in the furnace such that the edges of the sample fully overlapped on all sides of the opening. Two thermocouples (Type K Thermocouple Thermometer, Model 650, Omega Engineering, Inc., Stamford, Conn.) were placed in the center of the sample and held in contact with a foil tape. One thermocouple measures the external face temperature (TOutside) of the sample (that portion outside the oven) and one thermocouple measures the internal face temperature TInside of the sample (that portion inside the furnace). The furnace oven was turned on and the IInside of the sample was adjusted to 200° F. (93.3° C.). After several minutes, the TOutside was recorded. Additionally, Model ThermaCAM™ P65 infrared camera, available from Flir Systems Inc., Portland, Oreg., was used to analyze the temperature of the external face surface of the sample.
  • Comparative Example 1
  • A two component polyurea (Part A and Part B) was formulated as follows. Part A contained hexamethylene diisocyanate (85.2% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATE™ HDT LV2”), glass microspheres (13.5% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”) and a modified polyurea (1.3% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYK™ 410”). Part B contained diethyltoluenediamine (32.4% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURE™ 100”), polyoxypropylenediamine (39.6% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah under the trade designation “JEFFAMINE™ D-2000”), an aromatic secondary diamine (6.5% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y., under the trade designation “UNILINK™ 4200”), a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINE™ T-5000”), glass microspheres (18.2% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”), a modified polyurea (0.8% by weight, obtained from BYK Chemie, under the trade designation “BYK™ 410”) and a liquid organic pigment to produce the desired color (0.1%).
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper. The formulation cured within about 20 seconds. After a period of time the sprayed panels were peeled from the metal substrate and waxed paper and tested as described above. The contact angle data is listed in Table 1. Thermal conductivity data is listed in Table 2.
  • Example 1
  • A two component polyurea (Part A and Part B) was formulated as follows. Part A contained hexamethylene diisocyanate (85.2% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATE™ HDT LV2”), glass microspheres (13.5% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”) and a modified polyurea (1.3% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYK™ 410”). Part B contained diethyltoluenediamine (31.6% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURE 100”), polyoxypropylenediamine (38.7% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah, under the trade designation “JEFFAMINE™ D-2000”), an aromatic secondary diamine (6.3% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y. under the trade designation “UNILINK™ 4200”), a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINE™ T-5000”), glass microspheres (17.8% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”), a modified polyurea (0.7% by weight, obtained from BYK Chemie, under the trade designation “BYK™ 410”), deionized water (2.4% by weight) and a liquid organic pigment to produce the desired color (0.1%).
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper. The formulation cured within about 20 seconds. After a period of time the sprayed panels were peeled from the metal substrate and waxed paper. The contact angle data is listed in Table 1. Thermal conductivity data is listed in Table 2.
  • Example 2
  • A two component polyurea (Part A and Part B) was formulated as follows. Part A contained hexamethylene diisocyanate (84.4% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATE™ HDT LV2”), glass microspheres (12.3% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”), a modified polyurea (1.3% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYK™ 410”) and a fluorochemical urethane (2% by weight, obtained from 3M Company under the trade designation “SRC-220”. Part B contained diethyltoluenediamine (32.4% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURE™ 100”), polyoxypropylenediamine (39.6% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah under the trade designation “JEFFAMINE™ D-2000”), an aromatic secondary diamine (6.5% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y. under the trade designation “UNILINK™ 4200”), a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINE™ T-5000”), glass microspheres (18.2% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”), a modified polyurea (0.8% by weight, obtained from BYK Chemie, under the trade designation “BYK™ 410”), and a liquid organic pigment to produce the desired color (0.1%).
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper. The formulation cured within about 20 seconds. After a period of time the sprayed panels were peeled from the metal substrate and waxed paper and tested as described above. The data is listed in Table 1.
  • Example 3
  • A two component polyurea (Part A and Part B) was formulated as follows. Part A contained hexamethylene diisocyanate (76.8% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATE™ HDT LV2”), glass microspheres (12.2% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”), a modified polyurea (1.0% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYK 410”) and a fluorochemical urethane (10% by weight, obtained from 3M Company under the trade designation “SRC-220”. Part B contained diethyltoluenediamine (32.4% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURE™ 100”), polyoxypropylenediamine (39.6% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah under the trade designation “JEFFAMINE™ D-2000”), an aromatic secondary diamine (6.5% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y., under the trade designation “UNILINK™ 4200”), a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINE™ T-5000”), glass microspheres (18.2% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”), a modified polyurea (0.8% by weight, obtained from BYK Chemie, under the trade designation “BYK™ 410”), and a liquid organic pigment to produce the desired color (0.1%).
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper. The formulation cured within about 20 seconds. After a period of time the sprayed panels were peeled from the metal substrate and waxed paper and tested as described above. The data is listed in Table 1.
  • Example 4
  • A two component polyurea (Part A and Part B) was formulated as follows. Part A contained hexamethylene diisocyanate (81.8% by weight, obtained from Rhodia, Inc., Cranbury, N.J., under the trade designation “TOLONATE™ HDT LV2”), glass microspheres (13.0% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”), a modified polyurea (1.2% by weight, obtained from BYK Chemie, Wesel, Germany, under the trade designation “BYK™ 410”) and a fluorochemical monoisocyanate (4% by weight, as prepared in U.S. Pat. No. 7,081,545 (Klun et al.) Example 5, which is incorporated by reference to the extent that it is not inconsistent with the present disclosure). Part B contained diethyltoluenediamine (32.4% by weight, obtained from Albemarle Corporation, Bayport, Tex., under the trade designation “ETHACURE™ 100”), polyoxypropylenediamine (39.6% by weight, obtained from Huntsman Corporation, Salt Lake City, Utah under the trade designation “JEFFAMINE™ D-2000”), an aromatic secondary diamine (6.5% by weight, obtained from UOP, A Honeywell Company, Tonawanda, N.Y., under the trade designation “UNILINK™ 4200”), a trifunctional amine (2.4% by weight, obtained from Huntsman Corporation under the trade designation “JEFFAMINE™ T-5000”), glass microspheres (18.2% by weight, obtained from 3M Company under the trade designation “3M™ GLASS MICROSPHERES K37”), a modified polyurea (0.8% by weight, obtained from BYK Chemie, under the trade designation “BYK™ 410”), and a liquid organic pigment to produce the desired color (0.1%).
  • Parts A and B were sprayed from a plural component proportioning sprayer (obtained from Graco, Minneapolis, Minn., under the trade designation “REACTOR H-XP2” using a “FUSION MP” spray gun with nozzles. Each part (A and B) was kept separate until they exited the spray gun. The two components, A and B, were stirred, in separate pots, in the spray unit and maintained at a temperature of 160° F. (71° C.) during the spray process. The materials (Parts A and B) were sprayed on to a cold roll steel panel that was previously sprayed with a release agent (from Sierra Paint Co., Minnetonka, Minn., under the trade designation “TK-709 UR”) and also waxed paper. The formulation cured within about 20 seconds. After a period of time the sprayed panels were peeled from the metal substrate and waxed paper and tested as described above. The data is listed in Table 1.
    TABLE 1
    Static Contact
    Angle H2O Dynamic Advancing
    Sprayed Contact Angle (H2O) Dynamic Receding Contact
    Sprayed On Sprayed On Angle (H2O)
    On Waxed Sprayed Waxed Sprayed On Sprayed On
    Steel Paper On Steel Paper Steel Waxed Paper
    Comparative 73.1 65 78.2 72.2 42.5 45.6
    Example 1
    Example 2 76.8 65.8 77.9 77.4 48.0 46.8
    Example 3 91.2 97.9 99 100 33.1 32
    Example 4 90 81.5 79.5 74.8 58.0 49.3
  • TABLE 2
    Test Method Comparative Example 1 Example 1
    Thermal 250° F./115° F. 250° F./104° F.
    Conductivity
    Test Method 2-
    Hot Face vs.
    Cold Face
    Thermal K = 0.1 W/mK @ 58° C. K = 0.07 W/mK @ 58° C.
    Conductivity
    Test Method 1
  • Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows.

Claims (4)

1. A transporter having a coating on at least a portion of the surface thereof, said coating selected from the group consisting of polyureas, polyurethanes, and combinations thereon which are the reaction products of precursors including at least one fluorochemical compound.
2. The transporter of claim 1 wherein said transporter is selected from the group consisting of rail cars, trucks, automobiles, wheelbarrows, carts, carriers, conveyor belts, tanks, tankers, aircraft, watercraft, pipelines, and sluices.
3. The transporter of claim 1 wherein said fluorochemical compounds is a fluorinated isocyanate.
4. The transporter of claim 3 wherein said fluorinated isocyanate is a fluorinated monoisocyanate.
US11/966,213 2006-12-29 2007-12-28 Stain and fouling resistant polyurea and polyurethane coatings Abandoned US20080229976A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/966,213 US20080229976A1 (en) 2006-12-29 2007-12-28 Stain and fouling resistant polyurea and polyurethane coatings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88279006P 2006-12-29 2006-12-29
US11/966,213 US20080229976A1 (en) 2006-12-29 2007-12-28 Stain and fouling resistant polyurea and polyurethane coatings

Publications (1)

Publication Number Publication Date
US20080229976A1 true US20080229976A1 (en) 2008-09-25

Family

ID=39588993

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/966,213 Abandoned US20080229976A1 (en) 2006-12-29 2007-12-28 Stain and fouling resistant polyurea and polyurethane coatings

Country Status (2)

Country Link
US (1) US20080229976A1 (en)
WO (1) WO2008083272A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159228A1 (en) * 2008-12-23 2010-06-24 Isothane Limited Method for Preparing a Composite Material
US20110052874A1 (en) * 2009-07-02 2011-03-03 Wensheng Zhou Roofing articles with highly reflective coated granules
US10227780B2 (en) 2009-12-31 2019-03-12 Firestone Building Products Co., LLC Asphaltic membrane with mullite-containing granules
WO2019118636A1 (en) 2017-12-13 2019-06-20 Donaldson Company, Inc. Oleophobic polyamide fine fibers, methods, filter media, and filter elements
US11358616B2 (en) 2016-11-09 2022-06-14 Fccl Partnership Apparatus for viscous hydrocarbon transportation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803656A (en) * 1956-01-23 1957-08-20 Minnesota Mining & Mfg Fluorocarbonsulfonamidoalkanols and sulfates thereof
US4001305A (en) * 1974-02-04 1977-01-04 Ciba-Geigy Corporation Rf-glycols containing two perfluoroalkylthio groups and useful compositions therefrom
US6077609A (en) * 1997-06-27 2000-06-20 Dyneon Llc Composite articles including fluoropolymers and non-fluorinated polymers and method for making the same
US6117508A (en) * 1997-06-27 2000-09-12 Dyneon Llc Composite articles including a fluoropolymer blend
US6346328B1 (en) * 1998-07-30 2002-02-12 Dyneon Llc Composite articles including a fluoropolymer
US6664354B2 (en) * 1999-10-27 2003-12-16 3M Innovative Properties Company Fluorochemical sulfonamide surfactants
US7081545B2 (en) * 2003-12-31 2006-07-25 3M Innovative Properties Company Process for preparing fluorochemical monoisocyanates

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803656A (en) * 1956-01-23 1957-08-20 Minnesota Mining & Mfg Fluorocarbonsulfonamidoalkanols and sulfates thereof
US4001305A (en) * 1974-02-04 1977-01-04 Ciba-Geigy Corporation Rf-glycols containing two perfluoroalkylthio groups and useful compositions therefrom
US6077609A (en) * 1997-06-27 2000-06-20 Dyneon Llc Composite articles including fluoropolymers and non-fluorinated polymers and method for making the same
US6117508A (en) * 1997-06-27 2000-09-12 Dyneon Llc Composite articles including a fluoropolymer blend
US6346328B1 (en) * 1998-07-30 2002-02-12 Dyneon Llc Composite articles including a fluoropolymer
US6664354B2 (en) * 1999-10-27 2003-12-16 3M Innovative Properties Company Fluorochemical sulfonamide surfactants
US7081545B2 (en) * 2003-12-31 2006-07-25 3M Innovative Properties Company Process for preparing fluorochemical monoisocyanates

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159228A1 (en) * 2008-12-23 2010-06-24 Isothane Limited Method for Preparing a Composite Material
GB2466501A (en) * 2008-12-23 2010-06-30 Isothane Ltd Method for preparing a composite material
GB2466501B (en) * 2008-12-23 2012-11-28 Isothane Ltd Method for preparing a composite material
US20110052874A1 (en) * 2009-07-02 2011-03-03 Wensheng Zhou Roofing articles with highly reflective coated granules
US10227780B2 (en) 2009-12-31 2019-03-12 Firestone Building Products Co., LLC Asphaltic membrane with mullite-containing granules
US10626615B2 (en) 2009-12-31 2020-04-21 Firestone Building Products Co., LLC Asphaltic membrane with mullite-containing granules
US11358616B2 (en) 2016-11-09 2022-06-14 Fccl Partnership Apparatus for viscous hydrocarbon transportation
US11975746B2 (en) 2016-11-09 2024-05-07 Fccl Partnership Apparatus for viscous hydrocarbon transportation
WO2019118636A1 (en) 2017-12-13 2019-06-20 Donaldson Company, Inc. Oleophobic polyamide fine fibers, methods, filter media, and filter elements
US11807958B2 (en) 2017-12-13 2023-11-07 Donaldson Company, Inc. Oleophobic polyamide fine fibers, methods, filter media, and filter elements

Also Published As

Publication number Publication date
WO2008083272A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
RU2440374C2 (en) Coating composition containing polyurea and application method thereof
RU2411256C1 (en) Acrylate/aspartate amine curing agents and coatings and articles containing same
RU2478658C2 (en) Coating compositions containing polyurea and phosphorus-containing polyol
US7968212B2 (en) Triamine/aspartate curative and coatings comprising the same
CA2311457C (en) Room temperature curable silane terminated and stable waterborne polyurethane dispersions which contain fluorine and/or silicone and low surface energy coatings prepared therefrom
RU2448986C2 (en) Coating composition containing polyurea and application method thereof
US20080229976A1 (en) Stain and fouling resistant polyurea and polyurethane coatings
RU2453571C2 (en) Substrates coated with polyurea coatings and composition
JP2014524954A (en) Sprayable flame retardant polyurethane coating composition
US20110313084A1 (en) Coating compositions comprising polyurea and graphite
US20070208156A1 (en) Polyurea polymers with improved flexibility using secondary polyetheramines
MX2012004063A (en) Polyurethane formulation with high green strength and gunnability.
CA2602936C (en) Allophanate modified polyisocyanates
US20110040016A1 (en) Curable compositions that form a high modulus polyurea
US20070185241A1 (en) High build coating composition and coatings formed therefrom
Guan et al. 100% solids rigid polyurethane coatings technology for corrosion protection of ballast tanks
US20050037146A1 (en) Method of protecting surfaces from corrosion
CN113801551B (en) Two-component coating composition and articles made therefrom
US6809150B1 (en) Method of protecting surfaces from corrosion
PRIMEAUX II et al. Polyurea Elastomer Technology: Bridging the Gap to Commercial Applications

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AMOS, STEPHEN E.;MESSNER, ROBERT P.;REEL/FRAME:020505/0919

Effective date: 20080212

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION