US20080151190A1 - Corneal measurment apparatus and a method of using the same - Google Patents

Corneal measurment apparatus and a method of using the same Download PDF

Info

Publication number
US20080151190A1
US20080151190A1 US11/614,518 US61451806A US2008151190A1 US 20080151190 A1 US20080151190 A1 US 20080151190A1 US 61451806 A US61451806 A US 61451806A US 2008151190 A1 US2008151190 A1 US 2008151190A1
Authority
US
United States
Prior art keywords
light
cornea
apertures
slit mask
subsystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/614,518
Inventor
Joseph R. Bentley
Ming Lai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bausch and Lomb Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/614,518 priority Critical patent/US20080151190A1/en
Assigned to BAUSCH & LOMB INCORPORATED reassignment BAUSCH & LOMB INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENTLEY, JOSEPH R., LAI, MING
Assigned to CREDIT SUISSE reassignment CREDIT SUISSE SECURITY AGREEMENT Assignors: B & L DOMESTIC HOLDINGS CORP., B&L CRL INC., B&L CRL PARTNERS L.P., B&L FINANCIAL HOLDINGS CORP., B&L MINORITY DUTCH HOLDINGS LLC, B&L SPAF INC., B&L VPLEX HOLDINGS, INC., BAUSCH & LOMB CHINA, INC., BAUSCH & LOMB INCORPORATED, BAUSCH & LOMB INTERNATIONAL INC., BAUSCH & LOMB REALTY CORPORATION, BAUSCH & LOMB SOUTH ASIA, INC., BAUSCH & LOMB TECHNOLOGY CORPORATION, IOLAB CORPORATION, RHC HOLDINGS, INC., SIGHT SAVERS, INC., WILMINGTON MANAGEMENT CORP., WILMINGTON PARTNERS L.P., WP PRISM, INC.
Priority to US11/955,001 priority patent/US7648241B2/en
Priority to PCT/US2007/087747 priority patent/WO2008079766A1/en
Priority to ES07855209.8T priority patent/ES2547278T3/en
Priority to PL07855209T priority patent/PL2101631T3/en
Priority to EP07855209.8A priority patent/EP2101631B1/en
Publication of US20080151190A1 publication Critical patent/US20080151190A1/en
Assigned to BAUSCH & LOMB INCORPORATED reassignment BAUSCH & LOMB INCORPORATED RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1005Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/13Ophthalmic microscopes
    • A61B3/135Slit-lamp microscopes

Definitions

  • the present invention relates to corneal measurement apparatus, and a method of corneal measurement, and more particularly to an apparatus and method for projecting a plurality of slits of light for performing corneal measurements.
  • Ophthalmologists and optometrists would like to have an accurate representation of subjects' eye.
  • Such representations include, for example, one or more of a representation of a subject's corneal anterior surface, posterior surface, and corneal thickness and density, as well as anterior chamber profiles. This information may be used to prescribe contact lenses and eye glasses, and to reshape the cornea by surgical procedures or to perform other surgical procedures. Since it is not comfortable to measure these data with physical contact, remote sensing techniques are preferably used to perform the measurements.
  • a device that measures only the front surface of a cornea is commonly referred to as corneal topographer, a device that measures the front and back surfaces, and the stroma of the eye is referred to as a corneal profiler, and a device that measures anterior chamber profiles is called an anterior chamber analyzer.
  • One common technique for obtaining corneal measurement information includes projecting narrow bands of light (commonly referred to as slits or slit beams) onto a patient's cornea at multiple locations across a cornea. For each of the slits, after the light in the slit has been scattered by the cornea, an image of the light is obtained.
  • slits narrow bands of light
  • an aperture of appropriate shape and size, and a lens are placed in the path of light from a light source such that the light passing through the aperture forms a slit of light on a subject's cornea.
  • a single aperture is translated such that the light passing through the aperture at selected times forms the multiple slits.
  • a problem with such apparatus is that it is difficult to accurately position an aperture to form each of the slits, and over time (after many patients) it is difficult to know the position of the slits accurately so that an accurate recreation of a cornea can be obtained.
  • aspects of the present invention are directed to an apparatus for measuring a subject's cornea, comprising (A.) an illumination projection subsystem comprising a light source, (B.) a mask subsystem disposed in a path of light from the light source, comprising (i) a first slit mask defining a plurality of apertures, (ii) a second slit mask defining a selection aperture, (iii) a translation apparatus adapted to translate the second slit mask, the translation apparatus and the second slit mask being configured and arranged such that by translating the selection aperture, portions of the light can be selectively transmitted through ones of the plurality of apertures toward the cornea, sequentially, (C.) an imaging element configured and arranged to image the plurality of apertures onto the cornea, and (D.) an image capture subsystem arranged to capture images of the portions of light after the light impinges on the cornea.
  • the corneal measurement apparatus further comprises (E.) a second illumination projection subsystem comprising a second light source, (F.) a second mask subsystem disposed in a path of second light from the second light source, comprising (i) a third slit mask defining a second plurality of apertures, (ii) a fourth slit mask defining a second selection aperture, (iii) a second translation apparatus adapted to translate the fourth slit mask, the second translation apparatus and the fourth slit mask being configured and arranged such that by translating the second selection aperture, portions of the second light can be selectively transmitted through each of the second plurality of apertures toward the cornea, and (G.) a second imaging element configured and arranged to image the second plurality of apertures onto the cornea, the image capture subsystem arranged to capture images of the portions of second light after the light impinges on the cornea.
  • a second illumination projection subsystem comprising a second light source
  • a second mask subsystem disposed in a path of second light from the second light
  • the second slit mask is disposed upstream of the first slit mask.
  • the illumination projection subsystem is configured and arranged to project light from the light source through each of the plurality of apertures defined in first slit mask without moving the illumination projection subsystem.
  • the light source may comprise at least one LED arranged to project light in the path of light. 14 .
  • the light source comprises at least one LED.
  • the light source consists of only a single LED (e.g., a high power LED).
  • the corneal measurement apparatus further comprises a condenser lens configured and arranged to gather light from the light source and project the light in the path of light.
  • the imaging element and condenser lens may configured and arranged to operate as a condenser-projector system.
  • the imaging element and the first slit mask may be disposed in a Scheimflug arrangement to obtain a plane of slit images at the cornea.
  • the plurality of apertures is disposed in a single plane.
  • the plurality of apertures may be formed on a single substrate.
  • the plurality of apertures may be defined by openings in an opaque layer deposited on the substrate.
  • the corneal measurement apparatus may further comprise an image processing subsystem coupled to the image capture subsystem, the image processing subsystem being adapted to convert the images into a single representation of the cornea.
  • the corneal measurement apparatus may further comprise a subject positioning apparatus adapted to maintain the subject's cornea in a location.
  • Another aspect of the invention is directed to a method of facilitating measurement of a subject's cornea, comprising (A.) providing a plurality of apertures, (B.) projecting light toward the plurality of apertures, (C.) translating a selection aperture while maintaining the plurality of apertures in fixed locations to selectively transmit a portion of the light toward the cornea, the portion of the light passing through the selection aperture and a selected one of the plurality of apertures and (D.) imaging the portions of light after the light impinges on the cornea.
  • the light passes through the selection aperture prior to passing through any of the plurality of apertures.
  • the step of projecting light comprises projecting light from at least one LED.
  • the method may further comprise processing the images to convert the images into a single representation of the cornea.
  • FIG. 1 is a schematic plan view of an example of a corneal measurement apparatus according to aspects of the present invention
  • FIG. 2 is an expanded plan view showing further details of one arm of the corneal measurement apparatus of FIG. 1 ;
  • FIG. 3 is an illustration of an example of an embodiment of a first slit mask defining a plurality of apertures viewed along line 3 - 3 of FIG. 2 ;
  • FIG. 4 is an illustration of an example of an embodiment of a second slit mask defining a selection aperture viewed along line 4 - 4 of FIG. 2 .
  • FIG. 1 is a schematic plan view of an embodiment of a corneal measurement apparatus 10 according to aspects of the present invention.
  • the corneal measurement apparatus is adapted to measure a subject's cornea C.
  • the corneal measurement apparatus comprises two illumination projection systems 13 a, 13 b (including light sources 12 a and 12 b , respectively), two mask subsystems 100 a , 100 b , and an image capture subsystem 50 .
  • Mask subsystems 100 a and 100 b are disposed in the paths of light from illumination projection systems 13 a and 13 b , respectively.
  • Illumination projection system 13 a and mask subsystem 100 a are in a first arm 75 a of the corneal measurement apparatus and illumination projection system 13 b and mask subsystem 100 b are in a second arm 75 b of the corneal measurement apparatus.
  • the first arm projects slits of light onto one half of the cornea
  • the second arm projects slits of light onto the other half of the cornea.
  • the path of the projects slits of light may be at a forty-five degree angle to the visual axis of the subject's eye.
  • the illustrated embodiment of a measurement apparatus has two arms, in other embodiments, a measurement apparatus may only have a single arm.
  • the arm comprises a first slit mask 130 defining a plurality of apertures 132 1 and a second slit mask 120 defining a selection aperture 122 .
  • the arm also comprises a translation apparatus 110 adapted to translate the second mask.
  • Second slit mask 120 is configured and arranged such that, by appropriately positioning the second slit mask using the translation apparatus, selection slit 122 selectively transmits portions of the light from source 12 a such that light traveling through a selected one of the plurality of apertures 132 1 impinges on cornea C.
  • Ray R demonstrates that the selection aperture 122 transmits light to cornea C from a selected one 132 , of the plurality of apertures, when selection aperture 122 is appropriately aligned with the selected one 132 1 of the plurality of apertures. Subsequently, by translating second slit mask 122 , the selection aperture can be positioned such that light from another of the plurality of apertures 132 n can be transmitted to cornea C. Such positioning of the selection aperture can be repeated such that light from each of the plurality of apertures or light from any suitable ones of the plurality of apertures 132 can be transmitted to cornea C. It will be appreciated that, on portions of the first slit mask and the second slit mask that are outside of the apertures disposed thereon, the slit masks are opaque or substantially opaque to light from source 12 a.
  • the second slit mask 120 i.e., the mask including the selection aperture
  • the first slit mask i.e., the mask including the plurality of apertures
  • the second slit mask 120 can be disposed upstream of the second slit mask.
  • light sources 12 a and 12 b generate the light in which a corresponding mask subsystem is disposed.
  • the illumination projection system projects light from the light sources in a cone of light L to permit light to be projected through each of the apertures defined in first slit mask 130 without moving the source or any other component in the illumination projection system. That is to say that, in some embodiments, only the second slit mask 120 is moved. The movement occurs to expose a given one of the plurality of apertures on the second mask to light from a light source.
  • the plurality of apertures 132 that provide the slits of light can remain fixed in a given location during the acquisition of the plurality of slit images used to produce a representation of a subject's eye.
  • the source is monochromatic and suitably bright.
  • an LED or a plurality of LEDs may be used to generate the light.
  • a high power LED has been found useful.
  • a superluminescent LED is used.
  • An aspect of the invention is directed to a single high power LED configured and arranged to be capable of illuminating the plurality of apertures 132 as the selection aperture is moved.
  • the projection subsystem include a conventional condenser-projector system.
  • condenser lenses 14 a, 14 b gather light from sources 12 a and 12 b respectively
  • projector lenses 18 a , 18 b are configured and arranged such that the condenser lenses images sources 12 a and 12 b onto the projector lenses 18 a , 18 b , respectively.
  • the projector lenses are also configured and arranged to image the apertures 132 onto cornea C. It is typically preferable that the slits of light are not convergent or divergent between the first slit mask and the cornea. However, some convergence or divergence may be present.
  • the projectors 18 a , 18 b are lenses, any suitable imaging element may be used (e.g., a mirror, holographic element).
  • the condenser lenses 14 a, 14 b are illustrated as lenses, any suitable imaging element may be used (e.g., a mirror, holographic element). In some embodiments, the condenser lens may be omitted.
  • the projection system components and first slit mask 130 may be disposed in a Scheimflug arrangement to obtain a plane of slit images at cornea C. Also, one or more folding mirrors 16 a and 16 b may be included to direct light onto the cornea, and to achieve an appropriate package shape for a housing (not shown) of the apparatus.
  • Slit mask 130 includes a plurality of apertures 132 1 - 132 n .
  • the slits are of a same width W and length L and are evenly spaced apart; however, aspects of the invention are not so limited.
  • apertures may be provided on the slit mask in first arm 75 a (shown in FIG. 1 ) so that twenty slits of light are projected onto a subject's cornea and twenty images are obtained using light from the first arm 75 a of the measurement apparatus 10 (shown in FIG. 1 ). Accordingly, when combined with twenty images from second arm 75 b (shown in FIG. 1 ) a total of 40 slit images of a subject's eye are obtained. It will be appreciated that any suitable number of apertures may be provided on the first slit mask in each of mask subsystems 100 a , 100 b (shown in FIG. 1 ).
  • first slit mask 130 may be formed on a substrate 135 of soda lime glass or BK7 glass.
  • An opaque layer may be deposited on a surface of the substrate.
  • an opaque metal layer may be deposited on the substrate, and the apertures may be subsequently formed by etching a portion of the metal layer to expose the substrate.
  • Each of the apertures is sized and shaped such that in a given measurement apparatus a slit of light is projected onto a cornea in a conventional manner.
  • the apertures are rectangular in shape. However, any suitable shape may be employed. In some embodiments, it may be desirable to apply and antireflective coating to one or both of the surfaces of a substrate.
  • the plurality of apertures 132 are shown as being formed on a single substrate (and in a single plane) any suitable construction may be used in which the apertures are formed at fixed locations relative to one another.
  • Slit mask 120 includes a single selection aperture formed on a substrate 125 .
  • the selection aperture is sized to permit light to pass from one of the plurality of apertures to cornea C (shown in FIG. 1 ).
  • the size of the selection aperture is larger in width and length than any of the plurality of apertures.
  • the selection aperture is also typically small enough such that light is only permitted to pass through a single one of the plurality of apertures and onto cornea C.
  • an aperture portion 124 (typically half the length of the selection aperture) is also provided.
  • the aperture portion is used for alignment of the measurement apparatus relative to a subject's cornea on whom a corneal measurement is to be made.
  • the aperture portion is aligned with one of the plurality of apertures on the first slit mask, such that light is projected though only a portion of the one of the plurality of apertures and a portion of a slit of light is projected onto the middle of a subject's eye by the first arm 75 a (shown in FIG. 1 ) (e.g., an upper half of a slit is formed at the middle of the subject's eye by the first arm).
  • Another, second slit mask 120 also having an aperture portion is disposed in the other arm 75 b (shown in FIG. 1 ). Similar, to the aperture portion in the first arm, the aperture portion in the second arm is aligned with one of the plurality of apertures on the first slit mask of the second arm. Again, the aperture is arranged to project light onto the middle of the subject's cornea (e.g., a lower half of an aperture is formed at the middle of the subject's eye).
  • the subject's cornea is aligned with the measurement apparatus, by positioning either the subject or the machine such that the two portions of the slits of light align to form a single, full-length slit of light (e.g., the upper half of the slit of light from the first arm aligns with the lower half of the slit of light from the second arm) to form a single, full slit of light.
  • the second slit masks 120 in the first and second arm
  • the image capture subsystem 50 is arranged to be able to capture an image of light projected for each of the plurality of apertures after the light impinges on the cornea. It will be appreciated that, to capture of the images to obtain a representation of a cornea, each of the plurality of apertures is selected sequentially by appropriately aligning each aperture with the selection aperture as described above.
  • Image capture subsystem 50 may be any suitable conventional imaging device, such as a CCD camera.
  • Translation apparatus 110 may comprise any suitable mechanism for translating the second mask 120 to project slits of light form the plurality of apertures 132 on the first slit mask 130 to cornea C.
  • the translation apparatus may comprise a linear translation motor capable of the moving the second slit mask in a direction perpendicular to the length L of the plurality of apertures 132 .
  • Corneal measurement apparatus 10 also includes an image processing subsystem to convert the images into a single representation of the cornea. Techniques for reconstructing a representation of a subject's cornea once the slit images are obtained are well known and are not described further here. Projection systems as described herein may be used with cornea topographers, cornea profiler apparatus and anterior chamber analyzers.
  • Corneal measurement apparatus 10 includes a subject positioning apparatus 60 adapted to maintain a subject's cornea in a location.
  • the apparatus may be provided with a chin rest and/or a forehead rest which will fix the location of the subject's head.

Abstract

A corneal measurement apparatus for measuring a subject's cornea, comprising (A.) an illumination projection subsystem comprising a light source (B.) a mask subsystem disposed in a path of light from the light source, comprising (i) a first slit mask defining a plurality of apertures, (ii) a second slit mask defining a selection aperture, (iii) a translation apparatus adapted to translate the second mask, the translation apparatus and the second slit mask being configured and arranged such that by translating the selection slit, portions of the light can be selectively transmitted through each of the plurality of apertures toward the cornea, (C.) an imaging element configured and arranged to image the plurality of apertures onto the cornea, and (D.) an image capture subsystem arranged to capture images of the portions of light after the light impinges on the cornea.

Description

    FIELD OF INVENTION
  • The present invention relates to corneal measurement apparatus, and a method of corneal measurement, and more particularly to an apparatus and method for projecting a plurality of slits of light for performing corneal measurements.
  • BACKGROUND OF THE INVENTION
  • Ophthalmologists and optometrists would like to have an accurate representation of subjects' eye. Such representations include, for example, one or more of a representation of a subject's corneal anterior surface, posterior surface, and corneal thickness and density, as well as anterior chamber profiles. This information may be used to prescribe contact lenses and eye glasses, and to reshape the cornea by surgical procedures or to perform other surgical procedures. Since it is not comfortable to measure these data with physical contact, remote sensing techniques are preferably used to perform the measurements. A device that measures only the front surface of a cornea is commonly referred to as corneal topographer, a device that measures the front and back surfaces, and the stroma of the eye is referred to as a corneal profiler, and a device that measures anterior chamber profiles is called an anterior chamber analyzer.
  • One common technique for obtaining corneal measurement information includes projecting narrow bands of light (commonly referred to as slits or slit beams) onto a patient's cornea at multiple locations across a cornea. For each of the slits, after the light in the slit has been scattered by the cornea, an image of the light is obtained.
  • To project a slit of light, an aperture of appropriate shape and size, and a lens are placed in the path of light from a light source such that the light passing through the aperture forms a slit of light on a subject's cornea. Typically, to project slits at each of multiple locations across the cornea, a single aperture is translated such that the light passing through the aperture at selected times forms the multiple slits. One example of such a corneal measurement apparatus is presented in U.S. Pat. No. 5,512,966 to Snook.
  • A problem with such apparatus is that it is difficult to accurately position an aperture to form each of the slits, and over time (after many patients) it is difficult to know the position of the slits accurately so that an accurate recreation of a cornea can be obtained.
  • SUMMARY
  • Aspects of the present invention are directed to an apparatus for measuring a subject's cornea, comprising (A.) an illumination projection subsystem comprising a light source, (B.) a mask subsystem disposed in a path of light from the light source, comprising (i) a first slit mask defining a plurality of apertures, (ii) a second slit mask defining a selection aperture, (iii) a translation apparatus adapted to translate the second slit mask, the translation apparatus and the second slit mask being configured and arranged such that by translating the selection aperture, portions of the light can be selectively transmitted through ones of the plurality of apertures toward the cornea, sequentially, (C.) an imaging element configured and arranged to image the plurality of apertures onto the cornea, and (D.) an image capture subsystem arranged to capture images of the portions of light after the light impinges on the cornea.
  • In some embodiments, the corneal measurement apparatus, further comprises (E.) a second illumination projection subsystem comprising a second light source, (F.) a second mask subsystem disposed in a path of second light from the second light source, comprising (i) a third slit mask defining a second plurality of apertures, (ii) a fourth slit mask defining a second selection aperture, (iii) a second translation apparatus adapted to translate the fourth slit mask, the second translation apparatus and the fourth slit mask being configured and arranged such that by translating the second selection aperture, portions of the second light can be selectively transmitted through each of the second plurality of apertures toward the cornea, and (G.) a second imaging element configured and arranged to image the second plurality of apertures onto the cornea, the image capture subsystem arranged to capture images of the portions of second light after the light impinges on the cornea.
  • In some embodiments, the second slit mask is disposed upstream of the first slit mask. In other embodiments, the illumination projection subsystem is configured and arranged to project light from the light source through each of the plurality of apertures defined in first slit mask without moving the illumination projection subsystem. The light source may comprise at least one LED arranged to project light in the path of light. 14. In some embodiments, the light source comprises at least one LED. And in some embodiments, the light source consists of only a single LED (e.g., a high power LED).
  • In some embodiments, the corneal measurement apparatus further comprises a condenser lens configured and arranged to gather light from the light source and project the light in the path of light. The imaging element and condenser lens may configured and arranged to operate as a condenser-projector system. The imaging element and the first slit mask may be disposed in a Scheimflug arrangement to obtain a plane of slit images at the cornea.
  • In some embodiments, the plurality of apertures is disposed in a single plane. The plurality of apertures may be formed on a single substrate. The plurality of apertures may be defined by openings in an opaque layer deposited on the substrate.
  • The corneal measurement apparatus may further comprise an image processing subsystem coupled to the image capture subsystem, the image processing subsystem being adapted to convert the images into a single representation of the cornea. The corneal measurement apparatus may further comprise a subject positioning apparatus adapted to maintain the subject's cornea in a location.
  • Another aspect of the invention is directed to a method of facilitating measurement of a subject's cornea, comprising (A.) providing a plurality of apertures, (B.) projecting light toward the plurality of apertures, (C.) translating a selection aperture while maintaining the plurality of apertures in fixed locations to selectively transmit a portion of the light toward the cornea, the portion of the light passing through the selection aperture and a selected one of the plurality of apertures and (D.) imaging the portions of light after the light impinges on the cornea.
  • In some embodiments, the light passes through the selection aperture prior to passing through any of the plurality of apertures. In some embodiments, the step of projecting light comprises projecting light from at least one LED. The method may further comprise processing the images to convert the images into a single representation of the cornea.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Illustrative, non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings, in which the same reference number is used to designate the same or similar components in different figures, and in which:
  • FIG. 1 is a schematic plan view of an example of a corneal measurement apparatus according to aspects of the present invention;
  • FIG. 2 is an expanded plan view showing further details of one arm of the corneal measurement apparatus of FIG. 1;
  • FIG. 3 is an illustration of an example of an embodiment of a first slit mask defining a plurality of apertures viewed along line 3-3 of FIG. 2; and
  • FIG. 4 is an illustration of an example of an embodiment of a second slit mask defining a selection aperture viewed along line 4-4 of FIG. 2.
  • DETAILED DESCRIPTION
  • FIG. 1 is a schematic plan view of an embodiment of a corneal measurement apparatus 10 according to aspects of the present invention. The corneal measurement apparatus is adapted to measure a subject's cornea C. The corneal measurement apparatus comprises two illumination projection systems 13 a, 13 b (including light sources 12 a and 12 b, respectively), two mask subsystems 100 a, 100 b, and an image capture subsystem 50. Mask subsystems 100 a and 100 b are disposed in the paths of light from illumination projection systems 13 a and 13 b, respectively.
  • Illumination projection system 13 a and mask subsystem 100 a are in a first arm 75 a of the corneal measurement apparatus and illumination projection system 13 b and mask subsystem 100 b are in a second arm 75 b of the corneal measurement apparatus. In the illustrated embodiment, the first arm projects slits of light onto one half of the cornea, and the second arm projects slits of light onto the other half of the cornea. For example, the path of the projects slits of light may be at a forty-five degree angle to the visual axis of the subject's eye. Although the illustrated embodiment of a measurement apparatus has two arms, in other embodiments, a measurement apparatus may only have a single arm.
  • Referring to FIG. 2, further details of one arm of the corneal measurement apparatus 10 are shown. The arm comprises a first slit mask 130 defining a plurality of apertures 132 1 and a second slit mask 120 defining a selection aperture 122. The arm also comprises a translation apparatus 110 adapted to translate the second mask. Second slit mask 120 is configured and arranged such that, by appropriately positioning the second slit mask using the translation apparatus, selection slit 122 selectively transmits portions of the light from source 12 a such that light traveling through a selected one of the plurality of apertures 132 1 impinges on cornea C. Ray R demonstrates that the selection aperture 122 transmits light to cornea C from a selected one 132, of the plurality of apertures, when selection aperture 122 is appropriately aligned with the selected one 132 1 of the plurality of apertures. Subsequently, by translating second slit mask 122, the selection aperture can be positioned such that light from another of the plurality of apertures 132 n can be transmitted to cornea C. Such positioning of the selection aperture can be repeated such that light from each of the plurality of apertures or light from any suitable ones of the plurality of apertures 132 can be transmitted to cornea C. It will be appreciated that, on portions of the first slit mask and the second slit mask that are outside of the apertures disposed thereon, the slit masks are opaque or substantially opaque to light from source 12 a.
  • It is to be appreciated that although, in the illustrated embodiment, the second slit mask 120 (i.e., the mask including the selection aperture)is disposed upstream (i.e., closer to source 12 a along the optical path) from first slit mask 130, in other embodiments, the first slit mask (i.e., the mask including the plurality of apertures) can be disposed upstream of the second slit mask.
  • Referring again to FIG. 1, light sources 12 a and 12 b generate the light in which a corresponding mask subsystem is disposed. In some embodiments, the illumination projection system projects light from the light sources in a cone of light L to permit light to be projected through each of the apertures defined in first slit mask 130 without moving the source or any other component in the illumination projection system. That is to say that, in some embodiments, only the second slit mask 120 is moved. The movement occurs to expose a given one of the plurality of apertures on the second mask to light from a light source. It will be appreciated that, in such embodiments, the plurality of apertures 132 that provide the slits of light can remain fixed in a given location during the acquisition of the plurality of slit images used to produce a representation of a subject's eye. An advantage over prior art measurement apparatus, in which an aperture is moved, is that slits of light are produced with positions that are more accurately known, thereby providing more accurate representations of subjects' eyes.
  • In some embodiments, it is advantageous if the source is monochromatic and suitably bright. For example, an LED or a plurality of LEDs may be used to generate the light. In some embodiments, a high power LED has been found useful. In some embodiments, a superluminescent LED is used. An aspect of the invention is directed to a single high power LED configured and arranged to be capable of illuminating the plurality of apertures 132 as the selection aperture is moved.
  • In some embodiments, it is advantageous that the projection subsystem include a conventional condenser-projector system. In FIG. 1, condenser lenses 14 a, 14 b gather light from sources 12 a and 12 b respectively, and projector lenses 18 a, 18 b are configured and arranged such that the condenser lenses images sources 12 a and 12 b onto the projector lenses 18 a, 18 b, respectively. The projector lenses are also configured and arranged to image the apertures 132 onto cornea C. It is typically preferable that the slits of light are not convergent or divergent between the first slit mask and the cornea. However, some convergence or divergence may be present. Although in the illustrated embodiment the projectors 18 a, 18 b are lenses, any suitable imaging element may be used (e.g., a mirror, holographic element).
  • Although in the illustrated embodiment the condenser lenses 14 a, 14 b are illustrated as lenses, any suitable imaging element may be used (e.g., a mirror, holographic element). In some embodiments, the condenser lens may be omitted. The projection system components and first slit mask 130 may be disposed in a Scheimflug arrangement to obtain a plane of slit images at cornea C. Also, one or more folding mirrors 16 a and 16 b may be included to direct light onto the cornea, and to achieve an appropriate package shape for a housing (not shown) of the apparatus.
  • Further details of first slit mask 130 are now given with reference to FIG. 3. Slit mask 130 includes a plurality of apertures 132 1-132 n. Typically, the slits are of a same width W and length L and are evenly spaced apart; however, aspects of the invention are not so limited.
  • For example, twenty apertures may be provided on the slit mask in first arm 75 a (shown in FIG. 1) so that twenty slits of light are projected onto a subject's cornea and twenty images are obtained using light from the first arm 75 a of the measurement apparatus 10 (shown in FIG. 1). Accordingly, when combined with twenty images from second arm 75 b (shown in FIG. 1) a total of 40 slit images of a subject's eye are obtained. It will be appreciated that any suitable number of apertures may be provided on the first slit mask in each of mask subsystems 100 a, 100 b (shown in FIG. 1).
  • For example, first slit mask 130 may be formed on a substrate 135 of soda lime glass or BK7 glass. An opaque layer may be deposited on a surface of the substrate. For example, an opaque metal layer may be deposited on the substrate, and the apertures may be subsequently formed by etching a portion of the metal layer to expose the substrate. Each of the apertures is sized and shaped such that in a given measurement apparatus a slit of light is projected onto a cornea in a conventional manner. Typically, the apertures are rectangular in shape. However, any suitable shape may be employed. In some embodiments, it may be desirable to apply and antireflective coating to one or both of the surfaces of a substrate. Although the plurality of apertures 132 are shown as being formed on a single substrate (and in a single plane) any suitable construction may be used in which the apertures are formed at fixed locations relative to one another.
  • Further details of the second slit mask 120 are now given with reference to FIG. 4. Slit mask 120 includes a single selection aperture formed on a substrate 125. The selection aperture is sized to permit light to pass from one of the plurality of apertures to cornea C (shown in FIG. 1). Typically, the size of the selection aperture is larger in width and length than any of the plurality of apertures. The selection aperture is also typically small enough such that light is only permitted to pass through a single one of the plurality of apertures and onto cornea C.
  • In the illustrated embodiment of the second slit mask, an aperture portion 124 (typically half the length of the selection aperture) is also provided. The aperture portion is used for alignment of the measurement apparatus relative to a subject's cornea on whom a corneal measurement is to be made. The aperture portion is aligned with one of the plurality of apertures on the first slit mask, such that light is projected though only a portion of the one of the plurality of apertures and a portion of a slit of light is projected onto the middle of a subject's eye by the first arm 75 a (shown in FIG. 1) (e.g., an upper half of a slit is formed at the middle of the subject's eye by the first arm).
  • Another, second slit mask 120 also having an aperture portion is disposed in the other arm 75 b (shown in FIG. 1). Similar, to the aperture portion in the first arm, the aperture portion in the second arm is aligned with one of the plurality of apertures on the first slit mask of the second arm. Again, the aperture is arranged to project light onto the middle of the subject's cornea (e.g., a lower half of an aperture is formed at the middle of the subject's eye). In a conventional manner, the subject's cornea is aligned with the measurement apparatus, by positioning either the subject or the machine such that the two portions of the slits of light align to form a single, full-length slit of light (e.g., the upper half of the slit of light from the first arm aligns with the lower half of the slit of light from the second arm) to form a single, full slit of light. The second slit masks 120 (in the first and second arm) may be formed in a manner similar to that described above for the first slit mask 130.
  • Referring again to FIG. 1, the image capture subsystem 50 is arranged to be able to capture an image of light projected for each of the plurality of apertures after the light impinges on the cornea. It will be appreciated that, to capture of the images to obtain a representation of a cornea, each of the plurality of apertures is selected sequentially by appropriately aligning each aperture with the selection aperture as described above. Image capture subsystem 50 may be any suitable conventional imaging device, such as a CCD camera.
  • Translation apparatus 110 may comprise any suitable mechanism for translating the second mask 120 to project slits of light form the plurality of apertures 132 on the first slit mask 130 to cornea C. For example, the translation apparatus may comprise a linear translation motor capable of the moving the second slit mask in a direction perpendicular to the length L of the plurality of apertures 132.
  • Corneal measurement apparatus 10 also includes an image processing subsystem to convert the images into a single representation of the cornea. Techniques for reconstructing a representation of a subject's cornea once the slit images are obtained are well known and are not described further here. Projection systems as described herein may be used with cornea topographers, cornea profiler apparatus and anterior chamber analyzers.
  • Corneal measurement apparatus 10 includes a subject positioning apparatus 60 adapted to maintain a subject's cornea in a location. For example, the apparatus may be provided with a chin rest and/or a forehead rest which will fix the location of the subject's head.
  • Having thus described the inventive concepts and a number of exemplary embodiments, it will be apparent to those skilled in the art that the invention may be implemented in various ways, and that modifications and improvements will readily occur to such persons. Thus, the embodiments are not intended to be limiting and presented by way of example only. The invention is limited only as required by the following claims and equivalents thereto.

Claims (19)

1. an apparatus for measuring a subject's cornea, comprising:
(A.) an illumination projection subsystem comprising a light source;
(B.) a mask subsystem disposed in a path of light from the light source, comprising
(i) a first slit mask defining a plurality of apertures,
(ii) a second slit mask defining a selection aperture,
(iii) a translation apparatus adapted to translate the second slit mask, the translation apparatus and the second slit mask being configured and arranged such that by translating the selection aperture, portions of the light can be selectively transmitted through ones of the plurality of apertures toward the cornea, sequentially;
(C.) an imaging element configured and arranged to image the plurality of apertures onto the cornea; and
(D.) an image capture subsystem arranged to capture images of the portions of light after the light impinges on the cornea.
2. The apparatus in claim 1, further comprising
(E.) a second illumination projection subsystem comprising a second light source;
(F.) a second mask subsystem disposed in a path of second light from the second light source, comprising
(i) a third slit mask defining a second plurality of apertures,
(ii) a fourth slit mask defining a second selection aperture,
(iii) a second translation apparatus adapted to translate the fourth slit mask, the second translation apparatus and the fourth slit mask being configured and arranged such that by translating the second selection aperture, portions of the second light can be selectively transmitted through each of the second plurality of apertures toward the cornea; and
(G.) a second imaging element configured and arranged to image the second plurality of apertures onto the cornea,
the image capture subsystem arranged to capture images of the portions of second light after the light impinges on the cornea.
3. The apparatus in claim 1, wherein the second slit mask is disposed upstream of the first slit mask.
4. The apparatus in claim 1, wherein the illumination projection subsystem is configured and arranged to project light from the light source through each of the plurality of apertures defined in first slit mask without moving the illumination projection subsystem.
5. The apparatus in claim 1, wherein the light source comprises at least one LED arranged to project light in the path of light.
6. The apparatus in claim 1, further comprising a condenser lens configured and arranged to gather light from the light source and project the light in the path of light.
7. The apparatus in claim 6, wherein the imaging element and condenser lens are configured and arranged to operate as a condenser-projector system.
8. The apparatus in claim 1, wherein the imaging element and the first slit mask are disposed in a Scheimflug arrangement to obtain a plane of slit images the cornea.
9. The apparatus in claim 1, wherein the plurality of apertures are disposed in a single plane.
10. The apparatus in claim 1, wherein the plurality of apertures are formed on a single substrate.
11. The apparatus in claim 10, wherein the plurality of apertures is defined by openings in an opaque layer deposited on the substrate.
12. The apparatus in claim 1, further comprising an image processing subsystem coupled to the image capture subsystem, the image processing subsystem being adapted to convert the images into a single representation of the cornea.
13. The apparatus in claim 1, further comprising a subject positioning apparatus adapted to maintain the subject's cornea in a location.
14. The apparatus in claim 5, wherein the light source comprises at least one high power LED.
15. The apparatus in claim 5, wherein the light source consists of a single LED.
16. A method of facilitating measurement of a subject's cornea, comprising:
(A.) providing a plurality of apertures;
(B.) projecting light toward the plurality of apertures;
(C.) translating a selection aperture while maintaining the plurality of apertures in fixed locations to selectively transmit a portion of the light toward the cornea, the portion of the light passing through the selection aperture and a selected one of the plurality of apertures; and
(D.) imaging the portions of light after the light impinges on the cornea.
17. The method of claim 16, wherein the light passes through the selection aperture prior to passing through any of the plurality of apertures.
18. The method of claim 16, wherein the step of projecting light comprises projecting light from at least one LED.
19. The method of claim 16, wherein the step of imaging produces images, and the method further comprises processing the images to convert the images into a single representation of the cornea.
US11/614,518 2006-12-21 2006-12-21 Corneal measurment apparatus and a method of using the same Abandoned US20080151190A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/614,518 US20080151190A1 (en) 2006-12-21 2006-12-21 Corneal measurment apparatus and a method of using the same
US11/955,001 US7648241B2 (en) 2006-12-21 2007-12-12 Corneal measurement apparatus and a method of using the same
PCT/US2007/087747 WO2008079766A1 (en) 2006-12-21 2007-12-17 Corneal measurement apparatus and a method of using the same
ES07855209.8T ES2547278T3 (en) 2006-12-21 2007-12-17 Corneal measuring device and its method of use
PL07855209T PL2101631T3 (en) 2006-12-21 2007-12-17 Corneal measurement apparatus and a method of using the same
EP07855209.8A EP2101631B1 (en) 2006-12-21 2007-12-17 Corneal measurement apparatus and a method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/614,518 US20080151190A1 (en) 2006-12-21 2006-12-21 Corneal measurment apparatus and a method of using the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/955,001 Continuation-In-Part US7648241B2 (en) 2006-12-21 2007-12-12 Corneal measurement apparatus and a method of using the same
US11/955,001 Continuation US7648241B2 (en) 2006-12-21 2007-12-12 Corneal measurement apparatus and a method of using the same

Publications (1)

Publication Number Publication Date
US20080151190A1 true US20080151190A1 (en) 2008-06-26

Family

ID=39415139

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/614,518 Abandoned US20080151190A1 (en) 2006-12-21 2006-12-21 Corneal measurment apparatus and a method of using the same
US11/955,001 Active US7648241B2 (en) 2006-12-21 2007-12-12 Corneal measurement apparatus and a method of using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/955,001 Active US7648241B2 (en) 2006-12-21 2007-12-12 Corneal measurement apparatus and a method of using the same

Country Status (5)

