US20060043388A1 - Reflective electrode and compound semiconductor light emitting device including the same - Google Patents

Reflective electrode and compound semiconductor light emitting device including the same Download PDF

Info

Publication number
US20060043388A1
US20060043388A1 US11/080,509 US8050905A US2006043388A1 US 20060043388 A1 US20060043388 A1 US 20060043388A1 US 8050905 A US8050905 A US 8050905A US 2006043388 A1 US2006043388 A1 US 2006043388A1
Authority
US
United States
Prior art keywords
electrode
electrode layer
compound semiconductor
layer
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/080,509
Inventor
Joon-seop Kwak
Tae-yeon Seong
June-o Song
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Gwangju Institute of Science and Technology
Original Assignee
Samsung Electro Mechanics Co Ltd
Gwangju Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd, Gwangju Institute of Science and Technology filed Critical Samsung Electro Mechanics Co Ltd
Assigned to GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY, SAMSUNG ELECTRO-MECHANICS CO., LTD. reassignment GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KWAK, JOON-SEOP, SEONG, TAE-YEONG, SONG, JUNE-O
Publication of US20060043388A1 publication Critical patent/US20060043388A1/en
Priority to US12/000,870 priority Critical patent/US7491979B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18375Structure of the reflectors, e.g. hybrid mirrors based on metal reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission

Definitions

  • the present invention relates to a reflective electrode and a compound semiconductor light emitting device, and more particularly, to a reflective electrode with low contact resistance, high reflectance, and improved electrical conductivity, and a compound semiconductor light emitting device including the same.
  • Compound semiconductor light emitting devices for example, semiconductor laser diodes such as light emitting diodes (LEDs) and laser diodes (LDs), convert electric signals into optical signals using the characteristics of compound semiconductors.
  • Laser beams of the compound semiconductor light emitting devices have practically been applied in the fields of optical communications, multiple communications, and space communications.
  • Semiconductor lasers are widely used as light sources for data transmission or data recording and reading in the field of optical communications and such apparatuses as compact disk players (CDPs) or digital versatile disk players (DVDPs).
  • a compound semiconductor light emitting device can be categorized into a top-emitting light emitting diode (TLED) and a flip-chip light emitting diode (FCLED) according to the emission direction of light.
  • TLED top-emitting light emitting diode
  • FCLED flip-chip light emitting diode
  • the TLED emits light through a p-type electrode, which forms an ohmic contact with a p-type compound semiconductor layer.
  • the p-type electrode includes a Ni layer and an Au layer, which are sequentially stacked on a p-type compound semiconductor layer.
  • the p-type electrode formed of the Ni layer and the Au layer is translucent, the TLED including the p-type electrode has low optical efficiency and low brightness.
  • the FCLED In the case of the FCLED, light emitted from an active layer is reflected by a reflective electrode formed on a p-type compound semiconductor layer, and the reflected light is emitted through a substrate.
  • the reflective electrode is formed of a material having good optical reflectance, such as Ag, Al, and Rh.
  • the FCLED including this reflective electrode can have high optical efficiency and high brightness.
  • a light emitting device including the reflective electrode has a shortened life span and unreliable characteristics.
  • WO 01/47038 A1 discloses a semiconductor light emitting device including a reflective electrode, which is provided with an ohmic contact layer disposed between the reflective electrode and a p-type compound semiconductor layer.
  • the ohmic contact layer is formed of a material having low optical transmissivity, such as Ti or Ni/Au, thus degrading optical efficiency and brightness.
  • Embodiments of the present invention provides a reflective electrode, which reduces contact resistance and has high reflectance and improved electrical conductivity, and a compound semiconductor light emitting device including the same.
  • the present invention can be embodied as a reflective electrode of a compound semiconductor light emitting device, which is formed on a p-type compound semiconductor layer.
  • the electrode includes, for example, a first, second and third electrode layer.
  • the first electrode layer forms an ohmic contact with the p-type compound semiconductor layer.
  • the second electrode layer is disposed on the first electrode layer and is formed of transparent conductive oxide.
  • the third electrode layer disposed on the second electrode layer and formed of an optical reflective material, in this embodiment.
  • the first electrode layer may be formed of indium oxide to which at least an additive element selected from the group consisting of Mg, Cu, Zr, and Sb is added, and an addition ratio of the additive element to the indium oxide is in the range of 0.001 to 49 atomic percent, for example.
  • the thickness of the first electrode layer can range from 0.1 to 500 nm.
  • the first electrode layer can be formed of Ag and an Ag-based alloy, and the Ag-based alloy can be an alloy of Ag and at least one selected from the group consisting of Mg, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Mn, Hg, Pr, and La.
  • the thickness of the first electrode layer can range from 0.1 to 500 nm, for example.
  • the transparent conductive oxide can be formed of a material selected from the group consisting of ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO, In 4 Sn 3 O 12 , and Zn 1-x Mg x O (0 ⁇ 1), and the thickness of the second electrode layer can range from 0.1 to 500 nm.
  • the optical reflective material is one selected from the group consisting of Ag, an Ag-based alloy, Al, an Al-based alloy, and Rh, and the thickness of the third electrode layer can range from 10 to 5000 nm, for example.
  • An optional fourth electrode layer can be formed on the third electrode layer using a predetermined material to prevent agglomeration caused by an annealing process from occurring on the surface of the third electrode layer.
  • the fourth electrode layer material include one selected from the group consisting of Cu, Cu/Ru, Cu/Ir, a Cu-based alloy, Cu-based alloy/Ru, and Cu-based alloy/Ir.
  • the fourth electrode layer ranges from 1 to 500 nm, for example.
  • the present invention can also be embodied in a compound semiconductor light emitting device, for example.
  • the compound semiconductor light emitting device includes an n-type electrode, a p-type electrode, and an n-type compound semiconductor layer, an active layer, and a p-type compound semiconductor layer, which are interposed between the n-type electrode and the p-type electrode,
  • the p-type electrode is structured in accordance with the above.
  • FIG. 1 is a cross-sectional view of a reflective electrode according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a reflective electrode according to another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a compound semiconductor light emitting device including the reflective electrode shown in FIG. 1 ;
  • FIG. 4A is a graph showing a current-voltage (I-V) characteristic of the reflective electrode (Ag/ITO/Ag) shown in FIG. 1 ;
  • FIG. 4B is a graph showing an I-V characteristic of an InGaN blue light emitting diode (LED) including the reflective electrode (Ag/ITO/Ag) shown in FIG. 1 .
  • FIG. 1 is a cross-sectional view of a reflective electrode 22 according to an embodiment of the present invention.
  • the reflective electrode 22 is formed on a p-type compound semiconductor layer 20 .
  • the reflective electrode 22 includes a first electrode layer 22 a , a second electrode layer 22 b , and a third electrode layer 22 c , which are sequentially stacked on the p-type compound semiconductor layer 20 .
  • the first electrode layer 22 a is formed of a material, which can form an ohmic contact with the p-type compound semiconductor layer 20 , to a thickness of about 0.1 to 500 nm.
  • the first electrode layer 22 a is formed of indium oxide (e.g., In 2 O 3 ) to which at least an additive element selected from the group consisting of Mg, Cu, Zr, and Sb is added.
  • indium oxide e.g., In 2 O 3
  • additive element selected from the group consisting of Mg, Cu, Zr, and Sb is added.
  • the additive element controls the band gap, electron affinity, and work function of the indium oxide, thereby improving the ohmic contact characteristic of the first electrode layer 22 a .
  • the additive element increases the effective carrier concentration of the p-type compound semiconductor layer 20 and readily reacts with elements constituting the p-type compound semiconductor layer 20 except nitrogen.
  • the additive element may react to Ga prior to N.
  • Ga of the p-type compound semiconductor layer 20 reacts to the additive element, thus generating Ga vacancies in the surface of the p-type compound semiconductor layer 20 .
  • the Ga vacancies function as a p-type dopant, an effective concentration of p-type carriers in the surface of p-type compound semiconductor layer 20 increases.
  • the indium oxide to which the additive element is added reacts to a Ga 2 O 3 layer, which is a native oxide layer that remains on the p-type compound semiconductor layer 20 , thus generating a transparent conductive oxide (TCO) between the p-type compound semiconductor layer 20 and the first electrode layer 22 a .
  • the Ga 2 O 3 layer serves as a barrier to the flow of carriers at an interface between the p-type compound semiconductor layer 20 and the first electrode layer 22 a .
  • a tunneling conduction phenomenon may occur at the interface between the first electrode layer 22 a and the p-type compound semiconductor layer 20 , thus improving the ohmic contact characteristic of the first electrode layer 22 a.
  • An addition ratio of the additive element to indium oxide is in the range of 0.001 to 49 atomic percent.
  • the first electrode layer 22 a may be formed of Ag or an Ag-based alloy.
  • the Ag-based alloy is an alloy of Ag and at least one selected from the group consisting of Mg, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Mn, Hg, Pr, and La.
  • the Ag or Ag-based alloy may form an ohmic contact with the p-type compound semiconductor layer 20 , as described above. That is, the Ag and alloy elements, which may form the first electrode layer 22 a , increase the effective carrier concentration of the p-type compound semiconductor layer 20 and readily react with elements constituting the p-type compound semiconductor layer 20 except nitrogen. A detailed description thereof will be omitted here.
  • the second electrode layer 22 b is formed of TCO to a thickness of 0.1 to 500 nm.
  • the TCO may be one selected from the group consisting of indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), zinc tin oxide (ZTO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), In 4 Sn 3 O 12 , and zinc magnesium oxide (Zn 1-x Mg x O, 0 ⁇ 23 1).
  • the TCO may be, for example, Zn 2 In 2 O 5 , GaInO 3 , ZnSnO 3 , F-doped SnO 2 , Al-doped ZnO, Ga-doped ZnO, MgO, or ZnO.
  • the third electrode layer 22 c is formed of an optical reflective material to a thickness of about 10 to 5000 nm.
  • the optical reflective material is one selected from the group consisting of Ag, an Ag-based alloy, Al, an Al-based alloy, and Rh.
  • the Ag-based alloy refers to an alloy of Ag and any alloy material
  • the Al-based alloy refers to an alloy of Al and any alloy material.
  • the first, second, and third electrode layers 22 a , 22 b , and 22 c can be formed using an electronic beam (e-beam) & thermal evaporator or a dual-type thermal evaporator. Also, the first, second, and third electrode layers 22 a , 22 b , and 22 c can be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), or plasma laser deposition (PLD). Each of the first, second, and third electrode layers 22 a , 22 b , and 22 c can be deposited at a temperature of about 20 to 1500° C. inside a reactor that is maintained under an atmospheric pressure to 10 ⁇ 12 Torr.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • PLD plasma laser deposition
  • the resultant structure is annealed. Specifically, the resultant structure where the third electrode layer 22 c is formed is annealed in an atmosphere containing at least one of N, Ar, He, O 2 , H 2 , and air. The annealing process is performed at a temperature of about 200 to 700° C. for 10 seconds to 2 hours.
  • Another annealing process may be additionally performed under the same conditions after the second electrode layer 22 b is formed. That is, after each of the second and third electrode layers 22 b and 22 c is formed, an annealing process may be performed.
  • the formation of the reflective electrode may comprise performing an annealing process twice.
  • FIG. 2 is a cross-sectional view of a reflective electrode 23 according to another embodiment of the present invention.
  • the reflective electrode 23 further includes a fourth electrode layer 22 d disposed on a third electrode layer 22 c in comparison with the reflective electrode 22 shown in FIG. 1 .
  • the fourth electrode layer 22 d is formed of one selected from the group consisting of Cu, Cu/Ru, Cu/Ir, a Cu-based alloy, a Cu-based alloy/Ru, and a Cu-based alloy/Ir.
  • the fourth electrode layer 22 d is formed to a thickness of about 1 to 500 nm.
  • the Cu-based alloy refers to an alloy Cu and any alloy material.
  • the fourth electrode layer 22 d prevents an agglomeration caused by an annealing process from occurring on the surface of the third electrode layer 22 c.
  • a p-type compound semiconductor layer 20 and a metal constituting the third electrode layer 22 c for example, Ag, an Ag-based alloy, Al, an Al-based alloy, or Rh. It is generally known that the difference in surface energy allows agglomeration to occur, and this can occur on the surface of the third electrode layer 22 c during the annealing process. When the agglomeration occurs on the surface of the third electrode layer 22 c , the reflectance of the third electrode layer 22 c is degraded, thus reducing an optical output of a compound semiconductor light emitting device including the reflective electrode 22 .
  • the material forming the fourth electrode layer 22 d has a relatively similar surface energy to that of the p-type nitride semiconductor layer 20 and an excellent electrical conductivity.
  • the fourth electrode layer 22 d formed on the third electrode layer 22 c serves as both an agglomeration preventing layer (APL) and an electrode layer.
  • the fourth electrode layer 22 d can be formed by PVD, CVD, or PLD using an e-beam & thermal evaporator or a dual-type thermal evaporator.
  • the fourth electrode layer 22 d is deposited at a temperature of about 20 to 1500° C. inside a reactor that is maintained under an atmospheric pressure to 10 ⁇ 12 Torr.
  • the resultant structure may be annealed. Specifically, the resultant structure where the fourth electrode layer 22 d is formed is annealed in an atmosphere containing at least one of N, Ar, He, O 2 , H 2 , and air. The annealing process is performed at a temperature of 200 to 700° C. for 10 seconds to 2 hours.
  • FIG. 3 is a cross-sectional view of a compound semiconductor light emitting device including the reflective electrode shown in FIG. 1 .
  • the compound semiconductor light emitting device includes at least an n-type compound semiconductor layer 102 , an active layer 104 , and a p-type compound semiconductor layer 106 between an n-type electrode 120 and a p-type electrode 108 .
  • the p-type electrode 108 is the same as the reflective electrode 22 shown in FIG. 1 . That is, the p-type electrode 108 includes the first electrode layer 22 a , the second electrode layer 22 b , and the third electrode layer 22 c shown in FIG. 1 of which operations and effects are the same as described above.
  • the n-type compound semiconductor layer 102 includes a first compound semiconductor layer as a lower contact layer, which is stacked on a substrate 100 and has a step difference, and a lower clad layer stacked on the first compound semiconductor layer.
  • the n-type lower electrode 120 is disposed in a stepped portion of the first compound semiconductor layer.
  • the substrate 200 is typically a sapphire substrate or a freestanding GaN substrate.
  • the first compound semiconductor layer may be an n-GaN-based III-V group nitride compound semiconductor layer, preferably, an n-GaN layer.
  • the present invention is not limited thereto, but the first compound semiconductor layer may be formed of any other III-V group compound semiconductor that enables laser oscillation (lasing).
  • the lower clad layer may be an n-GaN/AlGaN layer having a predetermined refractive index, but it is possible to use any other compound semiconductor layer that enables lasing.
  • the active layer 104 may be formed of any material that enables lasing, preferably, a material that can oscillate laser beams having a small critical current and a stable transverse mode characteristic.
  • the active layer 104 may be a GaN-based III-V group nitride compound semiconductor layer, which is InxAlyGa1-x ⁇ yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and x+y ⁇ 1).
  • the active layer 104 may have one of a multiple quantum well (MQW) structure and a single quantum well (SQW) structure, and the technical scope of the present invention is not limited by the structure of the active layer 104 .
  • MQW multiple quantum well
  • SQW single quantum well
  • An upper waveguide layer and a lower waveguide layer may be further formed on and under the active layer 104 , respectively.
  • the upper and lower waveguide layers are formed of a material having a low refractive index, preferably, a GaN-based III-V group compound semiconductor.
  • the lower waveguide layer may be an n-GaN layer, while the upper waveguide layer may be a p-GaN layer.
  • the p-type compound semiconductor layer 106 is stacked on the active layer 104 and includes an upper clad layer, which has a lower refractive index than the active layer 104 , and a second compound semiconductor layer, which is an ohmic contact layer stacked on the upper clad layer.
  • the second compound semiconductor layer may be a p-GaN-based III-V group nitride compound semiconductor layer, preferably, a p-GaN layer.
  • the present invention is not limited thereto, but the second compound semiconductor layer may be any other III-V group compound semiconductor layer that enables laser oscillation (lasing).
  • the upper clad layer may be a p-GaN/AlGaN layer having a predetermined refractive index, but it is possible to use any other compound semiconductor layer that enables lasing.
  • n-type electrode 120 is disposed in a stepped portion of the first compound semiconductor layer, which is a lower ohmic contact layer.
  • the n-type electrode 120 may be formed on a bottom surface of the substrate 100 opposite the p-type electrode 108 .
  • the substrate 100 may be formed of silicon carbide (SiC) or gallium nitride (GaN).
  • FIG. 4A is a graph showing a current-voltage (I-V) characteristic of the reflective electrode (Ag/ITO/Ag) shown in FIG. 1 .
  • the reflective electrode includes a first electrode layer formed of Ag, a second electrode layer formed of ITO, and a third electrode layer formed of Ag, which were sequentially stacked on a substrate.
  • the first, second, and third electrode layers were formed to a thickness of about 3, 100, and 250 nm, respectively.
  • the electrical characteristics of the reflective electrode were measured as deposited and as annealed at 530° C., respectively.
  • the annealing process was performed in an O 2 or N atmosphere for 1 minute after the second electrode layer was formed. After the third electrode layer was formed, an annealing process was additionally performed under the same conditions.
  • FIG. 4B is a graph showing an I-V characteristic of an InGaN blue light emitting diode (LED) including the reflective electrode (Ag/ITO/Ag) shown in FIG. 1 .
  • the annealed reflective electrode and the light emitting device including the same exhibited an excellent I-V characteristic.
  • the surface of a structure, in which a p-type GaN-based compound semiconductor layer is formed on a substrate was washed in an ultrasonic bath at a temperature of 60° C. using trichloroethylene (TCE), acetone, methanol, and distilled water, respectively, for 5 minutes each time. Then, the resultant structure was hard baked at a temperature of 100° C. for 10 minutes to remove the remaining moisture from this sample.
  • TCE trichloroethylene
  • a photoresist layer was spin-coated on the p-type compound semiconductor layer at 4,500 RPM.
  • the resultant structure was soft baked at a temperature of 85° C. for 15 minutes.
  • the sample was aligned with a mask, exposed to ultraviolet rays (UV) of 22.8 mW for 15 seconds, and dipped in a solution containing a mixture of a developing solution with distilled water in a ratio of 1:4 for 25 seconds.
  • UV ultraviolet rays
  • the developed sample was dipped in a buffered oxide etchant (BOE) solution for 5 minutes to remove a contaminated layer from the sample. Then, a first electrode layer was formed on the resultant structure using an e-beam evaporator. The first electrode layer was deposited by mounting Ag as an object of reaction on a mounting stage.
  • BOE buffered oxide etchant
  • a second electrode layer was deposited using ITO, a lift-off process was carried out using acetone, and the sample was loaded into a rapid thermal annealing (RTA) furnace and annealed at a temperature of about 430 to 530° C. for 1 minute.
  • RTA rapid thermal annealing
  • a third electrode layer was deposited on the second electrode layer using Ag inside an e-beam evaporator.
  • the resultant structure where the third electrode layer is deposited was annealed in an O 2 or N atmosphere under the same conditions as when the second electrode layer was annealed. As a result, the reflective electrode was completed.
  • the foregoing method of forming the reflective electrode can be applied to manufacture the light emitting devices shown in FIG. 3 .
  • the reflective electrode of the present invention obtains low contact resistance, high reflectance, improved electrical conductivity, and an excellent I-V characteristic.
  • the compound semiconductor light emitting device including the foregoing reflective electrode requires a low operating voltage and exhibits improved optical output and I-V characteristic. This compound semiconductor light emitting device reduces power dissipation, thus greatly improving luminous efficiency.
  • the reflective electrode of the present invention can be applied to light emitting devices, such as LEDs and LDs.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Provided are a reflective electrode and a compound semiconductor light emitting device, such as an LED or an LD, including the same. The reflective electrode, which is formed on a p-type compound semiconductor layer, includes: a first electrode layer forming an ohmic contact with the p-type compound semiconductor layer; a second electrode layer disposed on the first electrode layer and formed of transparent conductive oxide; and a third electrode layer disposed on the second electrode layer and formed of an optical reflective material.

Description

    BACKGROUND OF THE INVENTION
  • Priority is claimed to Korean Patent Application No. 10-2004-0069151, filed on Aug. 31, 2004 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
  • 1. Field of the Invention
  • The present invention relates to a reflective electrode and a compound semiconductor light emitting device, and more particularly, to a reflective electrode with low contact resistance, high reflectance, and improved electrical conductivity, and a compound semiconductor light emitting device including the same.
  • 2. Description of the Related Art
  • Compound semiconductor light emitting devices, for example, semiconductor laser diodes such as light emitting diodes (LEDs) and laser diodes (LDs), convert electric signals into optical signals using the characteristics of compound semiconductors. Laser beams of the compound semiconductor light emitting devices have practically been applied in the fields of optical communications, multiple communications, and space communications. Semiconductor lasers are widely used as light sources for data transmission or data recording and reading in the field of optical communications and such apparatuses as compact disk players (CDPs) or digital versatile disk players (DVDPs).
  • A compound semiconductor light emitting device can be categorized into a top-emitting light emitting diode (TLED) and a flip-chip light emitting diode (FCLED) according to the emission direction of light.
  • The TLED emits light through a p-type electrode, which forms an ohmic contact with a p-type compound semiconductor layer. The p-type electrode includes a Ni layer and an Au layer, which are sequentially stacked on a p-type compound semiconductor layer. However, since the p-type electrode formed of the Ni layer and the Au layer is translucent, the TLED including the p-type electrode has low optical efficiency and low brightness.
  • In the case of the FCLED, light emitted from an active layer is reflected by a reflective electrode formed on a p-type compound semiconductor layer, and the reflected light is emitted through a substrate. The reflective electrode is formed of a material having good optical reflectance, such as Ag, Al, and Rh. The FCLED including this reflective electrode can have high optical efficiency and high brightness. However, owing to a relatively high contact resistance between the reflective electrode and the p-type compound semiconductor layer, a light emitting device including the reflective electrode has a shortened life span and unreliable characteristics.
  • To solve these problems, research on materials and structures for an electrode having low contact resistance and high reflectance has progressed.
  • International Patent Publication No. WO 01/47038 A1 discloses a semiconductor light emitting device including a reflective electrode, which is provided with an ohmic contact layer disposed between the reflective electrode and a p-type compound semiconductor layer. However, the ohmic contact layer is formed of a material having low optical transmissivity, such as Ti or Ni/Au, thus degrading optical efficiency and brightness.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention provides a reflective electrode, which reduces contact resistance and has high reflectance and improved electrical conductivity, and a compound semiconductor light emitting device including the same.
  • The present invention can be embodied as a reflective electrode of a compound semiconductor light emitting device, which is formed on a p-type compound semiconductor layer. The electrode includes, for example, a first, second and third electrode layer. The first electrode layer forms an ohmic contact with the p-type compound semiconductor layer. The second electrode layer is disposed on the first electrode layer and is formed of transparent conductive oxide. The third electrode layer disposed on the second electrode layer and formed of an optical reflective material, in this embodiment.
  • The first electrode layer may be formed of indium oxide to which at least an additive element selected from the group consisting of Mg, Cu, Zr, and Sb is added, and an addition ratio of the additive element to the indium oxide is in the range of 0.001 to 49 atomic percent, for example. The thickness of the first electrode layer can range from 0.1 to 500 nm.
  • Alternatively, the first electrode layer can be formed of Ag and an Ag-based alloy, and the Ag-based alloy can be an alloy of Ag and at least one selected from the group consisting of Mg, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Mn, Hg, Pr, and La. The thickness of the first electrode layer can range from 0.1 to 500 nm, for example.
  • The transparent conductive oxide can be formed of a material selected from the group consisting of ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO, In4Sn3O12, and Zn1-xMgxO (0 ≦×≦1), and the thickness of the second electrode layer can range from 0.1 to 500 nm.
  • The optical reflective material is one selected from the group consisting of Ag, an Ag-based alloy, Al, an Al-based alloy, and Rh, and the thickness of the third electrode layer can range from 10 to 5000 nm, for example.
  • An optional fourth electrode layer can be formed on the third electrode layer using a predetermined material to prevent agglomeration caused by an annealing process from occurring on the surface of the third electrode layer. Examples of the fourth electrode layer material include one selected from the group consisting of Cu, Cu/Ru, Cu/Ir, a Cu-based alloy, Cu-based alloy/Ru, and Cu-based alloy/Ir. The fourth electrode layer ranges from 1 to 500 nm, for example.
  • The present invention can also be embodied in a compound semiconductor light emitting device, for example. The compound semiconductor light emitting device includes an n-type electrode, a p-type electrode, and an n-type compound semiconductor layer, an active layer, and a p-type compound semiconductor layer, which are interposed between the n-type electrode and the p-type electrode, The p-type electrode is structured in accordance with the above.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
  • FIG. 1 is a cross-sectional view of a reflective electrode according to an embodiment of the present invention;
  • FIG. 2 is a cross-sectional view of a reflective electrode according to another embodiment of the present invention;
  • FIG. 3 is a cross-sectional view of a compound semiconductor light emitting device including the reflective electrode shown in FIG. 1;
  • FIG. 4A is a graph showing a current-voltage (I-V) characteristic of the reflective electrode (Ag/ITO/Ag) shown in FIG. 1; and
  • FIG. 4B is a graph showing an I-V characteristic of an InGaN blue light emitting diode (LED) including the reflective electrode (Ag/ITO/Ag) shown in FIG. 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown.
  • FIG. 1 is a cross-sectional view of a reflective electrode 22 according to an embodiment of the present invention.
  • Referring to FIG. 1, the reflective electrode 22 is formed on a p-type compound semiconductor layer 20. The reflective electrode 22 includes a first electrode layer 22 a, a second electrode layer 22 b, and a third electrode layer 22 c, which are sequentially stacked on the p-type compound semiconductor layer 20.
  • The first electrode layer 22 a is formed of a material, which can form an ohmic contact with the p-type compound semiconductor layer 20, to a thickness of about 0.1 to 500 nm.
  • In the present embodiment, the first electrode layer 22 a is formed of indium oxide (e.g., In2O3) to which at least an additive element selected from the group consisting of Mg, Cu, Zr, and Sb is added.
  • The additive element controls the band gap, electron affinity, and work function of the indium oxide, thereby improving the ohmic contact characteristic of the first electrode layer 22 a. Specifically, the additive element increases the effective carrier concentration of the p-type compound semiconductor layer 20 and readily reacts with elements constituting the p-type compound semiconductor layer 20 except nitrogen.
  • For example, when the p-type compound semiconductor layer 20 is formed of a GaN-based compound, the additive element may react to Ga prior to N. In this case, Ga of the p-type compound semiconductor layer 20 reacts to the additive element, thus generating Ga vacancies in the surface of the p-type compound semiconductor layer 20. As the Ga vacancies function as a p-type dopant, an effective concentration of p-type carriers in the surface of p-type compound semiconductor layer 20 increases.
  • The indium oxide to which the additive element is added reacts to a Ga2O3 layer, which is a native oxide layer that remains on the p-type compound semiconductor layer 20, thus generating a transparent conductive oxide (TCO) between the p-type compound semiconductor layer 20 and the first electrode layer 22 a. The Ga2O3 layer serves as a barrier to the flow of carriers at an interface between the p-type compound semiconductor layer 20 and the first electrode layer 22 a. Thus, a tunneling conduction phenomenon may occur at the interface between the first electrode layer 22 a and the p-type compound semiconductor layer 20, thus improving the ohmic contact characteristic of the first electrode layer 22 a.
  • An addition ratio of the additive element to indium oxide is in the range of 0.001 to 49 atomic percent.
  • In another embodiment, the first electrode layer 22 a may be formed of Ag or an Ag-based alloy. The Ag-based alloy is an alloy of Ag and at least one selected from the group consisting of Mg, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Mn, Hg, Pr, and La. The Ag or Ag-based alloy may form an ohmic contact with the p-type compound semiconductor layer 20, as described above. That is, the Ag and alloy elements, which may form the first electrode layer 22 a, increase the effective carrier concentration of the p-type compound semiconductor layer 20 and readily react with elements constituting the p-type compound semiconductor layer 20 except nitrogen. A detailed description thereof will be omitted here.
  • The second electrode layer 22 b is formed of TCO to a thickness of 0.1 to 500 nm. The TCO may be one selected from the group consisting of indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), zinc tin oxide (ZTO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), In4Sn3O12, and zinc magnesium oxide (Zn1-xMgxO, 0≦×23 1). The TCO may be, for example, Zn2In2O5, GaInO3, ZnSnO3, F-doped SnO2, Al-doped ZnO, Ga-doped ZnO, MgO, or ZnO.
  • The third electrode layer 22 c is formed of an optical reflective material to a thickness of about 10 to 5000 nm. The optical reflective material is one selected from the group consisting of Ag, an Ag-based alloy, Al, an Al-based alloy, and Rh. Here, the Ag-based alloy refers to an alloy of Ag and any alloy material, and the Al-based alloy refers to an alloy of Al and any alloy material.
  • The first, second, and third electrode layers 22 a, 22 b, and 22 c can be formed using an electronic beam (e-beam) & thermal evaporator or a dual-type thermal evaporator. Also, the first, second, and third electrode layers 22 a, 22 b, and 22 c can be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), or plasma laser deposition (PLD). Each of the first, second, and third electrode layers 22 a, 22 b, and 22 c can be deposited at a temperature of about 20 to 1500° C. inside a reactor that is maintained under an atmospheric pressure to 10−12 Torr.
  • After the third electrode layer 22 c is formed, the resultant structure is annealed. Specifically, the resultant structure where the third electrode layer 22 c is formed is annealed in an atmosphere containing at least one of N, Ar, He, O2, H2, and air. The annealing process is performed at a temperature of about 200 to 700° C. for 10 seconds to 2 hours.
  • Another annealing process may be additionally performed under the same conditions after the second electrode layer 22 b is formed. That is, after each of the second and third electrode layers 22 b and 22 c is formed, an annealing process may be performed. Thus, the formation of the reflective electrode may comprise performing an annealing process twice.
  • FIG. 2 is a cross-sectional view of a reflective electrode 23 according to another embodiment of the present invention.
  • In the present embodiment, only different characteristics than in the first embodiment will be described, and the same reference numerals are used to denote the same elements as in the first embodiment.
  • Referring to FIG. 2, the reflective electrode 23 further includes a fourth electrode layer 22d disposed on a third electrode layer 22 c in comparison with the reflective electrode 22 shown in FIG. 1.
  • The fourth electrode layer 22 d is formed of one selected from the group consisting of Cu, Cu/Ru, Cu/Ir, a Cu-based alloy, a Cu-based alloy/Ru, and a Cu-based alloy/Ir. The fourth electrode layer 22 d is formed to a thickness of about 1 to 500 nm. Here, the Cu-based alloy refers to an alloy Cu and any alloy material.
  • The fourth electrode layer 22 d prevents an agglomeration caused by an annealing process from occurring on the surface of the third electrode layer 22 c.
  • Specifically, there is a great difference in surface energy between a p-type compound semiconductor layer 20 and a metal constituting the third electrode layer 22 c, for example, Ag, an Ag-based alloy, Al, an Al-based alloy, or Rh. It is generally known that the difference in surface energy allows agglomeration to occur, and this can occur on the surface of the third electrode layer 22 c during the annealing process. When the agglomeration occurs on the surface of the third electrode layer 22 c, the reflectance of the third electrode layer 22 c is degraded, thus reducing an optical output of a compound semiconductor light emitting device including the reflective electrode 22.
  • In the present embodiment, the material forming the fourth electrode layer 22 d has a relatively similar surface energy to that of the p-type nitride semiconductor layer 20 and an excellent electrical conductivity. Thus, the fourth electrode layer 22 d formed on the third electrode layer 22 c serves as both an agglomeration preventing layer (APL) and an electrode layer.
  • The fourth electrode layer 22 d can be formed by PVD, CVD, or PLD using an e-beam & thermal evaporator or a dual-type thermal evaporator. The fourth electrode layer 22 d is deposited at a temperature of about 20 to 1500° C. inside a reactor that is maintained under an atmospheric pressure to 10−12 Torr.
  • After the fourth electrode layer 22 d is formed, the resultant structure may be annealed. Specifically, the resultant structure where the fourth electrode layer 22 d is formed is annealed in an atmosphere containing at least one of N, Ar, He, O2, H2, and air. The annealing process is performed at a temperature of 200 to 700° C. for 10 seconds to 2 hours.
  • FIG. 3 is a cross-sectional view of a compound semiconductor light emitting device including the reflective electrode shown in FIG. 1.
  • Referring to FIG. 3, the compound semiconductor light emitting device includes at least an n-type compound semiconductor layer 102, an active layer 104, and a p-type compound semiconductor layer 106 between an n-type electrode 120 and a p-type electrode 108. The p-type electrode 108 is the same as the reflective electrode 22 shown in FIG. 1. That is, the p-type electrode 108 includes the first electrode layer 22 a, the second electrode layer 22 b, and the third electrode layer 22 c shown in FIG. 1 of which operations and effects are the same as described above.
  • The n-type compound semiconductor layer 102 includes a first compound semiconductor layer as a lower contact layer, which is stacked on a substrate 100 and has a step difference, and a lower clad layer stacked on the first compound semiconductor layer. The n-type lower electrode 120 is disposed in a stepped portion of the first compound semiconductor layer.
  • The substrate 200 is typically a sapphire substrate or a freestanding GaN substrate. The first compound semiconductor layer may be an n-GaN-based III-V group nitride compound semiconductor layer, preferably, an n-GaN layer. However, the present invention is not limited thereto, but the first compound semiconductor layer may be formed of any other III-V group compound semiconductor that enables laser oscillation (lasing). The lower clad layer may be an n-GaN/AlGaN layer having a predetermined refractive index, but it is possible to use any other compound semiconductor layer that enables lasing.
  • The active layer 104 may be formed of any material that enables lasing, preferably, a material that can oscillate laser beams having a small critical current and a stable transverse mode characteristic. The active layer 104 may be a GaN-based III-V group nitride compound semiconductor layer, which is InxAlyGa1-x−yN (0≦x≦1, 0≦y≦1, and x+y≦1). The active layer 104 may have one of a multiple quantum well (MQW) structure and a single quantum well (SQW) structure, and the technical scope of the present invention is not limited by the structure of the active layer 104.
  • An upper waveguide layer and a lower waveguide layer may be further formed on and under the active layer 104, respectively. The upper and lower waveguide layers are formed of a material having a low refractive index, preferably, a GaN-based III-V group compound semiconductor. The lower waveguide layer may be an n-GaN layer, while the upper waveguide layer may be a p-GaN layer.
  • The p-type compound semiconductor layer 106 is stacked on the active layer 104 and includes an upper clad layer, which has a lower refractive index than the active layer 104, and a second compound semiconductor layer, which is an ohmic contact layer stacked on the upper clad layer. The second compound semiconductor layer may be a p-GaN-based III-V group nitride compound semiconductor layer, preferably, a p-GaN layer. However, the present invention is not limited thereto, but the second compound semiconductor layer may be any other III-V group compound semiconductor layer that enables laser oscillation (lasing). The upper clad layer may be a p-GaN/AlGaN layer having a predetermined refractive index, but it is possible to use any other compound semiconductor layer that enables lasing.
  • An n-type electrode 120 is disposed in a stepped portion of the first compound semiconductor layer, which is a lower ohmic contact layer. Alternatively, the n-type electrode 120 may be formed on a bottom surface of the substrate 100 opposite the p-type electrode 108. In this case, the substrate 100 may be formed of silicon carbide (SiC) or gallium nitride (GaN).
  • FIG. 4A is a graph showing a current-voltage (I-V) characteristic of the reflective electrode (Ag/ITO/Ag) shown in FIG. 1.
  • The reflective electrode includes a first electrode layer formed of Ag, a second electrode layer formed of ITO, and a third electrode layer formed of Ag, which were sequentially stacked on a substrate. The first, second, and third electrode layers were formed to a thickness of about 3, 100, and 250 nm, respectively.
  • The electrical characteristics of the reflective electrode (Ag/ITO/Ag) were measured as deposited and as annealed at 530° C., respectively. The annealing process was performed in an O2 or N atmosphere for 1 minute after the second electrode layer was formed. After the third electrode layer was formed, an annealing process was additionally performed under the same conditions.
  • FIG. 4B is a graph showing an I-V characteristic of an InGaN blue light emitting diode (LED) including the reflective electrode (Ag/ITO/Ag) shown in FIG. 1.
  • As can be seen from FIGS. 4A and 4B, the annealed reflective electrode and the light emitting device including the same exhibited an excellent I-V characteristic.
  • Hereinafter, experimental examples, which were conducted by the inventors in connection with the reflective electrode according to the present invention, will be described. The scope of the present invention is not limited by the following exemplary processes.
  • At the outset, the surface of a structure, in which a p-type GaN-based compound semiconductor layer is formed on a substrate, was washed in an ultrasonic bath at a temperature of 60° C. using trichloroethylene (TCE), acetone, methanol, and distilled water, respectively, for 5 minutes each time. Then, the resultant structure was hard baked at a temperature of 100° C. for 10 minutes to remove the remaining moisture from this sample.
  • Thereafter, a photoresist layer was spin-coated on the p-type compound semiconductor layer at 4,500 RPM. The resultant structure was soft baked at a temperature of 85° C. for 15 minutes. To develop a mask pattern, the sample was aligned with a mask, exposed to ultraviolet rays (UV) of 22.8 mW for 15 seconds, and dipped in a solution containing a mixture of a developing solution with distilled water in a ratio of 1:4 for 25 seconds.
  • Thereafter, the developed sample was dipped in a buffered oxide etchant (BOE) solution for 5 minutes to remove a contaminated layer from the sample. Then, a first electrode layer was formed on the resultant structure using an e-beam evaporator. The first electrode layer was deposited by mounting Ag as an object of reaction on a mounting stage.
  • After the first electrode layer was deposited, a second electrode layer was deposited using ITO, a lift-off process was carried out using acetone, and the sample was loaded into a rapid thermal annealing (RTA) furnace and annealed at a temperature of about 430 to 530° C. for 1 minute. After that, a third electrode layer was deposited on the second electrode layer using Ag inside an e-beam evaporator. The resultant structure where the third electrode layer is deposited was annealed in an O2 or N atmosphere under the same conditions as when the second electrode layer was annealed. As a result, the reflective electrode was completed.
  • The foregoing method of forming the reflective electrode can be applied to manufacture the light emitting devices shown in FIG. 3.
  • The reflective electrode of the present invention obtains low contact resistance, high reflectance, improved electrical conductivity, and an excellent I-V characteristic.
  • Also, the compound semiconductor light emitting device including the foregoing reflective electrode requires a low operating voltage and exhibits improved optical output and I-V characteristic. This compound semiconductor light emitting device reduces power dissipation, thus greatly improving luminous efficiency.
  • Further, the reflective electrode of the present invention can be applied to light emitting devices, such as LEDs and LDs.
  • While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.

Claims (28)

1. A reflective electrode of a compound semiconductor light emitting device, which is formed on a p-type compound semiconductor layer, the electrode comprising:
a first electrode layer forming an ohmic contact with the p-type compound semiconductor layer;
a second electrode layer disposed on the first electrode layer and formed of transparent conductive oxide; and
a third electrode layer disposed on the second electrode layer and formed of an optical reflective material.
2. The electrode of claim 1, wherein the first electrode layer is formed of indium oxide to which at least an additive element selected from the group consisting of Mg, Cu, Zr, and Sb is added.
3. The electrode of claim 2, wherein an addition ratio of the additive element to the indium oxide is in the range of 0.001 to 49 atomic percent.
4. The electrode of claim 2, wherein the thickness of the first electrode layer ranges from 0.1 to 500 nm.
5. The electrode of claim 1, wherein the first electrode layer is formed of Ag and an Ag-based alloy.
6. The electrode of claim 5, wherein the Ag-based alloy is an alloy of Ag and at least one selected from the group consisting of Mg, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Mn, Hg, Pr, and La.
7. The electrode of claim 5, wherein the thickness of the first electrode layer ranges from 0.1 to 500 nm.
8. The electrode of claim 1, wherein the transparent conductive oxide is formed of one selected from the group consisting of ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO, In4Sn3O12, and Zn1-xMgxO (0≦x≦1).
9. The electrode of claim 8, wherein the thickness of the second electrode layer ranges from 0.1 to 500 nm.
10. The electrode of claim 1, wherein the optical reflective material is one selected from the group consisting of Ag, an Ag-based alloy, Al, an Al-based alloy, and Rh.
11. The electrode of claim 10, wherein the thickness of the third electrode layer ranges from 10 to 5000 nm.
12. The electrode of claim 1, further comprising a fourth electrode layer formed on the third electrode layer using a predetermined material to prevent agglomeration caused by an annealing process from occurring on the surface of the third electrode layer.
13. The electrode of claim 12, wherein the fourth electrode layer is formed of one selected from the group consisting of Cu, Cu/Ru, Cu/Ir, a Cu-based alloy, Cu-based alloy/Ru, and Cu-based alloy/Ir.
14. The electrode of claim 13, wherein the thickness of the fourth electrode layer ranges from 1 to 500 nm.
15. A compound semiconductor light emitting device comprising an n-type electrode, a p-type electrode, and an n-type compound semiconductor layer, an active layer, and a p-type compound semiconductor layer, which are interposed between the n-type electrode and the p-type electrode,
wherein the p-type electrode comprises:
a first electrode layer forming an ohmic contact with the p-type compound semiconductor layer;
a second electrode layer disposed on the first electrode layer and formed of transparent conductive oxide; and
a third electrode layer disposed on the second electrode layer and formed of an optical reflective material.
16. The device of claim 15, wherein the first electrode layer is formed of indium oxide to which at least an additive element selected from the group consisting of Mg, Cu, Zr, and Sb is added.
17. The device of claim 16, wherein an addition ratio of the additive element to the indium oxide is in the range of 0.001 to 49 atomic percent.
18. The device of claim 16, wherein the thickness of the first electrode layer ranges from 0.1 to 500 nm.
19. The device of claim 15, wherein the first electrode layer is formed of one of Ag and an Ag-based alloy.
20. The device of claim 19, wherein the Ag-based alloy is an alloy of Ag and at least one selected from the group consisting of Mg, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Mn, Hg, Pr, and La.
21. The device of claim 19, wherein the thickness of the first electrode layer ranges from 0.1 to 500 nm.
22. The device of claim 15, wherein the transparent conductive oxide is formed of one selected from the group consisting of ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO, In4Sn3O12, and Zn1-xMgxO (0≦x≦1).
23. The device of claim 22, wherein the thickness of the second electrode layer ranges from 0.1 to 500 nm.
24. The device of claim 15, wherein the optical reflective material is one selected from the group consisting of Ag, an Ag-based alloy, Al, an Al-based alloy, ad Rh.
25. The device of claim 24, wherein the thickness of the third electrode layer ranges from 10 to 5000 nm.
26. The device of claim 15, further comprising a fourth electrode layer formed on the third electrode layer using a predetermined material to prevent agglomeration caused by an annealing process from occurring on the surface of the third electrode layer.
27. The device of claim 26, wherein the fourth electrode layer is formed of one selected from the group consisting of Cu, Cu/Ru, Cu/Ir, a Cu-based alloy, Cu-based alloy/Ru, and Cu-based alloy/Ir.
28. The device of claim 27, wherein the thickness of the fourth electrode layer ranges from 1 to 500 nm.
US11/080,509 2004-08-31 2005-03-16 Reflective electrode and compound semiconductor light emitting device including the same Abandoned US20060043388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/000,870 US7491979B2 (en) 2004-08-31 2007-12-18 Reflective electrode and compound semiconductor light emitting device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040069151A KR100896564B1 (en) 2004-08-31 2004-08-31 Reflective electrode and compound semiconductor light emitting device including the same
KR10-2004-0069151 2004-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/000,870 Division US7491979B2 (en) 2004-08-31 2007-12-18 Reflective electrode and compound semiconductor light emitting device including the same

Publications (1)

Publication Number Publication Date
US20060043388A1 true US20060043388A1 (en) 2006-03-02

Family

ID=36139625

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/080,509 Abandoned US20060043388A1 (en) 2004-08-31 2005-03-16 Reflective electrode and compound semiconductor light emitting device including the same
US12/000,870 Active US7491979B2 (en) 2004-08-31 2007-12-18 Reflective electrode and compound semiconductor light emitting device including the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/000,870 Active US7491979B2 (en) 2004-08-31 2007-12-18 Reflective electrode and compound semiconductor light emitting device including the same

Country Status (4)

Country Link
US (2) US20060043388A1 (en)
JP (1) JP2006074042A (en)
KR (1) KR100896564B1 (en)
CN (1) CN100463237C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050145876A1 (en) * 2004-01-06 2005-07-07 Samsung Electronics Co., Ltd. Low resistance electrode and compound semiconductor light emitting device including the same
US20090159908A1 (en) * 2007-12-19 2009-06-25 Philips Lumileds Lighting Company Llc Semiconductor light emitting device with light extraction structures
US20170084791A1 (en) * 2011-11-29 2017-03-23 Genesis Photonics Inc. Light emitting diode device
US10326053B2 (en) * 2015-07-17 2019-06-18 Stanley Electric Co., Ltd. Nitride semiconductor light emitting element
US20190198714A1 (en) * 2016-08-26 2019-06-27 Stanley Electric Co., Ltd. Group iii nitride semiconductor light-emitting element and wafer including such element configuration
US20190393679A1 (en) * 2016-11-01 2019-12-26 Sony Semiconductor Solutions Corporation Semiconductor device, semiconductor laser, and method of producing a semiconductor device
US20210194209A1 (en) * 2019-12-23 2021-06-24 Seiko Epson Corporation Light Emitting Device And Projector

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755649B1 (en) 2006-04-05 2007-09-04 삼성전기주식회사 Gan-based semiconductor light emitting device and method of manufacturing the same
KR100725610B1 (en) * 2006-04-18 2007-06-08 포항공과대학교 산학협력단 Method for forming ohmic electrode and semiconductor light emitting element
KR100836494B1 (en) 2006-12-26 2008-06-09 엘지이노텍 주식회사 Semiconductor light emitting device
JP4782022B2 (en) * 2007-01-09 2011-09-28 株式会社豊田中央研究所 Electrode formation method
CN101587924B (en) * 2008-05-21 2011-12-21 展晶科技(深圳)有限公司 Semiconductor element for emitting radiation and method for reducing operation voltage of same
WO2010113238A1 (en) * 2009-04-03 2010-10-07 パナソニック株式会社 Nitride semiconductor element and method for manufacturing same
US20100327300A1 (en) * 2009-06-25 2010-12-30 Koninklijke Philips Electronics N.V. Contact for a semiconductor light emitting device
KR101644501B1 (en) * 2010-01-18 2016-08-01 엘지이노텍 주식회사 Light emitting device, light emitting device package, and lighting apparatus
KR101692954B1 (en) 2010-05-17 2017-01-05 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method of the same
KR101714026B1 (en) * 2010-07-02 2017-03-09 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method of the same
KR101035143B1 (en) * 2010-11-03 2011-05-17 (주)더리즈 Reflective electrode and gallium nitride-based compound semiconductor light-emitting device comprising the same
DE102011115299B4 (en) * 2011-09-29 2023-04-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
US20140203322A1 (en) * 2013-01-23 2014-07-24 Epistar Corporation Transparent Conductive Structure, Device comprising the same, and the Manufacturing Method thereof
CN103915453B (en) * 2014-04-02 2016-09-07 上海天马有机发光显示技术有限公司 OLED array and preparation method thereof, display floater and display device
KR102544296B1 (en) * 2018-09-13 2023-06-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 A VERTICAL-CAVITY SURFACE-EMITTING LASER DEVICE and APPARATUS HAVING THE SAME
CN109830585A (en) * 2019-01-22 2019-05-31 江西兆驰半导体有限公司 A kind of light-emitting diode chip for backlight unit with high reflectance electrode
CN111540818B (en) * 2020-03-27 2021-06-11 华灿光电(浙江)有限公司 Flip light-emitting diode chip and manufacturing method thereof
CN111525012B (en) * 2020-04-29 2021-11-12 厦门三安光电有限公司 Light emitting diode and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030059972A1 (en) * 2001-09-27 2003-03-27 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method for manufacturing the same
US20030118865A1 (en) * 2001-08-27 2003-06-26 Marks Tobin J. High work function transparent conducting oxides as anodes for organic light-emitting diodes
US20040104395A1 (en) * 2002-11-28 2004-06-03 Shin-Etsu Handotai Co., Ltd. Light-emitting device, method of fabricating the same, and OHMIC electrode structure for semiconductor device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481122A (en) * 1994-07-25 1996-01-02 Industrial Technology Research Institute Surface light emitting diode with electrically conductive window layer
JP3746569B2 (en) * 1996-06-21 2006-02-15 ローム株式会社 Light emitting semiconductor device
JP2000058911A (en) * 1998-08-13 2000-02-25 Toshiba Corp Semiconductor light-emitting device
US6992334B1 (en) 1999-12-22 2006-01-31 Lumileds Lighting U.S., Llc Multi-layer highly reflective ohmic contacts for semiconductor devices
US6573537B1 (en) * 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
CN1368764A (en) * 2001-01-31 2002-09-11 广镓光电股份有限公司 Structure of hihg-brightness blue light emitting crystal grain
JP3969959B2 (en) * 2001-02-28 2007-09-05 独立行政法人科学技術振興機構 Transparent oxide multilayer film and method for producing transparent oxide pn junction diode
JP2002329889A (en) * 2001-04-24 2002-11-15 Epitech Technology Corp Light-emitting diode
JP2003110142A (en) * 2001-09-28 2003-04-11 Sharp Corp Oxide semiconductor light-emitting device and its manufacturing method
JP2003243705A (en) * 2002-02-07 2003-08-29 Lumileds Lighting Us Llc Light emitting semiconductor method and device
JP2004179347A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Semiconductor light emitting element
JP4507594B2 (en) * 2003-12-26 2010-07-21 日亜化学工業株式会社 Semiconductor light emitting device
JP2005317676A (en) * 2004-04-27 2005-11-10 Sony Corp Semiconductor light emitting device, manufacturing method thereof and semiconductor light emitting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118865A1 (en) * 2001-08-27 2003-06-26 Marks Tobin J. High work function transparent conducting oxides as anodes for organic light-emitting diodes
US20030059972A1 (en) * 2001-09-27 2003-03-27 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method for manufacturing the same
US20040104395A1 (en) * 2002-11-28 2004-06-03 Shin-Etsu Handotai Co., Ltd. Light-emitting device, method of fabricating the same, and OHMIC electrode structure for semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960746B2 (en) * 2004-01-06 2011-06-14 Samsung Led Co., Ltd. Low resistance electrode and compound semiconductor light emitting device including the same
US20050145876A1 (en) * 2004-01-06 2005-07-07 Samsung Electronics Co., Ltd. Low resistance electrode and compound semiconductor light emitting device including the same
US10164155B2 (en) 2007-12-19 2018-12-25 Lumileds Llc Semiconductor light emitting device with light extraction structures
US10734553B2 (en) 2007-12-19 2020-08-04 Lumileds Llc Semiconductor light emitting device with light extraction structures
US8242521B2 (en) 2007-12-19 2012-08-14 Koninklijke Philips Electronics N.V. Semiconductor light emitting device with light extraction structures
US9142726B2 (en) 2007-12-19 2015-09-22 Philips Lumileds Lighting Company Llc Semiconductor light emitting device with light extraction structures
US7985979B2 (en) 2007-12-19 2011-07-26 Koninklijke Philips Electronics, N.V. Semiconductor light emitting device with light extraction structures
US9935242B2 (en) 2007-12-19 2018-04-03 Lumileds Llc Semiconductor light emitting device with light extraction structures
US20090159908A1 (en) * 2007-12-19 2009-06-25 Philips Lumileds Lighting Company Llc Semiconductor light emitting device with light extraction structures
US20170084791A1 (en) * 2011-11-29 2017-03-23 Genesis Photonics Inc. Light emitting diode device
US10326053B2 (en) * 2015-07-17 2019-06-18 Stanley Electric Co., Ltd. Nitride semiconductor light emitting element
US20190198714A1 (en) * 2016-08-26 2019-06-27 Stanley Electric Co., Ltd. Group iii nitride semiconductor light-emitting element and wafer including such element configuration
US10818823B2 (en) * 2016-08-26 2020-10-27 Stanley Electric Co., Ltd. Group III nitride semiconductor light-emitting element and wafer including such element configuration
US20190393679A1 (en) * 2016-11-01 2019-12-26 Sony Semiconductor Solutions Corporation Semiconductor device, semiconductor laser, and method of producing a semiconductor device
US11121524B2 (en) * 2016-11-01 2021-09-14 Sony Semiconductor Solutions Corporation Semiconductor device, semiconductor laser, and method of producing a semiconductor device
US11876349B2 (en) 2016-11-01 2024-01-16 Sony Semiconductor Solutions Corporation Semiconductor device, semiconductor laser, and method of producing a semiconductor device
US20210194209A1 (en) * 2019-12-23 2021-06-24 Seiko Epson Corporation Light Emitting Device And Projector
US11901695B2 (en) * 2019-12-23 2024-02-13 Seiko Epson Corporation Light emitting device and projector

Also Published As

Publication number Publication date
CN1744334A (en) 2006-03-08
US7491979B2 (en) 2009-02-17
CN100463237C (en) 2009-02-18
US20080105890A1 (en) 2008-05-08
KR100896564B1 (en) 2009-05-07
JP2006074042A (en) 2006-03-16
KR20060020331A (en) 2006-03-06

Similar Documents

Publication Publication Date Title
US7491979B2 (en) Reflective electrode and compound semiconductor light emitting device including the same
US7554125B2 (en) Multi-layer electrode and compound semiconductor light emitting device comprising the same
EP2262013B1 (en) Method of manufacturing a gallium nitride-based light emitting diode
US7973325B2 (en) Reflective electrode and compound semiconductor light emitting device including the same
US7173277B2 (en) Semiconductor light emitting device and method for fabricating the same
US7485897B2 (en) Nitride-based light-emitting device having grid cell layer
JP5084099B2 (en) Top-emitting nitride-based light emitting device and method for manufacturing the same
JP2005223326A (en) Electrode layer, light-emitting device provided with the same, and manufacturing method for the electrode layer
JP2005086210A (en) Nitride light-emitting device and manufacturing method therefor
JP5130436B2 (en) GaN-based semiconductor light-emitting device and manufacturing method thereof
KR20090115322A (en) Group 3 nitride-based semiconductor devices
JP2010267694A (en) Semiconductor light emitting element and method of manufacturing the same, and semiconductor element and method of manufacturing the same
KR101459770B1 (en) group 3 nitride-based semiconductor devices
US7095042B2 (en) Electrode structure, semiconductor light-emitting device having the same and method of manufacturing the same
KR100862456B1 (en) Transparent electrode and compound semiconductor light emitting device including the same
KR100764458B1 (en) Electrode layer, light generating device comprising the same and method of forming the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY, KOREA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KWAK, JOON-SEOP;SEONG, TAE-YEONG;SONG, JUNE-O;REEL/FRAME:016387/0891

Effective date: 20050314

Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD., KOREA, REPUBL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KWAK, JOON-SEOP;SEONG, TAE-YEONG;SONG, JUNE-O;REEL/FRAME:016387/0891

Effective date: 20050314

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION