US20080153833A1 - Substituted pteridines for the treatment of inflammatory diseases - Google Patents

Substituted pteridines for the treatment of inflammatory diseases Download PDF

Info

Publication number
US20080153833A1
US20080153833A1 US12/031,396 US3139608A US2008153833A1 US 20080153833 A1 US20080153833 A1 US 20080153833A1 US 3139608 A US3139608 A US 3139608A US 2008153833 A1 US2008153833 A1 US 2008153833A1
Authority
US
United States
Prior art keywords
denotes
alkyl
formula
compound
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/031,396
Other versions
US7648988B2 (en
Inventor
Horst Dollinger
Juergen Mack
Domnic Martyres
Birgit Jung
Peter Nickolaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/031,396 priority Critical patent/US7648988B2/en
Publication of US20080153833A1 publication Critical patent/US20080153833A1/en
Application granted granted Critical
Publication of US7648988B2 publication Critical patent/US7648988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D475/00Heterocyclic compounds containing pteridine ring systems
    • C07D475/06Heterocyclic compounds containing pteridine ring systems with a nitrogen atom directly attached in position 4
    • C07D475/08Heterocyclic compounds containing pteridine ring systems with a nitrogen atom directly attached in position 4 with a nitrogen atom directly attached in position 2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Definitions

  • the invention relates to new pteridines which are suitable for the treatment of
  • Pteridines are known from the prior art as active substances with an antiproliferative activity. Merz et al. describe in the Journal of Medicinal Chemistry 1998, 41, 4733-4743 the preparation of 7-benzylamino-6-chloro-2-piperazino-4-pyrrolidinopteridine and derivatives thereof which are free from positional isomers. It has been shown that the compounds prepared are able to inhibit the growth of tumour cells.
  • DE 3540952 describes 2-piperazino-pteridines which are substituted in the 6 position by a halogen atom, selected from among fluorine, chlorine or bromine. It has been shown that these compounds were able to inhibit the activity of tumour cells and human thrombocytes in vitro.
  • DE 3323932 discloses 2-piperazino-pteridines which carry a dialkylamino, piperidino, morpholino, thiomorpholino or 1-oxidothiomorpholino group in the 4 position. It has been shown that these compounds were able to inhibit the activity of tumour cells and human thrombocytes in vitro.
  • DE 3445298 describes pteridines with a large number of different substituents in the 2, 4, 6 and 7 position, while compounds with a 2-piperazino group on the pteridine skeleton are suitable as inhibitors of tumour growth as well as having antithrombotic and metastasis-inhibiting properties.
  • 2,940,972 discloses tri- and tetrasubstituted pteridine derivatives, while general statements are made to the effect that these pteridines have valuable pharmacological properties, namely coronary-dilatory, sedative, antipyretic and analgesic effects.
  • the phosphodiesterase 4 inhibitors known from the prior art are known to trigger side effects such as nausea and vomiting (Doherty, 1999, Curr. Op. Chem. Biol., August 3, (4):466-73).
  • the substances mentioned in this invention are particularly preferably suitable for the treatment of the above-mentioned diseases, as they did not cause these side effects in an animal model for nausea and vomiting ( S. Murinus , Yamamoto K. et al., Physiol. Behav., 2004, Oct. 30, 83(1), 151-6).
  • the aim of the present invention is to provide new compounds which are suitable for the prevention or treatment of respiratory or gastrointestinal complaints or diseases, inflammatory diseases of the joints, skin or eyes, diseases of the peripheral or central nervous system, or cancers, particularly those compounds which are characterised by reduced side effects, particularly emesis and nausea.
  • Preferred compounds of formula 1 above are those wherein
  • Preferred compounds of formula 1 above are those wherein
  • Preferred compounds of formula 1 above are those wherein
  • Preferred compounds of formula 1 are those wherein
  • Preferred compounds of formula 1 above are those wherein
  • Preferred compounds of formula 1 above are those wherein
  • Preferred compounds of formula 1 above are those wherein
  • Preferred compounds of formula 1 above are those wherein
  • each hydrogen atom may be removed from the substituent and the valency thus liberated may serve as a binding site to the rest of a molecule.
  • VI may represent 2-tolyl, 3-tolyl, 4-tolyl and benzyl.
  • pharmacologically acceptable acid addition salts are meant for example those salts which are selected from among hydrochloride, hydrobromide, hydroiodide, hydrosulphate, hydrophosphate, hydromethanesulphonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydrofumarate, hydrotartrate, hydrooxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulphonate, preferably hydrochloride, hydrobromide, hydrosulphate, hydrophosphate, hydrofumarate and hydromethanesulphonate.
  • C 1-6 -alkyl (including those which are part of other groups) are meant branched and unbranched alkyl groups with 1 to 6 carbon atoms and by the term “C 1-4 -alkyl” are meant branched and unbranched alkyl groups with 1 to 4 carbon atoms.
  • Alkyl groups with 1 to 4 carbon atoms are preferred. Examples include: methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, neo-pentyl or hexyl.
  • C 1-4 -alkylene (including those which are part of other groups) are meant branched and unbranched alkylene groups with 1 to 4 carbon atoms. Examples include: methylene, ethylene, propylene, 1-methylethylene, butylene, 1-methylpropylene, 1,1-dimethylethylene or 1,2-dimethylethylene. Unless stated otherwise, the definitions propylene and butylene include all the possible isomeric forms of the groups in question with the same number of carbons. Thus, for example, propyl also includes 1-methylethylene and butylene includes 1-methylpropylene, 1,1-dimethylethylene, 1,2-dimethylethylene. If the carbon chain is substituted by a group which forms together with one or two carbon atoms of the alkylene chain a carbocyclic ring with 3, 4, 5 or 6 carbon atoms, the following are thus included as examples of the rings:
  • C 3-6 -cycloalkyl (including those which are part of other groups) are meant cyclic alkyl groups with 3 to 6 carbon atoms. Examples include: cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. Unless otherwise stated, the cyclic alkyl groups may be substituted by one or more groups selected from among methyl, ethyl, iso-propyl, tert-butyl, hydroxy, fluorine, chlorine, bromine and iodine.
  • Halogen within the scope of the present invention denotes fluorine, chlorine, bromine or iodine. Unless stated to the contrary, fluorine, chlorine and bromine are regarded as preferred halogens.
  • C 1-6 -haloalkyl (including those which are part of other groups) are meant branched and unbranched alkyl groups with 1 to 6 carbon atoms, which are substituted by one or more halogen atoms.
  • C 1-4 -alkyl are meant branched and unbranched alkyl groups with 1 to 4 carbon atoms, which are substituted by one or more halogen atoms.
  • Alkyl groups with 1 to 4 carbon atoms are preferred. Examples include: CF 3 , CHF 2 , CH 2 F, CH 2 CF 3 .
  • aryl aromatic ring systems with 6 or 10 carbon atoms. Examples include: phenyl or naphthyl, the preferred aryl group being phenyl. Unless otherwise stated, the aromatic groups may be substituted by one or more groups selected from among methyl, ethyl, iso-propyl, tert-butyl, hydroxy, fluorine, chlorine, bromine and iodine.
  • heterocyclic rings or “het” are meant five-, six- or seven-membered, saturated or unsaturated heterocyclic rings or 5-10 membered, bicyclic heterorings which may contain one, two or three heteroatoms, selected from among oxygen, sulphur and nitrogen, while the ring may be linked to the molecule through a carbon atom or, if available, through a nitrogen atom.
  • a heterocyclic ring may be provided with a keto group. Examples of this include:
  • the compounds according to the invention may be prepared by methods known per se from the literature, as described for example in DE 3540952. Other alternative methods of preparing the compounds listed below are described hereinafter.
  • reaction mixture is stirred for 24 hours, another 1 equivalent of 1-(4-chlorophenyl)-cyclopropylamine is added and the mixture is stirred for a further 24 hours at 40° C. Then the reaction mixture is filtered through silica gel and concentrated by evaporation. 113 mg (1.31 mmol) piperazine are dissolved in 15 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 1 hour, then the reaction mixture is added dropwise to 20 ml ice water and extracted with dichloromethane. The organic phase is dried and evaporated to dryness. The residue is purified by chromatography, the corresponding fraction is concentrated by evaporation and triturated with petroleum ether/diethyl ether.
  • reaction mixture is stirred for 16 hours.
  • a further 0.4 eq of 1-amino-2-methyl-1-phenyl-propan-2-ol are added, and the mixture is stirred for 3 hours at 40° C.
  • 120 mg (1.40 mmol) piperazine are dissolved in 5 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 16 hours, then the reaction solution is concentrated in vacuo and added dropwise to 50 ml ice water.
  • the precipitate formed is suction filtered and purified by chromatography. Corresponding fractions are combined, evaporated to dryness. The residue is taken up in dioxane and freeze-dried.
  • the reaction mixture is stirred for 2 hours at ambient temperature and for 16 hours at 40° C., while another 1 eq diisopropylethylamine and 3-(1-amino-ethyl)-benzonitrile are added.
  • 127 mg (1.47 mmol) piperazine are dissolved in ml dioxane, the mixture is heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 16 hours, then the reaction solution is concentrated in vacuo and added dropwise to 50 ml ice water.
  • Compound 27 a) 1-(4-fluorophenyl)-cyclopropylamine: 5.00 g (41.28 mmol) 4-fluorobenzonitrile and 12.10 g (41.28 mmol) titanium(IV) isopropoxide are placed in 100 ml diethyl ether and cooled to 70° C. 30.28 ml (90.83 mmol) 3 molar ethylmagnesium bromide solution are added dropwise, then the mixture is stirred for 0.1 hours. After heating to ambient temperature 10.42 ml (82.56 mmol) boron trifluoride etherate are added dropwise and the mixture is stirred for 1 hour.
  • reaction mixture is combined with 56 ml 1 N hydrochloric acid, then 80 ml 4 N sodium hydroxide solution are added.
  • the precipitate formed is suction filtered and discarded.
  • the filtrate is extracted with water, the organic phases are combined, dried and evaporated to dryness.
  • the residue is taken up in dichloromethane, extracted acidically and neutralised.
  • the organic phase is dried and evaporated to dryness.
  • Compound 29 a) 1-(4-isopropyl-phenyl)-cyclopropylamine: 2.00 g (14 mmol) 4-isopropylbenzonitrile and 4.04 g (13.77 mmol) titanium(IV) isopropoxide are placed in 60 ml diethyl ether and cooled to 70° C. 10.10 ml (30.30 mmol) 3 molar ethylmagnesium bromide solution are added dropwise, then the mixture is stirred for 0.1 hours. After heating to ambient temperature 3.48 ml (27.55 mmol) boron trifluoride etherate are added dropwise and the mixture is stirred for 1 hour.
  • reaction mixture is combined with 25 ml 1 N hydrochloric acid, then 32 ml 4 N sodium hydroxide solution are added.
  • the precipitate thus formed is suction filtered and discarded.
  • the filtrate is extracted with water, the organic phases are combined, dried and evaporated to dryness.
  • the residue is taken up in dichloromethane, extracted acidically and neutralised.
  • the organic phase is dried and evaporated to dryness.
  • the residue is purified by chromatography.
  • reaction mixture is stirred for 16 hours.
  • 120 mg (1.40 mmol) piperazine are dissolved in 5 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 16 hours, then the reaction solution is concentrated in vacuo and added dropwise to ice water. The precipitate formed is suction filtered and purified by chromatography. Corresponding fractions are combined, evaporated to dryness. The residue is taken up in dioxane and freeze-dried.
  • Racemic-cis-2-phenyl-cyclopropylamine 0.460 g (1.75 mmol) 2-(2-phenyl-cyclopropyl)-isoindole-1,3-dione (chiral) are placed in 6 ml of ethanol, 0.115 g (1.83 mmol) hydrazine hydrate dissolved in 12 ml of ethanol are added. The reaction mixture is stirred for 15 hours at 40° C. Then 0.58 ml 1 N hydrochloric acid are added and the mixture is then stirred for 3 hours. After cooling the precipitate formed is suction filtered and washed with ethanol.
  • the compounds of formula 1 are characterised by their wide range of applications in the therapeutic field. Particular mention should be made of those applications for which the compounds according to the invention of formula 1 are preferably suited on account of their pharmaceutical efficacy as PDE4 inhibitors. Examples include respiratory or gastrointestinal diseases or complaints, inflammatory diseases of the joints, skin or eyes, cancers, and also diseases of the peripheral or central nervous system.
  • obstructive diseases of the airways include acute, allergic or chronic bronchitis, chronic obstructive bronchitis (COPD), coughing, pulmonary emphysema, allergic or non-allergic rhinitis or sinusitis, chronic rhinitis or sinusitis, asthma, alveolitis, Farmer's disease, hyperreactive airways, infectious bronchitis or pneumonitis, paediatric asthma, bronchiectases, pulmonary fibrosis, ARDS (acute adult respiratory distress syndrome), bronchial oedema, pulmonary oedema, bronchitis or interstitial pneumonia or pulmonary fibrosis of various causes, such as, for example, as a result of aspiration, inhalation of toxic gases, or bronchitis, pneumonia or interstitial pneumonia as a
  • inflammatory diseases of the gastrointestinal tract examples include acute or chronic inflammatory changes in gall bladder inflammation, Crohn's disease, ulcerative colitis, inflammatory pseudopolyps, juvenile polyps, colitis cystica profunda, pneumatosis cystoides interstinales, diseases of the bile duct and gall bladder, e.g. gallstones and conglomerates, for the treatment of inflammatory diseases of the joints such as rheumatoid arthritis or inflammatory diseases of the skin and eyes.
  • cancers Preferential mention should also be made of the treatment of cancers.
  • examples include all forms of acute and chronic leukaemias such as acute lymphatic and acute myeloid leukaemia, chronic lymphatic and chronic myeloid leukaemia, and bone tumours such as osteosarcoma and all types of glioma such as oligodendroglioma and glioblastoma.
  • the present invention relates to the use of compounds of formula 1 for preparing a pharmaceutical composition for the treatment of inflammatory or obstructive diseases of the upper and lower respiratory tract including the lungs, such as for example allergic rhinitis, chronic rhinitis, bronchiectasis, cystic fibrosis, idiopathic pulmonary fibrosis, fibrosing alveolitis, COPD, chronic bronchitis, chronic sinusitis, asthma, Crohn's disease, ulcerative colitis, particularly COPD, chronic bronchitis and asthma.
  • inflammatory or obstructive diseases of the upper and lower respiratory tract including the lungs such as for example allergic rhinitis, chronic rhinitis, bronchiectasis, cystic fibrosis, idiopathic pulmonary fibrosis, fibrosing alveolitis, COPD, chronic bronchitis, chronic sinusitis, asthma, Crohn's disease, ulcerative colitis, particularly COPD, chronic bronchi
  • the compounds of formula 1 for the treatment of inflammatory and obstructive diseases such as COPD, chronic bronchitis, chronic sinusitis, asthma, Crohn's disease, ulcerative colitis, particularly COPD, chronic bronchitis and asthma.
  • the compounds of formula 1 for the treatment of diseases of the peripheral or central nervous system such as depression, bipolar or manic depression, acute and chronic anxiety states, schizophrenia, Alzheimer's disease, Parkinson's disease, acute and chronic multiple sclerosis or acute and chronic pain as well as injuries to the brain caused by stroke, hypoxia or craniocerebral trauma.
  • diseases of the peripheral or central nervous system such as depression, bipolar or manic depression, acute and chronic anxiety states, schizophrenia, Alzheimer's disease, Parkinson's disease, acute and chronic multiple sclerosis or acute and chronic pain as well as injuries to the brain caused by stroke, hypoxia or craniocerebral trauma.
  • An outstanding aspect of the present invention is the reduced profile of side effects. This means, within the scope of the invention, being able to administer a dose of a pharmaceutical composition without inducing vomiting, preferably nausea and most preferably malaise in the patient. It is particularly preferable to be able to administer a therapeutically effective quantity of substance without inducing emesis or nausea, at every stage of the disease.
  • the compounds of formula 1 may be used on their own or in conjunction with other active substances of formula 1 according to the invention. If desired the compounds of formula 1 may also be used in combination with other pharmacologically active substances. It is preferable to use for this purpose active substances selected for example from among betamimetics, anticholinergics, corticosteroids, other PDE4-inhibitors, LTD4-antagonists, EGFR-inhibitors, dopamine agonists, H1-antihistamines, PAF-antagonists and PI3-kinase inhibitors or double or triple combinations thereof, such as for example combinations of
  • the invention also encompasses combinations of three active substances, each selected from one of the above-mentioned categories of compounds.
  • the invention relates to medicaments for the treatment of respiratory complaints, which contain one or more of the above-mentioned pteridines of formula 1, which are used in combination with one or more additional active substances selected from among the betamimetics, anticholinergics, corticosteroids, PI3-kinase inhibitors, LTD4-antagonists, EGFR-inhibitors, dopamine agonists, H1-antihistamines or PAF-antagonists, preferably betamimetics, anticholinergics or corticosteroids, together or successively, for simultaneous, sequential or separate administration.
  • additional active substances selected from among the betamimetics, anticholinergics, corticosteroids, PI3-kinase inhibitors, LTD4-antagonists, EGFR-inhibitors, dopamine agonists, H1-antihistamines or PAF-antagonists, preferably betamimetics, anticholinergics or corticosteroids, together or successively, for simultaneous, sequential or separate
  • Suitable forms for administration are for example tablets, capsules, solutions, syrups, emulsions or inhalable powders or aerosols.
  • the content of the pharmaceutically effective compound(s) in each case should be in the range from 0.1 to 90 wt. %, preferably 0.5 to 50 wt. % of the total composition, i.e. in amounts which are sufficient to achieve the dosage range specified hereinafter.
  • the preparations may be administered orally in the form of a tablet, as a powder, as a powder in a capsule (e.g. a hard gelatine capsule), as a solution or suspension.
  • a tablet e.g. a powder
  • a capsule e.g. a hard gelatine capsule
  • the active substance combination may be given as a powder, as an aqueous or aqueous-ethanolic solution or using a propellant gas formulation.
  • pharmaceutical formulations are characterised by the content of one or more compounds of formula 1 according to the preferred embodiments above.
  • Suitable tablets may be obtained, for example, by mixing the active substance(s) with known excipients, for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate.
  • excipients for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate.
  • the tablets may also comprise several layers.
  • Coated tablets may be prepared accordingly by coating cores produced analogously to the tablets with substances normally used for tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar.
  • the core may also consist of a number of layers.
  • the tablet coating may consist of a number of layers to achieve delayed release, possibly using the excipients mentioned above for the tablets.
  • Syrups containing the active substances or combinations thereof according to the invention may additionally contain a sweetener such as saccharine, cyclamate, glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • a sweetener such as saccharine, cyclamate, glycerol or sugar
  • a flavour enhancer e.g. a flavouring such as vanillin or orange extract.
  • suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • Capsules containing one or more active substances or combinations of active substances may for example be prepared by mixing the active substances with inert carriers such as lactose or sorbitol and packing them into gelatine capsules.
  • Suitable suppositories may be made for example by mixing with carriers provided for this purpose, such as neutral fats or polyethyleneglycol or the derivatives thereof.
  • Excipients which may be used include, for example, water, pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly dispersed silicic acid and silicates), sugars (e.g. cane sugar, lactose and glucose), emulsifiers (e.g.
  • pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly disper
  • lignin e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone
  • lubricants e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate.
  • the tablets may, of course, contain, apart from the abovementioned carriers, additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with various additives such as starch, preferably potato starch, gelatine and the like.
  • additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with various additives such as starch, preferably potato starch, gelatine and the like.
  • lubricants such as magnesium stearate, sodium lauryl sulphate and talc may be used at the same time for the tabletting process.
  • the active substances may be combined with various flavour enhancers or colourings in addition to the excipients mentioned above.
  • the compounds of formula 1 are administered by inhalation, particularly preferably if they are administered once or twice a day.
  • the compounds of formula 1 have to be made available in forms suitable for inhalation.
  • Inhalable preparations include inhalable powders, propellant-containing metered-dose aerosols or propellant-free inhalable solutions, which are optionally present in admixture with conventional physiologically acceptable excipients.
  • propellant-free inhalable solutions also includes concentrates or sterile ready-to-use inhalable solutions.
  • the preparations which may be used according to the invention are described in more detail in the next part of the specification.
  • physiologically acceptable excipients may be used to prepare the inhalable powders according to the invention: monosaccharides (e.g. glucose or arabinose), disaccharides (e.g. lactose, saccharose, maltose), oligo- and polysaccharides (e.g. dextran), polyalcohols (e.g. sorbitol, mannitol, xylitol), salts (e.g. sodium chloride, calcium carbonate) or mixtures of these excipients with one another.
  • monosaccharides e.g. glucose or arabinose
  • disaccharides e.g. lactose, saccharose, maltose
  • oligo- and polysaccharides e.g. dextran
  • polyalcohols e.g. sorbitol, mannitol, xylitol
  • salts e.g. sodium chloride, calcium carbonate
  • lactose is the particularly preferred excipient, while lactose monohydrate is most particularly preferred.
  • the propellant-containing inhalable aerosols which may be used according to the invention may contain 1 dissolved in the propellant gas or in dispersed form.
  • the propellant gases which may be used to prepare the inhalation aerosols according to the invention are known from the prior art. Suitable propellant gases are selected from among hydrocarbons such as n-propane, n-butane or isobutane and halohydrocarbons such as preferably fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane.
  • the propellant gases mentioned above may be used on their own or in mixtures thereof.
  • propellant gases are fluorinated alkane derivatives selected from TG134a (1,1,1,2-tetrafluoroethane), TG227 (1,1,1,2,3,3,3-heptafluoropropane) and mixtures thereof.
  • the propellant-driven inhalation aerosols used within the scope of the use according to the invention may also contain other ingredients such as co-solvents, stabilisers, surfactants, antioxidants, lubricants and pH adjusters. All these ingredients are known in the art.
  • the compounds of formula 1 according to the invention are preferably used to prepare propellant-free inhalable solutions and inhalable suspensions.
  • Solvents used for this purpose include aqueous or alcoholic, preferably ethanolic solutions.
  • the solvent may be water on its own or a mixture of water and ethanol.
  • the solutions or suspensions are adjusted to a pH of 2 to 7, preferably 2 to 5, using suitable acids.
  • the pH may be adjusted using acids selected from inorganic or organic acids. Examples of particularly suitable inorganic acids include hydrochloric acid, hydrobromic acid, nitric acid, sulphuric acid and/or phosphoric acid.
  • organic acids examples include ascorbic acid, citric acid, malic acid, tartaric acid, maleic acid, succinic acid, fumaric acid, acetic acid, formic acid and/or propionic acid etc.
  • Preferred inorganic acids are hydrochloric and sulphuric acids. It is also possible to use the acids which have already formed an acid addition salt with one of the active substances.
  • ascorbic acid, fumaric acid and citric acid are preferred.
  • mixtures of the above acids may also be used, particularly in the case of acids which have other properties in addition to their acidifying qualities, e.g. as flavourings, antioxidants or complexing agents, such as citric acid or ascorbic acid, for example.
  • hydrochloric acid it is particularly preferred to use hydrochloric acid to adjust the pH.
  • Co-solvents and/or other excipients may be added to the propellant-free inhalable solutions used for the purpose according to the invention.
  • Preferred co-solvents are those which contain hydroxyl groups or other polar groups, e.g. alcohols—particularly isopropyl alcohol, glycols—particularly propyleneglycol, polyethyleneglycol, polypropyleneglycol, glycolether, glycerol, polyoxyethylene alcohols and polyoxyethylene fatty acid esters.
  • excipients and additives in this context denote any pharmacologically acceptable substance which is not an active substance but which can be formulated with the active substance or substances in the pharmacologically suitable solvent in order to improve the qualitative properties of the active substance formulation.
  • these substances have no pharmacological effect or, in connection with the desired therapy, no appreciable or at least no undesirable pharmacological effect.
  • the excipients and additives include, for example, surfactants such as soya lecithin, oleic acid, sorbitan esters, such as polysorbates, polyvinylpyrrolidone, other stabilisers, complexing agents, antioxidants and/or preservatives which guarantee or prolong the shelf life of the finished pharmaceutical formulation, flavourings, vitamins and/or other additives known in the art.
  • the additives also include pharmacologically acceptable salts such as sodium chloride as isotonic agents.
  • the preferred excipients include antioxidants such as ascorbic acid, for example, provided that it has not already been used to adjust the pH, vitamin A, vitamin E, tocopherols and similar vitamins or provitamins occurring in the human body.
  • Preservatives may be used to protect the formulation from contamination with pathogens. Suitable preservatives are those which are known in the art, particularly cetyl pyridinium chloride, benzalkonium chloride or benzoic acid or benzoates such as sodium benzoate in the concentration known from the prior art.
  • ready-to-use packs of a medicament for the treatment of respiratory complaints are provided, containing an enclosed description including for example the words respiratory disease, COPD or asthma, a pteridine and one or more combination partners selected from those described above.

Abstract

The invention relates to new pteridines which are suitable for the treatment of
    • respiratory or gastrointestinal complaints or diseases,
    • inflammatory diseases of the joints, skin or eyes,
    • diseases of the peripheral or central nervous system or
    • cancers, as well as pharmaceutical compositions which contain these compounds.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/282,125, filed Nov. 18, 2005, the entirety of which is incorporated herein by reference.
  • The invention relates to new pteridines which are suitable for the treatment of
      • respiratory or gastrointestinal complaints or diseases,
      • inflammatory diseases of the joints, skin or eyes,
      • diseases of the peripheral or central nervous system or
      • cancers,
        as well as pharmaceutical compositions which contain these compounds.
    PRIOR ART
  • Pteridines are known from the prior art as active substances with an antiproliferative activity. Merz et al. describe in the Journal of Medicinal Chemistry 1998, 41, 4733-4743 the preparation of 7-benzylamino-6-chloro-2-piperazino-4-pyrrolidinopteridine and derivatives thereof which are free from positional isomers. It has been shown that the compounds prepared are able to inhibit the growth of tumour cells. DE 3540952 describes 2-piperazino-pteridines which are substituted in the 6 position by a halogen atom, selected from among fluorine, chlorine or bromine. It has been shown that these compounds were able to inhibit the activity of tumour cells and human thrombocytes in vitro. DE 3323932 discloses 2-piperazino-pteridines which carry a dialkylamino, piperidino, morpholino, thiomorpholino or 1-oxidothiomorpholino group in the 4 position. It has been shown that these compounds were able to inhibit the activity of tumour cells and human thrombocytes in vitro. DE 3445298 describes pteridines with a large number of different substituents in the 2, 4, 6 and 7 position, while compounds with a 2-piperazino group on the pteridine skeleton are suitable as inhibitors of tumour growth as well as having antithrombotic and metastasis-inhibiting properties. U.S. Pat. No. 2,940,972 discloses tri- and tetrasubstituted pteridine derivatives, while general statements are made to the effect that these pteridines have valuable pharmacological properties, namely coronary-dilatory, sedative, antipyretic and analgesic effects.
  • The phosphodiesterase 4 inhibitors known from the prior art are known to trigger side effects such as nausea and vomiting (Doherty, 1999, Curr. Op. Chem. Biol., August 3, (4):466-73). The substances mentioned in this invention are particularly preferably suitable for the treatment of the above-mentioned diseases, as they did not cause these side effects in an animal model for nausea and vomiting (S. Murinus, Yamamoto K. et al., Physiol. Behav., 2004, Oct. 30, 83(1), 151-6).
  • The aim of the present invention is to provide new compounds which are suitable for the prevention or treatment of respiratory or gastrointestinal complaints or diseases, inflammatory diseases of the joints, skin or eyes, diseases of the peripheral or central nervous system, or cancers, particularly those compounds which are characterised by reduced side effects, particularly emesis and nausea.
  • DESCRIPTION OF THE INVENTION
  • Surprisingly it has now been found that pteridines of formula 1 are suitable for the treatment of inflammatory diseases. The present invention therefore relates to compounds of formula 1
  • Figure US20080153833A1-20080626-C00001
  • wherein
    • R1 denotes a saturated or unsaturated, five-, six- or seven-membered, heterocyclic ring which may contain a nitrogen atom and another atom selected from among nitrogen, sulphur and oxygen;
    • R2 denotes a five-, six- or seven-membered heterocyclic ring which may contain a nitrogen atom and another atom selected from among nitrogen, sulphur and oxygen;
    • R3 denotes a group of formula 1a,
  • Figure US20080153833A1-20080626-C00002
      • wherein
      • A denotes aryl;
      • X denotes NR3.2, S, O;
      • Y denotes C1-4-alkylene, substituted by one or more R3.3
      • m denotes 0, 1, 2;
      • R3.1 each independently of one another denote C1-4-alkyl, aryl, COOR3.1.1, CONR3.1.1R3.1.2, CN, NR3.1.1R3.1.2 NHCOR3.1.1, OR3.1.1, O—C1-4haloalkyl, SO2R3.1.1, SO2NH2, halogen, C1-6-haloalkyl, C1-6-alkyl-CONH2, O—C1-6-alkyl-NH2, O—C3-6-cycloalkyl, O—C1-4-alkylene-C3-6-cycloalkyl
        • R3.1.1 denotes H, C1-4-alkyl;
        • R3.1.2 denotes H, C1-4-alkyl; or
      • R3.1 together with two atoms of A forms a 5- or 6-membered carbocyclic ring or a 5- or 6-membered heterocyclic ring which may contain one or more oxygen or nitrogen atoms;
      • R3.2 denotes H, C1-6-alkyl;
      • R3.3 each independently of one another denote C1-6-alkyl, C1-6-alkyl-OH, C3-6-cycloalkyl, C3-6-cycloalkyl-OH, O—C1-6-alkyl, COOH, COO—C1-6-alkyl, CONH2;
      • R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 4, 5 or 6 carbon atoms
        and pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Preferred compounds of formula 1 above are those wherein
    • R1 denotes a saturated or unsaturated, five- or six-membered heterocyclic ring which may contain a nitrogen atom and another atom selected from among nitrogen and sulphur;
    • R2 denotes a five- or six-membered heterocyclic ring which may contain one or two nitrogen atoms;
      and pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Preferred compounds of formula 1 above are those wherein
    • R1 denotes a saturated or unsaturated, five- or six-membered heterocyclic ring which may contain a nitrogen atom and optionally contains a further sulphur atom;
    • R2 denotes a six-membered heterocyclic ring which contains two nitrogen atoms;
      and pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Preferred compounds of formula 1 above are those wherein
    • R3 denotes a group of formula 1a,
      • wherein
      • A denotes aryl;
      • X denotes NR3.2, S, O;
      • Y denotes C1-4-alkylene, substituted by one or more R3.3
      • m denotes 0, 1, 2;
      • R3.1 each independently of one another denote C1-4-alkyl, aryl, COOR3.1.1, CONR3.1.1R3.1.2, CN, NR3.1.1R3.1.2NHCOR3.1.1, OR3.1.1, O—C1-4-haloalkyl, SO2R3.1.1, SO2NH2, halogen, C1-6-haloalkyl, C1-6-alkyl-CONH2, O—C1-6-alkyl-NH2, O—C3-6-cycloalkyl, O—C1-4-alkylene-C3-6-cycloalkyl;
        • R3.1.1 denotes H, C1-4-alkyl;
        • R3.1.2 denotes H, C1-4-alkyl;
      • R3.2 denotes H, C1-6-alkyl;
      • R3.3 each independently of one another denote C1-6-alkyl, C1-6-alkyl-OH, C3-6-cycloalkyl, C3-6-cycloalkyl-OH, O—C1-6-alkyl, COOH, COO—C1-6-alkyl, CONH2;
      • R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 4, 5 or 6 carbon atoms
        and the pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Preferred compounds of formula 1 are those wherein
    • R3 is a group of general formula 1a, wherein
      • A denotes phenyl;
      • X denotes NR3.2, S, O;
      • Y denotes C1-4-alkylene, substituted by one or more R3.3
      • m denotes 0, 1 or 2;
      • R3.1 each independently of one another denote C1-4-alkyl, aryl, COOR3.1.1, CONR3.1.1R3.1.2, CN, NR3.1.1R3.1.2, NHCOR3.1.1, OR3.1.1, O—C1-4-haloalkyl, SO2R3.1.1, SO2NH2, halogen;
        • R3.1.1 denotes H, C1-6-alkyl;
        • R3.1.2 denotes H, C1-6-alkyl;
      • R3.2 denotes H, C1-6-alkyl;
      • R3.3 each independently of one another denote C1-6-alkyl, C1-6-alkyl-OH, C3-6-cycloalkyl, O—C1-6-alkyl, COOH, COO—C1-6-alkyl, CONH2;
      • R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 5 or 6 carbon atoms
        and the pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Preferred compounds of formula 1 above are those wherein
    • R3 is a group of general formula 1a, wherein
      • A denotes phenyl;
      • X denotes NR3.2;
      • Y denotes C1-2-alkylene, substituted by one or more R3.3
      • m denotes 0, 1 or 2;
      • R3.1 each independently of one another denote C1-4-alkyl, aryl, COOR3.1.1, CONR3.1.1R3.1.2, CN, NR3.1.1R3.1.2, NHCOR3.1.1, OR3.1.1, O—C1-4-haloalkyl, SO2R3.1.1, SO2NH2, halogen;
        • R3.1.1 denotes H, C1-4-alkyl;
        • R3.1.2 denotes H, C1-4-alkyl;
      • R3.2 denotes H, C1-4-alkyl;
      • R3.3 each independently of one another denote C1-4-alkyl, C1-4-alkyl-OH, C3-6-cycloalkyl, O—C1-4-alkyl, COOH, COO—C1-4-alkyl, CONH2;
      • R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 5 or 6 carbon atoms
        and the pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Preferred compounds of formula 1 above are those wherein
    • R3 is a group of general formula 1a, wherein
      • A denotes phenyl;
      • X denotes NR3.2;
      • Y denotes C1-2-alkylene, substituted by one or more R3.3
      • m denotes 0, 1 or 2;
      • R3.1 each independently of one another denote C1-4-alkyl, aryl, COOH, COO—C1-4-alkyl, CONH2, CN, NH2, NHCO—C1-4-alkyl, OH, O—C1-4-alkyl, O—C1-4-haloalkyl, SO2—C1-4-alkyl, SO2NH2, halogen;
      • R3.2 denotes H, C1-4-alkyl;
      • R3.3 each independently of one another denote C1-4-alkyl, C1-4-alkyl-OH, C3-6-cycloalkyl, O—C1-4-alkyl, COOH, COO—C1-4-alkyl, CONH2;
      • R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 5 or 6 carbon atoms
        and the pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Preferred compounds of formula 1 above are those wherein
    • R3 is a group of general formula 1a, wherein
      • A denotes phenyl;
      • X denotes NR3.2;
      • Y denotes C1-2-alkylene, substituted by one or more R3.3
      • m denotes 0, 1 or 2;
      • R3.1 each independently of one another denote methyl, ethyl, propyl, Ph, COOH, COOMe, CONH2, CN, NH2, NHCOMe, OH, OMe, OEt, OCF3, OCHF2, SO2Me, SO2NH2, F, Cl, Br;
      • R3.2 denotes H, C1-4-alkyl;
      • R3.3 each independently of one another denote methyl, ethyl, propyl, butyl, CH2OH, CH2CH2OH, C(CH2)2OH, cyclopropyl, COOH, COOMe, COOEt, COOPr, CONH2, OMe, OEt, OPr;
      • R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 5 or 6 carbon atoms
        and the pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Also preferred are the above compounds of formula 1, wherein
    • R3 is a group of general formula 1a, wherein
      • A denotes phenyl;
      • X denotes NR3.2;
      • Y denotes C1-2-alkylene, substituted by one or more R3.3
      • m denotes 0, 1 or 2;
      • R3.1 each independently of one another denote C1-4-alkyl, CN, O—C1-4-alkyl, halogen;
      • R3.2 denotes H;
      • R3.3 each independently of one another denote C1-4-alkyl, C1-4-alkyl-OH, C3-6-cycloalkyl, COOH, COO—C1-4-alkyl, CONH2, O—C1-4-alkyl;
      • R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 5 or 6 carbon atoms
        and the pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Preferred compounds of formula 1 above are those wherein
    • R3 is a group of general formula 1a, wherein
      • A denotes phenyl;
      • X denotes NR3.2;
      • Y denotes C1-2-alkylene, substituted by one or more R3.3
      • m denotes 0, 1 or 2;
      • R3.1 each independently of one another denote methyl, iso-propyl, OMe, F, Cl, Br, CN,
      • R3.2 denotes H;
      • R3.3 each independently of one another denote methyl, cyclopropyl, CH2OH, CH2CH2OH, C(CH2)2OH, COOH, COOMe, CONH2, OMe,
      • R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3 carbon atoms
        and the pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Particularly preferred are the above compounds of formula 1, wherein
    • R1 denotes pyrrolidinyl, 2.5-dihydro-1H-pyrrolyl, thiomorpholinyl;
    • R2 denotes piperazinyl;
    • R3 a group selected from among
  • Figure US20080153833A1-20080626-C00003
    Figure US20080153833A1-20080626-C00004
  • and pharmacologically acceptable salt, diastereomers, enantiomers, racemates, hydrates or solvates thereof.
  • Terms and Definitions Used
  • Within the scope of this application, when defining possible substituents, these may also be shown in the form of a structural formula. An asterisk (*) in the structural formula of the substituent is construed as the binding site to the rest of the molecule. Thus, for example, the groups N-piperidinyl (I), 4-piperidinyl (II), 2-tolyl (III), 3-tolyl (IV) and 4-tolyl (V) are shown as follows:
  • Figure US20080153833A1-20080626-C00005
  • If there is no asterisk (*) in the structural formula of the substituent, each hydrogen atom may be removed from the substituent and the valency thus liberated may serve as a binding site to the rest of a molecule. Thus, for example, VI may represent 2-tolyl, 3-tolyl, 4-tolyl and benzyl.
  • Figure US20080153833A1-20080626-C00006
  • By pharmacologically acceptable acid addition salts are meant for example those salts which are selected from among hydrochloride, hydrobromide, hydroiodide, hydrosulphate, hydrophosphate, hydromethanesulphonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydrofumarate, hydrotartrate, hydrooxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulphonate, preferably hydrochloride, hydrobromide, hydrosulphate, hydrophosphate, hydrofumarate and hydromethanesulphonate.
  • By the term “C1-6-alkyl” (including those which are part of other groups) are meant branched and unbranched alkyl groups with 1 to 6 carbon atoms and by the term “C1-4-alkyl” are meant branched and unbranched alkyl groups with 1 to 4 carbon atoms. Alkyl groups with 1 to 4 carbon atoms are preferred. Examples include: methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, neo-pentyl or hexyl. The following abbreviations may optionally also be used for the above-mentioned groups: Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, t-Bu, etc. Unless stated otherwise, the definitions propyl, butyl, pentyl and hexyl include all the possible isomeric forms of the groups in question. Thus, for example, propyl includes n-propyl and iso-propyl, butyl includes iso-butyl, sec-butyl and tert-butyl etc.
  • By the term “C1-4-alkylene” (including those which are part of other groups) are meant branched and unbranched alkylene groups with 1 to 4 carbon atoms. Examples include: methylene, ethylene, propylene, 1-methylethylene, butylene, 1-methylpropylene, 1,1-dimethylethylene or 1,2-dimethylethylene. Unless stated otherwise, the definitions propylene and butylene include all the possible isomeric forms of the groups in question with the same number of carbons. Thus, for example, propyl also includes 1-methylethylene and butylene includes 1-methylpropylene, 1,1-dimethylethylene, 1,2-dimethylethylene. If the carbon chain is substituted by a group which forms together with one or two carbon atoms of the alkylene chain a carbocyclic ring with 3, 4, 5 or 6 carbon atoms, the following are thus included as examples of the rings:
  • Figure US20080153833A1-20080626-C00007
  • By the term “C3-6-cycloalkyl” (including those which are part of other groups) are meant cyclic alkyl groups with 3 to 6 carbon atoms. Examples include: cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. Unless otherwise stated, the cyclic alkyl groups may be substituted by one or more groups selected from among methyl, ethyl, iso-propyl, tert-butyl, hydroxy, fluorine, chlorine, bromine and iodine.
  • Halogen within the scope of the present invention denotes fluorine, chlorine, bromine or iodine. Unless stated to the contrary, fluorine, chlorine and bromine are regarded as preferred halogens.
  • By the term “C1-6-haloalkyl” (including those which are part of other groups) are meant branched and unbranched alkyl groups with 1 to 6 carbon atoms, which are substituted by one or more halogen atoms. By the term “C1-4-alkyl” are meant branched and unbranched alkyl groups with 1 to 4 carbon atoms, which are substituted by one or more halogen atoms. Alkyl groups with 1 to 4 carbon atoms are preferred. Examples include: CF3, CHF2, CH2F, CH2CF3.
  • By the term “aryl” (including those which are part of other groups) are meant aromatic ring systems with 6 or 10 carbon atoms. Examples include: phenyl or naphthyl, the preferred aryl group being phenyl. Unless otherwise stated, the aromatic groups may be substituted by one or more groups selected from among methyl, ethyl, iso-propyl, tert-butyl, hydroxy, fluorine, chlorine, bromine and iodine.
  • By the term “heterocyclic rings” or “het” are meant five-, six- or seven-membered, saturated or unsaturated heterocyclic rings or 5-10 membered, bicyclic heterorings which may contain one, two or three heteroatoms, selected from among oxygen, sulphur and nitrogen, while the ring may be linked to the molecule through a carbon atom or, if available, through a nitrogen atom. The following are examples of five-, six- or seven-membered, saturated or unsaturated heterocyclic rings:
  • Figure US20080153833A1-20080626-C00008
  • Unless otherwise mentioned, a heterocyclic ring may be provided with a keto group. Examples of this include:
  • Figure US20080153833A1-20080626-C00009
  • EXAMPLES
  • The compounds according to the invention may be prepared by methods known per se from the literature, as described for example in DE 3540952. Other alternative methods of preparing the compounds listed below are described hereinafter.
  • Compound 12: a) 1-phenyl-cyclopropanecarbonyl chloride: 7.00 g (41.87 mmol) 1-phenylcyclopropanecarboxylic acid, 30.45 ml (418.70 mmol) thionyl chloride and 1 drop of dimethylformamide are placed in 100 ml dichloromethane, then refluxed for 3 hours with stirring. Then the reaction mixture is concentrated by evaporation, taken up in toluene and evaporated down again. The residue is combined and extracted with water and dichloromethane. The organic phase is washed with water, dried and evaporated to dryness. Yield: 7.53 g
  • b) 1-phenyl-cyclopropylamine: 7.53 g (41.69 mmol) 1-phenyl-cyclopropanecarbonyl chloride are placed in 50 ml xylene, 3.25 g (50.03 mmol) sodium azide are added. The reaction mixture is first heated to 80° C., after 1 hour heated to 110° C. and stirred for another 1 hour. After cooling to ambient temperature the mixture is filtered and conc. hydrochloric acid is added to the filtrate. It is heated to 70° C. until the development of CO2, has ended, then stirred for 1 hour at 100° C. Then the reaction mixture is extracted with 4 N hydrochloric acid, the aqueous phase is made alkaline and extracted with petroleum ether. The organic phase is dried and evaporated to dryness.
  • Yield: 1.07 g (=19% of theoretical)
  • c) (6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-yl)-(1-phenyl-cyclopropyl)-amine (Example 12): 80 mg (0.263 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are dissolved in 5 ml dioxane, and 0.064 ml (0.368 mmol) diisopropylethylamine and 35 mg (0.263 mmol) of 1-phenyl-cyclopropylamine are added. The reaction mixture is stirred for 16 hours at ambient temperature and 24 hours at 40° C. 64.14 mg (0.344 mmol) piperazine and 0.064 ml (0.368 mmol) diisopropylethylamine are added, the mixture is stirred for 16 hours at 100° C. Then the reaction mixture is concentrated by evaporation, 15 ml of 50% trifluoroacetic acid in dichloromethane are added and the mixture is stirred for 3 hours at ambient temperature. The reaction mixture is concentrated by evaporation, the residue is extracted with dichloromethane and 1 N sodium hydroxide solution. The combined organic phases are dried and evaporated to dryness. The residue is purified by chromatography. Yield: 21 mg (=18% of theoretical)
  • Compound 13: a) 1-(3,4-dimethoxy-phenyl)-ethylamine: 37.00 ml (111 mmol) methylmagnesium bromide in diethyl ether are taken, a solution of 6.00 g (36.40 mmol) 3,4-dimethoxy-benzonitrile in 50 ml of tetrahydrofuran is added dropwise while cooling with ice, then the mixture is stirred for 3 hours while cooling continues. After the addition of 0.82 eq methylmagnesium bromide solution the mixture is stirred for 1.5 hours. Then 120 ml of methanol are added dropwise, then 2.78 g (72.80 mmol) sodium borohydride are added batchwise. The reaction mixture is stirred for 16 hours at ambient temperature, then concentrated in vacuo, and combined with water and chloroform. The mixture is adjusted to pH 1, the phases are separated. The aqueous phase is extracted with chloroform, then made alkaline and extracted again with chloroform. The organic phase is dried and evaporated to dryness. Yield: 1.71 g (=26% of theoretical)
  • b) (6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-yl)-[1-(3,4-dimethoxy-phenyl)-ethyl]-amine (Example 13): 80 mg (0.263 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are dissolved in 5 ml dioxane, and 0.064 ml (0.368 mmol) diisopropylethylamine and 48 mg (0.265 mmol) 1-(3,4-dimethoxy-phenyl)-ethylamine are added. The reaction mixture is stirred for 72 hours at 40° C. 113 mg (1.31 mmol) piperazine are dissolved in 10 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 2 hours, then the reaction mixture is added dropwise to 20 ml ice water and extracted with dichloromethane. The organic phase is dried and evaporated to dryness. The residue is purified by chromatography, the corresponding fraction is concentrated by evaporation.
  • Yield: 73 mg (=56% of theoretical)
  • Compound 14: a) C-cyclopropyl-C-phenyl-methylamine: 60.00 ml (30 mmol) cyclopropylmagnesium bromide in tetrahydrofuran are taken, a solution of 1.10 ml (10.22 mmol) benzonitrile in 15 ml of tetrahydrofuran is added dropwise while cooling with an ice bath. The mixture is stirred for 5.5 hours with further cooling. Then 30 ml of methanol are added dropwise and 800 mg (20.94 mmol) sodium borohydride are added batchwise. The reaction mixture is stirred for 16 hours at ambient temperature, then concentrated by evaporation. The residue is combined with chloroform and water, adjusted to pH 1 and the phases are separated. The aqueous phase is extracted with chloroform, then made alkaline and again extracted with chloroform. The resulting organic phase is dried and evaporated to dryness. Yield: 1.38 g (=92% of theoretical)
  • b) C-(6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-yl)-C-cyclopropyl-C-phenyl-methylamine (Example 14): 80 mg (0.263 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are dissolved in 5 ml dioxane, and 0.064 ml (0.368 mmol) diisopropylethylamine and 38.67 mg (0.263 mmol) 1-phenyl-cyclopropylamine are added. The reaction mixture is stirred for 72 hours at ambient temperature. 113 mg (1.31 mmol) piperazine are dissolved in 10 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. The resulting mixture is stirred for 2 hours, then added dropwise to 20 ml ice water and extracted with dichloromethane. The organic phase is dried and evaporated to dryness. The residue is purified by chromatography, the corresponding fraction is concentrated by evaporation and triturated with diethyl ether/petroleum ether.
  • Yield: 47.70 mg (=39% of theoretical)
  • Compound 15: a) 1-(4-chlorophenyl)-cyclopropylamine: 500 mg (2.54 mmol) 1-(4-chlorophenyl)-cyclopropane-carboxylic acid, 1.20 ml (5.38 mmol) phosphoric acid diphenylesterazide and 0.39 ml (2.80 mmol) triethylamine are placed in 10 ml of dimethylformamide, then stirred for 16 hours at ambient temperature. Then the reaction mixture is added dropwise at 100° C. within 2 hours to 50 ml of water and 10 ml of 1 N hydrochloric acid, cooled and neutralised with sodium hydroxide solution. The precipitate formed is suction filtered, the filtrate is extracted with ethyl acetate. The organic phase is dried and evaporated to dryness. The residue is extracted acidically, the aqueous phase is neutralised and extracted with dichloromethane. The resulting organic phase is dried and evaporated to dryness. Yield: 145 mg (=34% of theoretical)
  • b) [1-(4-chlorophenyl)-cyclopropyl]-(6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-yl)-amine (Example 15): 80 mg (0.263 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are dissolved in 5 ml dioxane, 0.064 ml (0.368 mmol) diisopropylethylamine and 44 mg (0.263 mmol) 1-(4-chlorophenyl)-cyclopropylamine added, then the mixture is heated to 40° C. The reaction mixture is stirred for 24 hours, another 1 equivalent of 1-(4-chlorophenyl)-cyclopropylamine is added and the mixture is stirred for a further 24 hours at 40° C. Then the reaction mixture is filtered through silica gel and concentrated by evaporation. 113 mg (1.31 mmol) piperazine are dissolved in 15 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 1 hour, then the reaction mixture is added dropwise to 20 ml ice water and extracted with dichloromethane. The organic phase is dried and evaporated to dryness. The residue is purified by chromatography, the corresponding fraction is concentrated by evaporation and triturated with petroleum ether/diethyl ether.
  • Yield: 108 mg (=85% of theoretical)
  • Compound 16: a) 1-(3-bromophenyl)-cyclopropylamine: 500 mg (2.07 mmol) 1-(3-bromophenyl)-cyclopropane-carboxylic acid, 0.46 ml (2.07 mmol) phosphoric acid diphenylesterazide and 0.32 ml (2.28 mmol) triethylamine are placed in 10 ml of dimethylformamide, then stirred for 16 hours at ambient temperature. Then the reaction mixture is added dropwise at 100° C. within 2 hours to 50 ml of water and 10 ml 1 N hydrochloric acid, cooled and neutralised with sodium hydroxide solution. The precipitate formed is suction filtered, the filtrate is extracted with ethyl acetate. The organic phase is dried and evaporated to dryness. Yield: 332 mg (=75% of theoretical)
  • b) [1-(3-bromophenyl)-cyclopropyl]-(6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-yl)-amine (Example 16): 80 mg (0.263 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are dissolved in 5 ml dioxane, 0.064 ml (0.368 mmol) diisopropylethylamine and 56 mg (0.263 mmol) 1-(3-bromophenyl)-cyclopropylamine are added, then the mixture is heated to 40° C. The reaction mixture is stirred for 72 hours. 113 mg (1.31 mmol) piperazine are dissolved in 15 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 1 hour, then the reaction mixture is added dropwise to 20 ml ice water and extracted with dichloromethane. The organic phase is dried and evaporated to dryness. The residue is purified by chromatography, the corresponding fraction is concentrated by evaporation and triturated with petroleum ether/diethyl ether.
  • Yield: 125 mg (=90% of theoretical)
  • Compound 17: a) 1-p-tolyl-cyclopropylamine: 500 mg (2.84 mmol) 1-p-tolyl-cyclopropane-carboxylic acid, 0.63 ml (2.84 mmol) phosphoric acid diphenylesterazide and 0.40 ml (2.84 mmol) triethylamine are placed in 10 ml of dimethylformamide, then stirred for 16 hours at ambient temperature. Then the reaction mixture is added dropwise at 100° C. within 2 hours to 50 ml of water and 10 ml 1 N hydrochloric acid, cooled and neutralised with sodium hydroxide solution. The precipitate formed is suction filtered, the filtrate is extracted with ethyl acetate. The organic phase is dried and evaporated to dryness. The residue is extracted acidically, the aqueous phase is neutralised and extracted with dichloromethane. The resulting organic phase is dried and evaporated to dryness. Yield: 110 mg (=26% of theoretical)
  • b) (6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-yl)-(1p-tolyl-cyclopropyl)-amine (Example 17): 80 mg (0.263 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are dissolved in 5 ml dioxane, and 0.064 ml (0.368 mmol) diisopropylethylamine and 43 mg (0.292 mmol) 1-p-tolyl-cyclopropylamine are added, then the mixture is heated to 40° C. The reaction mixture is stirred for 72 hours. 113 mg (1.31 mmol) piperazine are dissolved in 15 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 1 hour, then the reaction mixture is added dropwise to 20 ml of ice water and extracted with dichloromethane. The organic phase is dried and evaporated to dryness. The residue is purified by chromatography, the corresponding fraction is concentrated by evaporation and triturated with petroleum ether/diethyl ether. Yield: 80 mg (=65% of theoretical)
  • Compound 20: a) methyl (S)-phenyl-(2,2,2-trifluoro-acetylamino)-acetate: 3.00 g (14.877 mmol) (S)-phenylglycinemethylester hydrochloride and 2.48 ml (17.853 mmol) triethylamine are placed in 25 ml of tetrahydrofuran and cooled to −78° C. 2.50 ml (18 mmol) trifluoroacetic anhydride are slowly added dropwise. After removal of the cooling the reaction mixture is stirred for 16 hours at ambient temperature. Then it is combined with water, then extracted with ethyl acetate. The combined organic phases are washed, dried and evaporated to dryness. Yield: 3.90 g (=100% of theoretical)
  • b) (S)-2,2,2-trifluoro-N-(2-hydroxy-2-methyl-1-phenyl-propyl)-acetamide: 1.00 g (3.829 mmol) methyl (S)-phenyl-(2,2,2-trifluoro-acetylamino)-acetate are placed in 40 ml diethyl ether, 3.83 ml (11.486 mmol) methylmagnesium iodide solution are slowly added dropwise. The temperature should not exceed 20° C. The suspension is stirred for 16 hours at ambient temperature, then poured onto ice water. Ammonium chloride is added until the precipitate has dissolved. The aqueous phase is extracted with diethyl ether, the combined organic phases are dried and evaporated to dryness.
  • Yield: 1.20 g (>100% of theoretical)
  • c) (S)-1-amino-2-methyl-1-phenyl-propan-2-ol: 1.20 g (4.593 mmol) (S)-2,2,2-trifluoro-N-(2-hydroxy-2-methyl-1-phenyl-propyl)-acetamide and 0.515 g (9.187 mmol) potassium hydroxide are placed in 15 ml of methanol and stirred for 16 hours at 60° C. Then the reaction mixture is combined with water and extracted with dichloromethane. The organic phases are combined, dried and evaporated to dryness.
  • Yield: 500 mg (=53% of theoretical)
  • d) (S)-1-(6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-ylamino)-2-methyl-1-phenyl-propan-2-ol (Example 20): 100 mg (0.279 mmol) (S)-2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are dissolved in 15 ml dioxane, 0.053 ml (0.307 mmol) diisopropylethylamine and 51.24 mg (0.279 mmol) 1-amino-2-methyl-1-phenyl-propan-2-ol are added, then the mixture is heated to 40° C. The reaction mixture is stirred for 16 hours. A further 0.4 eq of 1-amino-2-methyl-1-phenyl-propan-2-ol are added, and the mixture is stirred for 3 hours at 40° C. 120 mg (1.40 mmol) piperazine are dissolved in 5 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 16 hours, then the reaction solution is concentrated in vacuo and added dropwise to 50 ml ice water. The precipitate formed is suction filtered and purified by chromatography. Corresponding fractions are combined, evaporated to dryness. The residue is taken up in dioxane and freeze-dried.
  • Yield: 45 mg (=33% of theoretical)
  • Compound 21: a) 3-(1-amino-ethyl)-benzonitrile: 9.40 g (64.757 mmol) 3-cyano-acetophenone, 40.00 g (518.941 mmol) ammonium acetate and 10.00 g (186.951 mmol) ammonium chloride are placed in methanol. The mixture is stirred for 16 hours at 40° C. 2.90 g (46.149 mmol) sodium cyanoborohydride are added, then the mixture is stirred for another 16 hours. The reaction mixture is adjusted to pH3 with glacial acetic acid, then the methanol is evaporated down. On cooling a precipitate settles out. This is suction filtered. The filtrate is made alkaline with conc. sodium hydroxide solution, the precipitate thus formed is suction filtered. The filtrate is extracted with diethyl ether, the combined organic phases are dried and evaporated to dryness. The residue is purified by vacuum distillation.
  • Yield: 1.10 g (=12% of theoretical)
  • b) 3-[1-(6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-ylamino)-ethyl]-benzonitrile (Example 21): 90.00 mg (0.296 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine and 0.057 ml (0.304 mmol) diisopropylethylamine are dissolved in 10 ml dioxane, a solution of 43.20 mg (0.296 mmol) 3-(1-amino-ethyl)-benzonitrile in 5 ml dioxane at ambient temperature is added dropwise. The reaction mixture is stirred for 2 hours at ambient temperature and for 16 hours at 40° C., while another 1 eq diisopropylethylamine and 3-(1-amino-ethyl)-benzonitrile are added. 127 mg (1.47 mmol) piperazine are dissolved in ml dioxane, the mixture is heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 16 hours, then the reaction solution is concentrated in vacuo and added dropwise to 50 ml ice water. The precipitate formed is suction filtered and purified by chromatography. Corresponding fractions are combined, evaporated to dryness. The residue is taken up in dioxane and freeze-dried. Yield: 30.0 mg (=22% of theoretical)
  • Compound 24: a) 1-(3,4-dimethoxy-benzyl)-cyclopropylamine: 5.20 g (28.76 mmol) 3,4-dimethoxybenzylcyanide are placed in 150 ml diethyl ether and 9.00 ml (30.708 mmol) titanium(IV) isopropoxide are added. While cooling with ice 20.00 ml (60 mmol) 3 molar ethylmagnesium bromide solution are added dropwise, then the mixture is stirred for 0.5 hours. Then 7.60 ml (59.97 mmol) boron trifluoride etherate are added dropwise and the mixture is stirred for 0.5 hours. Then while being cooled the reaction mixture is combined with 90 ml 1 N sodium hydroxide solution and stirred for 1 hour at ambient temperature. The organic phase is separated off, the aqueous phase is extracted with diethyl ether. The combined organic phases are washed with saturated sodium sulphonate solution and extracted acidically. The resulting aqueous phase is extracted with dichloromethane, the organic extracts are dried and evaporated to dryness. The residue is purified by chromatography. Yield: 1.60 g (=27% of theoretical)
  • b) (6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-yl)-[1-(3,4-dimethoxybenzyl)-cyclopropyl]-amine (Example 24): 80 mg (0.263 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are suspended in 5 ml dioxane, and 54 mg (0.260 mmol) 1-(3,4-dimethoxybenzyl)-cyclopropylamine and 0.064 ml (0.368 mmol) diisopropylethylamine are added. The mixture is stirred for 72 hours at 40° C. 113 mg (1.31 mmol) piperazine are dissolved in 15 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 2 hours, then added dropwise to 20 ml of ice water. It is extracted with dichloromethane, the organic phase is dried and evaporated to dryness. The residue is purified by chromatography. Corresponding fraction is evaporated to dryness, then triturated with petroleum ether/diethyl ether. Yield: 78 mg (=57% of theoretical)
  • Compound 27: a) 1-(4-fluorophenyl)-cyclopropylamine: 5.00 g (41.28 mmol) 4-fluorobenzonitrile and 12.10 g (41.28 mmol) titanium(IV) isopropoxide are placed in 100 ml diethyl ether and cooled to 70° C. 30.28 ml (90.83 mmol) 3 molar ethylmagnesium bromide solution are added dropwise, then the mixture is stirred for 0.1 hours. After heating to ambient temperature 10.42 ml (82.56 mmol) boron trifluoride etherate are added dropwise and the mixture is stirred for 1 hour. Then the reaction mixture is combined with 56 ml 1 N hydrochloric acid, then 80 ml 4 N sodium hydroxide solution are added. The precipitate formed is suction filtered and discarded. The filtrate is extracted with water, the organic phases are combined, dried and evaporated to dryness. The residue is taken up in dichloromethane, extracted acidically and neutralised. The organic phase is dried and evaporated to dryness. The residue is purified by chromatography. Yield: 1.818 g (=29% of theoretical)
  • b) (6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-yl)-[1-(4-fluorophenyl)-cyclopropyl]-amine (Example 27): 80 mg (0.263 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are suspended in 5 ml dioxane, 40 mg (0.264 mmol) 1-(4-isopropyl-phenyl)-cyclopropylamine and 0.064 ml (0.368 mmol) diisopropylethylamine are added. The mixture is stirred for 16 hours at 40° C. 113 mg (1.31 mmol) piperazine are dissolved in 15 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 2 hours, then added dropwise to 20 ml of ice water. It is extracted with dichloromethane, the organic phase is dried and evaporated to dryness. The residue is purified by chromatography. Corresponding fraction is evaporated to dryness, then triturated with petroleum ether/diethyl ether. Yield: 52 mg (=42% of theoretical)
  • Compound 29: a) 1-(4-isopropyl-phenyl)-cyclopropylamine: 2.00 g (14 mmol) 4-isopropylbenzonitrile and 4.04 g (13.77 mmol) titanium(IV) isopropoxide are placed in 60 ml diethyl ether and cooled to 70° C. 10.10 ml (30.30 mmol) 3 molar ethylmagnesium bromide solution are added dropwise, then the mixture is stirred for 0.1 hours. After heating to ambient temperature 3.48 ml (27.55 mmol) boron trifluoride etherate are added dropwise and the mixture is stirred for 1 hour. Then the reaction mixture is combined with 25 ml 1 N hydrochloric acid, then 32 ml 4 N sodium hydroxide solution are added. The precipitate thus formed is suction filtered and discarded. The filtrate is extracted with water, the organic phases are combined, dried and evaporated to dryness. The residue is taken up in dichloromethane, extracted acidically and neutralised. The organic phase is dried and evaporated to dryness. The residue is purified by chromatography.
  • Yield: 425 mg (=18% of theoretical)
  • b) (6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-yl)-[1-(4-isopropyl-phenyl)-cyclopropyl]-amine (Example 29): 80 mg (0.263 mmol) 2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are suspended in 5 ml dioxane, 51.0 mg (0.290 mmol) 1-(4-isopropyl-phenyl)-cyclopropylamine and 0.064 ml (0.368 mmol) diisopropylethylamine are added. The mixture is stirred for 72 hours at 40° C. 113 mg (1.31 mmol) piperazine are dissolved in 15 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 2 hours, then added dropwise to ice water. It is extracted with dichloromethane, the organic phase is dried and evaporated to dryness. The residue is purified by chromatography. Corresponding fraction is evaporated to dryness, then triturated with petroleum ether/diethyl ether. Yield: 77.50 mg (=60% of theoretical)
  • Compound 31: a) methyl (S)-amino-(4-fluorophenyl)-acetate: 500 mg (2.96 mmol) (S)-4-fluorophenylglycine are suspended in 10 ml of methanol, and while cooling with ice 0.43 ml (5.91 mmol) thionyl chloride are carefully added dropwise. The mixture is stirred for 16 hours at ambient temperature, then evaporated to dryness. Yield: 700 mg
  • b) methyl (4-fluorophenyl)-(2,2,2-trifluoracetylamino)-acetate: 700 mg (3.19 mmol) methyl (S)-amino-(4-fluorophenyl)-acetate are suspended in 5 ml of tetrahydrofuran, 0.53 ml (40 mmol) triethylamine are added. The mixture is cooled to −70° C., then 0.54 ml (40 mmol) trifluoroacetic anhydride are added dropwise. After removal of the cooling the reaction mixture is stirred for 16 hours at ambient temperature. Then water and potassium hydrogen carbonate are added and the mixture is extracted with ethyl acetate. The combined organic phases are washed, dried and evaporated to dryness.
  • Yield: 680 mg (=76% of theoretical)
  • c) (S)-2,2,2-trifluoro-N-[1-(4-fluorophenyl)-2-hydroxy-2-methyl-propyl]-acetamide: 680 mg (2.44 mmol) methyl (S)-(4-fluorophenyl)-(2,2,2-trifluoracetylamino)-acetate are placed in 20 ml of tetrahydrofuran, then 4.06 ml (12.18 mmol) methylmagnesium iodide solution are slowly added dropwise. The temperature should not exceed 20° C. The reaction mixture with insoluble precipitate is stirred for 16 hours at ambient temperature, then poured onto ice water. Ammonium chloride is added until the precipitate is dissolved. The aqueous phase is extracted with diethyl ether, the combined organic phases are dried and evaporated to dryness. Yield: 570 mg (=84% of theoretical)
  • d) (S)-1-amino-1-(4-fluorophenyl)-2-methyl-propan-2-ol: 570 mg (2.04 mmol) (S)-2,2,2-trifluoro-N-[1-(4-fluorophenyl)-2-hydroxy-2-methyl-propyl]-acetamide and 221 mg (40 mmol) potassium hydroxide are placed in 7 ml of methanol and stirred for 16 hours at 60° C. Then the reaction mixture is combined with water and extracted with dichloromethane. The organic phases are combined, dried and evaporated to dryness.
  • Yield: 300 mg (=80% of theoretical)
  • e) 1-(6-chloro-2-piperazin-1-yl-4-pyrrolidin-1-yl-pteridin-7-ylamino)-(S)-1-(4-fluorophenyl)-2-methyl-propan-2-ol (Example 31): 100 mg (0.279 mmol) (S)-2,6,7-trichloro-4-pyrrolidin-1-yl-pteridine are dissolved in 5 ml dioxane, 0.053 ml (0.307 mmol) diisopropylethylamine and 66.20 mg (0.360 mmol) 1-amino-1-(4-fluorophenyl)-2-methyl-propan-2-ol are added, then the mixture is heated to 40° C. The reaction mixture is stirred for 16 hours. 120 mg (1.40 mmol) piperazine are dissolved in 5 ml dioxane, heated to 80° C. and the reaction mixture is added dropwise. It is stirred for 16 hours, then the reaction solution is concentrated in vacuo and added dropwise to ice water. The precipitate formed is suction filtered and purified by chromatography. Corresponding fractions are combined, evaporated to dryness. The residue is taken up in dioxane and freeze-dried.
  • Yield: 75 mg (=54% of theoretical)
  • Compound 34: a) benzaldehyde tosyl hydrazone: 5.00 g (26.85 mmol) p-toluene-sulphonylhydrazide are placed in 10 ml of methanol, 2.37 ml (23.30 mmol) benzaldehyde are slowly added dropwise. A precipitate settles out. This is suction filtered and washed with methanol. Then the precipitate is recrystallised from methanol.
  • Yield: 3.14 g (43% of theoretical)
  • b) Racemic-cis-2-(2-phenyl-cyclopropyl)-isoindole-1,3-dione: 2.00 g (7.29 mmol) benzaldehyde tosyl hydrazone are placed in 40 ml of tetrahydrofuran and cooled to −70° C. 7.29 ml (7.29 mmol) LiHMDS lithium bis(trimethylsilyl)amide (1 M solution in tetrahydrofuran) are added, then the mixture is stirred for 0.25 hours at −78° C. The reaction mixture is slowly heated to ambient temperature, then concentrated by evaporation. The residue is dissolved in 50 ml dioxane, combined with 0.166 g (1 mmol) benzyltriethylammonium chloride and 0.032 g rhodium acetate-dimer, and 6.31 g (36.45 mmol) 2-vinyl-isoindole-1,3-dione added. The reaction mixture is stirred for 80 hours, then extracted with water and dichloromethane. The organic phase is dried and evaporated to dryness. The residue is purified by chromatography.
  • Yield: 0.650 g (34% of theoretical)
  • c) Racemic-cis-2-phenyl-cyclopropylamine: 0.460 g (1.75 mmol) 2-(2-phenyl-cyclopropyl)-isoindole-1,3-dione (chiral) are placed in 6 ml of ethanol, 0.115 g (1.83 mmol) hydrazine hydrate dissolved in 12 ml of ethanol are added. The reaction mixture is stirred for 15 hours at 40° C. Then 0.58 ml 1 N hydrochloric acid are added and the mixture is then stirred for 3 hours. After cooling the precipitate formed is suction filtered and washed with ethanol. The filtrate is concentrated by evaporation, the residue is taken up in 12 ml 1 N hydrochloric acid and extracted with diethyl ether. The aqueous phase is made basic and extracted with dichloromethane. The organic phase is dried and evaporated to dryness. Yield: 0.090 g (39% of theoretical)
  • Compound 35: a) Racemic 2-phenyl-cyclopropyl cis-acetate: 10.00 g (36.45 mmol) benzaldehyde tosyl hydrazone are placed in 200 ml of tetrahydrofuran and cooled to −70° C. 36.45 ml (36.45 mmol) LiHMDS lithium bis(trimethylsilyl)amide (1 molar solution in tetrahydrofuran) are added, then the mixture is stirred for 0.25 hours at −78° C. The reaction mixture is slowly heated to ambient temperature, then evaporated down in vacuo. The residue is dissolved in 250 ml dioxane, combined with 0.830 g (4 mmol) benzyltriethylammonium chloride and 0.161 g rhodium acetate dimer, and 33.59 ml (36.45 mmol) vinyl acetate are added. The reaction mixture is stirred for 70 hours, then extracted with water and dichloromethane. The organic phase is washed with conc. sodium chloride solution, dried and evaporated to dryness. The residue is purified by chromatography. Yield: 0.800 g (11% of theoretical)
  • b) Racemic-cis-2-phenyl-cyclopropanol: 0.280 g (1.59 mmol) 2-phenyl-cyclopropyl acetate (chiral) are dissolved under argon in 1.50 ml diethyl ether, and 2.00 ml (3.20 mmol) methyl lithium dissolved in 2 ml diethyl ether are added dropwise within 0.25 hours. The reaction mixture is stirred for 0.5 hours at ambient temperature, then added to 6 ml of conc. boric acid. The mixture is diluted with water and extracted. The organic phase is washed with saturated sodium chloride solution, dried and evaporated to dryness.
  • Yield: 0.200 g (94% of theoretical)
  • The following are a number of compounds, mentioned by way of example, which may be prepared by one of the methods of synthesis outlined above.
  • Figure US20080153833A1-20080626-C00010
    # R1 R2 R3 M + H
    1.
    Figure US20080153833A1-20080626-C00011
    Figure US20080153833A1-20080626-C00012
    Figure US20080153833A1-20080626-C00013
    439/441
    2.
    Figure US20080153833A1-20080626-C00014
    Figure US20080153833A1-20080626-C00015
    Figure US20080153833A1-20080626-C00016
    439/441
    3.
    Figure US20080153833A1-20080626-C00017
    Figure US20080153833A1-20080626-C00018
    Figure US20080153833A1-20080626-C00019
    455/457
    4.
    Figure US20080153833A1-20080626-C00020
    Figure US20080153833A1-20080626-C00021
    Figure US20080153833A1-20080626-C00022
    455/457
    5.
    Figure US20080153833A1-20080626-C00023
    Figure US20080153833A1-20080626-C00024
    Figure US20080153833A1-20080626-C00025
    483/485
    6.
    Figure US20080153833A1-20080626-C00026
    Figure US20080153833A1-20080626-C00027
    Figure US20080153833A1-20080626-C00028
    483/485
    7.
    Figure US20080153833A1-20080626-C00029
    Figure US20080153833A1-20080626-C00030
    Figure US20080153833A1-20080626-C00031
    468/470
    8.
    Figure US20080153833A1-20080626-C00032
    Figure US20080153833A1-20080626-C00033
    Figure US20080153833A1-20080626-C00034
    468/470
    9.
    Figure US20080153833A1-20080626-C00035
    Figure US20080153833A1-20080626-C00036
    Figure US20080153833A1-20080626-C00037
    439/441
    10.
    Figure US20080153833A1-20080626-C00038
    Figure US20080153833A1-20080626-C00039
    Figure US20080153833A1-20080626-C00040
    469/471
    11.
    Figure US20080153833A1-20080626-C00041
    Figure US20080153833A1-20080626-C00042
    Figure US20080153833A1-20080626-C00043
    469/471
    12.
    Figure US20080153833A1-20080626-C00044
    Figure US20080153833A1-20080626-C00045
    Figure US20080153833A1-20080626-C00046
    451/453
    13.
    Figure US20080153833A1-20080626-C00047
    Figure US20080153833A1-20080626-C00048
    Figure US20080153833A1-20080626-C00049
    499/450
    14.
    Figure US20080153833A1-20080626-C00050
    Figure US20080153833A1-20080626-C00051
    Figure US20080153833A1-20080626-C00052
    465/467
    15.
    Figure US20080153833A1-20080626-C00053
    Figure US20080153833A1-20080626-C00054
    Figure US20080153833A1-20080626-C00055
    485/487/489
    16.
    Figure US20080153833A1-20080626-C00056
    Figure US20080153833A1-20080626-C00057
    Figure US20080153833A1-20080626-C00058
    529/531/533
    17.
    Figure US20080153833A1-20080626-C00059
    Figure US20080153833A1-20080626-C00060
    Figure US20080153833A1-20080626-C00061
    465/467
    18.
    Figure US20080153833A1-20080626-C00062
    Figure US20080153833A1-20080626-C00063
    Figure US20080153833A1-20080626-C00064
    453/455
    19.
    Figure US20080153833A1-20080626-C00065
    Figure US20080153833A1-20080626-C00066
    Figure US20080153833A1-20080626-C00067
    483/485
    20.
    Figure US20080153833A1-20080626-C00068
    Figure US20080153833A1-20080626-C00069
    Figure US20080153833A1-20080626-C00070
    483/485
    21.
    Figure US20080153833A1-20080626-C00071
    Figure US20080153833A1-20080626-C00072
    Figure US20080153833A1-20080626-C00073
    464/466
    22.
    Figure US20080153833A1-20080626-C00074
    Figure US20080153833A1-20080626-C00075
    Figure US20080153833A1-20080626-C00076
    513/515
    23.
    Figure US20080153833A1-20080626-C00077
    Figure US20080153833A1-20080626-C00078
    Figure US20080153833A1-20080626-C00079
    529/531
    24.
    Figure US20080153833A1-20080626-C00080
    Figure US20080153833A1-20080626-C00081
    Figure US20080153833A1-20080626-C00082
    525/527
    25.
    Figure US20080153833A1-20080626-C00083
    Figure US20080153833A1-20080626-C00084
    Figure US20080153833A1-20080626-C00085
    455/457
    26.
    Figure US20080153833A1-20080626-C00086
    Figure US20080153833A1-20080626-C00087
    Figure US20080153833A1-20080626-C00088
    473/475
    27.
    Figure US20080153833A1-20080626-C00089
    Figure US20080153833A1-20080626-C00090
    Figure US20080153833A1-20080626-C00091
    469/471
    28.
    Figure US20080153833A1-20080626-C00092
    Figure US20080153833A1-20080626-C00093
    Figure US20080153833A1-20080626-C00094
    473/475
    29.
    Figure US20080153833A1-20080626-C00095
    Figure US20080153833A1-20080626-C00096
    Figure US20080153833A1-20080626-C00097
    493/495
    30.
    Figure US20080153833A1-20080626-C00098
    Figure US20080153833A1-20080626-C00099
    Figure US20080153833A1-20080626-C00100
    501/503
    31.
    Figure US20080153833A1-20080626-C00101
    Figure US20080153833A1-20080626-C00102
    Figure US20080153833A1-20080626-C00103
    501/503
    32.
    Figure US20080153833A1-20080626-C00104
    Figure US20080153833A1-20080626-C00105
    Figure US20080153833A1-20080626-C00106
    687/689
    33.
    Figure US20080153833A1-20080626-C00107
    Figure US20080153833A1-20080626-C00108
    Figure US20080153833A1-20080626-C00109
    451/453
    34.
    Figure US20080153833A1-20080626-C00110
    Figure US20080153833A1-20080626-C00111
    Figure US20080153833A1-20080626-C00112
    451/453
    35.
    Figure US20080153833A1-20080626-C00113
    Figure US20080153833A1-20080626-C00114
    Figure US20080153833A1-20080626-C00115
    451/453
    36.
    Figure US20080153833A1-20080626-C00116
    Figure US20080153833A1-20080626-C00117
    Figure US20080153833A1-20080626-C00118
    451/453
    37.
    Figure US20080153833A1-20080626-C00119
    Figure US20080153833A1-20080626-C00120
    Figure US20080153833A1-20080626-C00121
    451/453
    38.
    Figure US20080153833A1-20080626-C00122
    Figure US20080153833A1-20080626-C00123
    Figure US20080153833A1-20080626-C00124
    451/453
    39.
    Figure US20080153833A1-20080626-C00125
    Figure US20080153833A1-20080626-C00126
    Figure US20080153833A1-20080626-C00127
    451/453
    40.
    Figure US20080153833A1-20080626-C00128
    Figure US20080153833A1-20080626-C00129
    Figure US20080153833A1-20080626-C00130
    451/453
    41.
    Figure US20080153833A1-20080626-C00131
    Figure US20080153833A1-20080626-C00132
    Figure US20080153833A1-20080626-C00133
    451/453
    42.
    Figure US20080153833A1-20080626-C00134
    Figure US20080153833A1-20080626-C00135
    Figure US20080153833A1-20080626-C00136
    451/453
  • Indications
  • As has been found, the compounds of formula 1 are characterised by their wide range of applications in the therapeutic field. Particular mention should be made of those applications for which the compounds according to the invention of formula 1 are preferably suited on account of their pharmaceutical efficacy as PDE4 inhibitors. Examples include respiratory or gastrointestinal diseases or complaints, inflammatory diseases of the joints, skin or eyes, cancers, and also diseases of the peripheral or central nervous system.
  • Particular mention should be made of the prevention and treatment of diseases of the airways and of the lung which are accompanied by increased mucus production, inflammations and/or obstructive diseases of the airways. Examples include acute, allergic or chronic bronchitis, chronic obstructive bronchitis (COPD), coughing, pulmonary emphysema, allergic or non-allergic rhinitis or sinusitis, chronic rhinitis or sinusitis, asthma, alveolitis, Farmer's disease, hyperreactive airways, infectious bronchitis or pneumonitis, paediatric asthma, bronchiectases, pulmonary fibrosis, ARDS (acute adult respiratory distress syndrome), bronchial oedema, pulmonary oedema, bronchitis or interstitial pneumonia or pulmonary fibrosis of various causes, such as, for example, as a result of aspiration, inhalation of toxic gases, or bronchitis, pneumonia or interstitial pneumonia as a result of heart failure, irradiation, chemotherapy, cystic fibrosis or mucoviscidosis, or alpha1-antitrypsin deficiency.
  • Also deserving special mention is the treatment of inflammatory diseases of the gastrointestinal tract. Examples include acute or chronic inflammatory changes in gall bladder inflammation, Crohn's disease, ulcerative colitis, inflammatory pseudopolyps, juvenile polyps, colitis cystica profunda, pneumatosis cystoides interstinales, diseases of the bile duct and gall bladder, e.g. gallstones and conglomerates, for the treatment of inflammatory diseases of the joints such as rheumatoid arthritis or inflammatory diseases of the skin and eyes.
  • Preferential mention should also be made of the treatment of cancers. Examples include all forms of acute and chronic leukaemias such as acute lymphatic and acute myeloid leukaemia, chronic lymphatic and chronic myeloid leukaemia, and bone tumours such as osteosarcoma and all types of glioma such as oligodendroglioma and glioblastoma.
  • Preferential mention should also be made of the prevention and treatment of diseases of the peripheral or central nervous system. Examples of these include depression, bipolar or manic depression, acute and chronic anxiety states, schizophrenia, Alzheimer's disease, Parkinson's disease, acute and chronic multiple sclerosis or acute and chronic pain as well as injuries to the brain caused by stroke, hypoxia or craniocerebral trauma.
  • Particularly preferably the present invention relates to the use of compounds of formula 1 for preparing a pharmaceutical composition for the treatment of inflammatory or obstructive diseases of the upper and lower respiratory tract including the lungs, such as for example allergic rhinitis, chronic rhinitis, bronchiectasis, cystic fibrosis, idiopathic pulmonary fibrosis, fibrosing alveolitis, COPD, chronic bronchitis, chronic sinusitis, asthma, Crohn's disease, ulcerative colitis, particularly COPD, chronic bronchitis and asthma.
  • It is most preferable to use the compounds of formula 1 for the treatment of inflammatory and obstructive diseases such as COPD, chronic bronchitis, chronic sinusitis, asthma, Crohn's disease, ulcerative colitis, particularly COPD, chronic bronchitis and asthma.
  • It is also preferable to use the compounds of formula 1 for the treatment of diseases of the peripheral or central nervous system such as depression, bipolar or manic depression, acute and chronic anxiety states, schizophrenia, Alzheimer's disease, Parkinson's disease, acute and chronic multiple sclerosis or acute and chronic pain as well as injuries to the brain caused by stroke, hypoxia or craniocerebral trauma.
  • An outstanding aspect of the present invention is the reduced profile of side effects. This means, within the scope of the invention, being able to administer a dose of a pharmaceutical composition without inducing vomiting, preferably nausea and most preferably malaise in the patient. It is particularly preferable to be able to administer a therapeutically effective quantity of substance without inducing emesis or nausea, at every stage of the disease.
  • Combinations
  • The compounds of formula 1 may be used on their own or in conjunction with other active substances of formula 1 according to the invention. If desired the compounds of formula 1 may also be used in combination with other pharmacologically active substances. It is preferable to use for this purpose active substances selected for example from among betamimetics, anticholinergics, corticosteroids, other PDE4-inhibitors, LTD4-antagonists, EGFR-inhibitors, dopamine agonists, H1-antihistamines, PAF-antagonists and PI3-kinase inhibitors or double or triple combinations thereof, such as for example combinations of
      • betamimetics with corticosteroids, PDE4-inhibitors, EGFR-inhibitors or LTD4-antagonists,
      • anticholinergics with betamimetics, corticosteroids, PDE4-inhibitors, EGFR-inhibitors or LTD4-antagonists,
      • corticosteroids with PDE4-inhibitors, EGFR-inhibitors or LTD4-antagonists
      • PDE4-inhibitors with EGFR-inhibitors or LTD4-antagonists
      • EGFR-inhibitors with LTD4-antagonists.
  • The invention also encompasses combinations of three active substances, each selected from one of the above-mentioned categories of compounds.
  • Formulations
  • In another aspect the invention relates to medicaments for the treatment of respiratory complaints, which contain one or more of the above-mentioned pteridines of formula 1, which are used in combination with one or more additional active substances selected from among the betamimetics, anticholinergics, corticosteroids, PI3-kinase inhibitors, LTD4-antagonists, EGFR-inhibitors, dopamine agonists, H1-antihistamines or PAF-antagonists, preferably betamimetics, anticholinergics or corticosteroids, together or successively, for simultaneous, sequential or separate administration.
  • Suitable forms for administration are for example tablets, capsules, solutions, syrups, emulsions or inhalable powders or aerosols. The content of the pharmaceutically effective compound(s) in each case should be in the range from 0.1 to 90 wt. %, preferably 0.5 to 50 wt. % of the total composition, i.e. in amounts which are sufficient to achieve the dosage range specified hereinafter.
  • The preparations may be administered orally in the form of a tablet, as a powder, as a powder in a capsule (e.g. a hard gelatine capsule), as a solution or suspension. When administered by inhalation the active substance combination may be given as a powder, as an aqueous or aqueous-ethanolic solution or using a propellant gas formulation.
  • Preferably, therefore, pharmaceutical formulations are characterised by the content of one or more compounds of formula 1 according to the preferred embodiments above.
  • It is particularly preferable if the compounds of formula 1 are administered orally, and it is also particularly preferable if they are administered once or twice a day. Suitable tablets may be obtained, for example, by mixing the active substance(s) with known excipients, for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate. The tablets may also comprise several layers.
  • Coated tablets may be prepared accordingly by coating cores produced analogously to the tablets with substances normally used for tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar. To achieve delayed release or prevent incompatibilities the core may also consist of a number of layers. Similarly the tablet coating may consist of a number of layers to achieve delayed release, possibly using the excipients mentioned above for the tablets.
  • Syrups containing the active substances or combinations thereof according to the invention may additionally contain a sweetener such as saccharine, cyclamate, glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • Capsules containing one or more active substances or combinations of active substances may for example be prepared by mixing the active substances with inert carriers such as lactose or sorbitol and packing them into gelatine capsules.
  • Suitable suppositories may be made for example by mixing with carriers provided for this purpose, such as neutral fats or polyethyleneglycol or the derivatives thereof.
  • Excipients which may be used include, for example, water, pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly dispersed silicic acid and silicates), sugars (e.g. cane sugar, lactose and glucose), emulsifiers (e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone) and lubricants (e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate).
  • For oral administration the tablets may, of course, contain, apart from the abovementioned carriers, additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with various additives such as starch, preferably potato starch, gelatine and the like. Moreover, lubricants such as magnesium stearate, sodium lauryl sulphate and talc may be used at the same time for the tabletting process. In the case of aqueous suspensions the active substances may be combined with various flavour enhancers or colourings in addition to the excipients mentioned above.
  • It is also preferred if the compounds of formula 1 are administered by inhalation, particularly preferably if they are administered once or twice a day. For this purpose, the compounds of formula 1 have to be made available in forms suitable for inhalation. Inhalable preparations include inhalable powders, propellant-containing metered-dose aerosols or propellant-free inhalable solutions, which are optionally present in admixture with conventional physiologically acceptable excipients.
  • Within the scope of the present invention, the term propellant-free inhalable solutions also includes concentrates or sterile ready-to-use inhalable solutions. The preparations which may be used according to the invention are described in more detail in the next part of the specification.
  • Inhalable Powders
  • If the active substances of formula 1 are present in admixture with physiologically acceptable excipients, the following physiologically acceptable excipients may be used to prepare the inhalable powders according to the invention: monosaccharides (e.g. glucose or arabinose), disaccharides (e.g. lactose, saccharose, maltose), oligo- and polysaccharides (e.g. dextran), polyalcohols (e.g. sorbitol, mannitol, xylitol), salts (e.g. sodium chloride, calcium carbonate) or mixtures of these excipients with one another. Preferably, mono- or disaccharides are used, while the use of lactose or glucose is preferred, particularly, but not exclusively, in the form of their hydrates. For the purposes of the invention, lactose is the particularly preferred excipient, while lactose monohydrate is most particularly preferred. Methods of preparing the inhalable powders according to the invention by grinding and micronising and by finally mixing the components together are known from the prior art.
  • Propellant-Containing Inhalable Aerosols
  • The propellant-containing inhalable aerosols which may be used according to the invention may contain 1 dissolved in the propellant gas or in dispersed form. The propellant gases which may be used to prepare the inhalation aerosols according to the invention are known from the prior art. Suitable propellant gases are selected from among hydrocarbons such as n-propane, n-butane or isobutane and halohydrocarbons such as preferably fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane. The propellant gases mentioned above may be used on their own or in mixtures thereof. Particularly preferred propellant gases are fluorinated alkane derivatives selected from TG134a (1,1,1,2-tetrafluoroethane), TG227 (1,1,1,2,3,3,3-heptafluoropropane) and mixtures thereof. The propellant-driven inhalation aerosols used within the scope of the use according to the invention may also contain other ingredients such as co-solvents, stabilisers, surfactants, antioxidants, lubricants and pH adjusters. All these ingredients are known in the art.
  • Propellant-Free Inhalable Solutions
  • The compounds of formula 1 according to the invention are preferably used to prepare propellant-free inhalable solutions and inhalable suspensions. Solvents used for this purpose include aqueous or alcoholic, preferably ethanolic solutions. The solvent may be water on its own or a mixture of water and ethanol. The solutions or suspensions are adjusted to a pH of 2 to 7, preferably 2 to 5, using suitable acids. The pH may be adjusted using acids selected from inorganic or organic acids. Examples of particularly suitable inorganic acids include hydrochloric acid, hydrobromic acid, nitric acid, sulphuric acid and/or phosphoric acid. Examples of particularly suitable organic acids include ascorbic acid, citric acid, malic acid, tartaric acid, maleic acid, succinic acid, fumaric acid, acetic acid, formic acid and/or propionic acid etc. Preferred inorganic acids are hydrochloric and sulphuric acids. It is also possible to use the acids which have already formed an acid addition salt with one of the active substances. Of the organic acids, ascorbic acid, fumaric acid and citric acid are preferred. If desired, mixtures of the above acids may also be used, particularly in the case of acids which have other properties in addition to their acidifying qualities, e.g. as flavourings, antioxidants or complexing agents, such as citric acid or ascorbic acid, for example. According to the invention, it is particularly preferred to use hydrochloric acid to adjust the pH.
  • Co-solvents and/or other excipients may be added to the propellant-free inhalable solutions used for the purpose according to the invention. Preferred co-solvents are those which contain hydroxyl groups or other polar groups, e.g. alcohols—particularly isopropyl alcohol, glycols—particularly propyleneglycol, polyethyleneglycol, polypropyleneglycol, glycolether, glycerol, polyoxyethylene alcohols and polyoxyethylene fatty acid esters. The terms excipients and additives in this context denote any pharmacologically acceptable substance which is not an active substance but which can be formulated with the active substance or substances in the pharmacologically suitable solvent in order to improve the qualitative properties of the active substance formulation. Preferably, these substances have no pharmacological effect or, in connection with the desired therapy, no appreciable or at least no undesirable pharmacological effect. The excipients and additives include, for example, surfactants such as soya lecithin, oleic acid, sorbitan esters, such as polysorbates, polyvinylpyrrolidone, other stabilisers, complexing agents, antioxidants and/or preservatives which guarantee or prolong the shelf life of the finished pharmaceutical formulation, flavourings, vitamins and/or other additives known in the art. The additives also include pharmacologically acceptable salts such as sodium chloride as isotonic agents. The preferred excipients include antioxidants such as ascorbic acid, for example, provided that it has not already been used to adjust the pH, vitamin A, vitamin E, tocopherols and similar vitamins or provitamins occurring in the human body. Preservatives may be used to protect the formulation from contamination with pathogens. Suitable preservatives are those which are known in the art, particularly cetyl pyridinium chloride, benzalkonium chloride or benzoic acid or benzoates such as sodium benzoate in the concentration known from the prior art.
  • For the treatment forms described above, ready-to-use packs of a medicament for the treatment of respiratory complaints are provided, containing an enclosed description including for example the words respiratory disease, COPD or asthma, a pteridine and one or more combination partners selected from those described above.

Claims (15)

1. A compound of the formula 1,
Figure US20080153833A1-20080626-C00137
wherein
R1 denotes a saturated or unsaturated, five-, six- or seven-membered heterocyclic ring which may contain a nitrogen atom and another atom selected from among nitrogen, sulphur and oxygen;
R2 denotes a five-, six- or seven-membered heterocyclic ring which may contain a nitrogen atom and another atom selected from among nitrogen, sulphur and oxygen;
R3 denotes a group of formula 1a,
Figure US20080153833A1-20080626-C00138
wherein
A denotes aryl;
X denotes NR3.2, S, O;
Y denotes C1-4-alkylene, substituted by one or more R3.3
m denotes 0, 1, 2;
R3.1 each independently of one another denote C1-6-alkyl, aryl, COOR3.1.1, CONR3.1.1R3.1.2, CN, NR3.1.1R3.1.2, NHCOR3.1.1, OR3.1.1, O—C1-6-haloalkyl, SO2R3.1.1, SO2NH2, halogen, C1-6-haloalkyl, C1-6-alkyl-CONH2, O—C1-6-alkyl-NH2, O—C3-6-cycloalkyl, O—C1-4-alkylene-C3-6-cycloalkyl
R3.1.1 denotes H, C1-6-alkyl;
R3.1.2 denotes H, C1-6-alkyl; or
R3.1 together with two atoms of A forms a 5- or 6-membered carbocyclic ring or a 5- or 6-membered heterocyclic ring which may contain one or more oxygen or nitrogen atoms;
R3.2 denotes H, C1-6-alkyl;
R3.3 each independently of one another denote C1-6-alkyl, C1-6-alkyl-OH, C3-6-cycloalkyl, C3-6-cycloalkyl-OH, O—C1-6-alkyl, COOH, COO—C1-6-alkyl, CONH2;
R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 4, 5 or 6 carbon atoms
or a pharmacologically acceptable salt thereof.
2. A compound of the formula 1, according to claim 1 wherein
R1 denotes a saturated or unsaturated, five- or six-membered heterocyclic ring which may contain a nitrogen atom and another atom selected from among nitrogen and sulphur;
R2 denotes a five- or six-membered heterocyclic ring which may contain one or two nitrogen atoms;
or a pharmacologically acceptable salt thereof.
3. A compound of the formula 1, according to claim 1 wherein
R1 denotes a saturated or unsaturated, five- or six-membered heterocyclic ring which may contain a nitrogen atom and optionally contains a further sulphur atom;
R2 a six-membered heterocyclic ring which contains two nitrogen atoms;
or a pharmacologically acceptable salt thereof.
4. A compounds of formula 1, according to claim 1, wherein
R3 is a group of the formula 1a, wherein
A denotes phenyl;
X denotes NR3.2, S, O;
Y denotes C1-4-alkylene, substituted by one or more R3.3
m denotes 0, 1 or 2;
R3.1 each independently of one another denote C1-4-alkyl, aryl, COOR3.1.1, CONR3.1.1R3.1.2, CN, NR3.1.1R3.1.2, NHCOR3.1.1, OR3.1.1, O—C1-4-haloalkyl, SO2R3.1.1, SO2NH2, halogen;
R3.1.1 denotes H, C1-6-alkyl;
R3.1.2 denotes H, C1-6-alkyl;
R3.2 denotes H, C1-6-alkyl;
R3.3 each independently of one another denote C1-6-alkyl, C1-6-alkyl-OH, C3-6-cycloalkyl, O—C1-6-alkyl, COOH, COO—C1-6-alkyl, CONH2;
R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 5 or 6 carbon atoms
or a pharmacologically acceptable salt thereof.
5. A compound of the formula 1, according to claim 1, wherein
R3 is a group of the formula 1a, wherein
A denotes phenyl;
X denotes NR3.2;
Y denotes C1-2-alkylene, substituted by one or more R3.3
m denotes 0, 1 or 2;
R3.1 each independently of one another denote C1-4-alkyl, aryl, COOH, COO—C1-4-alkyl, CONH2, CN, NH2, NHCO—C1-4-alkyl, OH, O—C1-4-alkyl, O—C1-4-haloalkyl, SO2—C1-4-alkyl, SO2NH2, halogen;
R3.2 denotes H, C1-4-alkyl;
R3.3 each independently of one another denote C1-4-alkyl, C1-4-alkyl-OH, C3-6-cycloalkyl, O—C1-4-alkyl, COOH, COO—C1-4-alkyl, CONH2;
R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 5 or 6 carbon atoms
or a pharmacologically acceptable salt thereof.
6. A compound of the formula 1, according to claim 1, wherein
R3 is a group of the formula 1a, wherein
A denotes phenyl;
X denotes NR3.2;
Y denotes C1-2-alkylene, substituted by one or more R3.3
m denotes 0, 1 or 2;
R3.1 each independently of one another denote methyl, ethyl, propyl, Ph, COOH, COOMe, CONH2, CN, NH2, NHCOMe, OH, OMe, OEt, OCF3, OCHF2, SO2Me, SO2NH2, F, Cl, Br;
R3.2 denotes H, C1-4-alkyl;
R3.3 each independently of one another denote methyl, ethyl, propyl, butyl, CH2OH, CH2CH2OH, C(CH2)2OH, cyclopropyl, COOH, COOMe, COOEt, COOPr, CONH2, OMe, OEt, OPr;
R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3, 5 or 6 carbon atoms
or a pharmacologically acceptable salt thereof.
7. A compound of the formula 1, according to claim 1, wherein
R3 is a group of the formula 1a, wherein
A denotes phenyl;
X denotes NR3.2;
Y denotes C1-2-alkylene, substituted by one or more R3.3
m denotes 0, 1 or 2;
R3.1 each independently of one another denote methyl, iso-propyl, OMe, F, Cl, Br, CN, R3.2 denotes H;
R3.3 each independently of one another denote methyl, cyclopropyl, CH2OH, CH2CH2OH, C(CH2)2OH, COOH, COOMe, CONH2, OMe,
R3.3 together with one or two carbon atoms of Y forms a carbocyclic ring with 3 carbon atoms
or a pharmacologically acceptable salt thereof.
8. A pharmaceutical composition comprising a compound of the formula 1, in accordance with claim 1, and a pharmaceutically acceptable carrier.
9. A method for treating a disease which can be treated by inhibiting the PDE4 enzyme which comprises administering a therapeutically effective amount of a compound of the formula 1 according to claim 1.
10. A method for treating respiratory or gastrointestinal complaints or diseases, and also inflammatory diseases of the joints, skin or eyes, cancers, as well as diseases of the peripheral or central nervous system which comprises administering a therapeutically effective amount of a compound of the formula 1 according to claim 1.
11. A method for treating respiratory or pulmonary diseases which are accompanied by increased mucus production, inflammation and/or obstructive diseases of the airways which comprises administering a therapeutically effective amount of a compound of the formula 1 according to claim 1.
12. A method for treating an inflammatory disease of the gastrointestinal tract which comprises administering a therapeutically effective amount of a compound of the formula 1 according to claim 1
13. A method for treating COPD, chronic sinusitis, asthma, Crohn's disease or ulcerative colitis which comprises administering a therapeutically effective amount of a compound of the formula 1 according to claim 1.
14. A method for treating depression, bipolar or manic depression, acute and chronic anxiety states, schizophrenia, Alzheimer's disease, Parkinson's disease, acute and chronic multiple sclerosis or acute and chronic pain as well as injuries to the brain caused by stroke, hypoxia or craniocerebral trauma which comprises administering a therapeutically effective amount of a compound of the formula 1 according to claim 1.
15. A method for treating acute lymphatic and acute myeloid leukaemia, chronic lymphatic and chronic myeloid leukaemia, osteosarcoma and gliomas which comprises administering a therapeutically effective amount of a compound of the formula 1 according to claim 1.
US12/031,396 2004-11-29 2008-02-14 Substituted pteridines for the treatment of inflammatory diseases Active US7648988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/031,396 US7648988B2 (en) 2004-11-29 2008-02-14 Substituted pteridines for the treatment of inflammatory diseases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004057594A DE102004057594A1 (en) 2004-11-29 2004-11-29 Substitute pteridine for the treatment of inflammatory diseases
DE102004057594 2004-11-29
US11/282,125 US20060116370A1 (en) 2004-11-29 2005-11-18 Substituted pteridines for the treatment of inflammatory diseases
US12/031,396 US7648988B2 (en) 2004-11-29 2008-02-14 Substituted pteridines for the treatment of inflammatory diseases

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/282,125 Continuation US20060116370A1 (en) 2004-11-29 2005-11-18 Substituted pteridines for the treatment of inflammatory diseases

Publications (2)

Publication Number Publication Date
US20080153833A1 true US20080153833A1 (en) 2008-06-26
US7648988B2 US7648988B2 (en) 2010-01-19

Family

ID=36337362

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/282,125 Abandoned US20060116370A1 (en) 2004-11-29 2005-11-18 Substituted pteridines for the treatment of inflammatory diseases
US12/031,396 Active US7648988B2 (en) 2004-11-29 2008-02-14 Substituted pteridines for the treatment of inflammatory diseases

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/282,125 Abandoned US20060116370A1 (en) 2004-11-29 2005-11-18 Substituted pteridines for the treatment of inflammatory diseases

Country Status (9)

Country Link
US (2) US20060116370A1 (en)
EP (1) EP1819708B1 (en)
JP (1) JP4991556B2 (en)
AR (1) AR054990A1 (en)
AT (1) ATE540949T1 (en)
CA (1) CA2587266C (en)
DE (1) DE102004057594A1 (en)
TW (1) TW200631583A (en)
WO (1) WO2006058868A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070265444A1 (en) * 2005-08-17 2007-11-15 Dan Stoicescu Novel Inhibitors of Folic Acid-Dependent Enzymes
US20100160329A1 (en) * 2007-02-14 2010-06-24 Dan Stoicescu Use of condensed pyrimidine derivatives for the treatment of autoimmune and inflammatory diseases

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057645A1 (en) * 2004-11-29 2006-06-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg New substituted pteridine compounds, useful as phosphodiesterase 4 inhibitors for treating e.g. inflammatory diseases, cancer, asthma, ulcerative colitis, depression and schizophrenia
DE102004057618A1 (en) * 2004-11-29 2006-06-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg Substituted pteridines for the treatment of inflammatory diseases
CA2652840C (en) * 2006-05-24 2014-09-09 Boehringer Ingelheim International Gmbh 2-piperazino-6-chloro-pteridines as pde4-inhibitors for the treatment of inflammatory diseases
EP2361242B1 (en) 2008-10-17 2018-08-01 Oryzon Genomics, S.A. Oxidase inhibitors and their use
EP2389362B1 (en) 2009-01-21 2019-12-11 Oryzon Genomics, S.A. Phenylcyclopropylamine derivatives and their medical use
CN102639496B (en) 2009-09-25 2014-10-29 奥瑞泽恩基因组学股份有限公司 Lysine specific demethylase-1 inhibitors and their use
US8946296B2 (en) 2009-10-09 2015-02-03 Oryzon Genomics S.A. Substituted heteroaryl- and aryl-cyclopropylamine acetamides and their use
US9186337B2 (en) 2010-02-24 2015-11-17 Oryzon Genomics S.A. Lysine demethylase inhibitors for diseases and disorders associated with Hepadnaviridae
US9616058B2 (en) 2010-02-24 2017-04-11 Oryzon Genomics, S.A. Potent selective LSD1 inhibitors and dual LSD1/MAO-B inhibitors for antiviral use
EP2560947B1 (en) 2010-04-19 2016-10-12 Oryzon Genomics, S.A. Lysine specific demethylase-1 inhibitors and their use
AU2011284688B2 (en) 2010-07-29 2015-07-16 Oryzon Genomics S.A. Arylcyclopropylamine based demethylase inhibitors of LSD1 and their medical use
EP2598480B1 (en) 2010-07-29 2019-04-24 Oryzon Genomics, S.A. Cyclopropylamine derivatives useful as lsd1 inhibitors
WO2012045883A1 (en) 2010-10-08 2012-04-12 Oryzon Genomics S.A. Cyclopropylamine inhibitors of oxidases
WO2012072713A2 (en) 2010-11-30 2012-06-07 Oryzon Genomics, S.A. Lysine demethylase inhibitors for diseases and disorders associated with flaviviridae
WO2012107498A1 (en) 2011-02-08 2012-08-16 Oryzon Genomics S.A. Lysine demethylase inhibitors for myeloproliferative disorders
WO2012156531A2 (en) * 2011-05-19 2012-11-22 Oryzon Genomics, S.A. Lysine demethylase inhibitors for inflammatory diseases or conditions
BR112014009306B1 (en) 2011-10-20 2021-07-20 Oryzon Genomics S.A. (HETERO)ARIL CYCLOPROPILAMINE COMPOUNDS AS LSD1 INHIBITORS
CN107417549A (en) 2011-10-20 2017-12-01 奥莱松基因组股份有限公司 As LSD1 inhibitor(It is miscellaneous)Aryl cyclopropyl amines
BR112020003973A2 (en) 2017-10-23 2020-09-01 Boehringer Ingelheim International Gmbh combination of active agents for the treatment of progressive fibrous interstitial lung diseases (pf-ild)
AR117169A1 (en) 2018-11-28 2021-07-14 Bayer Ag (TIO) PYRIDAZINE AMIDES AS FUNGICIDE COMPOUNDS
JP2023538713A (en) 2020-05-06 2023-09-11 バイエル、アクチエンゲゼルシャフト Pyridine(thio)amide as a fungicidal compound
CN115605462A (en) 2020-05-12 2023-01-13 拜耳公司(De) Triazine and pyrimidine (thio) amides as fungicidal compounds
EP4153566A1 (en) 2020-05-19 2023-03-29 Bayer CropScience Aktiengesellschaft Azabicyclic(thio)amides as fungicidal compounds
CN115697059A (en) 2020-05-27 2023-02-03 拜耳公司 Active compound combinations
WO2023078915A1 (en) 2021-11-03 2023-05-11 Bayer Aktiengesellschaft Bis(hetero)aryl thioether (thio)amides as fungicidal compounds
CA3236757A1 (en) 2021-12-09 2023-06-15 Boehringer Ingelheim International Gmbh New therapeutic combinations for the treatment of progressive fibrosing interstitial lung diseases
US20230181590A1 (en) 2021-12-09 2023-06-15 Boehringer Ingelheim International Gmbh New oral pharmaceutical composition and dose regimen for the therapy of progressive fibrosing interstitial lung diseases
CN115260016B (en) * 2022-08-30 2023-11-24 苏州爱玛特生物科技有限公司 Synthesis method of phenylcycloalkyl derivative
WO2024068386A1 (en) 2022-09-28 2024-04-04 Boehringer Ingelheim International Gmbh Use of biomarkers in the treatment of fibrotic conditions with a pde4b-inhibitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2940972A (en) * 1957-06-27 1960-06-14 Thomae Gmbh Dr K Tri-and tetra-substituted pteridine derivatives
US4560685A (en) * 1984-06-18 1985-12-24 Dr. Karl Thomae Gesellschaft Mit Beschrankter Haftung 2-Piperazino-pteridines useful as antithrombotics and antimetastatics
US20050054653A1 (en) * 2002-01-23 2005-03-10 Faustus Forschungs Cie. Translational Cancer Research Gmbh Pteridine derivatives, method of producing them and their application
US20060116373A1 (en) * 2004-11-29 2006-06-01 Boehringer Ingelheim International Gmbh Substituted pteridines for the treatment of inflammatory diseases
US20060116371A1 (en) * 2004-11-29 2006-06-01 Boehringer Ingelheim International Gmbh Substituted pteridines for the treatment of inflammatory diseases
US20060116372A1 (en) * 2004-11-29 2006-06-01 Boehringer Ingelheim International Gmbh Substituted pteridines for the treatment of inflammatory diseases
US7205408B2 (en) * 2001-01-22 2007-04-17 Smithkline Beecham, P.L.C. Quinolines and nitrogenated derivative thereof substituted in 4-position by a piperidine-containing moiety and their use as antibacterial agents

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3323932A1 (en) 1983-07-02 1985-01-10 Dr. Karl Thomae Gmbh, 7950 Biberach NEW 2-PIPERAZINO-PTERIDINE, METHOD FOR THE PRODUCTION THEREOF AND MEDICINAL PRODUCTS CONTAINING THIS COMPOUND
DE3445298A1 (en) * 1984-12-12 1986-06-12 Dr. Karl Thomae Gmbh, 7950 Biberach NEW PTERIDINE, METHOD FOR THE PRODUCTION AND USE THEREOF AS INTERMEDIATE PRODUCTS OR AS A MEDICINAL PRODUCT
DE3540952C2 (en) 1985-11-19 1997-08-14 Thomae Gmbh Dr K 2-Piperazino-pteridines, process for their preparation and medicaments containing these compounds
ES2229803T3 (en) 1998-12-28 2005-04-16 4 Aza Bioscience Nv IMMUNOSUPRESSIVE EFFECTS OF PTERIDINE DERIVATIVES.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2940972A (en) * 1957-06-27 1960-06-14 Thomae Gmbh Dr K Tri-and tetra-substituted pteridine derivatives
US4560685A (en) * 1984-06-18 1985-12-24 Dr. Karl Thomae Gesellschaft Mit Beschrankter Haftung 2-Piperazino-pteridines useful as antithrombotics and antimetastatics
US7205408B2 (en) * 2001-01-22 2007-04-17 Smithkline Beecham, P.L.C. Quinolines and nitrogenated derivative thereof substituted in 4-position by a piperidine-containing moiety and their use as antibacterial agents
US20050054653A1 (en) * 2002-01-23 2005-03-10 Faustus Forschungs Cie. Translational Cancer Research Gmbh Pteridine derivatives, method of producing them and their application
US20060116373A1 (en) * 2004-11-29 2006-06-01 Boehringer Ingelheim International Gmbh Substituted pteridines for the treatment of inflammatory diseases
US20060116371A1 (en) * 2004-11-29 2006-06-01 Boehringer Ingelheim International Gmbh Substituted pteridines for the treatment of inflammatory diseases
US20060116372A1 (en) * 2004-11-29 2006-06-01 Boehringer Ingelheim International Gmbh Substituted pteridines for the treatment of inflammatory diseases

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070265444A1 (en) * 2005-08-17 2007-11-15 Dan Stoicescu Novel Inhibitors of Folic Acid-Dependent Enzymes
US20080207652A1 (en) * 2005-08-17 2008-08-28 Dan Stoicescu Novel inhibitors of folic acid-dependent enzymes
US20080214550A1 (en) * 2005-08-17 2008-09-04 Dan Stoicescu Novel inhibitors of folic acid-dependent enzymes
US7718660B2 (en) * 2005-08-17 2010-05-18 Dan Stoicescu Inhibitors of folic acid-dependent enzymes
US20100249141A1 (en) * 2005-08-17 2010-09-30 Dan Stoicescu Novel inhibitors of folic acid-dependent enzymes
US7875716B2 (en) 2005-08-17 2011-01-25 Dan Stoicescu Inhibitors of folic acid-dependent enzymes
US8518954B2 (en) 2005-08-17 2013-08-27 Dan Stoicescu Inhibitors of folic acid-dependent enzymes
US20100160329A1 (en) * 2007-02-14 2010-06-24 Dan Stoicescu Use of condensed pyrimidine derivatives for the treatment of autoimmune and inflammatory diseases
US8247422B2 (en) 2007-02-14 2012-08-21 Dan Stoicescu Use of condensed pyrimidine derivatives for the treatment of rheumatoid arthritis

Also Published As

Publication number Publication date
JP4991556B2 (en) 2012-08-01
WO2006058868A3 (en) 2006-08-03
US20060116370A1 (en) 2006-06-01
ATE540949T1 (en) 2012-01-15
TW200631583A (en) 2006-09-16
JP2008521773A (en) 2008-06-26
WO2006058868A8 (en) 2007-01-18
CA2587266A1 (en) 2006-06-08
US7648988B2 (en) 2010-01-19
CA2587266C (en) 2013-05-14
EP1819708B1 (en) 2012-01-11
AR054990A1 (en) 2007-08-01
DE102004057594A1 (en) 2006-06-08
EP1819708A2 (en) 2007-08-22
WO2006058868A2 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US7648988B2 (en) Substituted pteridines for the treatment of inflammatory diseases
US7750009B2 (en) Substituted pteridines for the treatment of inflammatory diseases
US7718654B2 (en) Substituted pteridines for the treatment of inflammatory diseases
US7550472B2 (en) Substituted pteridines for the treatment of inflammatory diseases
US20100234347A1 (en) Substituted Pteridines substituted with a Four-Membered Heterocycle
US8877756B2 (en) Substituted pteridines
US20070015749A1 (en) Use of Substituted Pteridines for the treatment of respiratory diseases
US20050159414A1 (en) Use of substituted pyrimido[5,4-D]pyrimidines for the treatment of respiratory diseases
US7723341B2 (en) Compounds for the treatment of inflammatory diseases

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12