Country Link
US (2) US20080151190A1 (en)
EP (1) EP2101631B1 (en)
ES (1) ES2547278T3 (en)
PL (1) PL2101631T3 (en)
WO (1) WO2008079766A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1173790A2 (en) 1999-03-01 2002-01-23 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US7628810B2 (en) 2003-05-28 2009-12-08 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
US20050046794A1 (en) 2003-06-17 2005-03-03 Silvestrini Thomas A. Method and apparatus for aligning a mask with the visual axis of an eye
EP2232198B1 (en) * 2008-01-08 2015-06-24 AMO WaveFront Sciences, LLC Systems and methods for measuring surface shape
JP5355994B2 (en) * 2008-11-05 2013-11-27 株式会社ニデック Ophthalmic imaging equipment
CA2770732C (en) 2009-08-13 2017-04-25 Acufocus, Inc. Corneal inlay with nutrient transport structures
IN2012DN02154A (en) 2009-08-13 2015-08-07 Acufocus Inc
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
US20120203239A1 (en) * 2009-10-13 2012-08-09 Acufocus,Inc. Method and apparatus for centration of an ocular implant
US20140098342A1 (en) * 2011-11-04 2014-04-10 The General Hospital Corporation System and method for corneal irradiation
WO2013082545A1 (en) 2011-12-02 2013-06-06 Acufocus, Inc. Ocular mask having selective spectral transmission
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
EP3220859B8 (en) 2014-11-19 2020-06-10 AcuFocus, Inc. Fracturable mask for treating presbyopia
EP3359987B1 (en) 2015-10-05 2024-02-28 AcuFocus, Inc. Methods of molding intraocular lenses
EP3384342B1 (en) 2015-11-24 2021-08-25 AcuFocus, Inc. Toric small aperture intraocular lens with extended depth of focus
EP3443883B1 (en) * 2017-08-14 2020-07-29 Carl Zeiss Vision International GmbH Method and devices for performing eye-related measurements
EP3790508A4 (en) 2018-05-09 2022-02-09 AcuFocus, Inc. Intraocular implant with removable optic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376573A (en) * 1979-03-20 1983-03-15 Canon Kabushiki Kaisha Apparatus for measuring the refractive power of the eye
US6729727B2 (en) * 2001-08-06 2004-05-04 Nidek Co., Ltd. Ophthalmic photographing apparatus
US20050134797A1 (en) * 2003-12-10 2005-06-23 Grove Donald C. Rapid switching slit scan image capture system
US20050195360A1 (en) * 2004-03-01 2005-09-08 Nidek Co., Ltd. Ophthalmic apparatus
US7290879B2 (en) * 2003-06-30 2007-11-06 Right Mfg. Co., Ltd. Eye refractive power measurement device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132936A (en) * 1980-03-21 1981-10-17 Tokyo Optical Eye bottom camera
AU716040B2 (en) * 1993-06-24 2000-02-17 Bausch & Lomb Incorporated Ophthalmic pachymeter and method of making ophthalmic determinations
DE29913602U1 (en) * 1999-08-04 1999-11-25 Oculus Optikgeraete Gmbh Device for eye examination with a Scheimpflug camera and a slit projector for taking sectional images of an eye
DE29913603U1 (en) * 1999-08-04 1999-11-25 Oculus Optikgeraete Gmbh Slit projector
AU2001260197A1 (en) * 2000-04-11 2001-10-23 Thomas Bende Selective corneal aberrometry
JP3709335B2 (en) * 2000-09-28 2005-10-26 株式会社ニデック Ophthalmic equipment
US6575573B2 (en) * 2001-10-17 2003-06-10 Carl Zeiss Ophthalmic Systems, Inc. Method and apparatus for measuring a corneal profile of an eye
JP3978024B2 (en) * 2001-12-03 2007-09-19 株式会社ニデック Ophthalmic device and corneal surgery device
DE20306542U1 (en) * 2003-04-25 2003-08-28 Oculus Optikgeraete Gmbh Device for projecting a light beam
US7070276B2 (en) * 2003-12-04 2006-07-04 Rensselaer Polytechnic Institute Apparatus and method for accommodative stimulation of an eye and simultaneous ipsilateral accommodative imaging
DE602006020523D1 (en) * 2005-07-01 2011-04-21 Nidek Kk Eye examination device
JP4987408B2 (en) * 2006-09-29 2012-07-25 株式会社ニデック Ophthalmic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376573A (en) * 1979-03-20 1983-03-15 Canon Kabushiki Kaisha Apparatus for measuring the refractive power of the eye
US6729727B2 (en) * 2001-08-06 2004-05-04 Nidek Co., Ltd. Ophthalmic photographing apparatus
US7290879B2 (en) * 2003-06-30 2007-11-06 Right Mfg. Co., Ltd. Eye refractive power measurement device
US20050134797A1 (en) * 2003-12-10 2005-06-23 Grove Donald C. Rapid switching slit scan image capture system
US20050195360A1 (en) * 2004-03-01 2005-09-08 Nidek Co., Ltd. Ophthalmic apparatus

Also Published As

Publication number Publication date
US7648241B2 (en) 2010-01-19
US20080212030A1 (en) 2008-09-04
EP2101631A1 (en) 2009-09-23
EP2101631B1 (en) 2015-09-02
ES2547278T3 (en) 2015-10-02
PL2101631T3 (en) 2016-03-31
WO2008079766A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
US7648241B2 (en) Corneal measurement apparatus and a method of using the same
JP4553578B2 (en) Ophthalmic apparatus and ophthalmic measurement method
US6692126B1 (en) Method and apparatus for measuring a corneal profile of an eye
US9339186B2 (en) Method and apparatus for enhanced eye measurements
US20090096987A1 (en) Eye Measurement Apparatus and a Method of Using Same
JPS6216088B2 (en)
JP3916482B2 (en) Ophthalmic equipment
JP2007275600A (en) Refractometer for measuring refraction of eye
US7896497B2 (en) Corneal measurement apparatus having a segmented aperture and a method of using the same
WO2001060241A1 (en) Ophthalmoscope with multiple interchangeable groups of optical components
US11089956B2 (en) Ophthalmologic apparatus and method of controlling the same
JP2000135200A (en) Optometric apparatus
WO2020202877A1 (en) Image inspection device
JP2005505372A (en) Method and apparatus for measuring the corneal profile of the eye
US20100111381A1 (en) Methods and Apparatus for Facilitating Elimination of Ambient Light from an Image
US11154190B2 (en) Eye surface topographer
JPH09108185A (en) Ophthalmological device
US20240049962A1 (en) Ophthalmic apparatus and ophthalmic information processing apparatus
JP2004216147A (en) Refractometer for ophthalmology
JP2022105110A (en) Ophthalmologic apparatus
JP2012217683A (en) Ophthalmologic apparatus
JP2736651B2 (en) Fundus camera
JPS61206422A (en) Visual field measuring apparatus
JPH05317259A (en) Ophthalmic measuring apparatus
JPH05154112A (en) Ophthalmologic device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAUSCH & LOMB INCORPORATED, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENTLEY, JOSEPH R.;LAI, MING;REEL/FRAME:019221/0523;SIGNING DATES FROM 20070413 TO 20070418

AS Assignment

Owner name: CREDIT SUISSE, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BAUSCH & LOMB INCORPORATED;B&L CRL INC.;B&L CRL PARTNERS L.P.;AND OTHERS;REEL/FRAME:020122/0722

Effective date: 20071026

Owner name: CREDIT SUISSE,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BAUSCH & LOMB INCORPORATED;B&L CRL INC.;B&L CRL PARTNERS L.P.;AND OTHERS;REEL/FRAME:020122/0722

Effective date: 20071026

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION

AS Assignment

Owner name: BAUSCH & LOMB INCORPORATED, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:028726/0142

Effective date: 20120518