US20070251924A1 - Method and apparatus for rebuilding gas turbine engines - Google Patents

Method and apparatus for rebuilding gas turbine engines Download PDF

Info

Publication number
US20070251924A1
US20070251924A1 US11/608,369 US60836906A US2007251924A1 US 20070251924 A1 US20070251924 A1 US 20070251924A1 US 60836906 A US60836906 A US 60836906A US 2007251924 A1 US2007251924 A1 US 2007251924A1
Authority
US
United States
Prior art keywords
swet
box
protective gas
gas
welding chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/608,369
Inventor
Adeilton Martins
Adilio Filho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/608,369 priority Critical patent/US20070251924A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FILHO, ADILIO ALVES SARDINHA, MARTINS, ADEILTON JORGE
Publication of US20070251924A1 publication Critical patent/US20070251924A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods

Definitions

  • This invention relates generally to gas turbine engines, and more specifically to the repair of turbine blades used in gas turbine engines.
  • turbine blades used within the engine are cast to an approximate final shape. Portions of the turbine blades, including, but not limited to, a root portion, are then shaped to a final desired form by a shaping technique, such as grinding.
  • the finished turbine blades are assembled into a turbine disk or rotor, such that a “dovetail” formed on each turbine blade engages a complimentarily shaped slot on the turbine disk.
  • Known turbine blades may be constructed from a high-temperature, high-strength alloy that is adapted to withstand the temperatures and stresses imposed on the parts of a turbine assembly. Because of the high cost of materials, casting operations, and finishing operations, at least some known turbine blades, after being in service, are refurbished to restore the original aerodynamic contours of portions of the blades. At least some known turbine blade repairs, such as those utilized in restoring blade tips, require building up the surface being repaired with a weld bead, and then grinding the surface back to its original contour.
  • SWET superalloy welding at elevated temperatures
  • TOG tungsten inert gas
  • argon gas is supplied to the SWET box to provide a protective atmosphere for the blades being welded.
  • the argon atmosphere facilitates reducing an amount of contamination within the weld and reducing the amount of cracking within the weld.
  • a sufficient volume of argon is provided to protect the blade and for good weld quality, and it is not unusual that the argon flow to the SWET box is set excessively high just to facilitate protecting the blades during welding.
  • this technique not only unnecessarily increases argon consumption and its associated costs, but also the unnecessarily high gas flow increases the noise level in the area of the SWET box.
  • a method for repairing a component within a SWET box includes providing a SWET box that has a divided interior volume that defines a welding chamber within the interior that is smaller than a total volume of the interior SWET box, positioning a component to be repaired within the welding chamber, introducing protective gas into the SWET box, and controlling the flow of protective gas into the SWET box to facilitate minimizing the consumption of the protective gas within the SWET box.
  • a liner assembly for a SWET box includes an enclosure configured to be received in a heating chamber of the SWET box.
  • the enclosure includes a rear wall, a front wall opposite the rear wall, a pair of opposed end walls, and a dividing wall defining a welding chamber therein.
  • a gas delivery system is provided for supplying a protective gas into the SWET box and the enclosure.
  • a lid is coupled to the SWET box and extends over the heating chamber and the enclosure, encasing the heating chamber and the enclosure.
  • a SWET box in another aspect, includes a heating chamber and an enclosure configured to be received in the heating chamber.
  • the enclosure includes a rear wall, a front wall opposite the rear wall, a pair of opposed end walls, and a dividing wall defining a welding chamber therein.
  • a gas delivery system is provided for supplying a protective gas into the heating chamber and the enclosure.
  • a lid is coupled to the heating chamber and extends over the heating chamber and the enclosure.
  • FIG. 1 is a schematic cross sectional view of a SWET box
  • FIG. 2 is a schematic cross sectional view of a turbine blade being repaired within the SWET box shown in FIG. 1 .
  • FIG. 3 is a schematic cross sectional view of the SWET box shown in FIG. 1 with a liner assembly;
  • FIG. 4 is a perspective view of the enclosure of the liner assembly shown in FIG. 3 ;
  • FIG. 5 is a perspective view of the SWET box lid shown in FIG. 3 ;
  • FIG. 6 is a perspective view of the first gas delivery system shown in FIG. 3 ;
  • FIG. 7 is a perspective view of the blade holder shown in FIG. 3 .
  • FIG. 1 is a schematic cross sectional view of a conventional SWET box 10 that may be used in superalloy welding at elevated temperatures (SWET).
  • SWET box 10 includes a heating chamber 12 that has a back wall 14 , an opposed front wall (not shown), and opposed ends 16 and 18 .
  • SWET box 10 also includes a floor 20 and a removable lid 22 . Though shown as being substantially rectangular in shape in FIG. 1 , SWET box 10 may be non-rectangular. For example, in one embodiment, one or both ends 16 and 18 are curved such that SWET box 10 has an elliptical cross-sectional profile when viewed from the top along sight line A-A.
  • a heat source 26 is mounted in back wall 14 . Typically, in SWET welding, heat source 26 includes one or more quartz lamps, however, other known heating methods may be used. Fluid inlets 28 are provided in floor 20 for introducing protective to create a protective atmosphere inside SWET box 10 .
  • FIG. 2 is a schematic view of a turbine blade being repaired in SWET box 10 .
  • Blade 30 includes a dove tail 32 and an airfoil 34 that extends radially outward from dove tail 32 to an airfoil tip 36 that is being repaired.
  • Blade 30 is retained in a fixture 40 that is positioned on a platform 42 at the bottom of heating chamber 12 .
  • Platform 42 rests on SWET box floor 20 such that fluid inlets 28 remain un-obstructed.
  • blade 30 is heated by heat source 26 , and a protective gas, such as argon, is supplied to SWET box 10 through fluid inlets 28 .
  • a weld repair is made to blade 30 in the presence of the protective gas.
  • repair and repairing may include any repair/inspection process.
  • repair processes may include various known repair techniques including welding, grinding, and/or machining.
  • the above examples are intended as exemplary only, and thus are not intended to limit in any way the definition and/or meaning of the terms “repair” and repairing”.
  • component may include any object to which a repair process is applied.
  • the invention is described herein in association with a gas turbine engine, and more specifically for use with a turbine blade for a gas turbine engine, it should be understood that the present invention may be applicable to any component and/or any repair process. Accordingly, practice of the present invention is not limited to the repair of turbine blades or other components of gas turbine engines.
  • SWET box 10 is filled with the protective gas to facilitate enhancing the quality of the weld while minimizing contamination and cracks within the weld. More specifically, to ensure the entire volume of SWET box 10 is filled with protective gas during welding, and increased gas flow rate is used to ensure that the volume of gas is maintained. The higher gas flow rate creates a higher noise level in the vicinity of SWET box 10 .
  • FIG. 3 is a schematic cross sectional view of SWET box 10 including a liner assembly 50 for reducing the amount of protective gas supplied to SWET box 10 and the amount of noise generated in the vicinity of SWET box 10 .
  • Assembly 50 includes an enclosure 52 and a lid 54 .
  • a first gas delivery system 56 is positioned adjacent a floor 58 of enclosure 52 , and a second gas delivery system 60 is coupled through lid 54 .
  • a blade holder 62 is positioned above first gas delivery system 56 , and a layer of a metallic mesh material 66 is packed around first gas delivery system 56 to facilitate diffusing and reducing noise generated as the flow of protective gas enters SWET box 10 .
  • metallic mesh 66 is a steel, wool-like structure, and may be fabricated from any metallic material capable of withstanding the fabricating temperatures which develop during welding within SWET box 10 .
  • the temperature within SWET box 10 may reach at least about 900 degrees Celsius.
  • FIG. 4 is a perspective view of enclosure 52 .
  • enclosure 52 is fabricated from a metallic material, such as steel, and includes a back wall 68 , a front wall 70 , a first end wall 72 , and an arcuate or curved second end wall 74 .
  • First end wall 72 includes a cutout 75 at an upper portion thereof
  • back wall 68 includes a window 76 extending there through and in open communication with a heat source 26 (see FIG. 1 ) in back wall 14 of SWET box 10 .
  • a dividing wall 78 separates enclosure 52 into a welding chamber 80 and a cavity 82 that is partially bounded by curved end wall 74 . Cutout 75 and curved end wall 74 provide an operator access to manipulate a component being repaired in welding chamber 80 .
  • a floor 58 in welding chamber 80 includes a hole 84 extending there through to enable the admission of a protective gas into welding chamber 80 .
  • FIG. 5 is a perspective view of lid 54 .
  • Lid 54 extends over heating chamber 12 (shown in FIG. 1 ) and liner assembly 50 .
  • Second gas delivery system 60 is coupled to lid 54 and includes an inlet tube 86 , a distribution tube 88 , a plurality of diffuser cups 90 , and a coupling 92 .
  • inlet tube 86 is connected to a gas source (not shown) and delivers gas to distribution tube 88 via coupling 92 .
  • Diffuser cups 90 extend downward from lid 54 into heating chamber 12 and liner assembly 50 to discharge the gas into an upper portion 93 (see FIG. 3 ) of SWET box 10 .
  • diffuser cups 90 slow the flow of protective gas and thereby facilitate controlling the flow of gas into SWET box 10 and facilitate reducing an amount of noise generated as the gas enters SWET box 10 .
  • lid 54 is positioned on SWET box 10 such that one diffuser cup 90 extends into welding chamber 80 and the two remaining diffuser cups 90 extend between curved end wall 74 and SWET box end wall 18 .
  • more or less than three diffuser sups 90 may be utilized.
  • FIG. 6 is a partial perspective view of first delivery system 56 .
  • First distribution system 56 includes an array of perforated tubes 94 , each of which is connected to, and fed from, a common end line 96 .
  • perforated tubes 94 provide a diffuser effect that facilitates reducing the flow of gas through perforated tubes 94 and into SWET box 10 .
  • supplying the protective gas through perforated tubes 94 also facilitates reducing an amount of noise generated in SWET box 10 in comparison to the unfettered flow through fluid inlets 28 (see FIGS. 1 and 2 ).
  • FIG. 7 is a perspective view of blade holder 62 .
  • Blade holder 62 includes a perforated base 100 , a stand 102 that extends upwardly from base 100 , and a channel 104 coupled to an upper end 106 of stand 102 .
  • Channel 104 is sized to hold a component part such as a turbine blade oriented in a position to facilitate the performance of a repair operation on the component part.
  • liner assembly 50 is placed inside the heating chamber 12 of SWET box 10 .
  • Liner assembly 50 is positioned such that window 76 of enclosure 52 is in open communication with heat source 26 in back wall 14 of SWET box 10 .
  • the interior volume of SWET box 10 is divided to form welding chamber 80 within enclosure 52 that is smaller than the total volume of SWET box 10 .
  • First gas delivery system 56 is placed on the bottom 58 of welding chamber 80 . Suitable plumbing is provided to connect first gas delivery system 56 to fluid inlet 28 which is connected to a protective gas source (not shown).
  • First gas delivery system 56 includes an array of perforated tubes 94 that diffuse the protective gas and facilitate introducing the protective gas at a reduced a lower noise level in comparison to open flow through fluid inlet 28 .
  • Metallic mesh material 66 is packed around perforated tubes 94 to further facilitate diffusing the protective gas and reducing the noise level.
  • a component part to be repaired, such as turbine blade 30 is placed in channel 104 of blade holder 62 . Blade holder 62 is then positioned in welding chamber 80 with perforated base 100 of blade holder 62 resting on mesh material 66 and perforated tubes 94 .
  • Lid 54 is positioned on SWET box 10 such that one of diffusers 90 extends downwardly into welding chamber 80 and the remaining two diffusers 90 extend downwardly into a space between curved end wall 74 and end wall 18 of SWET box 10 .
  • Inlet tube 86 on lid 54 is then connected using suitable plumbing to a source of protective gas (not shown).
  • SWET box 10 After positioning blade 30 in SWET box 10 , the protective gas is supplied and heat source 26 is activated to provide heat to heating chamber 12 .
  • heat source 26 In the case of turbine blade repair, argon is typically the protective gas. It is to be understood, however, that SWET box 10 can be used with components from applications other than gas turbine engines, in which case different materials may be involved and other inert may also be used.
  • Protective gas is introduced into SWET box 10 from an upper portion 93 through diffuser cups 90 on lid 54 . Introduction of the protective gas through diffuser cups 90 facilitates controlling the flow of the protective gas. Protective gas is also introduced from a lower portion 95 of SWET box 10 through perforated tubes 94 in welding chamber 80 which concentrates the protective gas flow in welding chamber 80 . Perforated tubes 94 diffuse the protective gas and also facilitate reducing a noise level of the gas flow. Introducing the protective gas through diffuser cups 90 and perforated tubes 94 , along with concentrating the gas flow in welding chamber 80 combine to reduce the consumption of protective gas.
  • SWET box 10 When a desired temperature is reached inside SWET box 10 , the repair is made. The flow of protective gas is continued during the repair to facilitate maintaining the protective atmosphere. In the case of blade tip repairs on turbine blade 30 , weld beads are applied to blade tip 36 to build up the blade material so that the design contour of blade 30 can be restored. Liner assembly 50 facilitates the production of weld beads without contaminates and without cracks within the weld beads.
  • the above-described SWET box liner assembly provides a cost effective and highly reliable apparatus that reduces the consumption of protective and reduces the noise level in the work place in comparison to other known SWET boxes.
  • the liner assembly concentrates the protective gas in a reduced volume within the SWET box thereby reducing the amount of gas flow required to maintain a protective atmosphere.
  • the introduction of the protective gas through diffusers contributes to reducing a noise level in the vicinity of the SWET box.
  • SWET box liner assembly Exemplary embodiments of a SWET box liner assembly are described above in detail.
  • the liner assemblies are not limited to the specific embodiments described herein, but rather each component may be utilized independently and separately from other components described herein. Each component can also be used in combination with other SWET box systems.

Abstract

A method for repairing a component within a SWET box is provided. The method includes providing a SWET box that has a divided interior volume that defines a welding chamber within the interior that is smaller than a total volume of the interior SWET box, positioning a component to be repaired within the welding chamber, introducing protective gas into the SWET box, and controlling the flow of protective gas into the SWET box to facilitate minimizing the consumption of the protective gas within the SWET box.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to gas turbine engines, and more specifically to the repair of turbine blades used in gas turbine engines.
  • In at least some gas turbine engines, turbine blades used within the engine are cast to an approximate final shape. Portions of the turbine blades, including, but not limited to, a root portion, are then shaped to a final desired form by a shaping technique, such as grinding. The finished turbine blades are assembled into a turbine disk or rotor, such that a “dovetail” formed on each turbine blade engages a complimentarily shaped slot on the turbine disk.
  • Known turbine blades may be constructed from a high-temperature, high-strength alloy that is adapted to withstand the temperatures and stresses imposed on the parts of a turbine assembly. Because of the high cost of materials, casting operations, and finishing operations, at least some known turbine blades, after being in service, are refurbished to restore the original aerodynamic contours of portions of the blades. At least some known turbine blade repairs, such as those utilized in restoring blade tips, require building up the surface being repaired with a weld bead, and then grinding the surface back to its original contour.
  • One known technique for building up the blade material by welding is known as superalloy welding at elevated temperatures (SWET) in which tungsten inert gas (TIG) welding is combined with a pre-heating box, referred to as a SWET box. More specifically, in one known method, argon gas is supplied to the SWET box to provide a protective atmosphere for the blades being welded. The argon atmosphere facilitates reducing an amount of contamination within the weld and reducing the amount of cracking within the weld. More specifically, during use a sufficient volume of argon is provided to protect the blade and for good weld quality, and it is not unusual that the argon flow to the SWET box is set excessively high just to facilitate protecting the blades during welding. However, this technique not only unnecessarily increases argon consumption and its associated costs, but also the unnecessarily high gas flow increases the noise level in the area of the SWET box.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In one aspect, a method for repairing a component within a SWET box is provided. The method includes providing a SWET box that has a divided interior volume that defines a welding chamber within the interior that is smaller than a total volume of the interior SWET box, positioning a component to be repaired within the welding chamber, introducing protective gas into the SWET box, and controlling the flow of protective gas into the SWET box to facilitate minimizing the consumption of the protective gas within the SWET box.
  • In another aspect, a liner assembly for a SWET box is provided. The liner assembly includes an enclosure configured to be received in a heating chamber of the SWET box. The enclosure includes a rear wall, a front wall opposite the rear wall, a pair of opposed end walls, and a dividing wall defining a welding chamber therein. A gas delivery system is provided for supplying a protective gas into the SWET box and the enclosure. A lid is coupled to the SWET box and extends over the heating chamber and the enclosure, encasing the heating chamber and the enclosure.
  • In another aspect, a SWET box is provided that includes a heating chamber and an enclosure configured to be received in the heating chamber. The enclosure includes a rear wall, a front wall opposite the rear wall, a pair of opposed end walls, and a dividing wall defining a welding chamber therein. A gas delivery system is provided for supplying a protective gas into the heating chamber and the enclosure. A lid is coupled to the heating chamber and extends over the heating chamber and the enclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross sectional view of a SWET box;
  • FIG. 2 is a schematic cross sectional view of a turbine blade being repaired within the SWET box shown in FIG. 1.
  • FIG. 3 is a schematic cross sectional view of the SWET box shown in FIG. 1 with a liner assembly;
  • FIG. 4 is a perspective view of the enclosure of the liner assembly shown in FIG. 3;
  • FIG. 5 is a perspective view of the SWET box lid shown in FIG. 3;
  • FIG. 6 is a perspective view of the first gas delivery system shown in FIG. 3;
  • FIG. 7 is a perspective view of the blade holder shown in FIG. 3.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is a schematic cross sectional view of a conventional SWET box 10 that may be used in superalloy welding at elevated temperatures (SWET). SWET box 10 includes a heating chamber 12 that has a back wall 14, an opposed front wall (not shown), and opposed ends 16 and 18. SWET box 10 also includes a floor 20 and a removable lid 22. Though shown as being substantially rectangular in shape in FIG. 1, SWET box 10 may be non-rectangular. For example, in one embodiment, one or both ends 16 and 18 are curved such that SWET box 10 has an elliptical cross-sectional profile when viewed from the top along sight line A-A. A heat source 26 is mounted in back wall 14. Typically, in SWET welding, heat source 26 includes one or more quartz lamps, however, other known heating methods may be used. Fluid inlets 28 are provided in floor 20 for introducing protective to create a protective atmosphere inside SWET box 10.
  • FIG. 2 is a schematic view of a turbine blade being repaired in SWET box 10. Blade 30 includes a dove tail 32 and an airfoil 34 that extends radially outward from dove tail 32 to an airfoil tip 36 that is being repaired. Blade 30 is retained in a fixture 40 that is positioned on a platform 42 at the bottom of heating chamber 12. Platform 42 rests on SWET box floor 20 such that fluid inlets 28 remain un-obstructed. During use, blade 30 is heated by heat source 26, and a protective gas, such as argon, is supplied to SWET box 10 through fluid inlets 28. A weld repair is made to blade 30 in the presence of the protective gas.
  • As used herein, the terms “repair” and “repairing”, may include any repair/inspection process. For example, repair processes may include various known repair techniques including welding, grinding, and/or machining. The above examples are intended as exemplary only, and thus are not intended to limit in any way the definition and/or meaning of the terms “repair” and repairing”. In addition, as used herein the term “component” may include any object to which a repair process is applied. Furthermore, although the invention is described herein in association with a gas turbine engine, and more specifically for use with a turbine blade for a gas turbine engine, it should be understood that the present invention may be applicable to any component and/or any repair process. Accordingly, practice of the present invention is not limited to the repair of turbine blades or other components of gas turbine engines.
  • During SWET welding, SWET box 10 is filled with the protective gas to facilitate enhancing the quality of the weld while minimizing contamination and cracks within the weld. More specifically, to ensure the entire volume of SWET box 10 is filled with protective gas during welding, and increased gas flow rate is used to ensure that the volume of gas is maintained. The higher gas flow rate creates a higher noise level in the vicinity of SWET box 10.
  • FIG. 3 is a schematic cross sectional view of SWET box 10 including a liner assembly 50 for reducing the amount of protective gas supplied to SWET box 10 and the amount of noise generated in the vicinity of SWET box 10. Assembly 50 includes an enclosure 52 and a lid 54. A first gas delivery system 56 is positioned adjacent a floor 58 of enclosure 52, and a second gas delivery system 60 is coupled through lid 54. A blade holder 62 is positioned above first gas delivery system 56, and a layer of a metallic mesh material 66 is packed around first gas delivery system 56 to facilitate diffusing and reducing noise generated as the flow of protective gas enters SWET box 10. In the example embodiment, metallic mesh 66 is a steel, wool-like structure, and may be fabricated from any metallic material capable of withstanding the fabricating temperatures which develop during welding within SWET box 10. In the embodiment, the temperature within SWET box 10 may reach at least about 900 degrees Celsius.
  • FIG. 4 is a perspective view of enclosure 52. In the exemplary embodiment, enclosure 52 is fabricated from a metallic material, such as steel, and includes a back wall 68, a front wall 70, a first end wall 72, and an arcuate or curved second end wall 74. First end wall 72 includes a cutout 75 at an upper portion thereof, and back wall 68 includes a window 76 extending there through and in open communication with a heat source 26 (see FIG. 1) in back wall 14 of SWET box 10. A dividing wall 78 separates enclosure 52 into a welding chamber 80 and a cavity 82 that is partially bounded by curved end wall 74. Cutout 75 and curved end wall 74 provide an operator access to manipulate a component being repaired in welding chamber 80. A floor 58 in welding chamber 80 includes a hole 84 extending there through to enable the admission of a protective gas into welding chamber 80.
  • FIG. 5 is a perspective view of lid 54. Lid 54 extends over heating chamber 12 (shown in FIG. 1) and liner assembly 50. Second gas delivery system 60 is coupled to lid 54 and includes an inlet tube 86, a distribution tube 88, a plurality of diffuser cups 90, and a coupling 92. When in use, inlet tube 86 is connected to a gas source (not shown) and delivers gas to distribution tube 88 via coupling 92. Diffuser cups 90 extend downward from lid 54 into heating chamber 12 and liner assembly 50 to discharge the gas into an upper portion 93 (see FIG. 3) of SWET box 10. More specifically, diffuser cups 90 slow the flow of protective gas and thereby facilitate controlling the flow of gas into SWET box 10 and facilitate reducing an amount of noise generated as the gas enters SWET box 10. When three diffuser cups 90 are used, as shown in FIG. 5, lid 54 is positioned on SWET box 10 such that one diffuser cup 90 extends into welding chamber 80 and the two remaining diffuser cups 90 extend between curved end wall 74 and SWET box end wall 18. In alternative embodiments more or less than three diffuser sups 90 may be utilized.
  • FIG. 6 is a partial perspective view of first delivery system 56. First distribution system 56 includes an array of perforated tubes 94, each of which is connected to, and fed from, a common end line 96. In use, perforated tubes 94 provide a diffuser effect that facilitates reducing the flow of gas through perforated tubes 94 and into SWET box 10. Moreover, supplying the protective gas through perforated tubes 94 also facilitates reducing an amount of noise generated in SWET box 10 in comparison to the unfettered flow through fluid inlets 28 (see FIGS. 1 and 2).
  • FIG. 7 is a perspective view of blade holder 62. Blade holder 62 includes a perforated base 100, a stand 102 that extends upwardly from base 100, and a channel 104 coupled to an upper end 106 of stand 102. Channel 104 is sized to hold a component part such as a turbine blade oriented in a position to facilitate the performance of a repair operation on the component part.
  • In operation, and with reference to FIG. 3, liner assembly 50 is placed inside the heating chamber 12 of SWET box 10. Liner assembly 50 is positioned such that window 76 of enclosure 52 is in open communication with heat source 26 in back wall 14 of SWET box 10. With enclosure 52 positioned within SWET box 10, the interior volume of SWET box 10 is divided to form welding chamber 80 within enclosure 52 that is smaller than the total volume of SWET box 10.
  • First gas delivery system 56 is placed on the bottom 58 of welding chamber 80. Suitable plumbing is provided to connect first gas delivery system 56 to fluid inlet 28 which is connected to a protective gas source (not shown). First gas delivery system 56 includes an array of perforated tubes 94 that diffuse the protective gas and facilitate introducing the protective gas at a reduced a lower noise level in comparison to open flow through fluid inlet 28. Metallic mesh material 66 is packed around perforated tubes 94 to further facilitate diffusing the protective gas and reducing the noise level. A component part to be repaired, such as turbine blade 30, is placed in channel 104 of blade holder 62. Blade holder 62 is then positioned in welding chamber 80 with perforated base 100 of blade holder 62 resting on mesh material 66 and perforated tubes 94.
  • Lid 54 is positioned on SWET box 10 such that one of diffusers 90 extends downwardly into welding chamber 80 and the remaining two diffusers 90 extend downwardly into a space between curved end wall 74 and end wall 18 of SWET box 10. Inlet tube 86 on lid 54 is then connected using suitable plumbing to a source of protective gas (not shown).
  • After positioning blade 30 in SWET box 10, the protective gas is supplied and heat source 26 is activated to provide heat to heating chamber 12. In the case of turbine blade repair, argon is typically the protective gas. It is to be understood, however, that SWET box 10 can be used with components from applications other than gas turbine engines, in which case different materials may be involved and other inert may also be used.
  • Protective gas is introduced into SWET box 10 from an upper portion 93 through diffuser cups 90 on lid 54. Introduction of the protective gas through diffuser cups 90 facilitates controlling the flow of the protective gas. Protective gas is also introduced from a lower portion 95 of SWET box 10 through perforated tubes 94 in welding chamber 80 which concentrates the protective gas flow in welding chamber 80. Perforated tubes 94 diffuse the protective gas and also facilitate reducing a noise level of the gas flow. Introducing the protective gas through diffuser cups 90 and perforated tubes 94, along with concentrating the gas flow in welding chamber 80 combine to reduce the consumption of protective gas.
  • When a desired temperature is reached inside SWET box 10, the repair is made. The flow of protective gas is continued during the repair to facilitate maintaining the protective atmosphere. In the case of blade tip repairs on turbine blade 30, weld beads are applied to blade tip 36 to build up the blade material so that the design contour of blade 30 can be restored. Liner assembly 50 facilitates the production of weld beads without contaminates and without cracks within the weld beads.
  • The above-described SWET box liner assembly provides a cost effective and highly reliable apparatus that reduces the consumption of protective and reduces the noise level in the work place in comparison to other known SWET boxes. The liner assembly concentrates the protective gas in a reduced volume within the SWET box thereby reducing the amount of gas flow required to maintain a protective atmosphere. The introduction of the protective gas through diffusers contributes to reducing a noise level in the vicinity of the SWET box.
  • Exemplary embodiments of a SWET box liner assembly are described above in detail. The liner assemblies are not limited to the specific embodiments described herein, but rather each component may be utilized independently and separately from other components described herein. Each component can also be used in combination with other SWET box systems.
  • While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.

Claims (8)

1. A method for repairing a component within a SWET box, said method comprising:
providing a SWET box having a divided interior volume such that a welding chamber is defined within the interior that is smaller than a total volume of the interior SWET box;
positioning a component to be repaired within the welding chamber;
introducing protective gas into the SWET box; and
controlling the flow of protective gas into the SWET box to facilitate minimizing the consumption of the protective gas within the SWET box.
2. A method in accordance with claim 1 wherein controlling the flow of protective gas into the SWET box further comprises concentrating the flow of protective gas in the welding chamber.
3. A method in accordance with claim 1 wherein dividing the SWET box comprises positioning a compartmentalized insert in the SWET box, the insert including a welding chamber.
4. A method in accordance with claim 1 wherein introducing the protective gas into the SWET box comprises introducing the protective gas from an upper portion of the SWET box.
5. A method in accordance with claim 1 wherein controlling the flow of the protective gas into the SWET box comprises introducing the gas through diffuser cups.
6. A method in accordance with claim 2 wherein concentrating the flow of protective gas in the welding chamber comprises introducing the protective gas from an upper portion of the welding chamber and a lower portion of the welding chamber.
7. A method in accordance with claim 6 wherein introducing the protective gas from the lower portion of the welding chamber comprises introducing the gas through perforated diffusing tubes.
8-20. (canceled)
US11/608,369 2004-02-05 2006-12-08 Method and apparatus for rebuilding gas turbine engines Abandoned US20070251924A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/608,369 US20070251924A1 (en) 2004-02-05 2006-12-08 Method and apparatus for rebuilding gas turbine engines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/772,983 US7159755B2 (en) 2004-02-05 2004-02-05 Method and apparatus for rebuilding gas turbine engines
US11/608,369 US20070251924A1 (en) 2004-02-05 2006-12-08 Method and apparatus for rebuilding gas turbine engines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/772,983 Division US7159755B2 (en) 2004-02-05 2004-02-05 Method and apparatus for rebuilding gas turbine engines

Publications (1)

Publication Number Publication Date
US20070251924A1 true US20070251924A1 (en) 2007-11-01

Family

ID=34826695

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/772,983 Expired - Fee Related US7159755B2 (en) 2004-02-05 2004-02-05 Method and apparatus for rebuilding gas turbine engines
US11/608,369 Abandoned US20070251924A1 (en) 2004-02-05 2006-12-08 Method and apparatus for rebuilding gas turbine engines

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/772,983 Expired - Fee Related US7159755B2 (en) 2004-02-05 2004-02-05 Method and apparatus for rebuilding gas turbine engines

Country Status (1)

Country Link
US (2) US7159755B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106425039A (en) * 2016-11-16 2017-02-22 无锡市伟丰印刷机械厂 High-performance welding device for temperature controller
CN108145287A (en) * 2017-12-28 2018-06-12 贵阳航发精密铸造有限公司 A kind of welding scheme of single crystal turbine blade integral shroud wear-resistant block

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159755B2 (en) * 2004-02-05 2007-01-09 General Electric Company Method and apparatus for rebuilding gas turbine engines
US20080116245A1 (en) * 2006-11-17 2008-05-22 General Electric Company Lamp-based swet welding apparatus
US20090026173A1 (en) * 2007-07-26 2009-01-29 General Electric Company Method and apparatus for welding an article
US9765622B2 (en) * 2007-09-12 2017-09-19 United Technologies Corporation Methods for performing gas turbine engine casing repairs and repaired cases
US20110089225A1 (en) * 2009-10-15 2011-04-21 Pcc Structurals Inc. Low Turbulence Argon Purging System

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743733A (en) * 1984-10-01 1988-05-10 General Electric Company Method and apparatus for repairing metal in an article
US4822248A (en) * 1987-04-15 1989-04-18 Metallurgical Industries, Inc. Rebuilt shrouded turbine blade and method of rebuilding the same
US5048183A (en) * 1988-08-26 1991-09-17 Solar Turbines Incorporated Method of making and repairing turbine blades
US5319179A (en) * 1991-12-19 1994-06-07 Mtu Maintenance Gmbh Method and apparatus for welding workpieces made of superalloys
US5554837A (en) * 1993-09-03 1996-09-10 Chromalloy Gas Turbine Corporation Interactive laser welding at elevated temperatures of superalloy articles
US5575145A (en) * 1994-11-01 1996-11-19 Chevron U.S.A. Inc. Gas turbine repair
US5822852A (en) * 1997-07-14 1998-10-20 General Electric Company Method for replacing blade tips of directionally solidified and single crystal turbine blades
US5981897A (en) * 1996-06-20 1999-11-09 General Electric Company Apparatus for distributing cover gas in reduced-width groove during welding
US6297474B1 (en) * 1999-12-23 2001-10-02 General Electric Company Heating apparatus for a welding operation and method therefor
US6649887B2 (en) * 2001-03-30 2003-11-18 General Electric Company Apparatus and method for protective atmosphere induction brazing of complex geometries
US20040112940A1 (en) * 2002-12-13 2004-06-17 Caddell James Walter Apparatus and method for performing welding at elevated temperature
US6996906B2 (en) * 2002-12-17 2006-02-14 General Electric Company Method of repairing a turbine blade and blade repaired thereby
US7159755B2 (en) * 2004-02-05 2007-01-09 General Electric Company Method and apparatus for rebuilding gas turbine engines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866236A (en) * 1988-04-20 1989-09-12 The United States Of America As Represented By The Secretary Of The Navy Flexible extendable backing shield for welding reactive metals

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743733A (en) * 1984-10-01 1988-05-10 General Electric Company Method and apparatus for repairing metal in an article
US4822248A (en) * 1987-04-15 1989-04-18 Metallurgical Industries, Inc. Rebuilt shrouded turbine blade and method of rebuilding the same
US5048183A (en) * 1988-08-26 1991-09-17 Solar Turbines Incorporated Method of making and repairing turbine blades
US5319179A (en) * 1991-12-19 1994-06-07 Mtu Maintenance Gmbh Method and apparatus for welding workpieces made of superalloys
US5554837A (en) * 1993-09-03 1996-09-10 Chromalloy Gas Turbine Corporation Interactive laser welding at elevated temperatures of superalloy articles
US5575145A (en) * 1994-11-01 1996-11-19 Chevron U.S.A. Inc. Gas turbine repair
US5981897A (en) * 1996-06-20 1999-11-09 General Electric Company Apparatus for distributing cover gas in reduced-width groove during welding
US5822852A (en) * 1997-07-14 1998-10-20 General Electric Company Method for replacing blade tips of directionally solidified and single crystal turbine blades
US6297474B1 (en) * 1999-12-23 2001-10-02 General Electric Company Heating apparatus for a welding operation and method therefor
US6649887B2 (en) * 2001-03-30 2003-11-18 General Electric Company Apparatus and method for protective atmosphere induction brazing of complex geometries
US20040112940A1 (en) * 2002-12-13 2004-06-17 Caddell James Walter Apparatus and method for performing welding at elevated temperature
US7137544B2 (en) * 2002-12-13 2006-11-21 General Electric Company Apparatus and method for performing welding at elevated temperature
US6996906B2 (en) * 2002-12-17 2006-02-14 General Electric Company Method of repairing a turbine blade and blade repaired thereby
US7159755B2 (en) * 2004-02-05 2007-01-09 General Electric Company Method and apparatus for rebuilding gas turbine engines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106425039A (en) * 2016-11-16 2017-02-22 无锡市伟丰印刷机械厂 High-performance welding device for temperature controller
CN108145287A (en) * 2017-12-28 2018-06-12 贵阳航发精密铸造有限公司 A kind of welding scheme of single crystal turbine blade integral shroud wear-resistant block

Also Published As

Publication number Publication date
US20050173494A1 (en) 2005-08-11
US7159755B2 (en) 2007-01-09

Similar Documents

Publication Publication Date Title
US20070251924A1 (en) Method and apparatus for rebuilding gas turbine engines
CN102448650B (en) By bringing the method for recess of soldering part at profile exterior or the welding that applies around profile; Corresponding part
US8091228B2 (en) Method repair of turbine blade tip
US11524363B2 (en) Laser powder deposition weld rework for gas turbine engine non-fusion weldable nickel castings
CN100467200C (en) Method for repairing curved section of nozzle guide device
US6568077B1 (en) Blisk weld repair
CA2529337C (en) Turbine nozzle segment and method of repairing same
US10016853B2 (en) Deep trailing edge repair
US6427327B1 (en) Method of modifying cooled turbine components
US8925200B2 (en) Method for repairing an airfoil
US11268387B2 (en) Splayed tip features for gas turbine engine airfoil
CA2448465C (en) Fabricated repair of cast nozzle
JP3839389B2 (en) How to repair vanes
US20160311052A1 (en) Manufacture of a hollow aerofoil
US10328526B2 (en) Laser powder deposition weld rework for gas turbine engine non-fusion weldable nickel castings
JP2001025863A (en) Welding method and assembly for welding
US20130025123A1 (en) Working a vane assembly for a gas turbine engine
US10828718B2 (en) Installation of waterjet vent holes into vertical walls of cavity-back airfoils
US20190381608A1 (en) Installation of laser vent holes into vertical walls of cavity-back airfoils

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTINS, ADEILTON JORGE;FILHO, ADILIO ALVES SARDINHA;REEL/FRAME:018603/0065

Effective date: 20040129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION