US20070008497A1 - Projector with sealed light valve - Google Patents

Projector with sealed light valve Download PDF

Info

Publication number
US20070008497A1
US20070008497A1 US11/523,069 US52306906A US2007008497A1 US 20070008497 A1 US20070008497 A1 US 20070008497A1 US 52306906 A US52306906 A US 52306906A US 2007008497 A1 US2007008497 A1 US 2007008497A1
Authority
US
United States
Prior art keywords
prism
light valve
air channel
light
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/523,069
Inventor
Jim Ellis
Richard Matthews
Llyod Holland
George Pinho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Christie Digital Systems Canada Inc
Original Assignee
Christie Digital Systems Canada Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Christie Digital Systems Canada Inc filed Critical Christie Digital Systems Canada Inc
Priority to US11/523,069 priority Critical patent/US20070008497A1/en
Publication of US20070008497A1 publication Critical patent/US20070008497A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating

Definitions

  • the present invention is directed to LCD, LCOS, D-ILA or digital micromirror device (DMD) projectors incorporating light engines with color splitting-converging prisms, and more particularly to a projector with a light valve that is sealed against the glass prism surface by a dust-free air channel.
  • LCD liquid crystal display
  • LCOS liquid crystal display
  • DMD digital micromirror device
  • a light valve is imaged onto a screen by a projection lens to produce an image.
  • Dust that circulates through the projector by the air cooling system can settle on the light valve and also be imaged onto the image screen. The dust causes color blemishes and can reduce contrast in projectors capable of greater than 1500:1 contrast ratio.
  • U.S. Pat. No. 6,280,036 describes a method of mechanically sealing the light valve to a field lens in order to eliminate dust.
  • U.S. Pat. No. 6,394,608 and U.S. Patent Application 2002/0033992 A1 describe sealing the light valve and optical system inside a dust-proof box.
  • a similar technique is proposed in U.S. Pat. No. 6,350,033. All of the foregoing prior art techniques are suitable for low-lumens applications (3000 lumens) and/or single chip projectors. In the case of three-chip projectors, the rated lumens can be from 6000 up to 20000 lumens.
  • a light valve sealing technique is set forth for a color projector that eliminates dust from the surface of the light valve but allows uninterrupted air cooling of the light valve surface. More particularly, a projection apparatus is set forth for displaying blemish free images on a display screen, wherein the light valve is sealed against the glass prism surface by a dust-free air channel. The channel prevents dust from entering the light valve imaging space and allows for clean air to be circulated in order to maintain adequate cooling of the light valve.
  • FIG. 1 is a cooling system for a dust sealed three-chip projector, according to the prior art.
  • FIG. 2 is a schematic representation of an x-cube used for LCD panel display devices, according to the prior art.
  • FIG. 3 is a schematic representation of a plumbicon prism used for DMD panel display devices, according to the prior art.
  • FIG. 4 is a perspective view of a display device with dust seal mounted to a prism, according to the present invention.
  • FIG. 5 shows the display device of FIG. 4 with an air channel for sealing the display device along top and bottom of the prism, according to the present invention.
  • FIG. 6 is a cross-sectional view through the display device and air channel of FIG. 5 .
  • FIG. 7 is a perspective view of the air channel according to the present invention.
  • FIG. 8 is a schematic representation of a cooling system for the display device of FIGS. 4-7 .
  • FIG. 9 is a schematic representation of a cooling system for the display device of FIGS. 4-7 , according to an alternative embodiment.
  • FIG. 10 is a perspective view of an air channel dust purging system, according to a further aspect of the present invention.
  • FIG. 1 shows a typical cooling design of a three-chip projector.
  • Fans ( 1 ) are placed behind dust filters ( 2 ), which can be paper, foam, HEPA-type or other filters.
  • the filtered air is circulated throughout the projector compartment using channels where necessary to direct air to critical areas such as lamp ( 3 ) and light engine ( 4 ) and light valve ( 4 A).
  • the circulated air is then expelled out of the projector via vents either on the front, back or sides.
  • the light valves on three-chip projectors are typically mounted to a color splitting-converging prism.
  • Typical prism designs ( 5 ) use an x-cube for LCD panels and a plumbicon prism for DMD panels as shown in FIGS. 2 and 3 , respectively.
  • the prism elements contain dichroic coatings ( 6 ) to separate the incoming white light into red ( 7 ), green ( 8 ), and blue ( 9 ). Each color is then separately modulated at each display device or light valve ( 10 ).
  • the terms “display device” and “light valve” are used interchangeably throughout this disclosure.
  • the display devices reflect the modulated light, which is re-converged ( 11 ) by the prism and projected by a projection lens onto a screen to produce an image.
  • the display device or light valve is mounted to the prism face using a support mechanism ( 12 ) that cradles the display device ( 13 ).
  • the support mechanism also holds the convergence unit ( 14 ), which allows adjustment of the display device after it is secured to the support.
  • An airspace is provided between the display device and the prism to allow airflow across the display device face.
  • An air channel ( 15 ) is inserted in the airspace, as shown in FIG. 5 , for sealing the display device along the top and bottom sides against the prism face.
  • the air channel is attached to the convergence mechanism support and covers the display device around the top and bottom sides.
  • the sides ( 16 ) of the air channel are left open for airflow.
  • FIG. 6 The cross-sectional view of FIG. 6 shows how the air channel fits into the airspace between the prism ( 5 ) and the display device ( 10 ).
  • the display device sits flush with the inside surface ( 17 ) of the air channel.
  • a gasket ( 18 ) is provided between the air channel and the prism face to seal the air channel against the prism and take up any spacing that may arise when the light valves are being positioned.
  • the gasket ( 18 ) is typically made of flouroelastomer. Alternatively, the gasket may not be present, with the small gap and pressurization of the channel preventing dust from entering through the unsealed gap.
  • the air channel ( 15 ) has an opening on the opposite side against the prism to allow light to pass through to the display device ( 19 ), as shown in FIG. 7 .
  • this opening conforms to the shape of the light valve and is finished in black to absorb stray light that reduces contrast.
  • FIG. 7 also shows the mounting points ( 20 ) which attach the air channel to the convergence mechanism on the light valve.
  • Each display device on a prism contains one of the above-described air channels ( 15 ).
  • a cooling assembly ( 21 ) is connected inside the projector to a a plurality of air ducts ( 22 ).
  • the assembly ( 21 ) comprises an air filter ( 32 ), a fan ( 33 ) and a manifold ( 34 ).
  • the ducts ( 22 ) are connected to one side of each of the three air channels ( 15 ) and air is circulated though each duct and expelled at the exit side ( 23 ) of the air channel.
  • the airflow inside the air channels becomes at least partially laminar such that dust in the projector or air channel passes by the display device without attaching to the display device surface.
  • the rate of airflow is controlled by fan speed or manifold constriction and depends on the amount of surface cooling required at the display device surface.
  • the exit sides ( 23 ) of the air channels are sealed with a filter.
  • the cooling system of the present invention reduces the amount of dust in the air channels, but does not completely seal dust out of the light valve. Instead, it relies on the airflow (laminar or partially laminar) to prevent the settling of dust on the light valve.
  • the cross-sectional area of the air channel ( 15 ) shown in FIG. 6 remains constant from one side to the other and is interrupted only by the display device surface in the center of the air channel.
  • the length of the air channel is three times the long dimension of cross-sectional area to ensure laminar airflow through the air channel.
  • the laminar airflow provides for cooling of the display device and prevents dust from settling on the display device.
  • the air channel attaches to the convergence mechanisms and therefore moves directly with convergence while ensuring a sealed fit between the display device and the air channel.
  • the three air ducts ( 22 ) are connected in series to a fan ( 24 ) to form a closed air circuit ( 25 ), as shown in FIG. 9 .
  • the input manifold at the fan directs air to the input side of one of the air channels.
  • a heat sink ( 26 ) is provided with a small fan ( 35 ) to cool the air as it passes.
  • the heat sink may also be an air-to-air heat exchanger or air-to-water heat exchanger. This allows a completely closed dust free air circuit to be formed around each light valve and still maintain temperatures within manufacturer's specification.
  • Both cooling systems of FIGS. 8 and 9 have been shown to be effective at sealing dust and cooling the light valve.
  • the DMD temperature was reduced by 8° C.
  • Fine grain powder with average size range of 0.3-5 microns blown onto the prism and exterior of the DMD and air channel resulted in no significant intrusion of dust onto the DMD window. Dust within the air channel also did not settle on the window in any significance that would degrade the image quality.
  • a variable speed fan was connected to appropriate control software in the projector for increasing the fan speed to generate turbulent air flow in the air channels. This can be used to purge dust trapped in the air channels or dust that has settled on the light valves during shipment or operation of the projector.
  • a software timer can automatically set the control of the fan or it can be user-activated.
  • an adapter connects the air channels to an external clean, pressurized gas canister for forcing high pressure gas through the channels, thereby removing any dust that may have settled inside.
  • a preferred method for such a dust-purging embodiment is shown in FIG. 10 .
  • a cylinder ( 27 ) contains a compressed gas such nitrogen, CO2 or air.
  • the pressure of the compressed gas delivered to the air channel is controlled using a regulator ( 28 ) and a shut-off valve ( 29 ). Connection to the air channel ( 15 ) is achieved with flexible tubing ( 30 )] and an adapter ( 31 ). During use, the gas pressure is preset using the regulator 928 ), then the operator disconnects the existing airflow delivery system, connects the dust purging device and purges the air channels by opening the shut-off valve ( 29 ).
  • the embodiment described above is a portable system for use in the field. Other embodiments are contemplated, such as using a permanent compressed gas line or air pump to deliver the compressed gas. Also, a system can be designed to achieve the dust purging without having to disconnect the existing air delivery system. Another contemplated alternative system uses a vacuum configuration to suction the dust from the air channel ( 15 ).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A projector incorporating a prism and a plurality of light valves for modulating light that passes though the prism, wherein a dust-sealed airspace is provided between an imaging surface of each light valve and the prism for providing air channels to cool respective ones of the light valves.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation application of application Ser. No. 10/640,652 filed Aug. 14, 2003, now allowed, the disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention is directed to LCD, LCOS, D-ILA or digital micromirror device (DMD) projectors incorporating light engines with color splitting-converging prisms, and more particularly to a projector with a light valve that is sealed against the glass prism surface by a dust-free air channel.
  • 2. Description of the Related Art
  • In a typical color projector, a light valve is imaged onto a screen by a projection lens to produce an image. Dust that circulates through the projector by the air cooling system can settle on the light valve and also be imaged onto the image screen. The dust causes color blemishes and can reduce contrast in projectors capable of greater than 1500:1 contrast ratio.
  • A variety of techniques have been proposed for sealing dust out of a projector. U.S. Pat. No. 6,280,036 describes a method of mechanically sealing the light valve to a field lens in order to eliminate dust. U.S. Pat. No. 6,394,608 and U.S. Patent Application 2002/0033992 A1 describe sealing the light valve and optical system inside a dust-proof box. A similar technique is proposed in U.S. Pat. No. 6,350,033. All of the foregoing prior art techniques are suitable for low-lumens applications (3000 lumens) and/or single chip projectors. In the case of three-chip projectors, the rated lumens can be from 6000 up to 20000 lumens. With such high-lumens output, air should be circulated around the light valves in order to maintain the manufacturer's temperature ratings. Also, three-chip projectors often have convergence adjustment on each of the red, green, and blue channels. Sealing the light valves in a dust sealed chamber therefore prevents convergence adjustment. Although it is common to dust seal the projector using various types of air filters, over time dust will enter the projector and eventually settle on the light valve surface.
  • Accordingly, it is an objective of the present invention to provide cooling and dust sealing to display devices mounted on a prism without limiting access for convergence adjustment on the display devices and maintaining display device temperatures within manufacturer's ratings.
  • SUMMARY OF THE INVENTION
  • Therefore, according to an aspect of the present invention a light valve sealing technique is set forth for a color projector that eliminates dust from the surface of the light valve but allows uninterrupted air cooling of the light valve surface. More particularly, a projection apparatus is set forth for displaying blemish free images on a display screen, wherein the light valve is sealed against the glass prism surface by a dust-free air channel. The channel prevents dust from entering the light valve imaging space and allows for clean air to be circulated in order to maintain adequate cooling of the light valve.
  • These together with other aspects and advantages that will be subsequently apparent reside in the details of construction and operation as more fully hereinafter described and claimed, reference being had to the accompanying drawings forming a part hereof, wherein like numerals refer to like parts throughout.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cooling system for a dust sealed three-chip projector, according to the prior art.
  • FIG. 2 is a schematic representation of an x-cube used for LCD panel display devices, according to the prior art.
  • FIG. 3 is a schematic representation of a plumbicon prism used for DMD panel display devices, according to the prior art.
  • FIG. 4 is a perspective view of a display device with dust seal mounted to a prism, according to the present invention.
  • FIG. 5 shows the display device of FIG. 4 with an air channel for sealing the display device along top and bottom of the prism, according to the present invention.
  • FIG. 6 is a cross-sectional view through the display device and air channel of FIG. 5.
  • FIG. 7 is a perspective view of the air channel according to the present invention.
  • FIG. 8 is a schematic representation of a cooling system for the display device of FIGS. 4-7.
  • FIG. 9 is a schematic representation of a cooling system for the display device of FIGS. 4-7, according to an alternative embodiment.
  • FIG. 10 is a perspective view of an air channel dust purging system, according to a further aspect of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows a typical cooling design of a three-chip projector. Fans (1) are placed behind dust filters (2), which can be paper, foam, HEPA-type or other filters. The filtered air is circulated throughout the projector compartment using channels where necessary to direct air to critical areas such as lamp (3) and light engine (4) and light valve (4A). The circulated air is then expelled out of the projector via vents either on the front, back or sides.
  • The light valves on three-chip projectors are typically mounted to a color splitting-converging prism. Typical prism designs (5) use an x-cube for LCD panels and a plumbicon prism for DMD panels as shown in FIGS. 2 and 3, respectively. The prism elements contain dichroic coatings (6) to separate the incoming white light into red (7), green (8), and blue (9). Each color is then separately modulated at each display device or light valve (10). The terms “display device” and “light valve” are used interchangeably throughout this disclosure. The display devices reflect the modulated light, which is re-converged (11) by the prism and projected by a projection lens onto a screen to produce an image. In the three-chip design, convergence mechanisms are placed on the display devices to assist in field alignment in the event that the unit develops mis-convergence of color. In the past, this has prevented sealing the prism and chips, as a unit, against dust. Also, the necessity for air flow around the prism and the display devices limits the effectiveness of dust sealing the optical path.
  • According to the present invention, as shown in FIG. 4, the display device or light valve is mounted to the prism face using a support mechanism (12) that cradles the display device (13). The support mechanism also holds the convergence unit (14), which allows adjustment of the display device after it is secured to the support. An airspace is provided between the display device and the prism to allow airflow across the display device face.
  • An air channel (15) is inserted in the airspace, as shown in FIG. 5, for sealing the display device along the top and bottom sides against the prism face. The air channel is attached to the convergence mechanism support and covers the display device around the top and bottom sides. The sides (16) of the air channel are left open for airflow.
  • The cross-sectional view of FIG. 6 shows how the air channel fits into the airspace between the prism (5) and the display device (10). The display device sits flush with the inside surface (17) of the air channel. A gasket (18) is provided between the air channel and the prism face to seal the air channel against the prism and take up any spacing that may arise when the light valves are being positioned. The gasket (18) is typically made of flouroelastomer. Alternatively, the gasket may not be present, with the small gap and pressurization of the channel preventing dust from entering through the unsealed gap.
  • The air channel (15) has an opening on the opposite side against the prism to allow light to pass through to the display device (19), as shown in FIG. 7. Typically, this opening conforms to the shape of the light valve and is finished in black to absorb stray light that reduces contrast. FIG. 7 also shows the mounting points (20) which attach the air channel to the convergence mechanism on the light valve.
  • Each display device on a prism contains one of the above-described air channels (15). Various schemes for generating airflow through the air channels are possible. In one implementation (FIG. 8), a cooling assembly (21) is connected inside the projector to a a plurality of air ducts (22). The assembly (21) comprises an air filter (32), a fan (33) and a manifold (34). The ducts (22) are connected to one side of each of the three air channels (15) and air is circulated though each duct and expelled at the exit side (23) of the air channel. During operation, the airflow inside the air channels becomes at least partially laminar such that dust in the projector or air channel passes by the display device without attaching to the display device surface. The rate of airflow is controlled by fan speed or manifold constriction and depends on the amount of surface cooling required at the display device surface. To prevent dust in the projector from entering the display surface area when the fan is turned off, the exit sides (23) of the air channels are sealed with a filter. The cooling system of the present invention reduces the amount of dust in the air channels, but does not completely seal dust out of the light valve. Instead, it relies on the airflow (laminar or partially laminar) to prevent the settling of dust on the light valve.
  • The cross-sectional area of the air channel (15) shown in FIG. 6 remains constant from one side to the other and is interrupted only by the display device surface in the center of the air channel. The length of the air channel is three times the long dimension of cross-sectional area to ensure laminar airflow through the air channel. The laminar airflow provides for cooling of the display device and prevents dust from settling on the display device. The air channel attaches to the convergence mechanisms and therefore moves directly with convergence while ensuring a sealed fit between the display device and the air channel.
  • In another embodiment, the three air ducts (22) are connected in series to a fan (24) to form a closed air circuit (25), as shown in FIG. 9. The input manifold at the fan directs air to the input side of one of the air channels. As the air circulates through the air channels and light valves, and is returned to the fan, it carries heat away from the display devices but also becomes heated. Accordingly, a heat sink (26) is provided with a small fan (35) to cool the air as it passes. The heat sink may also be an air-to-air heat exchanger or air-to-water heat exchanger. This allows a completely closed dust free air circuit to be formed around each light valve and still maintain temperatures within manufacturer's specification.
  • Both cooling systems of FIGS. 8 and 9 have been shown to be effective at sealing dust and cooling the light valve. In a typical example, using Texas Instruments DMD's and a plumbicon prism laminar airflow through the air channels at 1.5 CFM, the DMD temperature was reduced by 8° C. Fine grain powder with average size range of 0.3-5 microns blown onto the prism and exterior of the DMD and air channel resulted in no significant intrusion of dust onto the DMD window. Dust within the air channel also did not settle on the window in any significance that would degrade the image quality.
  • According to a further embodiment, a variable speed fan was connected to appropriate control software in the projector for increasing the fan speed to generate turbulent air flow in the air channels. This can be used to purge dust trapped in the air channels or dust that has settled on the light valves during shipment or operation of the projector. A software timer can automatically set the control of the fan or it can be user-activated. A further embodiment is contemplated in which an adapter connects the air channels to an external clean, pressurized gas canister for forcing high pressure gas through the channels, thereby removing any dust that may have settled inside. A preferred method for such a dust-purging embodiment is shown in FIG. 10. A cylinder (27) contains a compressed gas such nitrogen, CO2 or air. The pressure of the compressed gas delivered to the air channel is controlled using a regulator (28) and a shut-off valve (29). Connection to the air channel (15) is achieved with flexible tubing (30)] and an adapter (31). During use, the gas pressure is preset using the regulator 928), then the operator disconnects the existing airflow delivery system, connects the dust purging device and purges the air channels by opening the shut-off valve (29). The embodiment described above is a portable system for use in the field. Other embodiments are contemplated, such as using a permanent compressed gas line or air pump to deliver the compressed gas. Also, a system can be designed to achieve the dust purging without having to disconnect the existing air delivery system. Another contemplated alternative system uses a vacuum configuration to suction the dust from the air channel (15).
  • The many features and advantages of the invention are apparent from the detailed specification and, thus, it is intended by the appended claims to cover all such features and advantages of the invention that fall within the true spirit and scope of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.

Claims (9)

1. A projector incorporating a prism and a light valve for modulating light that passes though said prism, the improvement comprising an air channel provided between an imaging surface of said light valve and said prism, wherein said light valve is mounted by a support mechanism and defining said air channel between the light valve and the prism, opposite sides of the air channel being open for airflow to cool and minimize dust from the air channel settling on said light valve.
2. The projector according to claim 1 wherein said light valve comprises one of either a DMD or reflective LCD panel, LCOS or D-ILA type light modulation device.
3. The projector according to claim 1 wherein said air channel contains an opening adjacent said prism to allow light to pass through said air channel to the light valve.
4. The projector according to claim 1 further comprising a fan for blowing air through said air channel over the light valve.
5. The projector according to claim 4 further comprising a filter adjacent the fan to reduce dust in the air channel.
6. The projector according to claim 4 further comprising a filter capped to at least one end of said air channel to prevent dust from re-entering the light valve when the fan is switched off.
7. The projector in claim 1 further comprising a heat sink for radiating heat collected at the light valve.
8. The projector of claim 7 further comprising a fan for cooling said heat sink.
9. A projector incorporating a prism and a plurality of light valves for modulating light that passes though said prism, the improvement comprising air channels provided between an imaging surface of each said light valve and said prism, wherein said light valves are mounted by a support mechanism and defining said air channels between the light valves and the prism, opposite sides of each of the air channels being open for airflow to cool and minimize dust from the air channel settling on respective ones of said light valves.
US11/523,069 2003-08-14 2006-09-19 Projector with sealed light valve Abandoned US20070008497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/523,069 US20070008497A1 (en) 2003-08-14 2006-09-19 Projector with sealed light valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/640,652 US7152979B2 (en) 2003-08-14 2003-08-14 Projector with sealed light valve
US11/523,069 US20070008497A1 (en) 2003-08-14 2006-09-19 Projector with sealed light valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/640,652 Continuation US7152979B2 (en) 2003-08-14 2003-08-14 Projector with sealed light valve

Publications (1)

Publication Number Publication Date
US20070008497A1 true US20070008497A1 (en) 2007-01-11

Family

ID=34193599

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/640,652 Expired - Lifetime US7152979B2 (en) 2003-08-14 2003-08-14 Projector with sealed light valve
US11/523,069 Abandoned US20070008497A1 (en) 2003-08-14 2006-09-19 Projector with sealed light valve

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/640,652 Expired - Lifetime US7152979B2 (en) 2003-08-14 2003-08-14 Projector with sealed light valve

Country Status (6)

Country Link
US (2) US7152979B2 (en)
EP (1) EP1654590B1 (en)
JP (1) JP5004583B2 (en)
AT (1) ATE411546T1 (en)
DE (1) DE602004017188D1 (en)
WO (1) WO2005017615A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070182935A1 (en) * 2006-02-07 2007-08-09 Canon Kabushiki Kaisha Projection-type image displaying apparatus
US20070211221A1 (en) * 2006-03-09 2007-09-13 Shun-Chieh Yang Projection device capable of determining timing for replacing filters and method thereof
US20100328619A1 (en) * 2009-06-24 2010-12-30 Harland Mark A Cooling cell for light modulator

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251584A (en) * 2005-03-14 2006-09-21 Funai Electric Co Ltd Structure of projector engine section
KR100688978B1 (en) * 2005-04-21 2007-03-08 삼성전자주식회사 Image projecting apparatus
KR100628726B1 (en) * 2005-07-26 2006-09-28 삼성전자주식회사 Image protecting apparatus
US7671946B2 (en) * 2005-10-18 2010-03-02 Jds Uniphase Corporation Electronically compensated LCD assembly
US7686453B2 (en) * 2005-12-19 2010-03-30 3M Innovative Properties Company High contrast liquid crystal display and projection system using same
US7475991B2 (en) * 2005-12-22 2009-01-13 3M Innovative Properties Company Polarizing beamsplitter assembly
US7673993B2 (en) * 2005-12-22 2010-03-09 3M Innovative Properties Company Projection system using reflective polarizers
US20070195257A1 (en) * 2006-02-21 2007-08-23 Jds Uniphase Corporation LC imager panel assembly
JP4983127B2 (en) * 2006-07-24 2012-07-25 カシオ計算機株式会社 Zoom lens and projector device
JP5023592B2 (en) * 2006-07-24 2012-09-12 カシオ計算機株式会社 Zoom lens and projector device
JP4983126B2 (en) * 2006-07-24 2012-07-25 カシオ計算機株式会社 Zoom lens and projector device
JP4193887B2 (en) * 2006-07-31 2008-12-10 カシオ計算機株式会社 Zoom lens and projector device
US8888295B2 (en) * 2012-07-02 2014-11-18 Disney Enterprises, Inc. Reflective surface tensioning and cleaning system for pepper's ghost illusion
US9885944B2 (en) 2013-05-30 2018-02-06 Konica Minolta, Inc. Image display element holding mechanism, prism unit, and projector
US9625732B1 (en) 2016-01-26 2017-04-18 Disney Enterprises, Inc. Reflective surface tensioning system for Pepper's ghost illusion
WO2018042562A1 (en) * 2016-08-31 2018-03-08 Necディスプレイソリューションズ株式会社 Projector
JP6828769B2 (en) * 2019-05-27 2021-02-10 セイコーエプソン株式会社 projector
JP6962354B2 (en) * 2019-10-11 2021-11-05 セイコーエプソン株式会社 projector
CN211348977U (en) * 2020-02-07 2020-08-25 中强光电股份有限公司 Optical machine module and projector

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025889A (en) * 1997-10-27 2000-02-15 Canon Kabushiki Kaisha Projection type liquid crystal display apparatus utilizing a high thermal conductivity connecting member
US6231191B1 (en) * 1997-10-20 2001-05-15 Hitachi, Ltd. Image display mechanism and image display device
US6280036B1 (en) * 1997-12-05 2001-08-28 Canon Kabushiki Kaisha Projection apparatus
US6350033B1 (en) * 1998-11-10 2002-02-26 Seiko Epson Corporation Projector
US6394608B1 (en) * 1997-06-20 2002-05-28 Hitachi, Ltd. Display device and display optical system unit
US6572231B1 (en) * 1999-03-04 2003-06-03 Seiko Epson Corporation Projector
US6751027B2 (en) * 2000-09-20 2004-06-15 Barco N.V. Projector with sealed inner compartment
US6776489B2 (en) * 2001-10-30 2004-08-17 Canon Kabushiki Kaisha Color separation/combination optical system, image display optical system, and projection type image display apparatus
US6840628B2 (en) * 2001-05-16 2005-01-11 Seiko Epson Corporation Cooler for electro optic device and projector
US6844979B2 (en) * 2002-06-12 2005-01-18 Nikon Corporation Projection display apparatus
US6844983B2 (en) * 2002-12-31 2005-01-18 Industrial Technology Research Institute Near-field objective lens for an optical head
US6935753B2 (en) * 2001-01-15 2005-08-30 Seiko Epson Corporation Projector
US7079331B2 (en) * 2002-10-19 2006-07-18 Carl Zeiss Smt Ag Device for holding a beam splitter element
US7118222B2 (en) * 2003-05-12 2006-10-10 Seiko Epson Corporation Optical device and protector

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152009A (en) * 1993-11-26 1995-06-16 Sanyo Electric Co Ltd Liquid crystal projector
JP3277508B2 (en) * 1995-03-30 2002-04-22 セイコーエプソン株式会社 Projection display device
JP2917956B2 (en) * 1997-02-28 1999-07-12 日本電気株式会社 Video projection device
DE69826210T2 (en) * 1997-05-20 2005-09-29 Seiko Epson Corp. LIGHT MODULATING ELEMENT AND PROJECTION DISPLAY
JP2000122024A (en) * 1998-10-20 2000-04-28 Fujitsu General Ltd Liquid crystal projector
JP2000231154A (en) * 1999-02-10 2000-08-22 Hitachi Ltd Display device and display optical system part
JP2000321669A (en) * 1999-05-13 2000-11-24 Sony Corp Image display device and method therefor
JP2001318361A (en) * 2000-05-11 2001-11-16 Seiko Epson Corp Optical modulating device and projector using the same
JP2002006283A (en) * 2000-06-27 2002-01-09 Toshiba Corp Liquid crystal projector device
JP2002244214A (en) * 2001-02-20 2002-08-30 Seiko Epson Corp Projector
JP4796709B2 (en) * 2001-05-25 2011-10-19 Necディスプレイソリューションズ株式会社 LCD projector
JP4194256B2 (en) * 2001-05-29 2008-12-10 株式会社東芝 Liquid crystal projection display
US6844993B2 (en) * 2002-06-19 2005-01-18 Seiko Epson Corporation Optical device and projector having the optical device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6394608B1 (en) * 1997-06-20 2002-05-28 Hitachi, Ltd. Display device and display optical system unit
US6231191B1 (en) * 1997-10-20 2001-05-15 Hitachi, Ltd. Image display mechanism and image display device
US6025889A (en) * 1997-10-27 2000-02-15 Canon Kabushiki Kaisha Projection type liquid crystal display apparatus utilizing a high thermal conductivity connecting member
US6280036B1 (en) * 1997-12-05 2001-08-28 Canon Kabushiki Kaisha Projection apparatus
US6350033B1 (en) * 1998-11-10 2002-02-26 Seiko Epson Corporation Projector
US6572231B1 (en) * 1999-03-04 2003-06-03 Seiko Epson Corporation Projector
US6751027B2 (en) * 2000-09-20 2004-06-15 Barco N.V. Projector with sealed inner compartment
US6935753B2 (en) * 2001-01-15 2005-08-30 Seiko Epson Corporation Projector
US6840628B2 (en) * 2001-05-16 2005-01-11 Seiko Epson Corporation Cooler for electro optic device and projector
US6776489B2 (en) * 2001-10-30 2004-08-17 Canon Kabushiki Kaisha Color separation/combination optical system, image display optical system, and projection type image display apparatus
US6844979B2 (en) * 2002-06-12 2005-01-18 Nikon Corporation Projection display apparatus
US7079331B2 (en) * 2002-10-19 2006-07-18 Carl Zeiss Smt Ag Device for holding a beam splitter element
US6844983B2 (en) * 2002-12-31 2005-01-18 Industrial Technology Research Institute Near-field objective lens for an optical head
US7118222B2 (en) * 2003-05-12 2006-10-10 Seiko Epson Corporation Optical device and protector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070182935A1 (en) * 2006-02-07 2007-08-09 Canon Kabushiki Kaisha Projection-type image displaying apparatus
US8205993B2 (en) * 2006-02-07 2012-06-26 Canon Kabushiki Kaisha Projection-type image displaying apparatus
US20070211221A1 (en) * 2006-03-09 2007-09-13 Shun-Chieh Yang Projection device capable of determining timing for replacing filters and method thereof
US20100328619A1 (en) * 2009-06-24 2010-12-30 Harland Mark A Cooling cell for light modulator

Also Published As

Publication number Publication date
EP1654590A1 (en) 2006-05-10
EP1654590A4 (en) 2006-09-20
US20050122482A1 (en) 2005-06-09
EP1654590B1 (en) 2008-10-15
JP5004583B2 (en) 2012-08-22
WO2005017615A1 (en) 2005-02-24
WO2005017615B1 (en) 2005-05-19
US7152979B2 (en) 2006-12-26
JP2007502439A (en) 2007-02-08
ATE411546T1 (en) 2008-10-15
DE602004017188D1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
US20070008497A1 (en) Projector with sealed light valve
JP5174317B2 (en) Prism assembly
US8104902B2 (en) Projection image display apparatus having a noise removal filter portion
US7314280B2 (en) Projector apparatus
WO2002093252A1 (en) Cooler for electrooptic device and projector
CN112352196B (en) Electronic device and projector
JP5140379B2 (en) Optical component cooling mechanism and projection display apparatus using the same
US7753566B2 (en) Projection video display system
JP2012008179A (en) Projector
US20070182935A1 (en) Projection-type image displaying apparatus
JP2008257173A (en) Light source lamp cooling mechanism and projection type video display apparatus using the same
JP5216298B2 (en) Projection display device
JP4854595B2 (en) Filter device and projection-type image display device using the same
JP2001051349A (en) Projection type display device
JP3780628B2 (en) LCD projector
JP2010026476A (en) Projection type image display device
JP3558084B2 (en) projector
JP2008191532A (en) Rear projector
JPH07181421A (en) Video display device
JP2006011114A (en) Projector provided with cooling structure using cross-flow fan
JP2011209532A (en) Projector
JP2004093631A (en) Projection type picture display device
JP2001083605A (en) Liquid crystal projector

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION