US20080192780A1 - Q-switched all-fibre laser - Google Patents

Q-switched all-fibre laser Download PDF

Info

Publication number
US20080192780A1
US20080192780A1 US12/022,255 US2225508A US2008192780A1 US 20080192780 A1 US20080192780 A1 US 20080192780A1 US 2225508 A US2225508 A US 2225508A US 2008192780 A1 US2008192780 A1 US 2008192780A1
Authority
US
United States
Prior art keywords
laser
long period
fibre
modulator
lpfg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/022,255
Inventor
Fei Luo
Tung Feng Yeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/022,255 priority Critical patent/US20080192780A1/en
Priority to CN2008100099223A priority patent/CN101291037B/en
Publication of US20080192780A1 publication Critical patent/US20080192780A1/en
Priority to US12/559,567 priority patent/US9190799B2/en
Priority to US14/328,036 priority patent/US9190800B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1067Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using pressure or deformation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/127Plural Q-switches

Definitions

  • This invention is generally related to the field of lasers, and more particularly to a Q-switched all-fibre laser.
  • Fiber lasers can generate either continuous-wave (CW) radiation or pulse radiation. Pulsed operation can be achieved via Q-switching techniques. Q-switched fiber lasers are preferred for applications such as micro-machining, marking, and scientific research due to their high peak power and excellent beam quality. Q-switching is achieved by inserting an optical modulator in the laser resonance cavity to control optical loss in the cavity. In particular, the modulator functions as an optical loss switch. Initially, cavity loss is kept on a high level (low Q factor state). Laser oscillation cannot occur at this initial period, but energy from a pump source accumulates in the gain medium.
  • CW continuous-wave
  • Pulsed operation can be achieved via Q-switching techniques. Q-switched fiber lasers are preferred for applications such as micro-machining, marking, and scientific research due to their high peak power and excellent beam quality. Q-switching is achieved by inserting an optical modulator in the laser resonance cavity to control optical loss in the cavity. In particular, the modulator functions as an optical loss switch. Initially, cavity loss is kept on a
  • cavity loss is switched to a low loss level (high Q factor state), so that laser oscillation builds up quickly in the cavity and generates a high peak power laser pulse.
  • the laser cavity is switched between low Q and high Q by the optical modulator, sequenced laser pulses are produced.
  • Optical modulation for Q-switching can be achieved by either active or passive means.
  • active Q-switching modulation means include acousto-optic modulators (AOMs) and electro-optic modulators (EOMs).
  • the AOM comprises optical crystals such as tellurium dioxide, crystalline quartz, and fused silica.
  • the EOM comprises optical materials such as potassium di-deuterium phosphate (KD*P), beta barium borate (BBO), lithium niobate (LiNbO 3 ), as well as NH 4 H 2 PO 4 (ADP), and other materials.
  • KD*P potassium di-deuterium phosphate
  • BBO beta barium borate
  • LiNbO 3 lithium niobate
  • ADP NH 4 H 2 PO 4
  • FIG. 1 A typical configuration of a Q-switched fiber laser is illustrated in FIG. 1 .
  • the laser cavity comprises a pair of fiber Bragg grating (FBG) reflectors ( 15 , 35 ) having the same center wavelength, a gain fiber ( 18 ) which provides optical gain, and an optical modulator ( 90 ) coupled to an optical fiber pigtail ( 20 ) for coupling a light signal between the fiber and the modulator.
  • the optical modulator may be either an AOM or EOM type.
  • a pump source ( 1 ) provides pump light ( 5 ) which is coupled to the fiber laser cavity to excite the gain fiber ( 18 ).
  • the FBG reflectors provide optical feedback for laser oscillation.
  • the optical modulator ( 90 ) is employed as a switch to control optical loss within the laser cavity, and thereby provide Q-switching. Initially, the cavity loss is kept on a high level with the modulator switch “off” (low Q factor state of the laser cavity), at which time no light signal passes through the modulator ( 90 ). As discussed above, laser oscillation does not occur at this time, but energy from pump light source ( 5 ) accumulates in the gain fiber ( 18 ). Subsequently, the cavity loss is reduced over a relatively short time by “switching on” the optical modulator to a low loss level (high Q factor state of the laser cavity), at which time the light signal passes through optical modulator ( 90 ).
  • the FBG pair ( 15 , 35 ) have the same center wavelength and function as narrow band reflective mirrors which provide optical feedback to the laser cavity and confine the laser oscillation wavelength to the FBG wavelength. Since the FBG has a relatively narrow reflective bandwidth, the laser oscillates only at this wavelength and the output has a narrow wavelength spectrum.
  • Modulator switch control is achieved by means of a signal ( 95 ) from an external controller ( 96 ).
  • One device of the FBG pair ( 15 , 35 ) is partially transparent and has relatively lower reflectivity, resulting in a percentage of the generated laser light being permitted to leave laser cavity and deliver the laser output ( 38 or 42 ).
  • the FBG is formed by introducing a periodic changes of refractive index in the fiber core.
  • the modified area ( 151 ) within the fiber core has a smaller refractive index difference of period ⁇ B relative to the adjacent unmodified area ( 152 ).
  • Several techniques are known for changing the refractive index of discreet areas of the fibre core.
  • One technique is to expose the area to a UV laser beam, e.g., area ( 151 ) is altered by exposure to UV light, but area ( 152 ) is neither exposed nor altered.
  • the principle characteristic parameters of a FBG are center wavelength ⁇ B , bandwidth ⁇ B , and reflectivity.
  • the condition for high reflection known as the Bragg condition, relates the reflected wavelength, or Bragg wavelength, ⁇ B to the grating period ⁇ B and the effective refractive index of the fiber core n via:
  • FIGS. 2 b , 2 c , and 2 d illustrate the spectral characteristics of a FBG.
  • broad band light ( 110 , FIG. 2 a ) having spectrum ( 120 , FIG. 2 b ) is input into the FBG as shown
  • the reflected light ( 112 , FIG. 2 a ) has a corresponding spectrum ( 122 , FIG. 2 c )
  • the transmitted light ( 111 , FIG. 2 a ) has a corresponding spectrum ( 121 , FIG. 2 d ).
  • a Long Period Fiber Grating has a grating period ⁇ L which is considerably longer than the period ⁇ B of the FBG, i.e., typically ⁇ L is 200 ⁇ 2000 times longer than ⁇ B .
  • the LPFG couples the fundamental mode in the fiber core with the cladding modes of the fiber and propagates them in the same direction.
  • the excited cladding modes are attenuated, resulting in the appearance of resonance loss in the transmission spectrum.
  • the LPFG does not produce reflected light.
  • FIGS. 3 a , 3 b and 3 c illustrate the physical configuration and the spectral transmission characteristics of a LPFG.
  • the periodic grating structure 22 , FIG.
  • the modified areas can be also formed by using a high voltage electric arc discharge or CO 2 laser to “burn” the fiber, i.e., introducing structural changes and slight geometrical deformation in the irradiated area of the fibre.
  • mechanical stress can be used, i.e., by applying static stress to the areas of the fibre to be modified through a corrugated plate. The refractive index at the areas subjected to stress is changed in accordance with the photo-elastic effect, but the adjacent areas which are not subjected to stress are unmodified.
  • the transmitted light ( 211 , FIG. 3 a ) has a corresponding spectral characteristic ( 221 , FIG. 3 c ), several resonance loss peaks ( 222 , 223 ), including the fundamental mode coupling with different cladding modes of the fiber.
  • resonance loss peak ( 222 , FIG. 3 c )
  • the resonance loss of the LPFG is due to the coupling of the fundamental mode in the fiber core with the cladding modes of the fiber.
  • the phase matching between the fundamental mode and cladding modes at wavelength ⁇ mL can be expressed as:
  • ⁇ mL ( n core ⁇ n cl m ) ⁇ L ,
  • n core is the effective refractive index of the fundamental mode
  • n cl m is the effective refractive index of the m th cladding mode
  • ⁇ L is the period of the LPFG. Since several cladding modes can satisfy this condition, each one is at a different center wavelength ⁇ mL , and thus the transmission spectrum of the LPFG exhibits a series of transmission loss notch peaks ( 222 , 223 , FIG. 3C ).
  • FIGS. 4 a - 4 c illustrate the physical configuration and the spectral transmission characteristics of a phase shifted LPFG.
  • a phase shift is introduced into the LPFG.
  • the notch peak See FIG. 3 c
  • the reverse peak 232 , FIG. 4 c
  • a broad band input 220 , FIG. 4 b
  • a corresponding transmission spectrum 231 , FIG. 4 c
  • ⁇ L For a broad band input ( 220 , FIG. 4 b ), a corresponding transmission spectrum ( 231 , FIG. 4 c ) of the phase shifted LPFG is produced, enabling transmission at wavelength ⁇ L .
  • FIGS. 5 a - 5 c illustrate the physical configuration and the spectral transmission characteristics of cascaded LPFGs.
  • Cascaded LPFGs are formed by connecting a pair of LPFGs ( 25 , 26 ) in series.
  • Each of the LPFGs has a grating length d 1 and d 2 , and together define a separation distance of L.
  • broad band light ( 210 ) having spectrum ( 220 , FIG. 5 b ) is input into the cascaded LPFGs, the corresponding transmitted light ( 211 ) has a corresponding spectral transmission response ( 241 , FIG. 5 c ). It can be seen from FIGS.
  • the first LPFG couples part of the fundamental mode to the cladding modes, and then the coupled cladding modes and fundamental mode travel along the fiber simultaneously to the second LPFG.
  • the two modes interact with each other and generate spectral interference fringe patterns.
  • the fringe spacing ⁇ PL is related to the grating length d 1 , d 2 , d and the separation distance L between the two LPFGs. An increase in L corresponds with a decrease in the fringe spacing ⁇ PL .
  • the distance L is typically less than 600 mm.
  • a Q-switched fibre laser apparatus comprises at least one pump source, one reflector, a gain fibre, and a long period fiber grating modulator employed to switch Q factor of the laser cavity.
  • a method for producing laser light comprises introducing pump light to laser cavity which includes at least one reflector, a gain fibre, and a long period fiber grating modulator, and switching Q factor of the laser cavity with the long period fiber grating modulator, whereby a Q-switched fibre laser is provided.
  • FIG. 1 illustrates the physical configuration of a Q-switched fiber laser.
  • FIGS. 2 a , 2 b , 2 c and 2 d illustrate the physical configuration and spectral transmission characteristics of a FBG.
  • FIGS. 3 a , 3 b , and 3 c illustrate the physical configuration and spectral transmission characteristics of a LPFG.
  • FIGS. 4 a , 4 b , and 4 c illustrate the physical configuration and spectral transmission characteristics of a phase shifted LPFG.
  • FIGS. 5 a , 5 b , and 5 c illustrate the physical configuration and spectral transmission characteristics of a cascaded LPFG pair.
  • FIGS. 6 a , 6 b , and 6 c illustrate a LFPG optical modulator.
  • FIG. 6 d and FIG. 6 e illustrate the spectral transmission behavior of the innovative LPFG modulator.
  • FIG. 7 illustrates use of the LPFG modulator as a component of an all-fiber in-line device such as an all-fiber Q-switched laser.
  • FIGS. 8 a , 8 b , and 8 c illustrate an alternative LPFG modulator formed by employing a phase shifted LPFG.
  • FIG. 9 a illustrates an embodiment of the modulator based on cascaded LPFGs.
  • FIGS. 9 b , 9 c , 9 d and 9 e illustrate the spectral transmission characteristics of the embodiment of FIG. 9 a.
  • FIG. 10 illustrates a Q-switched fiber laser employing two LPFG modulators in the fiber laser cavity.
  • FIGS. 11 a , 11 b , and 11 c illustrate an LPFG modulator assembly using two LPFGs.
  • FIG. 12 illustrates a Q-switched fiber laser employing a LPFG modulator in which the pump light is coupled into the laser cavity from the middle of the laser cavity.
  • FIG. 13 illustrates a Q-switched fiber laser employing a LPFG modulator in which a ring laser cavity is used and the LPFG modulator is placed outside of the fiber loop.
  • FIG. 14 illustrates a Q-switched fiber laser employing a LPFG modulator in which a ring laser cavity is used and the LPFG modulator is placed inside of the fiber loop.
  • FIG. 15 illustrates a Q-switched fiber laser in which a LPFG modulator is employed in a ring laser cavity and an optical isolator is employed to achieve unidirectional laser oscillation.
  • FIG. 16 illustrates a Q-switched fiber laser having a ring laser cavity in which the pump light is coupled into the laser cavity from the middle of the cavity.
  • a LFPG optical modulator is provided via the controlled (time, area and force) application of stress to an optical material to introduce refractive index changes in the material in accordance with the photo-elastic effect.
  • a small section ( 253 ) of the LPFG ( 22 ) is subjected to stress ( 203 ) through force applied by an actuator ( 202 ).
  • the stress may be applied by mechanical, acoustic or other means.
  • the actuator ( 202 ) may include a piezo actuator that operates in response to a modulating voltage ( 205 ) from a controller ( 206 ).
  • the applied stress ( 203 ) causes a temporary deformation of the material at section ( 253 ) and a corresponding refractive index change at section ( 253 ).
  • the periodic structure and spectral transmission behavior of the LPFG are changed in a corresponding manner.
  • the magnitude of the refractive index change is related to the magnitude of applied force
  • the periodic structure and spectral transmission behavior is related to (a) which areas are subjected to stress and (b) the period and frequency at which stress is applied.
  • FIGS. 6 b and 6 c are cross-sectional views of the LFPG of FIG. 6 a that illustrate different configurations for applying stress to the fibre ( 20 ).
  • the LPFG fiber ( 20 ) is disposed between actuator ( 202 ) and a plate ( 215 ).
  • the fiber can be fixed in place with glue ( 207 ).
  • FIG. 6 c shows an alternative embodiment in which a V-groove plate ( 216 ) is employed in lieu of the flat plate ( 215 , FIG. 6 b ) for enhanced fiber fixing and enhanced stress distribution.
  • FIG. 6 d and FIG. 6 e illustrate the spectral transmission behavior of the innovative LPFG modulator.
  • the transmission spectrum of the LPFG when no stress is applied is shown by a first section ( 221 , FIG. 6 d ), i.e., a narrow band input light ( 122 ) with center wavelength ⁇ L is blocked since the resonance loss peak ( 222 ) of the LPFG is just at this wavelength. This corresponds to the “switch off” state of the LPFG modulator.
  • the bandwidth of the signal light is narrower than the bandwidth ⁇ L of the LPFG.
  • the narrow band input light ( 122 ) can now pass through the LPFG. This corresponds to the “switch on” state of the LPFG modulator.
  • the input light ( 122 ) with center wavelength ⁇ L can be modulated in response to the control signal applied to the actuator.
  • FIG. 7 illustrates use of the LPFG modulator as a component of an all-fiber in-line device such as an all-fiber Q-switched laser.
  • the illustrated laser cavity has a Fabry-Perot configuration and includes a pair of FBG reflectors ( 15 , 35 ) having the same center wavelength ⁇ B , a gain fiber ( 18 ), and an LPFG modulator ( 201 ).
  • the resonance loss peak ⁇ L of the LPFG is matched with center wavelength ⁇ B of the FBGs.
  • the bandwidth ⁇ B of the FBGs is narrower than bandwidth ⁇ L of the LPFG, i.e., ⁇ B ⁇ L .
  • the laser oscillation wavelength is confined by the FBGs at wavelength ⁇ B .
  • the LPFG modulator is employed to switch the Q factor of the laser cavity, i.e., control optical loss in the time domain. Switching is provided in response to a modulating voltage ( 205 ) applied to the actuator by a controller ( 206 ).
  • Pump source ( 1 ) couples pump light ( 5 ) into the laser cavity to pump gain fiber ( 18 ).
  • One or both of the FBG reflectors ( 15 , 35 ) are partially transparent at its wavelength. Consequently, the laser output ( 38 or 42 ) can be provided from either fiber end ( 37 ) or fibre end ( 9 ), or both fiber ends.
  • An alternative LPFG modulator can be formed by employing a phase shifted LPFG as shown in FIG. 8 a .
  • the stress ( 203 ) is applied to the phase shift section on the LPFG through actuator ( 202 ).
  • the transmission spectrum of the phase shifted LPFG with and without applied stress is shown in FIG. 8 b and FIG. 8 c .
  • a narrow band signal light ( 122 ) can pass through the area ( 232 ) of the phase shifted LPFG, i.e., in the “switch on” state.
  • the LPFG When stress is applied to area ( 253 ) the LPFG has resonance loss ( 232 a ) at wavelength ⁇ L , i.e., in the “switch off” state.
  • the bandwidth of the signal light is narrower than bandwidth ⁇ L of the LPFG.
  • FIG. 9 a illustrates an embodiment of the modulator based on cascaded LPFGs.
  • a pair of LPFGs ( 25 , 26 ) are disposed in series.
  • Actuator ( 202 or 202 b or 202 a ) applies stress to the section of LPFG ( 25 ) or LPFG ( 26 ) or on the fiber section ( 227 ) between LPFG ( 25 ) and LPFG ( 26 ).
  • the transmission spectrum is as shown at section ( 241 ) in FIG. 9 b .
  • the wavelength of the signal light ( 122 ) is matched at the wavelength ⁇ L1 , which is at loss peak ( 243 ) on the spectrum of the cascaded LPFGs.
  • the signal light ( 122 ) cannot pass through and the modulator is in the “switch off” state.
  • the transmission spectrum is changed as shown in FIG. 9 c , where the signal light ( 122 ) can pass through since ⁇ L1 at peak ( 243 a ) is transparent.
  • FIGS. 9 d and 9 e illustrate an alternative embodiment in which, when no stress is applied, the signal light ( 122 ) can pass through the cascaded LPFGs since the wavelength of the signal light is set to match ⁇ L2 at ( 244 , FIG. 9 d ).
  • the signal light ( 122 ) is blocked since the spectrum of the cascaded LPFGs is changed as shown in FIG. 9 e where the signal light ( 122 ) is at the loss peak ( 244 a ) in the spectrum of the cascaded LPFGs.
  • any of the LPFG modulators described above can be utilized to provide an all-fibre Q-switched laser.
  • FIG. 10 illustrates an alternative embodiment of the Q-switched laser in which two LPFG modulators ( 201 a , 201 b ) are employed in the fiber laser cavity to enhance switch extinction. Two or more LPFGs can also be packaged together as shown in FIGS. 11 a , 11 b and 11 c .
  • the fibers ( 262 , 271 ) with LPFGs ( 265 , 275 ) are sandwiched between actuator ( 202 ) and plate ( 215 ) or V-groove ( 216 ). Again, glue ( 207 ) may be used to protect and fix the fiber.
  • FIG. 12 illustrates an embodiment of the Q-switched fiber laser system in which the pump light is coupled into the fiber laser cavity from the middle of the laser cavity.
  • the pump light ( 5 ) is coupled into laser cavity through pump coupler ( 4 ).
  • the Q-switched fiber laser can also be implemented with ring laser cavity configurations as shown in FIG. 13 .
  • the laser cavity comprises FBG reflector ( 15 ), LPFG modulator ( 201 ), fiber coupler ( 60 ) and gain fiber ( 18 ).
  • Two arms ( 62 , 64 ) of the fiber coupler ( 60 ) are spliced with gain fiber ( 18 ) to form a fiber loop.
  • the LPFG modulator ( 201 ) is placed outside of the fiber loop between the FBG ( 15 ) and the fiber coupler ( 60 ).
  • the LPFG modulator is transparent at the pump wavelength, and the resulting laser output comes from the arm ( 63 ) of the fiber coupler.
  • FIG. 14 illustrates another possible embodiment of the ring fiber laser cavity where the LPFG modulator ( 201 ) is placed inside the fiber loop.
  • the gain fiber can be placed outside of the fiber loop. In this case the fiber loop forms a fiber loop mirror.
  • FIG. 15 illustrates another alternative embodiment of the ring fiber laser cavity in which an isolator ( 70 ) is placed in the fiber loop in order to achieve unidirectional laser oscillation in the laser cavity.
  • the LPFG modulator ( 201 ) can be placed either in the fiber loop or outside of the fiber loop between the FBG ( 15 ) and the fiber coupler ( 60 ).
  • FIG. 16 illustrates an embodiment of the LPFG modulator based Q-switched fiber laser having ring laser cavity in which the pump light is coupled into the laser cavity from the middle of the cavity through the pump coupler ( 4 ).
  • the LPFG modulator may be a simple LPFG based modulator, a phase shifted LPFG based modulator or a cascaded LPFGs based modulator. Further, one or more LPFG modulators may be used in a fiber laser cavity in order to improve switch extinction.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A Q-switched all-fiber laser utilizes a long period fibre grating (LPFG) modulator. The LPFG modulator is characterized by optical spectral characteristics that are controlled by application of stress via an actuator. In particular, the actuator applies stress to selected sections of the LPFG in order to modulate a light signal at a specified wavelength. Further, a controller is utilized to control the application of stress in the time domain, and thereby switch the Q-factor of the fiber laser cavity. In addition to the LPFG, the laser cavity comprises a pair of fiber Bragg gratings (FBGs) and a fiber gain medium.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • A claim of priority is made to U.S. Provisional Patent Application 60/901,255, filed Feb. 13, 2007, entitled Q SWITCHED FIBER LASER WITH ALL FIBER CONFIGURATIONS, which is incorporated by reference.
  • FIELD OF THE INVENTION
  • This invention is generally related to the field of lasers, and more particularly to a Q-switched all-fibre laser.
  • BACKGROUND OF THE INVENTION
  • Characteristic features of fiber lasers include high output beam quality, compact size, ease-of-use, and low running cost. Fiber lasers can generate either continuous-wave (CW) radiation or pulse radiation. Pulsed operation can be achieved via Q-switching techniques. Q-switched fiber lasers are preferred for applications such as micro-machining, marking, and scientific research due to their high peak power and excellent beam quality. Q-switching is achieved by inserting an optical modulator in the laser resonance cavity to control optical loss in the cavity. In particular, the modulator functions as an optical loss switch. Initially, cavity loss is kept on a high level (low Q factor state). Laser oscillation cannot occur at this initial period, but energy from a pump source accumulates in the gain medium. Subsequently, cavity loss is switched to a low loss level (high Q factor state), so that laser oscillation builds up quickly in the cavity and generates a high peak power laser pulse. When the laser cavity is switched between low Q and high Q by the optical modulator, sequenced laser pulses are produced.
  • Optical modulation for Q-switching can be achieved by either active or passive means. Examples of active Q-switching modulation means include acousto-optic modulators (AOMs) and electro-optic modulators (EOMs). The AOM comprises optical crystals such as tellurium dioxide, crystalline quartz, and fused silica. The EOM comprises optical materials such as potassium di-deuterium phosphate (KD*P), beta barium borate (BBO), lithium niobate (LiNbO3), as well as NH4H2PO4 (ADP), and other materials. One drawback of known AOM and EOM devices is that they are relatively bulky. This is a drawback because the fibre core has a relatively small diameter, the difference of which relative to the size of the modulator complicates light coupling between the device and an optical fiber. Further, AOM and EOM devices are relatively expensive.
  • A typical configuration of a Q-switched fiber laser is illustrated in FIG. 1. The laser cavity comprises a pair of fiber Bragg grating (FBG) reflectors (15, 35) having the same center wavelength, a gain fiber (18) which provides optical gain, and an optical modulator (90) coupled to an optical fiber pigtail (20) for coupling a light signal between the fiber and the modulator. The optical modulator may be either an AOM or EOM type. A pump source (1) provides pump light (5) which is coupled to the fiber laser cavity to excite the gain fiber (18). The FBG reflectors provide optical feedback for laser oscillation. The optical modulator (90) is employed as a switch to control optical loss within the laser cavity, and thereby provide Q-switching. Initially, the cavity loss is kept on a high level with the modulator switch “off” (low Q factor state of the laser cavity), at which time no light signal passes through the modulator (90). As discussed above, laser oscillation does not occur at this time, but energy from pump light source (5) accumulates in the gain fiber (18). Subsequently, the cavity loss is reduced over a relatively short time by “switching on” the optical modulator to a low loss level (high Q factor state of the laser cavity), at which time the light signal passes through optical modulator (90). Consequently, laser oscillation builds up quickly in the cavity and generates a high peak power laser pulse. The FBG pair (15, 35) have the same center wavelength and function as narrow band reflective mirrors which provide optical feedback to the laser cavity and confine the laser oscillation wavelength to the FBG wavelength. Since the FBG has a relatively narrow reflective bandwidth, the laser oscillates only at this wavelength and the output has a narrow wavelength spectrum. When the laser cavity is switched sequentially between the low Q factor state and the high Q factor state by means of the optical modulator (90), sequenced laser pulses are produced. Modulator switch control is achieved by means of a signal (95) from an external controller (96). One device of the FBG pair (15, 35) is partially transparent and has relatively lower reflectivity, resulting in a percentage of the generated laser light being permitted to leave laser cavity and deliver the laser output (38 or 42).
  • Referring to FIG. 2 a, the FBG is formed by introducing a periodic changes of refractive index in the fiber core. The modified area (151) within the fiber core has a smaller refractive index difference of period ΛB relative to the adjacent unmodified area (152). Several techniques are known for changing the refractive index of discreet areas of the fibre core. One technique is to expose the area to a UV laser beam, e.g., area (151) is altered by exposure to UV light, but area (152) is neither exposed nor altered.
  • The principle characteristic parameters of a FBG are center wavelength λB, bandwidth ΔλB, and reflectivity. The condition for high reflection, known as the Bragg condition, relates the reflected wavelength, or Bragg wavelength, λB to the grating period ΛB and the effective refractive index of the fiber core n via:

  • λB=2nΛB.
  • FIGS. 2 b, 2 c, and 2 d illustrate the spectral characteristics of a FBG. When broad band light (110, FIG. 2 a) having spectrum (120, FIG. 2 b) is input into the FBG as shown, the reflected light (112, FIG. 2 a) has a corresponding spectrum (122, FIG. 2 c), and the transmitted light (111, FIG. 2 a) has a corresponding spectrum (121, FIG. 2 d).
  • Somewhat similar to the FBG in terms of physical configuration, a Long Period Fiber Grating (LPFG) has a grating period ΛL which is considerably longer than the period ΛB of the FBG, i.e., typically ΛL is 200˜2000 times longer than ΛB. The LPFG couples the fundamental mode in the fiber core with the cladding modes of the fiber and propagates them in the same direction. The excited cladding modes are attenuated, resulting in the appearance of resonance loss in the transmission spectrum. However, in contrast with the FBG, the LPFG does not produce reflected light. FIGS. 3 a, 3 b and 3 c illustrate the physical configuration and the spectral transmission characteristics of a LPFG. The periodic grating structure (22, FIG. 3 a) can be made by using a UV laser beam to “burn” discreet, periodically spaced areas in the fiber core in a manner which is similar to that described above with reference to the FBG, where the modified area (251) exhibits a refractive index change in comparison with unmodified area (252). Recent research suggests that the modified areas can be also formed by using a high voltage electric arc discharge or CO2 laser to “burn” the fiber, i.e., introducing structural changes and slight geometrical deformation in the irradiated area of the fibre. Alternatively, mechanical stress can be used, i.e., by applying static stress to the areas of the fibre to be modified through a corrugated plate. The refractive index at the areas subjected to stress is changed in accordance with the photo-elastic effect, but the adjacent areas which are not subjected to stress are unmodified.
  • When a broad band light (210, FIG. 3 a) having spectrum (220, FIG. 3 b) is input into the LPFG, the transmitted light (211, FIG. 3 a) has a corresponding spectral characteristic (221, FIG. 3 c), several resonance loss peaks (222, 223), including the fundamental mode coupling with different cladding modes of the fiber. However, there is no light reflection. Considering resonance loss peak (222, FIG. 3 c), having a center wavelength λL, and bandwidth ΔλL, the resonance loss of the LPFG is due to the coupling of the fundamental mode in the fiber core with the cladding modes of the fiber. The phase matching between the fundamental mode and cladding modes at wavelength λmL can be expressed as:

  • λmL=(n core −n cl mL,
  • where ncore is the effective refractive index of the fundamental mode, ncl m is the effective refractive index of the mth cladding mode, and ΛL is the period of the LPFG. Since several cladding modes can satisfy this condition, each one is at a different center wavelength λmL, and thus the transmission spectrum of the LPFG exhibits a series of transmission loss notch peaks (222, 223, FIG. 3C).
  • FIGS. 4 a-4 c illustrate the physical configuration and the spectral transmission characteristics of a phase shifted LPFG. In the phase shifted LPFG, a part of the grating period is shifted at the grating center by Λp. As a result, a phase shift is introduced into the LPFG. For example, by introducing a π-phase shift at the center of the LPFG, the notch peak (See FIG. 3 c) is changed to a reverse peak (232, FIG. 4 c). For a broad band input (220, FIG. 4 b), a corresponding transmission spectrum (231, FIG. 4 c) of the phase shifted LPFG is produced, enabling transmission at wavelength λL.
  • FIGS. 5 a-5 c illustrate the physical configuration and the spectral transmission characteristics of cascaded LPFGs. Cascaded LPFGs are formed by connecting a pair of LPFGs (25, 26) in series. Each of the LPFGs has a grating length d1 and d2, and together define a separation distance of L. When broad band light (210) having spectrum (220, FIG. 5 b) is input into the cascaded LPFGs, the corresponding transmitted light (211) has a corresponding spectral transmission response (241, FIG. 5 c). It can be seen from FIGS. 5 b and 5 c that the spectrum of the transmitted light has several spectral transparent peaks (242, 244 and 246) and several spectral loss peaks (245, 243). This is due to interference between the fundamental mode and cladding modes. The first LPFG couples part of the fundamental mode to the cladding modes, and then the coupled cladding modes and fundamental mode travel along the fiber simultaneously to the second LPFG. At the second LPFG, the two modes interact with each other and generate spectral interference fringe patterns. The fringe spacing ΔλPL is related to the grating length d1, d2, d and the separation distance L between the two LPFGs. An increase in L corresponds with a decrease in the fringe spacing ΔλPL. For multi-channel filter applications the distance L is typically less than 600 mm.
  • SUMMARY OF THE INVENTION
  • In accordance with one embodiment of the present invention, a Q-switched fibre laser apparatus comprises at least one pump source, one reflector, a gain fibre, and a long period fiber grating modulator employed to switch Q factor of the laser cavity.
  • In accordance with another embodiment of the invention, a method for producing laser light comprises introducing pump light to laser cavity which includes at least one reflector, a gain fibre, and a long period fiber grating modulator, and switching Q factor of the laser cavity with the long period fiber grating modulator, whereby a Q-switched fibre laser is provided.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates the physical configuration of a Q-switched fiber laser.
  • FIGS. 2 a, 2 b, 2 c and 2 d illustrate the physical configuration and spectral transmission characteristics of a FBG.
  • FIGS. 3 a, 3 b, and 3 c illustrate the physical configuration and spectral transmission characteristics of a LPFG.
  • FIGS. 4 a, 4 b, and 4 c illustrate the physical configuration and spectral transmission characteristics of a phase shifted LPFG.
  • FIGS. 5 a, 5 b, and 5 c illustrate the physical configuration and spectral transmission characteristics of a cascaded LPFG pair.
  • FIGS. 6 a, 6 b, and 6 c illustrate a LFPG optical modulator.
  • FIG. 6 d and FIG. 6 e illustrate the spectral transmission behavior of the innovative LPFG modulator.
  • FIG. 7 illustrates use of the LPFG modulator as a component of an all-fiber in-line device such as an all-fiber Q-switched laser.
  • FIGS. 8 a, 8 b, and 8 c illustrate an alternative LPFG modulator formed by employing a phase shifted LPFG.
  • FIG. 9 a illustrates an embodiment of the modulator based on cascaded LPFGs.
  • FIGS. 9 b, 9 c, 9 d and 9 e illustrate the spectral transmission characteristics of the embodiment of FIG. 9 a.
  • FIG. 10 illustrates a Q-switched fiber laser employing two LPFG modulators in the fiber laser cavity.
  • FIGS. 11 a, 11 b, and 11 c illustrate an LPFG modulator assembly using two LPFGs.
  • FIG. 12 illustrates a Q-switched fiber laser employing a LPFG modulator in which the pump light is coupled into the laser cavity from the middle of the laser cavity.
  • FIG. 13 illustrates a Q-switched fiber laser employing a LPFG modulator in which a ring laser cavity is used and the LPFG modulator is placed outside of the fiber loop.
  • FIG. 14 illustrates a Q-switched fiber laser employing a LPFG modulator in which a ring laser cavity is used and the LPFG modulator is placed inside of the fiber loop.
  • FIG. 15 illustrates a Q-switched fiber laser in which a LPFG modulator is employed in a ring laser cavity and an optical isolator is employed to achieve unidirectional laser oscillation.
  • FIG. 16 illustrates a Q-switched fiber laser having a ring laser cavity in which the pump light is coupled into the laser cavity from the middle of the cavity.
  • DETAILED DESCRIPTION
  • Referring to FIGS. 6 a-6 c, a LFPG optical modulator is provided via the controlled (time, area and force) application of stress to an optical material to introduce refractive index changes in the material in accordance with the photo-elastic effect. As illustrated, a small section (253) of the LPFG (22) is subjected to stress (203) through force applied by an actuator (202). The stress may be applied by mechanical, acoustic or other means. The actuator (202) may include a piezo actuator that operates in response to a modulating voltage (205) from a controller (206). The applied stress (203) causes a temporary deformation of the material at section (253) and a corresponding refractive index change at section (253). The periodic structure and spectral transmission behavior of the LPFG are changed in a corresponding manner. In particular, the magnitude of the refractive index change is related to the magnitude of applied force, the periodic structure and spectral transmission behavior is related to (a) which areas are subjected to stress and (b) the period and frequency at which stress is applied.
  • FIGS. 6 b and 6 c are cross-sectional views of the LFPG of FIG. 6 a that illustrate different configurations for applying stress to the fibre (20). In FIG. 6 b the LPFG fiber (20) is disposed between actuator (202) and a plate (215). The fiber can be fixed in place with glue (207). FIG. 6 c shows an alternative embodiment in which a V-groove plate (216) is employed in lieu of the flat plate (215, FIG. 6 b) for enhanced fiber fixing and enhanced stress distribution.
  • FIG. 6 d and FIG. 6 e illustrate the spectral transmission behavior of the innovative LPFG modulator. The transmission spectrum of the LPFG when no stress is applied is shown by a first section (221, FIG. 6 d), i.e., a narrow band input light (122) with center wavelength λL is blocked since the resonance loss peak (222) of the LPFG is just at this wavelength. This corresponds to the “switch off” state of the LPFG modulator. The bandwidth of the signal light is narrower than the bandwidth ΔλL of the LPFG. When stress is applied to section (253, FIG. 6 a), the transmission spectrum is changed as shown in FIG. 6 e, with the resonance loss peak (222, FIG. 6 d) becoming peak (222 a, FIG. 6 e). The narrow band input light (122) can now pass through the LPFG. This corresponds to the “switch on” state of the LPFG modulator. Thus, the input light (122) with center wavelength λL can be modulated in response to the control signal applied to the actuator.
  • FIG. 7 illustrates use of the LPFG modulator as a component of an all-fiber in-line device such as an all-fiber Q-switched laser. The illustrated laser cavity has a Fabry-Perot configuration and includes a pair of FBG reflectors (15, 35) having the same center wavelength λB, a gain fiber (18), and an LPFG modulator (201). The resonance loss peak λL of the LPFG is matched with center wavelength λB of the FBGs. The bandwidth ΔλB of the FBGs is narrower than bandwidth ΔλL of the LPFG, i.e., ΔλB<<ΔλL. The laser oscillation wavelength is confined by the FBGs at wavelength λB. The LPFG modulator is employed to switch the Q factor of the laser cavity, i.e., control optical loss in the time domain. Switching is provided in response to a modulating voltage (205) applied to the actuator by a controller (206). Pump source (1) couples pump light (5) into the laser cavity to pump gain fiber (18). One or both of the FBG reflectors (15, 35) are partially transparent at its wavelength. Consequently, the laser output (38 or 42) can be provided from either fiber end (37) or fibre end (9), or both fiber ends.
  • An alternative LPFG modulator can be formed by employing a phase shifted LPFG as shown in FIG. 8 a. In this embodiment the stress (203) is applied to the phase shift section on the LPFG through actuator (202). The transmission spectrum of the phase shifted LPFG with and without applied stress is shown in FIG. 8 b and FIG. 8 c. When no stress is applied to the LPFG, a narrow band signal light (122) can pass through the area (232) of the phase shifted LPFG, i.e., in the “switch on” state. When stress is applied to area (253) the LPFG has resonance loss (232 a) at wavelength λL, i.e., in the “switch off” state. As with the previous embodiment, the bandwidth of the signal light is narrower than bandwidth ΔλL of the LPFG.
  • FIG. 9 a illustrates an embodiment of the modulator based on cascaded LPFGs. A pair of LPFGs (25, 26) are disposed in series. Actuator (202 or 202 b or 202 a) applies stress to the section of LPFG (25) or LPFG (26) or on the fiber section (227) between LPFG (25) and LPFG (26). Initially, when no stress is applied, the transmission spectrum is as shown at section (241) in FIG. 9 b. The wavelength of the signal light (122) is matched at the wavelength λL1, which is at loss peak (243) on the spectrum of the cascaded LPFGs. Consequently, the signal light (122) cannot pass through and the modulator is in the “switch off” state. When the stress is applied at any of points (202, 202 b or 202 a), the transmission spectrum is changed as shown in FIG. 9 c, where the signal light (122) can pass through since λL1 at peak (243 a) is transparent.
  • FIGS. 9 d and 9 e illustrate an alternative embodiment in which, when no stress is applied, the signal light (122) can pass through the cascaded LPFGs since the wavelength of the signal light is set to match λL2 at (244, FIG. 9 d). When stress is applied, the signal light (122) is blocked since the spectrum of the cascaded LPFGs is changed as shown in FIG. 9 e where the signal light (122) is at the loss peak (244 a) in the spectrum of the cascaded LPFGs.
  • Generally, any of the LPFG modulators described above can be utilized to provide an all-fibre Q-switched laser. FIG. 10, for example, illustrates an alternative embodiment of the Q-switched laser in which two LPFG modulators (201 a, 201 b) are employed in the fiber laser cavity to enhance switch extinction. Two or more LPFGs can also be packaged together as shown in FIGS. 11 a, 11 b and 11 c. The fibers (262, 271) with LPFGs (265, 275) are sandwiched between actuator (202) and plate (215) or V-groove (216). Again, glue (207) may be used to protect and fix the fiber. Modulating voltage (209) is applied to actuator (202). FIG. 12 illustrates an embodiment of the Q-switched fiber laser system in which the pump light is coupled into the fiber laser cavity from the middle of the laser cavity. In particular, the pump light (5) is coupled into laser cavity through pump coupler (4). The Q-switched fiber laser can also be implemented with ring laser cavity configurations as shown in FIG. 13. The laser cavity comprises FBG reflector (15), LPFG modulator (201), fiber coupler (60) and gain fiber (18). Two arms (62, 64) of the fiber coupler (60) are spliced with gain fiber (18) to form a fiber loop. The LPFG modulator (201) is placed outside of the fiber loop between the FBG (15) and the fiber coupler (60). The LPFG modulator is transparent at the pump wavelength, and the resulting laser output comes from the arm (63) of the fiber coupler. FIG. 14 illustrates another possible embodiment of the ring fiber laser cavity where the LPFG modulator (201) is placed inside the fiber loop. Furthermore, the gain fiber can be placed outside of the fiber loop. In this case the fiber loop forms a fiber loop mirror. FIG. 15 illustrates another alternative embodiment of the ring fiber laser cavity in which an isolator (70) is placed in the fiber loop in order to achieve unidirectional laser oscillation in the laser cavity. The LPFG modulator (201) can be placed either in the fiber loop or outside of the fiber loop between the FBG (15) and the fiber coupler (60). FIG. 16 illustrates an embodiment of the LPFG modulator based Q-switched fiber laser having ring laser cavity in which the pump light is coupled into the laser cavity from the middle of the cavity through the pump coupler (4). In any of the embodiments of the Q-switched fiber laser employing an LPFG modulator, the LPFG modulator may be a simple LPFG based modulator, a phase shifted LPFG based modulator or a cascaded LPFGs based modulator. Further, one or more LPFG modulators may be used in a fiber laser cavity in order to improve switch extinction.
  • While the invention is described through the above exemplary embodiments, it will be understood by those of ordinary skill in the art that modification to and variation of the illustrated embodiments may be made without departing from the inventive concepts herein disclosed. Moreover, while the preferred embodiments are described in connection with various illustrative structures, one skilled in the art will recognize that the system may be embodied using a variety of specific structures. Accordingly, the invention should not be viewed as limited except by the scope and spirit of the appended claims.

Claims (18)

1. Apparatus comprising:
at least one fiber Bragg grating reflector;
at least one pump light source;
a gain fibre; and
at least one long period fiber grating modulator employed to switch Q factor of the laser cavity, whereby a Q-switched fibre laser is provided.
2. The apparatus of claim 1 wherein the long period fiber grating modulator is operative in response to application of stress to at least one area of the fibre to change refractive index of the area while stress is applied.
3. The apparatus of claim 1 wherein the fiber Bragg grating is characterized by a center wavelength matching a modulating wavelength of the long period fiber grating modulator
4. The apparatus of claim 1 wherein the long period fiber grating modulator includes at least one phase shift section.
5. The apparatus of claim 1 wherein the long period fiber grating modulator includes first and second cascaded long period fibre gratings or more cascaded long period fiber gratings in series.
6. The apparatus of claim 1 further including a pump source which couples pump light into the laser cavity between the long period fiber grating modulator and the gain fibre.
7. The apparatus of claim 1 wherein the laser is a ring laser having a fibre loop, and wherein the long period fiber grating modulator is part of the fibre loop.
8. The apparatus of claim 1 wherein the laser is a ring laser having a fibre loop, and wherein the long period fiber grating modulator is outside of the fibre loop.
9. The apparatus of claim 1 wherein the laser is a ring laser having a fibre loop, and further including a pump source which couples pump light directly into the fibre loop.
10. A method comprising:
introducing pump light to laser cavity, the laser cavity includes at least one fiber Bragg grating reflector, a gain fibre, and at least one long period fiber grating modulator; and
switching the Q factor of laser cavity with the long period fiber grating modulator, whereby a Q-switched fibre laser is provided.
11. The method of claim 10 including the further step of controlling the long period fiber grating modulator via application of stress to at least one area of the fibre to change refractive index of the area while stress is applied.
12. The method of claim 10 including the further step of reflecting the light with at least one fiber Bragg grating characterized by a center wavelength matching a modulating wavelength of the long period fiber grating modulator
13. The method of claim 10 including the further step of switching the Q factor of the laser cavity with a long period fiber grating modulator having at least one phase shift section.
14. The method of claim 10 including the further step of switching the Q factor of the laser cavity with a long period fiber grating modulator having first and second cascaded long period fibre gratings or more cascaded long period fiber gratings in series.
15. The method of claim 10 including the further step of coupling pump light into the laser cavity between the long period fiber grating modulator and the gain fibre.
16. The method of claim 10 wherein the laser is a ring laser having a fibre loop, and including the further step of switching the Q factor of the laser cavity with a long period fiber grating modulator that is part of the fibre loop.
17. The method of claim 10 wherein the laser is a ring laser having a fibre loop, and including the further step of switching Q factor of the laser cavity with a long period fiber grating modulator that is outside of the fibre loop.
18. The method of claim 10 wherein the laser is a ring laser having a fibre loop, and further the pump light is coupled pump directly into the fibre loop.
US12/022,255 2007-02-13 2008-01-30 Q-switched all-fibre laser Abandoned US20080192780A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/022,255 US20080192780A1 (en) 2007-02-13 2008-01-30 Q-switched all-fibre laser
CN2008100099223A CN101291037B (en) 2007-02-13 2008-02-13 Q-switched all-optical fiber laser
US12/559,567 US9190799B2 (en) 2007-02-13 2009-09-15 Q-switched all-fiber laser
US14/328,036 US9190800B2 (en) 2007-02-13 2014-07-10 Q-switched all-fiber laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90125507P 2007-02-13 2007-02-13
US12/022,255 US20080192780A1 (en) 2007-02-13 2008-01-30 Q-switched all-fibre laser

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/559,567 Division US9190799B2 (en) 2007-02-13 2009-09-15 Q-switched all-fiber laser
US14/328,036 Continuation-In-Part US9190800B2 (en) 2007-02-13 2014-07-10 Q-switched all-fiber laser

Publications (1)

Publication Number Publication Date
US20080192780A1 true US20080192780A1 (en) 2008-08-14

Family

ID=39685769

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/022,255 Abandoned US20080192780A1 (en) 2007-02-13 2008-01-30 Q-switched all-fibre laser
US12/559,567 Expired - Fee Related US9190799B2 (en) 2007-02-13 2009-09-15 Q-switched all-fiber laser

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/559,567 Expired - Fee Related US9190799B2 (en) 2007-02-13 2009-09-15 Q-switched all-fiber laser

Country Status (2)

Country Link
US (2) US20080192780A1 (en)
CN (1) CN101291037B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267226A1 (en) * 2007-04-27 2008-10-30 Shien-Kuei Liaw Broadband fiber laser
US20090034985A1 (en) * 2007-07-30 2009-02-05 Fattal David A Optical interconnect
WO2012166572A1 (en) * 2011-05-27 2012-12-06 Imra America, Inc. Compact optical frequency comb systems
TWI384711B (en) * 2009-09-10 2013-02-01 Univ Nat Cheng Kung Passive fiber laser system and producing method of laser pulse thereof
CN103259171A (en) * 2013-04-22 2013-08-21 西北大学 Magnetic force induction long-period fiber Bragg grating Q-switching pulse and continuous dual-purpose fiber laser
CN104466636A (en) * 2014-11-30 2015-03-25 华南理工大学 Single-frequency Q-switched pulsed fiber laser

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190800B2 (en) 2007-02-13 2015-11-17 Fei Luo Q-switched all-fiber laser
CN101854025B (en) * 2010-05-11 2012-07-04 浙江合波光学科技有限公司 All fiber Q-switch
CN103259166B (en) * 2013-04-22 2015-04-22 西北大学 Continuous dual-purpose fiber laser based on radio frequency modulation long period grating modulation Q pulse
CN103219639A (en) * 2013-05-08 2013-07-24 江苏天元激光科技有限公司 Pulse fiber laser of fiber bragg grating modulation Q
US9240672B1 (en) 2014-06-02 2016-01-19 Google Inc. Wavelength tunable laser
CN106229803B (en) * 2016-09-12 2020-08-18 华南理工大学 Optical fiber-based single-frequency blue light pulse laser
GB201701506D0 (en) * 2017-01-30 2017-03-15 Spi Lasers Uk Ltd Apparatus and method for optical isolation
CN110380326B (en) 2019-07-29 2020-10-23 武汉电信器件有限公司 Optical signal output device and method, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058226A (en) * 1997-10-24 2000-05-02 D-Star Technologies Llc Optical fiber sensors, tunable filters and modulators using long-period gratings
US7130319B1 (en) * 2003-08-01 2006-10-31 Np Photonics, Inc. All-fiber Q-switched laser

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305335A (en) * 1989-12-26 1994-04-19 United Technologies Corporation Single longitudinal mode pumped optical waveguide laser arrangement
US5444723A (en) * 1993-08-18 1995-08-22 Institut National D'optique Optical switch and Q-switched laser
US6510167B1 (en) * 1999-09-22 2003-01-21 Science & Technology Corporation @Unm Method for actively modelocking an all-fiber laser
CN1138322C (en) * 2000-10-12 2004-02-11 中国科学技术大学 Ring optical fiber Q-switching laser
JP2002139629A (en) * 2000-10-31 2002-05-17 Sumitomo Electric Ind Ltd Optical loss filter
US6885792B2 (en) * 2002-09-24 2005-04-26 Furukawa Electric North America Inc. Wavelength monitoring optical fibers using detection in the near field
US7120174B2 (en) * 2004-06-14 2006-10-10 Jds Uniphase Corporation Pulsed laser apparatus and method
CN100374951C (en) * 2005-03-25 2008-03-12 清华大学 Acoustic optical Q-regulating method for two-clad optical-fiber laser and apparatus
CN1874085A (en) * 2006-06-30 2006-12-06 中国科学院上海光学精密机械研究所 Simple, high performance, tunable Q adjusted laser of doubly coated fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058226A (en) * 1997-10-24 2000-05-02 D-Star Technologies Llc Optical fiber sensors, tunable filters and modulators using long-period gratings
US7130319B1 (en) * 2003-08-01 2006-10-31 Np Photonics, Inc. All-fiber Q-switched laser

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267226A1 (en) * 2007-04-27 2008-10-30 Shien-Kuei Liaw Broadband fiber laser
JP2008277767A (en) * 2007-04-27 2008-11-13 National Taiwan Univ Of Science & Technology Broadband fiber laser
US7616667B2 (en) * 2007-04-27 2009-11-10 National Taiwan University Of Science And Technology Broadband fiber laser
US20090034985A1 (en) * 2007-07-30 2009-02-05 Fattal David A Optical interconnect
US8929741B2 (en) * 2007-07-30 2015-01-06 Hewlett-Packard Development Company, L.P. Optical interconnect
TWI384711B (en) * 2009-09-10 2013-02-01 Univ Nat Cheng Kung Passive fiber laser system and producing method of laser pulse thereof
WO2012166572A1 (en) * 2011-05-27 2012-12-06 Imra America, Inc. Compact optical frequency comb systems
US8792525B2 (en) 2011-05-27 2014-07-29 The Regents Of The University Of Colorado, A Body Corporate Compact optical frequency comb systems
US9787051B2 (en) 2011-05-27 2017-10-10 The Regents Of The University Of Colorado, A Body Corporate Compact optical frequency comb systems
CN103259171A (en) * 2013-04-22 2013-08-21 西北大学 Magnetic force induction long-period fiber Bragg grating Q-switching pulse and continuous dual-purpose fiber laser
CN104466636A (en) * 2014-11-30 2015-03-25 华南理工大学 Single-frequency Q-switched pulsed fiber laser

Also Published As

Publication number Publication date
CN101291037B (en) 2010-06-02
CN101291037A (en) 2008-10-22
US20100002733A1 (en) 2010-01-07
US9190799B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
US9190799B2 (en) Q-switched all-fiber laser
EP0523084B1 (en) A method of forming a refractive index grating in an optical waveguide
JP4668378B2 (en) Mode-locked multimode fiber laser pulsed light source
EP0828178B1 (en) Wavelength conversion apparatus with improved efficiency, easy adjustability, and polarization insensitivity
US9190800B2 (en) Q-switched all-fiber laser
US8085822B2 (en) Tunable mode-locked laser
US5647038A (en) Narrow bandwidth Bragg grating reflector for use in an optical waveguide
US20070133638A1 (en) Coherent light source and optical device
US8508843B2 (en) Laser systems with doped fiber components
CA2329334C (en) Fiber optic lasers employing fiber optic amplifiers
EP1926188A1 (en) Power stabilization of laser harmonic frequency conversion
US6937627B2 (en) Stable and high speed full range laser wavelength tuning with reduced group delay and temperature variation compensation
US7130319B1 (en) All-fiber Q-switched laser
EP0726627B1 (en) Laser device
Chieng et al. Tunable erbium-doped fiber laser with a reflection Mach-Zehnder interferometer
US5600665A (en) Multiple output fiber laser with passive frequency control and method
US20090041062A1 (en) Fiber-based tunable laser
JPH1090546A (en) Production of plane waveguide and plane waveguide
Jovanovic et al. Highly narrow linewidth, CW, all-fiber oscillator with a switchable linear polarization
KR100928242B1 (en) All-optical pulsed fiber laser module
Da Silva et al. Acousto-optic double side-band amplitude modulation of a fiber Bragg grating in a four-holes suspended-core fiber
JP4748511B2 (en) Optical device
JPS63291488A (en) Optical fiber laser device
Cuadrado-Laborde et al. In-fiber acousto-optic devices for laser applications
Sakata et al. Q-switched oscillation in thulium-doped fiber lasers using preloaded dynamic microbending technique

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION