US20060201371A1 - Energy Controlling Device - Google Patents

Energy Controlling Device Download PDF

Info

Publication number
US20060201371A1
US20060201371A1 US11/306,121 US30612105A US2006201371A1 US 20060201371 A1 US20060201371 A1 US 20060201371A1 US 30612105 A US30612105 A US 30612105A US 2006201371 A1 US2006201371 A1 US 2006201371A1
Authority
US
United States
Prior art keywords
explosive
charge
explosive energy
cap
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/306,121
Inventor
Haoming Li
Chantal Smitheman
Claude Jones
Frederick Lemme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US11/306,121 priority Critical patent/US20060201371A1/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JONES, CLAUDE D., LEMME, SR., FREDERICK, LI, HAOMING, SMITHEMAN, CHANTAL
Priority to GB0602068A priority patent/GB2430479B/en
Priority to CA002535239A priority patent/CA2535239C/en
Priority to NO20061053A priority patent/NO20061053L/en
Priority to RU2006107182/03A priority patent/RU2388903C2/en
Publication of US20060201371A1 publication Critical patent/US20060201371A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/22Elements for controlling or guiding the detonation wave, e.g. tubes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/117Shaped-charge perforators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B1/00Explosive charges characterised by form or shape but not dependent on shape of container
    • F42B1/02Shaped or hollow charges
    • F42B1/024Shaped or hollow charges provided with embedded bodies of inert material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting

Definitions

  • the present invention relates generally to perforating tools used in downhole applications, and more particularly to a device for controlling the use of explosive energy of an explosive charge in a perforating gun in a wellbore.
  • An apparatus such as a perforating gun, may be lowered into a well and detonated to form fractures in the adjacent formation. After the perforating gun detonates, fluid typically flows into the well and to the surface via production tubing located inside the well.
  • perforating guns which include gun carriers and shaped charges mounted on or in the gun carriers
  • shaped charges carried in a perforating gun are often phased to fire in multiple directions around the circumference of the wellbore. When fired, shaped charges create perforating jets that form holes in surrounding casing as well as extend perforations into the surrounding formation.
  • the present invention provides an apparatus capable of influencing explosive energy during wellbore applications.
  • a cap or other interfering element may be arranged proximate to an explosive charge prior to detonation.
  • the size and positioning of the element with respect to the explosive charge may be manipulated to achieve an optimum explosive orientation.
  • the element utilized by the present invention may be a ring having a bore therethrough for directing the explosive energy of the charge upon detonation.
  • the charge cap may include an area having a thinner wall than the rest of the cap. In operation, the thicker portion of the cap absorbs some of the explosive energy of the charge and the thinner portion (or opening) conducts/directs the explosive energy.
  • the exact thickness of the “absorbing” volume of the cap and the thickness of the “conducting” volume of the cap may be determined and selected to achieve a particular result.
  • FIG. 1 is an enlarged cross-sectional view of an embodiment of a shaped charge.
  • FIG. 2A is a profile cross-sectional view of an embodiment of a perforating gun.
  • FIG. 2B is a axial cross-sectional view of an embodiment of the perforating gun of FIG. 2A .
  • FIG. 3 is a profile view of an embodiment of a perforating gun string being run downhole in a cased wellbore.
  • FIG. 4A is a profile view of an embodiment of a perforating gun string being detonated in a cased wellbore.
  • FIG. 4B is a profile view of an embodiment of a perforating gun string being detonated in an open wellbore.
  • FIGS. 5A-6B are axial views of multiple embodiments of the perforating gun of the present invention.
  • connection In the specification and appended claims: the terms “connect”, “connection”, “connected”, “in connection with”, and “connecting” are used to mean “in direct connection with” or “in connection with via another element”; and the term “set” is used to mean “one element” or “more than one element”.
  • up and down As used herein, the terms “up” and “down”, “upper” and “lower”, “upwardly” and downwardly”, “upstream” and “downstream”; “above” and “below”; and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly described some embodiments of the invention. However, when applied to equipment and methods for use in wells that are deviated or horizontal, such terms may refer to a left to right, right to left, or other relationship as appropriate.
  • a shaped charge ( 10 ) includes an outer case ( 12 ) that acts as a containment vessel. Common materials for the outer case ( 12 ) include steel or some other metal.
  • the main explosive charge ( 16 ) is contained inside the outer case ( 12 ) and is sandwiched between the inner wall of the outer case ( 12 ) and the outer retaining surface ( 20 ).
  • a primer column ( 14 ) is a sensitive area that provides the detonating link between the main explosive charge ( 16 ) and a detonating cord ( 15 ), which is attached to the rear of the shaped charge ( 10 ).
  • a detonation wave traveling through the detonating cord ( 15 ) initiates the primer column ( 14 ) when the detonation wave passes by, which in turn initiates detonation of the main explosive charge ( 16 ) to create a detonation wave that sweeps through the shaped charge ( 10 ).
  • a plurality of shaped charges ( 10 ) may be conveyed downhole via a hollow carrier gun ( 30 ).
  • the shaped charges ( 10 ) may be non-capsule charges since the shaped charges are protected from the environment by the hollow carrier ( 30 ), which is typically sealed.
  • the hollow carrier ( 30 ) may also include a plurality of recesses ( 32 ) formed in the outer wall. The recesses ( 32 ) are typically localized areas where the wall thickness of the carrier ( 30 ) is reduced to optimize overall system function.
  • a loading tube ( 40 ) is positioned within the hollow carrier ( 30 ).
  • the loading tube ( 40 ) includes a plurality of openings ( 42 ) proximal, for receiving and mounting the shaped charges ( 10 ).
  • the openings ( 42 ) of the loading tube ( 40 ) are typically aligned with the recesses ( 32 ) of the hollow carrier ( 30 ).
  • a series of hollow carrier guns ( 50 A) and ( 50 B) may be assembled to form a perforating gun string ( 50 ) having a desired length.
  • An example length of each gun ( 50 A and 50 B, respectively) may be about twenty feet.
  • Each of the adapters ( 52 ) contains a ballistic transfer component, which may be in the form of donor and receptor booster explosives. Ballistic transfer takes place from one gun to another as the detonation wave jumps from the donor to the receptor booster.
  • a detonating cord that carries the wave and sets off the shaped charges in the next gun.
  • Examples of explosives that may be used in the various explosive components include RDX, HMX, HNS, TATB, and others.
  • the gun string ( 50 ) is positioned in a wellbore ( 60 ) that is lined with casing ( 62 ).
  • a tubing or pipe ( 64 ) extends inside the casing ( 62 ) to provide a conduit for well fluids to wellhead equipment (not shown).
  • a portion of the wellbore ( 60 ) is isolated by packers ( 66 ) set between the exterior of the tubing ( 64 ) and the interior of the casing ( 62 ).
  • the perforating gun string ( 50 ) may be lowered through the tubing or pipe ( 54 ) on a carrier line ( 70 ) (e.g., wireline, slickline, or coiled tubing).
  • a carrier line ( 70 ) e.g., wireline, slickline, or coiled tubing.
  • the gun string ( 50 ) includes one or more sealed carriers ( 30 ).
  • the gun string ( 50 ) may include one or more sealed chambers (or other sealed enclosures), each chamber housing one or more explosive charges therein.
  • the pressure within the gun carrier ( 30 ) is lower than the pressure in the target wellbore interval.
  • the sealed gun string ( 50 ) is positioned in an open wellbore ( 100 ).
  • the perforating gun string ( 50 ) may be lowered through the open wellbore ( 100 ) on a carrier line ( 70 ) (e.g., wireline, slickline, or coiled tubing).
  • the gun string ( 50 ) is fired to create holes or ruptures in the sealed carrier ( 30 ) while not substantially damaging the surrounding.
  • a fluid surge will be formed toward the carrier thus generating a transient underbalanced condition in the wellbore interval.
  • This transient underbalance condition may be utilized to clean perforation tunnels in the surrounding formation, to remove filter cake from the walls of the wellbore, or to otherwise remove debris from the wellbore interval.
  • trapped pressurized gas in the sealed bore of the carrier may be released.
  • the sealed perforating gun string ( 50 ) may be deployed in a cased wellbore and may be used to perforate the sealed carriers and the casing simultaneously to create a transient underbalanced condition to surge clean the perforation tunnels in the formation and remove wellbore debris from the target well interval. This will effectively increase productivity of the well.
  • the explosive energy released and the resulting perforation achieved by detonating the guns discussed above may be a function of the physical size and geometrical arrangement of the explosive charges.
  • An embodiment of the present invention is directed at controlling this explosive energy release.
  • a cap or other interfering element ( 80 ) may be arranged proximate the charge ( 10 ) to absorb a portion of the energy.
  • the size and particular arrangement of the cap ( 80 ) with respect to the charge ( 10 ) may be determined to achieve an optimum explosive state for a selected result. For example, by controlling the explosive energy release of a charge, the amount of debris released into the wellbore and excessive deformation of the perforating gun may be limited.
  • the charge cap ( 80 ) of the present invention may also be used to direct or otherwise focus the explosive energy release to achieve a particular result.
  • the cap ( 80 ) may be sized and arranged to focus the explosive energy in a charge to break debris into small enough fragments such that the debris does not hider productivity of the well.
  • the charge cap ( 80 ) of the present invention may be used in various perforating or other explosive well operations.
  • the charge cap ( 80 ) may be used to direct and control explosive energy released by charges in a conventional perforating gun ( 30 ) used to perforate a formation and/or a casing and a formation.
  • the charge cap may be used to direct and control explosive energy released by charges in a sealed chamber (e.g., carrier or other sealed enclosure) to rupture the chamber but not damage the surrounding casing. In this way, the charges may be used to generate a transient underbalance condition to clean debris from the perforation tunnel.
  • FIGS. 5A and 5B illustrate embodiments of the charge cap ( 80 ) of the present invention connected to a shaped charge ( 10 ).
  • the charge cap or other interfering element may be designed to fit between the arms ( 10 A) of the explosive charge ( 10 ).
  • This embodiment of the present invention is ideal for use with shaped charges capable of fitting relatively snugly within the internal compartment of the loading tube ( 40 ).
  • the charge cap of the present invention has a section designed to absorb explosive energy ( 88 A) and another section designed to conduct and/or direct explosive energy ( 88 D).
  • the section of the charge cap ( 80 ) designed to absorb explosive energy ( 88 A) is designed to engage an inner surface ( 101 ) of one or more arms ( 10 A) of the explosive charge.
  • the section of the charge cap ( 80 ) designed to conduct and/or direct explosive energy ( 88 D) forms a central portion of the charge cap.
  • the section of the charge cap designed to absorb explosive energy ( 88 A) may be composed of a relatively thick and/or dense material particularly suited to absorb explosive energy. Further, the section of the charge cap designed to conduct and/or direct explosive energy ( 88 D) may be composed of a thinner and/or less dense material than that used by the absorbing section ( 88 A). In this manner, the charge cap allows for maximum effectiveness with regard to the disbursement of explosive energy upon detonation. The exact thickness and/or density of each section ( 88 A and 88 D, respectively) of the charge cap may be determined and selected to achieve any number of desirable results.
  • one or more walls ( 82 ) of the charge cap may define one or more cavities ( 84 ) capable of directing explosive energy.
  • Such cavities may have any number of orientations and/or configurations designed to achieve particular results.
  • one or more cavities provided by the present invention may have a generally conical or cylindrical configuration designed to direct explosive energy in a particular manner. It being understood that these are example configurations only, not to be taken in a limiting sense.
  • a ring element having a bore therethrough may also be utilized for directing the explosive energy of the charge upon detonation.
  • FIGS. 6A and 6B illustrate embodiments of a charge cap ( 80 ) connected to a shaped charge ( 10 ).
  • the shaped charge and charge cap are mounted in a jacket ( 86 ) and for insertion into a loading tube ( 40 ).
  • the loading tube may hold a plurality of shaped charges ( 10 ), each having a charge cap ( 80 ).
  • the loading tube is loaded into a gun carrier ( 30 ).
  • the gun carrier ( 30 ) may have a scallop ( 32 ) formed on the outer surface for alignment with each shaped charge ( 10 ).
  • the charge cap ( 80 ) of the present invention is designed to engage the outer surfaces ( 102 ) of the charge arms ( 10 A) of the explosive charge ( 10 ). Further, the charge cap may be utilized in conjunction with a jacket ( 86 ) in order to allow the charge cap/charge/jacket combination to be conveniently mounted within the loading tube. This feature of the present invention allows smaller explosive charges to be successfully mounted within loading tubes having larger diameters. As discussed above, the present invention may utilize any number of charge cap arrangements and/or configurations as needed to achieve a particular result. Further the thickness and/or density of the materials comprising each section of the charge cap may be varied. A ring element having a bore therethrough may also be utilized for directing the explosive energy of the charge upon detonation, as discussed above.
  • the charge cap ( 80 ) may be fabricated from a material that stays together sufficiently such that the cap does not exit the ruptures in the gun. This way the cap can be removed from the well with the gun and does not hinder well productivity.
  • the charge cap ( 80 ) may be fabricated from a highly-frangible material such that the cap breaks into sufficiently small fragments so as not to hinder well productivity even if the fragments exit the gun.
  • the charge cap may be fabricated from plastic, polymer, metal, cellulose, rubber, or other suitable material.

Abstract

The present invention provides an apparatus capable of influencing explosive energy during wellbore applications. In one embodiment, a cap or other interfering element may be arranged proximate to an explosive charge prior to detonation. The size and positioning of the element with respect to the explosive charge may be manipulated to achieve an optimum explosive orientation. A ring element having a bore therethrough may be utilized for directing the explosive energy of the charge upon detonation.

Description

  • This patent application claims priority on a U.S. provisional patent application entitled “Controlling Explosive Energy of Charges for Perforating Guns”, having a Ser. No. 60/594,057 and a filing date of Mar. 8, 2005.
  • FIELD OF THE INVENTION
  • The present invention relates generally to perforating tools used in downhole applications, and more particularly to a device for controlling the use of explosive energy of an explosive charge in a perforating gun in a wellbore.
  • BACKGROUND OF THE INVENTION
  • An apparatus, such as a perforating gun, may be lowered into a well and detonated to form fractures in the adjacent formation. After the perforating gun detonates, fluid typically flows into the well and to the surface via production tubing located inside the well.
  • Typically, perforating guns (which include gun carriers and shaped charges mounted on or in the gun carriers) are lowered through tubing or other pipes to the desired well interval. Shaped charges carried in a perforating gun are often phased to fire in multiple directions around the circumference of the wellbore. When fired, shaped charges create perforating jets that form holes in surrounding casing as well as extend perforations into the surrounding formation.
  • It may be necessary to control the amount of energy (e.g., reduce or focus) released by the explosive charge. For example, in some cases, it may be advantageous to rupture the hollow carrier (or other hollow chamber or sealed enclosure) without penetrating the surrounding casing and/or penetrating the well formation.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides an apparatus capable of influencing explosive energy during wellbore applications. In one embodiment, a cap or other interfering element may be arranged proximate to an explosive charge prior to detonation. The size and positioning of the element with respect to the explosive charge may be manipulated to achieve an optimum explosive orientation.
  • The element utilized by the present invention may be a ring having a bore therethrough for directing the explosive energy of the charge upon detonation. Further, the charge cap may include an area having a thinner wall than the rest of the cap. In operation, the thicker portion of the cap absorbs some of the explosive energy of the charge and the thinner portion (or opening) conducts/directs the explosive energy. The exact thickness of the “absorbing” volume of the cap and the thickness of the “conducting” volume of the cap may be determined and selected to achieve a particular result.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings; it being understood that the drawings contained herein are not necessarily drawn to scale; wherein:
  • FIG. 1 is an enlarged cross-sectional view of an embodiment of a shaped charge.
  • FIG. 2A is a profile cross-sectional view of an embodiment of a perforating gun.
  • FIG. 2B is a axial cross-sectional view of an embodiment of the perforating gun of FIG. 2A.
  • FIG. 3 is a profile view of an embodiment of a perforating gun string being run downhole in a cased wellbore.
  • FIG. 4A is a profile view of an embodiment of a perforating gun string being detonated in a cased wellbore.
  • FIG. 4B is a profile view of an embodiment of a perforating gun string being detonated in an open wellbore.
  • FIGS. 5A-6B are axial views of multiple embodiments of the perforating gun of the present invention.
  • It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
  • In the specification and appended claims: the terms “connect”, “connection”, “connected”, “in connection with”, and “connecting” are used to mean “in direct connection with” or “in connection with via another element”; and the term “set” is used to mean “one element” or “more than one element”. As used herein, the terms “up” and “down”, “upper” and “lower”, “upwardly” and downwardly”, “upstream” and “downstream”; “above” and “below”; and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly described some embodiments of the invention. However, when applied to equipment and methods for use in wells that are deviated or horizontal, such terms may refer to a left to right, right to left, or other relationship as appropriate.
  • Referring to FIG. 1, a shaped charge (10) includes an outer case (12) that acts as a containment vessel. Common materials for the outer case (12) include steel or some other metal. The main explosive charge (16) is contained inside the outer case (12) and is sandwiched between the inner wall of the outer case (12) and the outer retaining surface (20). A primer column (14) is a sensitive area that provides the detonating link between the main explosive charge (16) and a detonating cord (15), which is attached to the rear of the shaped charge (10).
  • To detonate the shaped charge (10), a detonation wave traveling through the detonating cord (15) initiates the primer column (14) when the detonation wave passes by, which in turn initiates detonation of the main explosive charge (16) to create a detonation wave that sweeps through the shaped charge (10).
  • Referring to FIG. 2, a plurality of shaped charges (10) may be conveyed downhole via a hollow carrier gun (30). The shaped charges (10) may be non-capsule charges since the shaped charges are protected from the environment by the hollow carrier (30), which is typically sealed. The hollow carrier (30) may also include a plurality of recesses (32) formed in the outer wall. The recesses (32) are typically localized areas where the wall thickness of the carrier (30) is reduced to optimize overall system function. Within the hollow carrier (30), a loading tube (40) is positioned. The loading tube (40) includes a plurality of openings (42) proximal, for receiving and mounting the shaped charges (10). The openings (42) of the loading tube (40) are typically aligned with the recesses (32) of the hollow carrier (30).
  • Referring to FIG. 3, a series of hollow carrier guns (50A) and (50B) may be assembled to form a perforating gun string (50) having a desired length. An example length of each gun (50A and 50B, respectively), may be about twenty feet. To make a perforating gun string (50) of a few hundred feet or longer, several guns may be connected together in series by adapters (52). Each of the adapters (52) contains a ballistic transfer component, which may be in the form of donor and receptor booster explosives. Ballistic transfer takes place from one gun to another as the detonation wave jumps from the donor to the receptor booster. At the end of the receptor booster is a detonating cord that carries the wave and sets off the shaped charges in the next gun. Examples of explosives that may be used in the various explosive components (e.g., shaped charges (10), detonating cord (15), and boosters) include RDX, HMX, HNS, TATB, and others.
  • Generally, once assembled, the gun string (50) is positioned in a wellbore (60) that is lined with casing (62). A tubing or pipe (64) extends inside the casing (62) to provide a conduit for well fluids to wellhead equipment (not shown). A portion of the wellbore (60) is isolated by packers (66) set between the exterior of the tubing (64) and the interior of the casing (62). The perforating gun string (50) may be lowered through the tubing or pipe (54) on a carrier line (70) (e.g., wireline, slickline, or coiled tubing). Once positioned at a desired wellbore interval, the gun string (50) is fired to create perforations in the surrounding casing and formation (as shown in FIG. 4A).
  • In another embodiment, as shown in FIG. 4B, the gun string (50) includes one or more sealed carriers (30). In alternative embodiments, the gun string (50) may include one or more sealed chambers (or other sealed enclosures), each chamber housing one or more explosive charges therein. The pressure within the gun carrier (30) is lower than the pressure in the target wellbore interval. The sealed gun string (50) is positioned in an open wellbore (100). The perforating gun string (50) may be lowered through the open wellbore (100) on a carrier line (70) (e.g., wireline, slickline, or coiled tubing). Once positioned at a desired wellbore interval, the gun string (50) is fired to create holes or ruptures in the sealed carrier (30) while not substantially damaging the surrounding. Upon detonation of the one or more explosive charges and subsequent rupturing of the carrier (30), a fluid surge will be formed toward the carrier thus generating a transient underbalanced condition in the wellbore interval. This transient underbalance condition may be utilized to clean perforation tunnels in the surrounding formation, to remove filter cake from the walls of the wellbore, or to otherwise remove debris from the wellbore interval. Moreover, by rupturing the carrier, trapped pressurized gas in the sealed bore of the carrier may be released.
  • In other embodiments, the sealed perforating gun string (50) may be deployed in a cased wellbore and may be used to perforate the sealed carriers and the casing simultaneously to create a transient underbalanced condition to surge clean the perforation tunnels in the formation and remove wellbore debris from the target well interval. This will effectively increase productivity of the well.
  • The explosive energy released and the resulting perforation achieved by detonating the guns discussed above may be a function of the physical size and geometrical arrangement of the explosive charges. An embodiment of the present invention is directed at controlling this explosive energy release.
  • Referring to FIGS. 5A-6B, a cap or other interfering element (80) may be arranged proximate the charge (10) to absorb a portion of the energy. The size and particular arrangement of the cap (80) with respect to the charge (10) may be determined to achieve an optimum explosive state for a selected result. For example, by controlling the explosive energy release of a charge, the amount of debris released into the wellbore and excessive deformation of the perforating gun may be limited.
  • The charge cap (80) of the present invention may also be used to direct or otherwise focus the explosive energy release to achieve a particular result. For example, the cap (80) may be sized and arranged to focus the explosive energy in a charge to break debris into small enough fragments such that the debris does not hider productivity of the well.
  • The charge cap (80) of the present invention may be used in various perforating or other explosive well operations. For example, the charge cap (80) may be used to direct and control explosive energy released by charges in a conventional perforating gun (30) used to perforate a formation and/or a casing and a formation. In another example, the charge cap may be used to direct and control explosive energy released by charges in a sealed chamber (e.g., carrier or other sealed enclosure) to rupture the chamber but not damage the surrounding casing. In this way, the charges may be used to generate a transient underbalance condition to clean debris from the perforation tunnel.
  • FIGS. 5A and 5B illustrate embodiments of the charge cap (80) of the present invention connected to a shaped charge (10). The charge cap or other interfering element may be designed to fit between the arms (10A) of the explosive charge (10). This embodiment of the present invention is ideal for use with shaped charges capable of fitting relatively snugly within the internal compartment of the loading tube (40).
  • In one embodiment, the charge cap of the present invention has a section designed to absorb explosive energy (88A) and another section designed to conduct and/or direct explosive energy (88D). In one embodiment, the section of the charge cap (80) designed to absorb explosive energy (88A) is designed to engage an inner surface (101) of one or more arms (10A) of the explosive charge. In one embodiment, the section of the charge cap (80) designed to conduct and/or direct explosive energy (88D) forms a central portion of the charge cap.
  • In one embodiment, the section of the charge cap designed to absorb explosive energy (88A) may be composed of a relatively thick and/or dense material particularly suited to absorb explosive energy. Further, the section of the charge cap designed to conduct and/or direct explosive energy (88D) may be composed of a thinner and/or less dense material than that used by the absorbing section (88A). In this manner, the charge cap allows for maximum effectiveness with regard to the disbursement of explosive energy upon detonation. The exact thickness and/or density of each section (88A and 88D, respectively) of the charge cap may be determined and selected to achieve any number of desirable results.
  • In one embodiment, one or more walls (82) of the charge cap may define one or more cavities (84) capable of directing explosive energy. Such cavities may have any number of orientations and/or configurations designed to achieve particular results. For example, one or more cavities provided by the present invention may have a generally conical or cylindrical configuration designed to direct explosive energy in a particular manner. It being understood that these are example configurations only, not to be taken in a limiting sense. A ring element having a bore therethrough may also be utilized for directing the explosive energy of the charge upon detonation.
  • FIGS. 6A and 6B illustrate embodiments of a charge cap (80) connected to a shaped charge (10). In these embodiments, the shaped charge and charge cap are mounted in a jacket (86) and for insertion into a loading tube (40). The loading tube may hold a plurality of shaped charges (10), each having a charge cap (80). The loading tube is loaded into a gun carrier (30). The gun carrier (30) may have a scallop (32) formed on the outer surface for alignment with each shaped charge (10).
  • In one embodiment, the charge cap (80) of the present invention is designed to engage the outer surfaces (102) of the charge arms (10A) of the explosive charge (10). Further, the charge cap may be utilized in conjunction with a jacket (86) in order to allow the charge cap/charge/jacket combination to be conveniently mounted within the loading tube. This feature of the present invention allows smaller explosive charges to be successfully mounted within loading tubes having larger diameters. As discussed above, the present invention may utilize any number of charge cap arrangements and/or configurations as needed to achieve a particular result. Further the thickness and/or density of the materials comprising each section of the charge cap may be varied. A ring element having a bore therethrough may also be utilized for directing the explosive energy of the charge upon detonation, as discussed above.
  • In some embodiments, the charge cap (80) may be fabricated from a material that stays together sufficiently such that the cap does not exit the ruptures in the gun. This way the cap can be removed from the well with the gun and does not hinder well productivity. In other embodiments, the charge cap (80) may be fabricated from a highly-frangible material such that the cap breaks into sufficiently small fragments so as not to hinder well productivity even if the fragments exit the gun. For example, the charge cap may be fabricated from plastic, polymer, metal, cellulose, rubber, or other suitable material.
  • Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limited sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention, will become apparent to persons skilled in the art upon reference to the description of the invention. It is, therefore, contemplated that the appended claims will cover such modifications that fall within the scope of the invention.

Claims (20)

1. An apparatus for use in a wellbore comprising:
an explosive charge; and
at least one element capable of influencing the explosive energy released by said explosive charge upon detonation.
2. The apparatus of claim 1, wherein said element further comprises walls defining at least one cavity.
3. The apparatus of claim 2, wherein said cavity is for conducting explosive energy.
4. The apparatus of claim 2, wherein said cavity has a generally cylindrical configuration.
5. The apparatus of claim 2, wherein said cavity has a generally conical configuration.
6. The apparatus of claim 1, wherein said element further comprises a first portion for absorbing explosive energy.
7. The apparatus of claim 6, wherein said element further comprises a second portion for directing explosive energy.
8. The apparatus of claim 7, wherein said first portion of said element has a first thickness and said second portion of said element has a second thickness.
9. The apparatus of claim 8, wherein said second thickness is greater than said first thickness.
10. The apparatus of claim 1, wherein at least a portion of said element is composed of a frangible material.
11. The apparatus of claim 1, wherein at least a portion of said element is composed of a material selected from the group consisting of plastic, polymer, metal, cellulose, and rubber.
12. The apparatus of claim 1, wherein said explosive charge is a shaped charge.
13. The apparatus of claim 1, wherein said element comprises a charge cap.
14. The apparatus of claim 1, further comprising a jacket for mounting said explosive charge and said element into a perforating gun.
15. An apparatus for use in a wellbore comprising:
an explosive charge for insertion into a perforating gun; and
at least one element capable of influencing the explosive energy released by said explosive charge upon detonation, said element having walls defining at least one cavity for directing explosive energy, said element being positioned between said explosive charge and said perforating gun.
16. The apparatus of claim 14, wherein said cavity has a generally cylindrical configuration.
17. The apparatus of claim 14, wherein said cavity has a generally conical configuration.
18. A method of controlling explosive energy in a wellbore comprising the steps of:
providing a perforating gun containing one or more explosive charges;
positioning at least one element between said explosive charge and said perforating gun, said element being capable of influencing explosive energy released by said explosive charge upon detonation; and
detonating one or more of said explosive charges.
19. The method of claim 18, wherein said element comprises walls defining at least one cavity for directing explosive energy.
20. The method of claim 18, wherein said element comprises a first portion for absorbing explosive energy and a second portion for directing explosive energy.
US11/306,121 2005-03-08 2005-12-16 Energy Controlling Device Abandoned US20060201371A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/306,121 US20060201371A1 (en) 2005-03-08 2005-12-16 Energy Controlling Device
GB0602068A GB2430479B (en) 2005-03-08 2006-02-02 Energy controlling device
CA002535239A CA2535239C (en) 2005-03-08 2006-02-03 Energy controlling device
NO20061053A NO20061053L (en) 2005-03-08 2006-03-03 Energy Control Device
RU2006107182/03A RU2388903C2 (en) 2005-03-08 2006-03-07 Device and method of energy control of explosion in well bore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59405705P 2005-03-08 2005-03-08
US11/306,121 US20060201371A1 (en) 2005-03-08 2005-12-16 Energy Controlling Device

Publications (1)

Publication Number Publication Date
US20060201371A1 true US20060201371A1 (en) 2006-09-14

Family

ID=36100882

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/306,121 Abandoned US20060201371A1 (en) 2005-03-08 2005-12-16 Energy Controlling Device

Country Status (5)

Country Link
US (1) US20060201371A1 (en)
CA (1) CA2535239C (en)
GB (1) GB2430479B (en)
NO (1) NO20061053L (en)
RU (1) RU2388903C2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121095A1 (en) * 2006-08-29 2008-05-29 Schlumberger Technology Corporation Loading Tube For Shaped Charges
US20100276136A1 (en) * 2009-05-04 2010-11-04 Baker Hughes Incorporated Internally supported perforating gun body for high pressure operations
US8033224B1 (en) * 2009-03-24 2011-10-11 The United States Of America As Represented By The Secretary Of The Air Force Spiral linear shaped charge jet
US20110284246A1 (en) * 2006-11-20 2011-11-24 Baker Hughes Incorporated Perforating gun assembly to control wellbore fluid dynamics
US20130112411A1 (en) * 2011-11-03 2013-05-09 Jian Shi Perforator charge having an energetic material
US9243474B2 (en) * 2014-04-02 2016-01-26 Halliburton Energy Services, Inc. Using dynamic underbalance to increase well productivity
CN114544706A (en) * 2022-01-18 2022-05-27 中国矿业大学(北京) Experimental system and method for measuring explosive product energy distribution proportion relation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8276656B2 (en) 2007-12-21 2012-10-02 Schlumberger Technology Corporation System and method for mitigating shock effects during perforating
RU2487991C1 (en) * 2012-02-16 2013-07-20 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт по использованию энергии взрыва в геофизике" (ОАО "ВНИПИвзрывгеофизика") Cumulative well perforator

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782715A (en) * 1951-10-05 1957-02-26 Borg Warner Well perforator
US2844098A (en) * 1951-02-08 1958-07-22 Pgac Dev Co Apparatus for supporting explosive charges in jet type perforating guns
US2980017A (en) * 1953-07-28 1961-04-18 Pgac Dev Company Perforating devices
US3121389A (en) * 1956-12-26 1964-02-18 Schlumberger Prospection Shaped explosive charge apparatus
US3244101A (en) * 1964-06-11 1966-04-05 Schlumberger Well Surv Corp Perforating apparatus
US3282354A (en) * 1962-04-26 1966-11-01 Harrison Jet Guns Ltd Protective shaped charge
US3951218A (en) * 1975-04-11 1976-04-20 Schlumberger Technology Corporation Perforating apparatus
US4393946A (en) * 1980-08-12 1983-07-19 Schlumberger Technology Corporation Well perforating apparatus
US4428440A (en) * 1981-08-14 1984-01-31 Dresser Industries, Inc. Perforating apparatus energy absorber and explosive charge holder
US4784061A (en) * 1987-10-05 1988-11-15 Halliburton Company Capsule charge locking device
US4794990A (en) * 1987-01-06 1989-01-03 Jet Research Center, Inc. Corrosion protected shaped charge and method
US4860655A (en) * 1985-05-22 1989-08-29 Western Atlas International, Inc. Implosion shaped charge perforator
US5460095A (en) * 1994-12-29 1995-10-24 Western Atlas International, Inc. Mounting apparatus for expendable bar carrier shaped-charges
US5662178A (en) * 1995-06-02 1997-09-02 Owen Oil Tools, Inc. Wave strip perforating system
US20050115448A1 (en) * 2003-10-22 2005-06-02 Owen Oil Tools Lp Apparatus and method for penetrating oilbearing sandy formations, reducing skin damage and reducing hydrocarbon viscosity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6206100A (en) * 1999-07-13 2001-01-30 Schlumberger Technology Corporation Encapsulated shaped charge for well perforation

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2844098A (en) * 1951-02-08 1958-07-22 Pgac Dev Co Apparatus for supporting explosive charges in jet type perforating guns
US2782715A (en) * 1951-10-05 1957-02-26 Borg Warner Well perforator
US2980017A (en) * 1953-07-28 1961-04-18 Pgac Dev Company Perforating devices
US3121389A (en) * 1956-12-26 1964-02-18 Schlumberger Prospection Shaped explosive charge apparatus
US3282354A (en) * 1962-04-26 1966-11-01 Harrison Jet Guns Ltd Protective shaped charge
US3244101A (en) * 1964-06-11 1966-04-05 Schlumberger Well Surv Corp Perforating apparatus
US3951218A (en) * 1975-04-11 1976-04-20 Schlumberger Technology Corporation Perforating apparatus
US4393946A (en) * 1980-08-12 1983-07-19 Schlumberger Technology Corporation Well perforating apparatus
US4428440A (en) * 1981-08-14 1984-01-31 Dresser Industries, Inc. Perforating apparatus energy absorber and explosive charge holder
US4860655A (en) * 1985-05-22 1989-08-29 Western Atlas International, Inc. Implosion shaped charge perforator
US4794990A (en) * 1987-01-06 1989-01-03 Jet Research Center, Inc. Corrosion protected shaped charge and method
US4784061A (en) * 1987-10-05 1988-11-15 Halliburton Company Capsule charge locking device
US5460095A (en) * 1994-12-29 1995-10-24 Western Atlas International, Inc. Mounting apparatus for expendable bar carrier shaped-charges
US5662178A (en) * 1995-06-02 1997-09-02 Owen Oil Tools, Inc. Wave strip perforating system
US20050115448A1 (en) * 2003-10-22 2005-06-02 Owen Oil Tools Lp Apparatus and method for penetrating oilbearing sandy formations, reducing skin damage and reducing hydrocarbon viscosity

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942098B2 (en) * 2006-08-29 2011-05-17 Schlumberger Technology Corporation Loading tube for shaped charges
US20080121095A1 (en) * 2006-08-29 2008-05-29 Schlumberger Technology Corporation Loading Tube For Shaped Charges
US20110284246A1 (en) * 2006-11-20 2011-11-24 Baker Hughes Incorporated Perforating gun assembly to control wellbore fluid dynamics
US8033224B1 (en) * 2009-03-24 2011-10-11 The United States Of America As Represented By The Secretary Of The Air Force Spiral linear shaped charge jet
WO2010129792A3 (en) * 2009-05-04 2011-01-20 Baker Hughes Incorporated Internally supported perforating gun body for high pressure operations
WO2010129792A2 (en) * 2009-05-04 2010-11-11 Baker Hughes Incorporated Internally supported perforating gun body for high pressure operations
US20100276136A1 (en) * 2009-05-04 2010-11-04 Baker Hughes Incorporated Internally supported perforating gun body for high pressure operations
NO20111592A1 (en) * 2009-05-04 2011-11-29 Baker Hughes Inc Internally supported perforation gun for high pressure operations
GB2482463A (en) * 2009-05-04 2012-02-01 Baker Hughes Inc Internally supported perforating gun body for high pressure operations
US8286697B2 (en) 2009-05-04 2012-10-16 Baker Hughes Incorporated Internally supported perforating gun body for high pressure operations
GB2482463B (en) * 2009-05-04 2014-03-26 Baker Hughes Inc Internally supported perforating gun body for high pressure operations
NO344951B1 (en) * 2009-05-04 2020-08-03 Baker Hughes Holdings Llc Internally supported perforation gun for high pressure operations
US20130112411A1 (en) * 2011-11-03 2013-05-09 Jian Shi Perforator charge having an energetic material
US9243474B2 (en) * 2014-04-02 2016-01-26 Halliburton Energy Services, Inc. Using dynamic underbalance to increase well productivity
CN114544706A (en) * 2022-01-18 2022-05-27 中国矿业大学(北京) Experimental system and method for measuring explosive product energy distribution proportion relation

Also Published As

Publication number Publication date
GB2430479B (en) 2007-08-08
NO20061053L (en) 2006-09-11
GB0602068D0 (en) 2006-03-15
RU2388903C2 (en) 2010-05-10
RU2006107182A (en) 2007-09-20
GB2430479A (en) 2007-03-28
CA2535239A1 (en) 2006-09-08
CA2535239C (en) 2009-06-02

Similar Documents

Publication Publication Date Title
CA2535239C (en) Energy controlling device
US11346191B2 (en) Cluster gun system
US6962202B2 (en) Casing conveyed well perforating apparatus and method
CA2495508C (en) Charge holder apparatus
AU2018208822B2 (en) Perforating gun for oil and gas wells
RU2358094C2 (en) Method of forming nonround perforations in underground bed bearing hydrocarbons, non-linear cumulative perforator, firing perforator (versions)
US7284612B2 (en) Controlling transient pressure conditions in a wellbore
RU2447268C2 (en) Coupling adapter, perforating system and method of well perforation
US7228906B2 (en) Propellant ignition assembly and process
GB2429726A (en) Single trip deployment of a perforating gun and sand screen in a well
US20130206385A1 (en) Multi-element hybrid perforating apparatus
US20070017678A1 (en) High energy gas fracturing charge device and method of use
US20140123841A1 (en) Bi-directional shaped charges for perforating a wellbore
US9388673B2 (en) Internally pressurized perforating gun
US9068441B2 (en) Perforating stimulating bullet
US11834935B2 (en) Shaped charge load tube with integrated detonation cord retention mechanism
US20030047313A1 (en) Drillable core perforating gun and method of utilizing the same
WO2023072561A1 (en) Ballistically actuated wellbore tool
MXPA01000007A (en) Apparatus and method for perforating and stimulating a subterranean formation

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, HAOMING;SMITHEMAN, CHANTAL;JONES, CLAUDE D.;AND OTHERS;REEL/FRAME:016923/0196

Effective date: 20051201

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION