US20060179867A1 - Multi-air conditioner capable of performing simultaneous cooling and heating - Google Patents

Multi-air conditioner capable of performing simultaneous cooling and heating Download PDF

Info

Publication number
US20060179867A1
US20060179867A1 US11/349,889 US34988906A US2006179867A1 US 20060179867 A1 US20060179867 A1 US 20060179867A1 US 34988906 A US34988906 A US 34988906A US 2006179867 A1 US2006179867 A1 US 2006179867A1
Authority
US
United States
Prior art keywords
duct
air conditioner
oil accumulation
preventing portion
accumulation preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/349,889
Inventor
Do-yong Ha
Ho-Jong Jeong
Young-min Park
Pil-hyun Yoon
Ki-baik Kwon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HA, DO-YONG, JEONG, HO-JONG, KWON, KI-BAIK, PARK, YOUNG-MIN, YOON, PIL-HYUN
Publication of US20060179867A1 publication Critical patent/US20060179867A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/006Percussion or tapping massage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0218Drawing-out devices
    • A61H1/0222Traction tables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • A61H23/0218Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with alternating magnetic fields producing a translating or oscillating movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/12Feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Definitions

  • FIG. 1 is a construction view of a general multi-air conditioner capable of simultaneous cooling and heating.
  • the outdoor unit 50 includes a compressor 1 , an outdoor heat exchanger 2 , a duct unit having three ducts 3 , 4 and 5 connected to the compressor 1 , for guiding a refrigerant to the distributor 60 or guiding a refrigerant of the distributor 60 to the compressor 1 , and a switching unit 6 switching a flow of a refrigerant so as to allow a refrigerant of a specific pressure and a specific phase to flow to each duct.
  • Undescribed reference numeral 9 is an accumulator.
  • an object of the present invention is to provide a multi-air conditioner capable of simultaneous cooling and heating, configured to improve reliability of a compressor by preventing oil accumulation within a duct and damage to a compressor which may occurs at the time of full cooling operation.
  • FIG. 1 is a construction view of a general multi-air conditioner capable of simultaneous cooling and heating
  • FIG. 2 is a construction view of a multi-air conditioner capable of simultaneous cooling and heating according to the present invention
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3 ;
  • FIG. 6 is a sectional view taken along line VI-VI of FIG. 5 .
  • FIG. 2 is a construction view of a multi-air conditioner capable of simultaneous cooling and heating according to the present invention
  • FIG. 3 is a perspective view of a main part of FIG. 2
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3 .
  • the second duct 4 is installed such that its one side communicates with a front end 3 a of the first duct (a discharge side of the compressor) and its other side communicates with a distributor 60 .
  • the portion communicating with the front end 3 a of the first duct becomes an inlet side of the second duct 4 .
  • the oil accumulation preventing portion 8 is placed in the vicinity of an inlet portion of the second duct.
  • the section from the inlet portion 10 of the second duct to the starting point 11 of the oil accumulation preventing portion is formed in a straight line in order to reduce an oil return path and a cost for a duct.
  • the height (H) between the starting point 11 of the oil accumulation preventing portion and the highest spot 12 of the oil accumulation preventing portion is the same as or greater than a diameter of the second duct 4 .
  • the oil accumulation preventing portion 8 preferably includes at least one curved section.
  • the oil accumulation preventing portion 8 has a reverse trap.
  • FIG. 5 shows another embodiment of the oil accumulation preventing portion in accordance with the present invention.
  • the liquefaction preventing unit 27 includes a bypass duct 27 a connecting the low pressure gaseous refrigerant connection duct 26 with the second duct 4 , a blocking valve 27 b provided on the bypass duct 27 a and opening and closing the bypass duct 27 a so as to allow the refrigerant accumulated in the second duct to flow to the low pressure gaseous refrigerant connection duct 26 , and a capillary duct 27 c decompressing and expanding a high pressure refrigerant accumulated in the second duct 4 and converting the refrigerant into a low pressure gaseous refrigerant.
  • the remaining portion of the high pressure gaseous refrigerant is introduced to the second duct 4 .
  • the refrigerant introduced to the second duct and oil mixed therewith flow along a flow path of a certain section, and the refrigerant keep flowing toward the distributor 60 as illustrated as a dotted arrow in FIG. 4 .
  • the oil accumulation preventing portion 8 of a reverse trap structure having a predetermined height difference (H) once entering the oil accumulation preventing portion 8 of a reverse trap structure having a predetermined height difference (H), the oil cannot flow upwardly by itself due to gravity and thusly can no more flow.
  • the oil whose flow has been blocked is accumulated in a section of an upstream area within the second duct 4 .
  • the oil returns to the compressor 1 by way of the inlet portion 10 of the second duct and the front end side 3 a of the first duct.
  • the section between the inlet portion 10 of the second duct and the starting point 11 of the oil accumulation preventing portion is inclined at a predetermined angle ( ⁇ ) such that its height is lowered toward a discharge side of the compressor 1 , which facilitates the return of oil.
  • the return path can be shortened by forming a section between the inlet portion 10 of the second duct and the starting point 11 of the oil accumulation preventing portion as a straight line.
  • a refrigerant introduced into the second duct 4 radiates heat, is condensed, and is accumulated therein. If the accumulation occurs, the blocking valve 27 b is opened, and the refrigerant is decompressed and expanded while passing through the capillary duct 27 c , and is converted into a low pressure gaseous refrigerant. Then, the refrigerant is introduced to the low pressure gaseous refrigerant connection duct 26 of the distributor 60 .
  • the high pressure liquefied refrigerant introduced to the high pressure liquefied refrigerant connection duct 21 of the distributor is divided into each high pressure liquefied refrigerant divergence duct 22 and is expanded while passing through an electronic expansion valve 61 of each room. Then, the refrigerant is evaporated while passing through the indoor heat exchanger 72 and cools each room.
  • the evaporated refrigerant is introduce to each low pressure gaseous refrigerant divergence duct 26 by blockage of a two way valve 31 of each high pressure gaseous refrigerant divergence duct 24 , then, passes through the low pressure gaseous refrigerant connection duct 26 and the low pressure gaseous refrigerant duct 3 d , and then is introduced to the compressor 1 together with the low pressure gaseous refrigerant having entered the low pressure gaseous refrigerant connection duct 26 .
  • a portion of the refrigerant is drawn into a closing duct 6 c for pressurization along an auxiliary connection duct 6 b by a four way valve 7 a which has already been switched.
  • an oil accumulation preventing portion 8 having a height difference is formed at a certain section of the second duct 4 , so that oil accumulation within a duct which may occurs at the time of full cooling operation and a shortage of oil can be prevented. Accordingly, damage to the compressor 1 is prevented, and the reliability of the compressor can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A multi-air conditioner capable of simultaneous cooling and heating, includes: a first duct connected to a discharge side of a compressor, through which a refrigerant discharged from the compressor passes at the time of cooling operation; a second duct diverged from the first duct, through which a refrigerant discharged from the compressor passes at the time of heating operation; and an oil accumulation preventing portion formed at a certain section of the second duct to have a height difference, for preventing oil, which is introduced to the second duct from the compressor together with a refrigerant, from being accumulated in the second duct. Accordingly, the multi-air conditioner capable of simultaneous cooling and heating can prevent damage to the compressor due to a shortage of oil and thusly improve reliability of a compressor by preventing oil accumulation within a duct.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a multi-air conditioner capable of simultaneous cooling and heating, and particularly, to a multi-air conditioner capable of simultaneous cooling and heating configured to prevent damage to a compressor due to a shortage of oil by preventing oil accumulation within a duct which may occur during full cooling operation.
  • 2. Description of the Background Art
  • In general, an air conditioner is a device for cooling or heating an indoor space such as a living space, a restaurant or an office. In these days, in order to more efficiently cooling or heating an indoor space divided into a plurality of rooms, research on a multi-air conditioner cooling or heating each room is being continuously made. Particularly, such a multi-air conditioner is formed such that a plurality of indoor units are connected to one outdoor unit and each of the indoor units is installed to each room. The multi-air conditioner is operated in one of cooling and heating operation modes and performs air-conditioning of the room.
  • FIG. 1 is a construction view of a general multi-air conditioner capable of simultaneous cooling and heating.
  • As shown in FIG. 1, the general multi-air conditioner capable of simultaneous cooling and heating, includes an outdoor unit 50 having therein a compressor 1 and an outdoor heat exchanger 2, a plurality of indoor units (C), each having therein an electronic expansion valve 61 and an indoor heat exchanger 62, and a distributor 60 provided between the outdoor unit 50 and the indoor unit 70 and distributing to the plurality of indoor units, a refrigerant introduced from the outdoor unit.
  • The outdoor unit 50 includes a compressor 1, an outdoor heat exchanger 2, a duct unit having three ducts 3, 4 and 5 connected to the compressor 1, for guiding a refrigerant to the distributor 60 or guiding a refrigerant of the distributor 60 to the compressor 1, and a switching unit 6 switching a flow of a refrigerant so as to allow a refrigerant of a specific pressure and a specific phase to flow to each duct.
  • Also, the duct unit includes a first duct 3 connecting the distributor 60 with a discharge end of the compressor 1 and having the outdoor heat exchanger 2 in the middle, a second duct 4 connecting the distributor 60 with a front end 3 a of the first duct (a discharge side of the compressor) and guiding only a high pressure gaseous refrigerant, and a third duct 5 connecting the distributor 60 to a suction end of the compressor 1.
  • The distributor includes a high pressure liquefied refrigerant connection duct 21 connected to a high pressure liquefied section 3 c of the first duct 3 and guiding a high pressure liquefied refrigerant, a high pressure liquefied refrigerant divergence duct 22 diverged from the high pressure liquefied refrigerant connection duct 21 and guiding a high pressure liquefied refrigerant, a high pressure gaseous refrigerant connection duct 23 connected to the second duct 4 and guiding a high pressure gaseous refrigerant, a high pressure gaseous refrigerant divergence duct 24 diverged from the high pressure gaseous refrigerant connection duct 23 and guiding a high pressure gaseous refrigerant, a low pressure gaseous refrigerant divergence duct 25 diverged from the high pressure gaseous refrigerant divergence duct 24, and a low pressure gaseous refrigerant connection duct 26 combining the low pressure gaseous refrigerant divergence ducts 25 and connected to the third duct 5.
  • Undescribed reference numeral 9 is an accumulator.
  • A multi-air conditioner capable of simultaneous cooling heating having such a structure performs the following operation at the time of full cooling operation related to the present invention.
  • As shown in FIG. 1, a high-pressure gaseous refrigerant discharged from the compressor 1 flows along a front end side 3 a of the first duct and is introduced to a rear end side 3 b of the first duct by switching of the switching unit 6. Then, the refrigerant is introduced to the outdoor heat exchanger 2, is condensed while passing through the outdoor heat exchanger 2, and is changed into a high temperature high pressure liquefied refrigerant. The high temperature high pressure liquefied refrigerant coming out of the outdoor heat exchanger 2 passes through a check valve 7 a and is introduced to the high pressure liquefied refrigerant connection duct 21 of the distributor 60 along a high pressure liquefied refrigerant section 3 c of the first duct 1. The high pressure liquefied refrigerant introduced to the high pressure liquefied refrigerant connection duct 21 is divided to each high pressure liquefied refrigerant divergence duct 22 and is expanded while passing through an electronic expansion valve 61 of each indoor side. Then, the refrigerant is evaporated while passing through each indoor heat exchanger 62, thereby cooling each room.
  • A portion of the high pressure liquefied refrigerant discharged from the compressor 1 is introduced to a second duct 4 which is not used at the time full cooling operation. In order to improve reliability and operation efficiency of the compressor, oil circulates together with the refrigerant. Thusly, if the full cooling operation is made for a long time; oil mixed with the refrigerant is accumulated within the second duct 4, and consequently, a shortage of refrigerant and oil occurs, which causes degradation in cooling performance and damage to a component such as a compressor 1.
  • To solve such problems, a structure in which the accumulated refrigerant is decompressed and expanded and then returns to the low pressure gaseous refrigerant connection duct is provided. Namely, refrigerant and oil introduced into the second duct 4 are introduced to a bypass duct 27 a because of blockage of a two way valve 31 of a high pressure gaseous refrigerant divergence duct 24 side, then, passes through a blocking valve 27 b and a capillary duct 27 c, being converted into a low pressure gaseous refrigerant, and is introduced to the low pressure gaseous refrigerant connection duct 26 of the distributor 60.
  • Even though such a return structure is advantageous in that the return of a refrigerant is normally made, oil cannot normally returns because of its great viscosity and the very small amount of refrigerant flowing but remains in the second duct 4 and causes a shortage of oil of the system. Consequently, damage to the compressor 1 is caused. Such a phenomenon is more severely occurs if a duct is long or if a difference of height is generated because an outdoor unit is disposed at a high place and an indoor unit is disposed at a low place.
  • SUMMARY OF THE INVENTION
  • Therefore, an object of the present invention is to provide a multi-air conditioner capable of simultaneous cooling and heating, configured to improve reliability of a compressor by preventing oil accumulation within a duct and damage to a compressor which may occurs at the time of full cooling operation.
  • To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, there is provided a multi-air conditioner capable of simultaneous cooling and heating, comprising: a first duct connected to a discharge side of a compressor, through which a refrigerant discharged from the compressor passes at the time of cooling operation; a second duct diverged from the first duct, through which a refrigerant discharged from the compressor passes at the time of heating operation; and an oil accumulation preventing portion formed at a certain section of the second duct to have a height difference, for preventing oil, which is introduced to the second duct from the compressor together with a refrigerant, from being accumulated within the second duct.
  • The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a unit of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
  • In the drawings:
  • FIG. 1 is a construction view of a general multi-air conditioner capable of simultaneous cooling and heating;
  • FIG. 2 is a construction view of a multi-air conditioner capable of simultaneous cooling and heating according to the present invention;
  • FIG. 3 is a perspective view of a main part of FIG. 2;
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3;
  • FIG. 5 is a perspective view that illustrates another embodiment of an oil accumulation preventing portion according to the present invention; and
  • FIG. 6 is a sectional view taken along line VI-VI of FIG. 5.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
  • Here, the same reference numerals are designated to the same parts of the aforedescribed conventional multi-air conditioner, and the detailed description thereon will be omitted.
  • FIG. 2 is a construction view of a multi-air conditioner capable of simultaneous cooling and heating according to the present invention, FIG. 3 is a perspective view of a main part of FIG. 2, and FIG. 4 is a sectional view taken along line IV-IV of FIG. 3.
  • The multi-air conditioner capable of simultaneous cooling and heating includes a first duct 3 connected to a discharge side of a compressor 1, through which a refrigerant discharged from the compressor 1 passes at the time of cooling operation, a second duct 4 diverged from the first duct 3, through which a refrigerant discharged from the compressor 1 passes at the time of heating operation, and an oil accumulation preventing portion 8 formed in a certain section of the second duct 4 to have a height difference for the purpose of preventing oil, which is introduced to the second duct 4 together with a refrigerant, from being accumulated within the second duct 4.
  • The second duct 4 is installed such that its one side communicates with a front end 3 a of the first duct (a discharge side of the compressor) and its other side communicates with a distributor 60. Here, the portion communicating with the front end 3 a of the first duct becomes an inlet side of the second duct 4.
  • Here, in order to facilitate return of oil by reducing a path that oil returns, the oil accumulation preventing portion 8 is placed in the vicinity of an inlet portion of the second duct.
  • Preferably, a section from the inlet portion 10 of the second duct to a starting point 11 of the oil accumulation preventing portion has the same height at both ends so that oil flow is prevented by the oil accumulation preventing portion 8 and return of the oil accumulated at the front end side of the second duct 4 can be facilitated. Furthermore, more preferably, the section may be inclined at a predetermined angle (θ) such that its height is lowered toward the inlet portion 10 of the second duct.
  • Meanwhile, the section from the inlet portion 10 of the second duct to the starting point 11 of the oil accumulation preventing portion is formed in a straight line in order to reduce an oil return path and a cost for a duct.
  • Also, the oil accumulation preventing portion 8 includes the highest spot 12 which is the highest point in the section forming the oil accumulation preventing portion 8, and a downward section continued from the highest spot. This is because the most preferred embodiment should be able to prevent the accumulation of the oil within the second duct 4 without installing a special returning device and thusly to block the flow of the oil by gravity.
  • Here, preferably, the height (H) between the starting point 11 of the oil accumulation preventing portion and the highest spot 12 of the oil accumulation preventing portion is the same as or greater than a diameter of the second duct 4.
  • Also, in order to improve convenience in duct manufacturing and reducing a cost for manufacturing the duct, the oil accumulation preventing portion 8 preferably includes at least one curved section.
  • To consider the preferred embodiments synthetically, it is most preferable that the oil accumulation preventing portion 8 has a reverse trap.
  • FIG. 5 shows another embodiment of the oil accumulation preventing portion in accordance with the present invention.
  • A method of forming a path of a certain section between the inlet portion 10 of the second duct and the starting point 11 of the oil accumulation preventing portion as described above is possible, but a method of forming a starting point 13 of the oil accumulation preventing portion corresponding to the inlet portion of the second duct is also possible.
  • Also, even when the flow to the distributor is in a horizontal direction after the installation of the oil accumulation preventing portion 8, the oil-flow preventing effect by the oil accumulation preventing portion 8 is the same. Therefore, an object of the present invention can be still achieved.
  • Preferably, the distributor 60 further includes a liquefaction preventing unit 27 between the second duct 4 and the low pressure refrigerant connection duct 26 in order to prevent a high pressure gaseous refrigerant accumulated in the second duct 4 from being liquefied. This is because if the high pressure gaseous refrigerant is liquefied and stays in the second duct 4, a shortage of refrigerant may occur in the compressor. Here, as shown in FIG. 1 the liquefaction preventing unit 27 includes a bypass duct 27 a connecting the low pressure gaseous refrigerant connection duct 26 with the second duct 4, a blocking valve 27 b provided on the bypass duct 27 a and opening and closing the bypass duct 27 a so as to allow the refrigerant accumulated in the second duct to flow to the low pressure gaseous refrigerant connection duct 26, and a capillary duct 27 c decompressing and expanding a high pressure refrigerant accumulated in the second duct 4 and converting the refrigerant into a low pressure gaseous refrigerant.
  • The operation of the multi-air conditioner capable of simultaneous cooling and heating according to the present invention and a flow of a refrigerant will now be described in detail with the full cooling operation related to the present invention as a central case.
  • As shown in FIG. 2, in the full cooling operation, while flowing along a front end side 3 a of the first duct, most of a high pressure gaseous refrigerant discharged from the compressor 1 is introduced to the outdoor heat exchanger 2 along a rear end side 3 b of the first duct by the switching of the switching unit 6 and then is condensed therein. Then, the refrigerant passes through the check valve 7 a and is introduced to the high pressure liquefied refrigerant connection duct 21 of the distributor 60 along a high pressure liquefied refrigerant section 3 c of the first duct.
  • The remaining portion of the high pressure gaseous refrigerant is introduced to the second duct 4. Here, the refrigerant introduced to the second duct and oil mixed therewith flow along a flow path of a certain section, and the refrigerant keep flowing toward the distributor 60 as illustrated as a dotted arrow in FIG. 4. However, as illustrated as a solid line in FIG. 4, once entering the oil accumulation preventing portion 8 of a reverse trap structure having a predetermined height difference (H), the oil cannot flow upwardly by itself due to gravity and thusly can no more flow. The oil whose flow has been blocked is accumulated in a section of an upstream area within the second duct 4. If the accumulation occurs, the oil returns to the compressor 1 by way of the inlet portion 10 of the second duct and the front end side 3 a of the first duct. Here, as shown in FIG. 3, the section between the inlet portion 10 of the second duct and the starting point 11 of the oil accumulation preventing portion is inclined at a predetermined angle (θ) such that its height is lowered toward a discharge side of the compressor 1, which facilitates the return of oil. Also, the return path can be shortened by forming a section between the inlet portion 10 of the second duct and the starting point 11 of the oil accumulation preventing portion as a straight line.
  • A refrigerant introduced into the second duct 4 radiates heat, is condensed, and is accumulated therein. If the accumulation occurs, the blocking valve 27 b is opened, and the refrigerant is decompressed and expanded while passing through the capillary duct 27 c, and is converted into a low pressure gaseous refrigerant. Then, the refrigerant is introduced to the low pressure gaseous refrigerant connection duct 26 of the distributor 60.
  • The high pressure liquefied refrigerant introduced to the high pressure liquefied refrigerant connection duct 21 of the distributor is divided into each high pressure liquefied refrigerant divergence duct 22 and is expanded while passing through an electronic expansion valve 61 of each room. Then, the refrigerant is evaporated while passing through the indoor heat exchanger 72 and cools each room. Thereafter, the evaporated refrigerant is introduce to each low pressure gaseous refrigerant divergence duct 26 by blockage of a two way valve 31 of each high pressure gaseous refrigerant divergence duct 24, then, passes through the low pressure gaseous refrigerant connection duct 26 and the low pressure gaseous refrigerant duct 3 d, and then is introduced to the compressor 1 together with the low pressure gaseous refrigerant having entered the low pressure gaseous refrigerant connection duct 26. Here, a portion of the refrigerant is drawn into a closing duct 6 c for pressurization along an auxiliary connection duct 6 b by a four way valve 7 a which has already been switched.
  • As described so far, an oil accumulation preventing portion 8 having a height difference is formed at a certain section of the second duct 4, so that oil accumulation within a duct which may occurs at the time of full cooling operation and a shortage of oil can be prevented. Accordingly, damage to the compressor 1 is prevented, and the reliability of the compressor can be improved.
  • As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its spirit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the metes and bounds of the claims, or equivalence of such-metes and bounds are therefore intended to be embraced by the appended claims.

Claims (24)

1. A multi-air conditioner capable of simultaneous cooling and heating, comprising:
a first duct connected to a discharge side of a compressor, through which a refrigerant discharged from the compressor passes at the- time of cooling operation;
a second duct diverged from the first duct, through which a refrigerant discharged from the compressor passes at the time of heating operation; and
an oil accumulation preventing portion formed at a certain section of the second duct to have a height difference, for preventing oil, which is introduced to the second duct from the compressor together with a refrigerant, from being accumulated within the second duct.
2. The multi-air conditioner of claim 1, wherein the oil accumulation preventing portion is placed in the vicinity of an inlet portion of the second duct.
3. The multi-air conditioner of claim 1, wherein a section between an inlet portion of the second duct and a starting point of the oil accumulation preventing portion has the same height at both ends.
4. The multi-air conditioner of claim 1, wherein the section between an inlet portion of the second duct and a starting point of the oil accumulation preventing portion is inclined at a predetermined angle such that its height is lowered toward the inlet portion of the second duct.
5. The multi-air conditioner of claim 3, wherein the section between the inlet portion of the section duct and the starting point of the oil accumulation preventing portion is formed as a straight line.
6. The multi-air conditioner of claim 4, wherein the section between the inlet portion of the section duct and the starting point of the oil accumulation preventing portion is formed as a straight line.
7. The multi-air conditioner of claim 1, wherein the oil accumulation preventing portion includes a highest spot and a downward section continued from the highest spot.
8. The multi-air conditioner of claim 1, wherein a height from the starting point of the oil accumulation preventing portion to the highest spot of the oil accumulation portion is the same as or greater than a diameter of the second duct.
9. The multi-air conditioner of claim 1, wherein the oil accumulation preventing portion includes at least one curved section.
10. The multi-air conditioner of claim 1, wherein the oil accumulation preventing portion is formed as a reverse trap structure.
11. The multi-air conditioner of claim 1, wherein the oil accumulation preventing portion is formed such that a starting point of the oil accumulation preventing portion coincides with an inlet portion of the second duct.
12. A multi-air conditioner capable of simultaneous cooling and heating, comprising:.
an outdoor unit having therein a compressor and an outdoor heat exchanger;
a plurality of indoor units, each having therein an electronic expansion valve and an indoor heat exchanger;
a distributor provided between the outdoor unit and the indoor unit and distributing a refrigerant introduced from the outdoor unit to the plurality of indoor units;
a duct unit including a first duct connecting the distributor to a discharge side of the compressor, having the outdoor heat exchanger in the middle and guiding a refrigerant discharged from the compressor toward the indoor heat exchanger, and a second duct diverged from the first duct, connected to the distributor and guiding a refrigerant discharged from the compressor toward the indoor heat exchanger; and
an oil accumulation portion formed to have a height difference at a certain section of the second duct in order to prevent oil, which is introduced to the second duct from the compressor together with a refrigerant, from being accumulated within the second duct.
13. The multi-air conditioner of claim 12, wherein the oil accumulation preventing portion is placed in the vicinity of an inlet portion of the second duct.
14. The multi-air conditioner of claim 12, wherein a section between an inlet portion of the second duct and a starting point of the oil accumulation preventing portion has the same height at both ends.
15. The multi-air conditioner of claim 12, wherein a section between an inlet portion of the second duct and a starting point of the oil accumulation preventing portion is inclined at a predetermined angle such that its height is lowered toward the inlet portion of the second duct.
16. The multi-air conditioner of claim 14, wherein a section between an inlet portion of the second duct and a starting point of the oil accumulation preventing portion is formed as a straight line.
17. The multi-air conditioner of claim 15, wherein a section between an inlet portion of the second duct and a starting point of the oil accumulation preventing portion is formed as a straight line.
18. The multi-air conditioner of claim 12, wherein the oil accumulation preventing portion includes a highest spot and a downward section continued from the highest spot.
19. The multi-air conditioner of claim 12, wherein a height from the starting point of the oil accumulation preventing portion to the highest spot of the oil accumulation preventing portion is the same as or greater than a diameter of the second duct.
20. The multi-air conditioner of claim 12, wherein the oil accumulation preventing portion includes at least one curved section.
21. The multi-air conditioner of claim 12, wherein the oil accumulation preventing portion has a reverse trap structure.
22. The multi-air conditioner of claim 12, wherein the oil accumulation preventing portion is formed such that a starting point of the oil accumulation preventing portion coincides with an inlet portion of the second duct.
23. The multi-air conditioner of claim 12, wherein the distributor comprises:
a low pressure gaseous refrigerant duct for guiding a low pressure gaseous refrigerant discharged from the plurality of indoor units to the compressor at the time of cooling operation; and
a liquefaction preventing unit provided between the second duct and the low pressure gaseous refrigerant duct and preventing liquefaction of a high pressure gaseous refrigerant accumulated in the second duct at the time of full cooling operation.
24. The multi-air conditioner of claim 23, wherein the liquefaction preventing unit comprises:
a bypass duct connecting the low pressure gaseous refrigerant duct with the second duct;
a blocking valve provided on the bypass duct and allowing a refrigerant accumulated in the second duct at the time of full cooling operation to flow to the low pressure gaseous refrigerant duct; and
a capillary duct decompressing and expanding a high pressure gaseous refrigerant accumulated within the second duct and converting the refrigerant into a low pressure gaseous refrigerant.
US11/349,889 2005-02-15 2006-02-09 Multi-air conditioner capable of performing simultaneous cooling and heating Abandoned US20060179867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050012464A KR101172445B1 (en) 2005-02-15 2005-02-15 Multi-air conditioner capable of cooling and heating simultaneously
KR12464/2005 2005-02-15

Publications (1)

Publication Number Publication Date
US20060179867A1 true US20060179867A1 (en) 2006-08-17

Family

ID=36283295

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/349,889 Abandoned US20060179867A1 (en) 2005-02-15 2006-02-09 Multi-air conditioner capable of performing simultaneous cooling and heating

Country Status (4)

Country Link
US (1) US20060179867A1 (en)
EP (1) EP1691146A1 (en)
KR (1) KR101172445B1 (en)
CN (1) CN1821665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130061623A1 (en) * 2010-02-10 2013-03-14 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN112129004A (en) * 2019-06-24 2020-12-25 广东美芝精密制造有限公司 Compressor and heat exchange system
US10891291B2 (en) 2016-10-31 2021-01-12 Oracle International Corporation Facilitating operations on pluggable databases using separate logical timestamp services
JP2021050840A (en) * 2019-09-24 2021-04-01 ダイキン工業株式会社 Refrigerant flow passage switching device and air conditioning system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803128B1 (en) * 2006-12-22 2008-02-14 엘지전자 주식회사 Air conditioning system
US8118563B2 (en) * 2007-06-22 2012-02-21 Emerson Climate Technologies, Inc. Tandem compressor system and method
CN104006584B (en) * 2013-02-26 2017-03-08 广东美的暖通设备有限公司 Three control air-conditionings and its refrigerant flow to switching device
CN106907882B (en) * 2017-02-23 2022-10-11 广州市粤联水产制冷工程有限公司 Refrigeration system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US81540A (en) * 1868-08-25 William d
US134224A (en) * 1872-12-24 Improvement in hand-weeders
US160763A (en) * 1875-03-16 Improvement in metallic cartridges
US3581519A (en) * 1969-07-18 1971-06-01 Emhart Corp Oil equalization system
US4760707A (en) * 1985-09-26 1988-08-02 Carrier Corporation Thermo-charger for multiplex air conditioning system
US5279131A (en) * 1990-08-10 1994-01-18 Hitachi, Ltd. Multi-airconditioner
US5685168A (en) * 1994-06-29 1997-11-11 Daikin Industries, Ltd. Refrigerating apparatus
US6755038B2 (en) * 2002-06-12 2004-06-29 Lg Electronics Inc. Multi-unit air conditioner and method for controlling the same
US20040134205A1 (en) * 2003-01-13 2004-07-15 Lg Electronics Inc. Multi-type air conditioner with defrosting device
US6880356B2 (en) * 2002-08-24 2005-04-19 Lg Electronics Inc. Simultaneous heating and cooling operation type multi-air conditioner
US20050081537A1 (en) * 2003-10-20 2005-04-21 Lg Electronics Inc. Apparatus for preventing liquid refrigerant accumulation of air conditioner and method thereof
US7165420B2 (en) * 2004-04-22 2007-01-23 Lg Electronics Inc. Apparatus for converting refrigerant pipe of air conditioner
US7237405B2 (en) * 2003-10-06 2007-07-03 Daikin Industries, Ltd. Refrigeration apparatus
US7318326B2 (en) * 2004-05-24 2008-01-15 Lg Electronics Inc. Multi-air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3361144B2 (en) * 1993-04-21 2003-01-07 松下冷機株式会社 Multi-room air conditioner with mixed cooling and heating
JP2002174469A (en) 2000-12-06 2002-06-21 Fujitsu General Ltd Multichamber air conditioner

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US81540A (en) * 1868-08-25 William d
US134224A (en) * 1872-12-24 Improvement in hand-weeders
US160763A (en) * 1875-03-16 Improvement in metallic cartridges
US3581519A (en) * 1969-07-18 1971-06-01 Emhart Corp Oil equalization system
US4760707A (en) * 1985-09-26 1988-08-02 Carrier Corporation Thermo-charger for multiplex air conditioning system
US5279131A (en) * 1990-08-10 1994-01-18 Hitachi, Ltd. Multi-airconditioner
US5685168A (en) * 1994-06-29 1997-11-11 Daikin Industries, Ltd. Refrigerating apparatus
US6755038B2 (en) * 2002-06-12 2004-06-29 Lg Electronics Inc. Multi-unit air conditioner and method for controlling the same
US6880356B2 (en) * 2002-08-24 2005-04-19 Lg Electronics Inc. Simultaneous heating and cooling operation type multi-air conditioner
US20040134205A1 (en) * 2003-01-13 2004-07-15 Lg Electronics Inc. Multi-type air conditioner with defrosting device
US7237405B2 (en) * 2003-10-06 2007-07-03 Daikin Industries, Ltd. Refrigeration apparatus
US20050081537A1 (en) * 2003-10-20 2005-04-21 Lg Electronics Inc. Apparatus for preventing liquid refrigerant accumulation of air conditioner and method thereof
US7165420B2 (en) * 2004-04-22 2007-01-23 Lg Electronics Inc. Apparatus for converting refrigerant pipe of air conditioner
US7318326B2 (en) * 2004-05-24 2008-01-15 Lg Electronics Inc. Multi-air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130061623A1 (en) * 2010-02-10 2013-03-14 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US8904812B2 (en) * 2010-02-10 2014-12-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10891291B2 (en) 2016-10-31 2021-01-12 Oracle International Corporation Facilitating operations on pluggable databases using separate logical timestamp services
CN112129004A (en) * 2019-06-24 2020-12-25 广东美芝精密制造有限公司 Compressor and heat exchange system
CN112129004B (en) * 2019-06-24 2022-12-09 广东美芝精密制造有限公司 Compressor and heat exchange system
JP2021050840A (en) * 2019-09-24 2021-04-01 ダイキン工業株式会社 Refrigerant flow passage switching device and air conditioning system
JP7393624B2 (en) 2019-09-24 2023-12-07 ダイキン工業株式会社 Refrigerant flow switching device and air conditioning system

Also Published As

Publication number Publication date
CN1821665A (en) 2006-08-23
KR101172445B1 (en) 2012-08-07
EP1691146A1 (en) 2006-08-16
KR20060091536A (en) 2006-08-21

Similar Documents

Publication Publication Date Title
US20060179867A1 (en) Multi-air conditioner capable of performing simultaneous cooling and heating
JP3925545B2 (en) Refrigeration equipment
JP4734161B2 (en) Refrigeration cycle apparatus and air conditioner
EP1703230A2 (en) Multi type air-conditioner and control method thereof
US7257964B2 (en) Air conditioner
AU2009248466B2 (en) Refrigeration Apparatus
US10401064B2 (en) Heat pump and flow path switching apparatus
US20100147018A1 (en) Refrigeration apparatus
EP1498668B1 (en) Heat source unit of air conditioner and air conditioner
KR101944830B1 (en) Heat Pump System
US7624590B2 (en) Multi-type air conditioner
KR102080836B1 (en) An air conditioning system
CN109386983B (en) Two-pipe jet enthalpy-increasing outdoor unit and multi-split system
US10429109B2 (en) Refrigerant circuit and air-conditioning apparatus
JP2010156485A (en) Multi-type air conditioner
US20060123839A1 (en) Air conditioner and method for controlling the same
JPH10281566A (en) Outdoor device of heat pump type air conditioner
US20230221049A1 (en) Air conditioner
EP4033175A1 (en) Air conditioner
KR20090069925A (en) Air conditioning system
JP2024017109A (en) Refrigeration cycle device
KR100510850B1 (en) Pipe Laying Structure Of Outdoor Unit At Multi-Air Conditioner
KR100364534B1 (en) Multi air conditioner
CN115751485A (en) Outdoor heat exchanger structure, air conditioning system comprising same and control method
KR100510852B1 (en) Suction Line Structure Of Multi-Air Conditioner

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HA, DO-YONG;JEONG, HO-JONG;PARK, YOUNG-MIN;AND OTHERS;REEL/FRAME:017557/0836

Effective date: 20060125

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION