US20070070285A1 - Array substrate for LCD device - Google Patents

Array substrate for LCD device Download PDF

Info

Publication number
US20070070285A1
US20070070285A1 US11/298,389 US29838905A US2007070285A1 US 20070070285 A1 US20070070285 A1 US 20070070285A1 US 29838905 A US29838905 A US 29838905A US 2007070285 A1 US2007070285 A1 US 2007070285A1
Authority
US
United States
Prior art keywords
spacer
recess portion
array substrate
substrate
color filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/298,389
Other versions
US7619711B2 (en
Inventor
Chu-Yu Liu
Chung-Jen Chengchiang
Kuei-Sheng Tseng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL China Star Optoelectronics Technology Co Ltd
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Assigned to AU OPTRONICS CORP. reassignment AU OPTRONICS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHENGCHIANG, CHUNG-JEN, LIU, CHU-YU, TSENG, KUEI-SHENG
Publication of US20070070285A1 publication Critical patent/US20070070285A1/en
Priority to US12/574,806 priority Critical patent/US8194225B2/en
Application granted granted Critical
Publication of US7619711B2 publication Critical patent/US7619711B2/en
Assigned to CHINA STAR OPTOELECTRONICS INTERNATIONAL (HK) LIMITED reassignment CHINA STAR OPTOELECTRONICS INTERNATIONAL (HK) LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AU OPTRONICS CORPORATION
Assigned to TCL CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD. reassignment TCL CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHINA STAR OPTOELECTRONICS INTERNATIONAL (HK) LIMITED
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present invention relates to a liquid crystal display (LCD) device, and in particular to an array substrate for an LCD device.
  • LCD liquid crystal display
  • LCD devices In new generation panel display technologies, LCD devices have the advantages of thin profile, light weight, and low power consumption and therefore are widely applied in electronic devices such as mobile phones and portable computers.
  • LCDs have an upper and a lower substrate with electrodes thereon.
  • TFTs are formed above the lower substrate as switching devices.
  • Each TFT has a gate electrode connected to a scanning line, a drain electrode connected with a signal line, and a source electrode connected to a pixel electrode.
  • the upper substrate includes a color filter layer, showing colors such as green, red or blue, and a black matrix layer.
  • These substrates are sealed with adhesive materials, and a liquid crystal material is sealed between these two substrates. Before the liquid crystal is injected between the two substrates, spacers are sprayed between the substrates in order to maintain a constant distance therebetween.
  • LC liquid crystal
  • Array substrates for LCD devices are provided. LCD devices using the same and methods for assembling the same are also provided.
  • An array substrate for an LCD device is provided with at least one spacer thereon. The spacer is located at a non-intersection point of conductive lines formed over the array substrate and substantially aligns to a black matrix layer over a color filter substrate of the LCD and is therefore limited by color filter layers adjacent thereto. Therefore, the spacer will not be revealed when misalignment occurs during the LCD device assembling and display performance of adjacent pixel units thereto are thus ensured.
  • An exemplary embodiment of the array substrate comprises a transparent substrate.
  • a plurality of first and second conductive lines overlies the transparent substrate and cross over each other, thereby defining a plurality of display regions.
  • At least one first spacer overlies a portion of the first or second conductive lines, wherein the first spacer is not formed over a intersection portion of the first and second conductive lines.
  • a pixel electrode layer overlies the display regions, wherein the first spacer partially covers the pixel electrode layer.
  • An exemplary embodiment of an LCD device comprises an array substrate and a color filter substrate.
  • a liquid crystal layer is filled between the array substrate and the color filter layer.
  • the array substrate comprises a first transparent substrate.
  • a plurality of first and second conductive lines overlies the first transparent substrate and crosses over each other, defining a plurality of display regions.
  • At least one first spacer overlies a portion of the first or second conductive lines, wherein the at least one first spacer is not formed over an intersection of the first and second conductive lines.
  • a pixel electrode layer overlies the display regions, the first spacer partially covers the pixel electrode layer.
  • the color filter substrate comprises a second transparent substrate.
  • a black matrix layer overlies the second transparent substrate, defining a plurality of light-transmitting regions.
  • a color filter layer overlies the second transparent substrate within the light-transmitting regions and partially covers the black matrix layer to thereby form a recess portion, wherein the first spacer supports the recess portion to thereby align the display regions to the light-transmitting regions.
  • An exemplary embodiment of a method for assembling an LCD device comprises providing the described array substrate and the color filter substrate.
  • the first spacer over the array substrate aligns with the recess portion over the color filter substrate.
  • the array substrate presses against the color filter substrate to make the first spacer support the recess portion and align the display regions with the light-transmitting regions.
  • FIG. 1 is a schematic diagram, showing a top view of a LCD device according to an embodiment of the invention
  • FIG. 2 is a cross section taken along line 2 - 2 of FIG. 1 , showing a partial cross-section of an LCD device according to an embodiment of the invention.
  • FIG. 3 is a cross-section taken along line 2 - 2 of FIG. 1 , showing a method for LCD device assembling according to an embodiment of the invention.
  • An array substrate for LCD devices is now described in greater detail. Some embodiments described, can potentially prevent revealed spacers due to misalignment between array substrate and color filter substrates of the LCD device. In some embodiments, this can be accomplished by forming a spacer over the array substrate and a recess portion over the color filter substrate. During LCD device assembly, the spacer over the array substrate aligns with the recess portion over the color filter substrate. The array substrate presses against the color filter substrate to make the first spacer support the recess portion and align the display regions over the array substrate with the light-transmitting regions over the color filter substrate.
  • FIGS. 1-3 are schematic diagrams of an exemplary embodiment of an LCD device 10 .
  • a top view of the LCD device 10 is illustrated to partially show arrangements therein.
  • the LCD device 10 includes a lower array substrate 12 and an upper color filter (CF) substrate 14 .
  • a liquid crystal (LC) layer (not shown) is sandwiched between the array substrate 12 and the CF substrate 14 .
  • the array substrate includes a transparent substrate 100 formed with a plurality of crossed gate lines 102 and data lines 104 thereon.
  • gate lines 102 are illustrated as horizontally extending conductive lines, functioning as scan lines
  • data lines 140 are illustrated as vertically extending lines, functioning as signal lines.
  • These crossed gate lines 102 and data lines 104 define a plurality of display regions P over the transparent substrate 100 .
  • the color filter substrate 14 includes a transparent substrate 200 formed with a black matrix layer 202 thereon.
  • the black matrix layer 202 includes a plurality of first black matrix segments 202 a and second black matrix segments 202 b which cross each other, thereby defining a plurality of light-transmitting regions L over the transparent substrate 200 .
  • the first black matrix segments 202 a are, for example, horizontally extended and the second black matrix segments 202 b are, for example, vertically extended, and overlie the transparent substrate 200 .
  • color filter layers of different colors such as red CF layer 300 a , green CF layer 300 b or blue CF layer 300 c , are formed.
  • Each of the light-transmitting regions L respectively oppose a display region P.
  • a spacer 106 b is formed below one of the first black matrix segments 202 a
  • another spacer 106 a is formed below one of the second black matrix segments 202 b
  • the spacers 106 b , 106 a are preferably located at a non-intersection point of the first and second black matrix segments 202 a , 202 b , to thereby reduce misalignment between the array substrate 12 and the CF substrate 14 , thus enhanced process windows for the LCD device 10 are provided during assembly.
  • the spacers 106 a , 106 b are respectively adjacent to two different light-transmitting regions L.
  • the above spacers can be arranged as described in the following:
  • a plurality of spacers 106 a or 106 b are provided below the black matrix segments adjacent to one light-transmitting region L, wherein the spacers substantially surround the light-transmitting region L;
  • one or more spacers 106 a and 106 b are provided below a portion of one or more black matrix segments adjacent to one or more light-transmitting regions L.
  • FIG. 2 a cross-section taken along line 2 - 2 of FIG. 1 is illustrated, showing a part of the LCD device 10 .
  • the array substrate is provided with a transparent substrate 100 formed with a data line 104 thereon, separating two adjacent display regions P.
  • a buffer layer 110 , an insulating layer covering the data line 104 and a pixel electrode layer 114 are formed over the transparent substrate 100 .
  • a spacer is formed over the transparent substrate 100 , referring to spacer 106 a here, has a tapered shape but is not limited to the shape illustrated in FIG. 2 .
  • the spacer 106 a has an upper width of about 5.0 ⁇ 15.0 ⁇ m.
  • the spacer 106 a may comprise photosensitive materials such as polymer, resist material, resin and silicon compounds and can be formed by a process including photolithography and sequential development, without requiring additional etching steps. As shown in FIG. 2 , the spacer 106 a crosses over two adjacent display regions P and covers the insulating layer 112 and a part of the pixel electrode 114 . Herein, the size of pixel electrode layer 114 can be further reduced and the pixel electrode layer may be not covered by the spacer 106 a (not shown).
  • the color filter substrate 14 includes a transparent substrate 200 formed with a black-matrix layer thereon, illustrating as the second black matrix segments 202 b separating two adjacent light-transmitting regions L here.
  • a color filter layer is formed over the transparent substrate 200 and illustrated as the color filter layer 300 c or 300 a , partially covering the second black matrix segments 202 b .
  • the second black matrix segment 202 b is formed with a thickness H 1 of about 0.5-1.5 ⁇ m
  • the CF layers 300 c , 300 a are formed with a thickness H 2 of about 1.0-3.0 ⁇ m, having a gap H 3 of about 0.5-2.5 ⁇ m therebetween and forming a recess portion therebetween.
  • the portion of the second black-matrix segment 202 b not covered by the CF layer 300 c and 300 a has a width W 1 of about 20-30 ⁇ m, defining a width of the recess portion.
  • the recess portion of the CF layer 14 substantially aligns with the spacer 16 overlying the array substrate 12 and is supported thereby, a vacant space of less than 7 ⁇ m still exists between the first spacer 106 a and the recess portion, thereby providing a suitable process window for LCD device assembly.
  • the spacer 106 a When misalignment occurs during LCD device assembly, the spacer 106 a is limited by the gap defined by the CF layers 300 a and 300 c over the CF layer 14 and the first black matrix segments 202 b , and the spacer 106 a will not be exposed through the light-transmitting region L and pixel performance of the adjacent display regions P are ensured.
  • the distance between the CF substrate 14 and the array substrate 12 is defined by the thickness of the spacer 106 a and a liquid crystal layer LC is formed and sandwiched thereby, thus the LCD device 10 is formed.
  • FIG. 3 a cross section taken along lines 2 - 2 of FIG. 1 is illustrated, showing a method for assembly the LCD device 10 .
  • the above array substrate 12 is first-provided.
  • the array substrate 12 is formed with the described elements thereon and a spacer.
  • 106 a is formed over a conductive line, for example the data line 104 , between adjacent display regions P.
  • the spacer 106 a is formed with, for example, a tapered shape as illustrated in FIG. 3 and is surrounded by a seal layer (not shown), defining an area for a plurality of display regions P.
  • the liquid crystal layer LC is then formed in the display regions P by methods such as the one drop filling (ODF) method.
  • a CF substrate for example the above mentioned CF substrate 14 , is provided over the array substrate 12 .
  • the CF substrate 14 has a recess portion formed over a black matrix layer between adjacent light-transmitting regions L.
  • the array substrate and the CF substrate 14 are pressed toward each other under a vacuum atmosphere to thereby assembly the LCD device 10 .
  • a plurality of spacers 106 a and 106 b are formed along a part of a conductive line over the array substrate but not formed at an intersection of the conducive lines thereon, thereby providing alignment assistance along vertical and/or horizontal directions during LCD device assembly.
  • the formed spacers substantially align to a recess portion formed over a CF substrate and are limited thereto during LCD device assembling, thereby avoiding reveals of the spacers into the light-transmitting regions.
  • extra assembling process windows and reduced effect to the pixel units are provided.
  • the amounts and arrangements of the spacers can be varied according practical LCD device design and is not limited to that illustrated in FIG. 1 .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

An array substrate for a liquid crystal display (LCD) device. An exemplary embodiment of an array substrate comprises a transparent substrate. A plurality of first and second conductive lines overlies the transparent substrate and cross over each other, thereby defining a plurality of display regions. At least one first spacer overlies a portion of the first or second conductive lines, wherein the first spacer is not formed over an intersection of the first and second conductive lines. A pixel electrode layer overlies the display regions, wherein the first spacer partially covers the pixel electrode layer.

Description

    BACKGROUND
  • The present invention relates to a liquid crystal display (LCD) device, and in particular to an array substrate for an LCD device.
  • In new generation panel display technologies, LCD devices have the advantages of thin profile, light weight, and low power consumption and therefore are widely applied in electronic devices such as mobile phones and portable computers.
  • Generally, LCDs have an upper and a lower substrate with electrodes thereon. Conventionally, many TFTs are formed above the lower substrate as switching devices. Each TFT has a gate electrode connected to a scanning line, a drain electrode connected with a signal line, and a source electrode connected to a pixel electrode. The upper substrate includes a color filter layer, showing colors such as green, red or blue, and a black matrix layer. These substrates are sealed with adhesive materials, and a liquid crystal material is sealed between these two substrates. Before the liquid crystal is injected between the two substrates, spacers are sprayed between the substrates in order to maintain a constant distance therebetween.
  • Normally, during LCD device assembly, these substrates are installed in parallel and a cavity is formed between these two precisely aligned substrates by forming adhesive materials therebetween. Next, a liquid crystal (LC) filling process, for example vacuum insertion, is performed on the cavity to thereby fill an LC material therebetween. The LC material flows between the spacers formed in the LCD device.
  • During LCD device assembly, however, undesired misalignment between these substrates still occurs and some of the spacers which should be covered by the black matrix layer are somehow revealed, thus pixel performances of the LCD device suffers. Therefore, a need exists for a method of solving such spacer revealing issues due to substrate misalignment.
  • SUMMARY
  • Array substrates for LCD devices are provided. LCD devices using the same and methods for assembling the same are also provided. An array substrate for an LCD device is provided with at least one spacer thereon. The spacer is located at a non-intersection point of conductive lines formed over the array substrate and substantially aligns to a black matrix layer over a color filter substrate of the LCD and is therefore limited by color filter layers adjacent thereto. Therefore, the spacer will not be revealed when misalignment occurs during the LCD device assembling and display performance of adjacent pixel units thereto are thus ensured.
  • An exemplary embodiment of the array substrate comprises a transparent substrate. A plurality of first and second conductive lines overlies the transparent substrate and cross over each other, thereby defining a plurality of display regions. At least one first spacer overlies a portion of the first or second conductive lines, wherein the first spacer is not formed over a intersection portion of the first and second conductive lines. A pixel electrode layer overlies the display regions, wherein the first spacer partially covers the pixel electrode layer.
  • An exemplary embodiment of an LCD device comprises an array substrate and a color filter substrate. A liquid crystal layer is filled between the array substrate and the color filter layer. The array substrate comprises a first transparent substrate. A plurality of first and second conductive lines overlies the first transparent substrate and crosses over each other, defining a plurality of display regions. At least one first spacer overlies a portion of the first or second conductive lines, wherein the at least one first spacer is not formed over an intersection of the first and second conductive lines. A pixel electrode layer overlies the display regions, the first spacer partially covers the pixel electrode layer. The color filter substrate comprises a second transparent substrate. A black matrix layer overlies the second transparent substrate, defining a plurality of light-transmitting regions. A color filter layer overlies the second transparent substrate within the light-transmitting regions and partially covers the black matrix layer to thereby form a recess portion, wherein the first spacer supports the recess portion to thereby align the display regions to the light-transmitting regions.
  • An exemplary embodiment of a method for assembling an LCD device comprises providing the described array substrate and the color filter substrate. The first spacer over the array substrate aligns with the recess portion over the color filter substrate. The array substrate presses against the color filter substrate to make the first spacer support the recess portion and align the display regions with the light-transmitting regions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention can be more fully understood by reading the subsequent detailed description and examples with reference made to the accompanying drawings, wherein:
  • FIG. 1 is a schematic diagram, showing a top view of a LCD device according to an embodiment of the invention;
  • FIG. 2 is a cross section taken along line 2-2 of FIG. 1, showing a partial cross-section of an LCD device according to an embodiment of the invention; and
  • FIG. 3 is a cross-section taken along line 2-2 of FIG. 1, showing a method for LCD device assembling according to an embodiment of the invention.
  • DESCRIPTION
  • An array substrate for LCD devices is now described in greater detail. Some embodiments described, can potentially prevent revealed spacers due to misalignment between array substrate and color filter substrates of the LCD device. In some embodiments, this can be accomplished by forming a spacer over the array substrate and a recess portion over the color filter substrate. During LCD device assembly, the spacer over the array substrate aligns with the recess portion over the color filter substrate. The array substrate presses against the color filter substrate to make the first spacer support the recess portion and align the display regions over the array substrate with the light-transmitting regions over the color filter substrate.
  • Referring now to the drawings, FIGS. 1-3 are schematic diagrams of an exemplary embodiment of an LCD device 10. In FIG. 1, a top view of the LCD device 10 is illustrated to partially show arrangements therein.
  • As shown in FIG. 1, the LCD device 10 includes a lower array substrate 12 and an upper color filter (CF) substrate 14. A liquid crystal (LC) layer (not shown) is sandwiched between the array substrate 12 and the CF substrate 14. The array substrate includes a transparent substrate 100 formed with a plurality of crossed gate lines 102 and data lines 104 thereon. Herein, gate lines 102 are illustrated as horizontally extending conductive lines, functioning as scan lines, and data lines 140 are illustrated as vertically extending lines, functioning as signal lines. These crossed gate lines 102 and data lines 104 define a plurality of display regions P over the transparent substrate 100.
  • Moreover, still referring to FIG. 1, the color filter substrate 14 includes a transparent substrate 200 formed with a black matrix layer 202 thereon. The black matrix layer 202 includes a plurality of first black matrix segments 202 a and second black matrix segments 202 b which cross each other, thereby defining a plurality of light-transmitting regions L over the transparent substrate 200. Herein, the first black matrix segments 202 a are, for example, horizontally extended and the second black matrix segments 202 b are, for example, vertically extended, and overlie the transparent substrate 200. Within each of the light-transmitting regions L, color filter layers of different colors, such as red CF layer 300 a, green CF layer 300 b or blue CF layer 300 c, are formed. Each of the light-transmitting regions L respectively oppose a display region P.
  • Still shown in FIG. 1, a spacer 106 b is formed below one of the first black matrix segments 202 a, and another spacer 106 a is formed below one of the second black matrix segments 202 b. The spacers 106 b, 106 a are preferably located at a non-intersection point of the first and second black matrix segments 202 a, 202 b, to thereby reduce misalignment between the array substrate 12 and the CF substrate 14, thus enhanced process windows for the LCD device 10 are provided during assembly. Herein, the spacers 106 a, 106 b are respectively adjacent to two different light-transmitting regions L. Within the LCD device 10, the above spacers can be arranged as described in the following:
  • (a) one or more spacers 106 a or 106 b are provided below a black matrix segment adjacent to one or more light-transmitting region L;
  • (b) a plurality of spacers 106 a or 106 b are provided below the black matrix segments adjacent to one light-transmitting region L, wherein the spacers substantially surround the light-transmitting region L; and
  • (c) one or more spacers 106 a and 106 b are provided below a portion of one or more black matrix segments adjacent to one or more light-transmitting regions L.
  • Those skilled in the art will understand that the arrangement of the spacers 106 a, 106 b are not limited to the described and illustrated in FIG. 1. Other arrangements are anticipated and fall within the scope of the invention.
  • Next, in FIG. 2, a cross-section taken along line 2-2 of FIG. 1 is illustrated, showing a part of the LCD device 10. As shown in FIG. 2, the array substrate is provided with a transparent substrate 100 formed with a data line 104 thereon, separating two adjacent display regions P. A buffer layer 110, an insulating layer covering the data line 104 and a pixel electrode layer 114 are formed over the transparent substrate 100. In addition, a spacer is formed over the transparent substrate 100, referring to spacer 106 a here, has a tapered shape but is not limited to the shape illustrated in FIG. 2. As shown in FIG. 2, the spacer 106 a has an upper width of about 5.0˜15.0 μm. The spacer 106 a may comprise photosensitive materials such as polymer, resist material, resin and silicon compounds and can be formed by a process including photolithography and sequential development, without requiring additional etching steps. As shown in FIG. 2, the spacer 106 a crosses over two adjacent display regions P and covers the insulating layer 112 and a part of the pixel electrode 114. Herein, the size of pixel electrode layer 114 can be further reduced and the pixel electrode layer may be not covered by the spacer 106 a (not shown).
  • Moreover, the color filter substrate 14 includes a transparent substrate 200 formed with a black-matrix layer thereon, illustrating as the second black matrix segments 202 b separating two adjacent light-transmitting regions L here. Within each light-transmitting region L, a color filter layer is formed over the transparent substrate 200 and illustrated as the color filter layer 300 c or 300 a, partially covering the second black matrix segments 202 b. The second black matrix segment 202 b is formed with a thickness H1 of about 0.5-1.5 μm, and the CF layers 300 c, 300 a are formed with a thickness H2 of about 1.0-3.0 μm, having a gap H3 of about 0.5-2.5 μm therebetween and forming a recess portion therebetween. Herein, the portion of the second black-matrix segment 202 b not covered by the CF layer 300 c and 300 a has a width W1 of about 20-30 μm, defining a width of the recess portion. In the LCD device 10, the recess portion of the CF layer 14 substantially aligns with the spacer 16 overlying the array substrate 12 and is supported thereby, a vacant space of less than 7 μm still exists between the first spacer 106 a and the recess portion, thereby providing a suitable process window for LCD device assembly. When misalignment occurs during LCD device assembly, the spacer 106 a is limited by the gap defined by the CF layers 300 a and 300 c over the CF layer 14 and the first black matrix segments 202 b, and the spacer 106 a will not be exposed through the light-transmitting region L and pixel performance of the adjacent display regions P are ensured.
  • Moreover, the distance between the CF substrate 14 and the array substrate 12 is defined by the thickness of the spacer 106 a and a liquid crystal layer LC is formed and sandwiched thereby, thus the LCD device 10 is formed.
  • Next, in FIG. 3, a cross section taken along lines 2-2 of FIG. 1 is illustrated, showing a method for assembly the LCD device 10.
  • As shown in FIG. 3, the above array substrate 12 is first-provided. The array substrate 12 is formed with the described elements thereon and a spacer. 106 a is formed over a conductive line, for example the data line 104, between adjacent display regions P. The spacer 106 a is formed with, for example, a tapered shape as illustrated in FIG. 3 and is surrounded by a seal layer (not shown), defining an area for a plurality of display regions P. The liquid crystal layer LC is then formed in the display regions P by methods such as the one drop filling (ODF) method. Next, a CF substrate, for example the above mentioned CF substrate 14, is provided over the array substrate 12. The CF substrate 14 has a recess portion formed over a black matrix layer between adjacent light-transmitting regions L. Next, the array substrate and the CF substrate 14 are pressed toward each other under a vacuum atmosphere to thereby assembly the LCD device 10.
  • Within the LCD device 10 illustrated in FIG. 1, a plurality of spacers 106 a and 106 b are formed along a part of a conductive line over the array substrate but not formed at an intersection of the conducive lines thereon, thereby providing alignment assistance along vertical and/or horizontal directions during LCD device assembly. The formed spacers substantially align to a recess portion formed over a CF substrate and are limited thereto during LCD device assembling, thereby avoiding reveals of the spacers into the light-transmitting regions. Thus, extra assembling process windows and reduced effect to the pixel units are provided. The amounts and arrangements of the spacers can be varied according practical LCD device design and is not limited to that illustrated in FIG. 1.
  • While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (23)

1. An array substrate, comprising:
a transparent substrate;
a plurality of first and second conductive lines overlying the transparent substrate, crossing over each other, defining a plurality of display regions;
at least one first spacer overlying a portion of the first or second conductive lines, wherein the first spacer is not formed over an intersection portion of the first and second conductive lines; and
a pixel electrode layer overlying the display regions, wherein the first spacer partially covers the pixel electrode layer.
2. The array substrate as claimed in claim 1, further comprising at least one second spacer overlying a portion of the first or second conductive lines not formed with the first spacer thereon.
3. The array substrate as claimed in claim 2, wherein the second spacer partially covers the pixel electrode layer.
4. The array substrate as claimed in claim 1, wherein the first spacer comprises resin, polymer or silicon compound.
5. The array substrate as claimed in claim 2, wherein the second spacer comprises resin, polymer or silicon compound.
6. A liquid crystal display (LCD) device, comprising:
an array substrate, comprising:
a first transparent substrate;
a plurality of first and second conductive lines overlying the first transparent substrate, crossing over each other, defining a plurality of display regions;
at least one first spacer overlying a portion of the first or second conductive lines, wherein the at least one first spacer is not formed over an intersection of the first and second conductive lines; and
a pixel electrode layer overlying the display regions, the first spacer partially covers the pixel electrode layer;
a color filter substrate, comprising:
a second transparent substrate;
a black matrix layer overlying the second transparent substrate, defining a plurality of light-transmitting regions; and
a color filter layer overlying the second transparent substrate within the light-transmitting regions, partially covering the black matrix layer to thereby form a recess portion; and;
a liquid crystal layer filled between the array substrate and the color filter layer, wherein the first spacer supports the recess portion to thereby align the display regions to the light-transmitting regions.
7. The LCD device as claimed in claim 6, further comprising at least one second spacer over a portion of the first or second conductive lines not formed with the first spacer formed thereon, the second spacer supports the recess portion to thereby align the display regions to the light-transmitting regions.
8. The LCD device as claimed in claim 7, wherein the second spacer partially covers the pixel electrode layer.
9. The LCD device as claimed in claim 6, wherein the first spacer is inserted in the recess portion and movement of the array substrate is thereby limited by the color filter layers adjacent to the recess portion.
10. The LCD device as claimed in claim 7, wherein the second spacer is inserted in the recess portion and movement of the array substrate is thereby limited by the color filter layers adjacent to the recess portion.
11. The LCD device as claimed in claim 7, wherein the recess portion extends along the first and second conductive lines and the first and second spacers are both inserted in the recess portion, thereby limiting movement of the array substrate.
12. The LCD device as claimed in claim 6, wherein the recess portion has a depth of about 0.5-2.5 μm to a top surface of the adjacent color filter layers.
13. The LCD device as claimed in claim 7, wherein a gap less than 7 μm is formed between a upper portion of the first/second spacers and the color layer adjacent to the recess portion.
14. The LCD device as claimed in claim 6, wherein the first spacer comprises resin, polymer or silicon compound.
15. The LCD device as claimed in claim 7, wherein the second spacer comprises resin, polymer or silicon compound.
16. A method for assembling a liquid crystal display (LCD) device, comprising:
providing an array substrate, comprising:
a first transparent substrate;
a plurality of first and second conductive lines overlying the first transparent substrate, crossing over each other, defining a plurality of display regions;
at least one first spacer overlying a portion of the first or second conductive lines, wherein the first spacer is not formed over an intersection of the first and second conductive lines; and
a pixel electrode layer overlying the display regions, wherein the first spacer partially covers the pixel electrode layer;
providing a color filter substrate, comprising:
a second transparent substrate;
a black matrix layer overlying the second transparent substrate, defining a plurality of light-transmitting regions; and
a color filter layer overlying the second transparent substrate in the light-transmitting regions, partially covering the black matrix layer to thereby form a recess portion;
aligning the first spacer with the recess portion; and
pressing the array substrate with the color filter substrate, making the first spacer support the recess portion and aligning the display regions with the light-transmitting regions.
17. The method as claimed in claim 16, before the step of pressing the array substrate with the color filter substrate, further comprising a step of filling the display regions with a liquid crystal material in.
18. The method as claimed in claim 16, further comprising at least one second spacer overlying the first or second conductive lines not formed with the first spacer thereon, the second spacer supports the recess portion in the step of pressing the array substrate with the color filter substrate.
19. The method as claimed in claim 16, wherein the first spacer is inserted in the recess portion and movement of the array substrate is thereby limited by the color filter layers adjacent to the recess portion.
20. The method as claimed in claim 18, wherein the second spacer is inserted in the recess portion and movement of the array substrate is thereby limited by the color filter layers adjacent to the recess portion.
21. The method as claimed in claim 18, wherein the recess portion extends along the first and second conductive lines and the first and second spacers are both inserted in the recess portion, thereby limiting movement of the array substrate.
22. The method as claimed in claim 16, wherein the first spacer comprises resin, polymer or silicon compound.
23. The method as claimed in claim 18, wherein the second spacer comprises resin, polymer or silicon compound.
US11/298,389 2005-09-29 2005-12-09 Array substrate for LCD device Active 2027-08-05 US7619711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/574,806 US8194225B2 (en) 2005-09-29 2009-10-07 Array substrate for LCD device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW094133968A TWI281064B (en) 2005-09-29 2005-09-29 Array substrate, display devices using the same and methods for assembling the same
TW94133968 2005-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/574,806 Division US8194225B2 (en) 2005-09-29 2009-10-07 Array substrate for LCD device

Publications (2)

Publication Number Publication Date
US20070070285A1 true US20070070285A1 (en) 2007-03-29
US7619711B2 US7619711B2 (en) 2009-11-17

Family

ID=37893400

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/298,389 Active 2027-08-05 US7619711B2 (en) 2005-09-29 2005-12-09 Array substrate for LCD device
US12/574,806 Active 2026-11-11 US8194225B2 (en) 2005-09-29 2009-10-07 Array substrate for LCD device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/574,806 Active 2026-11-11 US8194225B2 (en) 2005-09-29 2009-10-07 Array substrate for LCD device

Country Status (2)

Country Link
US (2) US7619711B2 (en)
TW (1) TWI281064B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070247584A1 (en) * 2006-04-20 2007-10-25 De-Jiun Li Color filter substrate and liquid crystal display panel thereof
US20090237608A1 (en) * 2008-03-24 2009-09-24 Po-Yuan Shen Spacer structure of a display panel
US20110149176A1 (en) * 2007-08-08 2011-06-23 Sharp Kabushiki Kaisha Lighting device for display device, display device and television receiver
US20180252958A1 (en) * 2016-05-26 2018-09-06 Boe Technology Group Co., Ltd. Display panel and manufacturing method thereof, display device
WO2019062297A1 (en) * 2017-09-30 2019-04-04 京东方科技集团股份有限公司 Array substrate, display panel, and display device
US20200033659A1 (en) * 2018-07-26 2020-01-30 Boe Technology Group Co., Ltd. Display panel and display device
CN113359357A (en) * 2021-06-17 2021-09-07 武汉华星光电技术有限公司 Liquid crystal display panel and liquid crystal display device
US11435624B2 (en) * 2019-12-25 2022-09-06 Tcl China Star Optoelectronics Technology Co., Ltd. LCD device and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140006357A (en) * 2012-07-04 2014-01-16 삼성디스플레이 주식회사 Liquid crystal display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568149A (en) * 1983-01-28 1986-02-04 Canon Kabushiki Kaisha Liquid crystal display panel with opaque mask over gate or signal line
US5739890A (en) * 1995-02-06 1998-04-14 International Business Machines Corporation Liquid crystal display device and a method of fabricating same
US6411360B1 (en) * 1999-06-18 2002-06-25 Hitachi, Ltd. Inplane switching type liquid crystal display with alignment layer formed on columnar spacer directly
US6568149B2 (en) * 2001-02-16 2003-05-27 Francis Lacasse Sealed garage door joint with thermal break
US7057695B2 (en) * 2000-08-14 2006-06-06 Samsung Electronics Co., Ltd. Liquid crystal display having protrusions with different thicknesses
US20060285060A1 (en) * 2005-05-27 2006-12-21 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2585162B1 (en) 1985-07-19 1991-03-08 Gen Electric CELL SPACER HOLDING AND LIGHT LOCKING STRUCTURE FOR LIQUID CRYSTAL MATRIX DISPLAYS
JP4099947B2 (en) 2001-01-15 2008-06-11 セイコーエプソン株式会社 Liquid crystal display
JP2004301960A (en) 2003-03-28 2004-10-28 Fujitsu Display Technologies Corp Liquid crystal display panel
JP4299584B2 (en) 2003-05-23 2009-07-22 Nec液晶テクノロジー株式会社 Liquid crystal display

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568149A (en) * 1983-01-28 1986-02-04 Canon Kabushiki Kaisha Liquid crystal display panel with opaque mask over gate or signal line
US4568149B1 (en) * 1983-01-28 1995-12-12 Canon Kk Liquid crystal display panel with opaque mask over gate or signal line
US4568149C1 (en) * 1983-01-28 2002-04-09 Canon Kk Liquid crystal display panel with opaque mask over gate or signal line
US5739890A (en) * 1995-02-06 1998-04-14 International Business Machines Corporation Liquid crystal display device and a method of fabricating same
US6411360B1 (en) * 1999-06-18 2002-06-25 Hitachi, Ltd. Inplane switching type liquid crystal display with alignment layer formed on columnar spacer directly
US7057695B2 (en) * 2000-08-14 2006-06-06 Samsung Electronics Co., Ltd. Liquid crystal display having protrusions with different thicknesses
US20060158600A1 (en) * 2000-08-14 2006-07-20 Samsung Electronics, Co., Ltd. Liquid crystal display and a method for fabricating the same
US6568149B2 (en) * 2001-02-16 2003-05-27 Francis Lacasse Sealed garage door joint with thermal break
US20060285060A1 (en) * 2005-05-27 2006-12-21 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070247584A1 (en) * 2006-04-20 2007-10-25 De-Jiun Li Color filter substrate and liquid crystal display panel thereof
US7626675B2 (en) * 2006-04-20 2009-12-01 Chungwa Picture Tubes, Ltd. Color filter substrate and liquid crystal display panel with spacer having a recess or clipping opening in which an active device is wedged therein
US20110149176A1 (en) * 2007-08-08 2011-06-23 Sharp Kabushiki Kaisha Lighting device for display device, display device and television receiver
US8057058B2 (en) * 2007-08-08 2011-11-15 Sharp Kabushiki Kaisha Lighting device for display device, display device and television receiver
US20090237608A1 (en) * 2008-03-24 2009-09-24 Po-Yuan Shen Spacer structure of a display panel
US7924358B2 (en) * 2008-03-24 2011-04-12 Au Optronics Corp. Spacer structure of a display panel
US20180252958A1 (en) * 2016-05-26 2018-09-06 Boe Technology Group Co., Ltd. Display panel and manufacturing method thereof, display device
US10768489B2 (en) * 2016-05-26 2020-09-08 Boe Technology Group Co., Ltd. Display panel with spacers and walls for the spacers, manufacturing method thereof and display device
WO2019062297A1 (en) * 2017-09-30 2019-04-04 京东方科技集团股份有限公司 Array substrate, display panel, and display device
US11480837B2 (en) 2017-09-30 2022-10-25 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Array substrate, display panel and display device
US20200033659A1 (en) * 2018-07-26 2020-01-30 Boe Technology Group Co., Ltd. Display panel and display device
US11435624B2 (en) * 2019-12-25 2022-09-06 Tcl China Star Optoelectronics Technology Co., Ltd. LCD device and manufacturing method thereof
CN113359357A (en) * 2021-06-17 2021-09-07 武汉华星光电技术有限公司 Liquid crystal display panel and liquid crystal display device

Also Published As

Publication number Publication date
US20100022155A1 (en) 2010-01-28
US7619711B2 (en) 2009-11-17
TW200712622A (en) 2007-04-01
TWI281064B (en) 2007-05-11
US8194225B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
US8194225B2 (en) Array substrate for LCD device
KR102033263B1 (en) VA type COA liquid crystal display panel
KR100870660B1 (en) A liuquid crystal display device having improved attachment of pannel and a method of fabricating thereof
US10423039B2 (en) Array substrate and manufacturing method thereof
US6882399B2 (en) Liquid crystal display device sealing structure and method of fabricating the same
JP2009069391A (en) Liquid crystal display device
KR20060043296A (en) Liquid crystal display device having an injection hole for liquid crystal
CN102193253A (en) Liquid crystal display panel
TWI518382B (en) Pixel structure and display panel having the same
US8405807B2 (en) Liquid crystal display
KR20090041337A (en) Liquid crystal display panel
KR20100076601A (en) Array substrate of gate in panel type liquid crystal display device
CN101685232A (en) Array substrate, method of manufacturing the same and liquid crystal display apparatus having the same
US7580105B2 (en) Liquid crystal display devices
JP5191257B2 (en) LCD panel
US10802361B2 (en) Array substrate comprising a light-shielding electrode having a main section with a vertical projection covering a data line, liquid crystal display panel and liquid crystal display device
CN109752892B (en) Liquid crystal display panel and display device
KR102043862B1 (en) Liquid Crystal Display Device and Method of manufacturing the sames
JP2008009273A (en) Liquid crystal display
US20240085751A1 (en) Liquid crystal display panel, manufacturing method thereof, and display device
JP5292594B2 (en) LCD panel
CN114077108A (en) Display panel and display device
KR101356618B1 (en) Color filter substrate, method of fabricating the same and liquid crystal display device including the same
KR20050000447A (en) liquid crystal display devices
US20110058132A1 (en) Display device and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: AU OPTRONICS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, CHU-YU;CHENGCHIANG, CHUNG-JEN;TSENG, KUEI-SHENG;REEL/FRAME:017309/0887

Effective date: 20051122

Owner name: AU OPTRONICS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, CHU-YU;CHENGCHIANG, CHUNG-JEN;TSENG, KUEI-SHENG;REEL/FRAME:017309/0887;SIGNING DATES FROM 20051122 TO 22051122

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CHINA STAR OPTOELECTRONICS INTERNATIONAL (HK) LIMI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AU OPTRONICS CORPORATION;REEL/FRAME:045021/0755

Effective date: 20180126

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

AS Assignment

Owner name: TCL CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHINA STAR OPTOELECTRONICS INTERNATIONAL (HK) LIMITED;REEL/FRAME:065907/0201

Effective date: 20231205