US20050281779A1 - Enhancing immune responses to genetic immunization by using a chemokine - Google Patents

Enhancing immune responses to genetic immunization by using a chemokine Download PDF

Info

Publication number
US20050281779A1
US20050281779A1 US11/095,129 US9512905A US2005281779A1 US 20050281779 A1 US20050281779 A1 US 20050281779A1 US 9512905 A US9512905 A US 9512905A US 2005281779 A1 US2005281779 A1 US 2005281779A1
Authority
US
United States
Prior art keywords
chemokine
dna
immunogen
polynucleotide
dna immunogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/095,129
Inventor
Xavier Paliard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis Vaccines and Diagnostics Inc
Original Assignee
Chiron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1999/008802 external-priority patent/WO1999053960A2/en
Application filed by Chiron Corp filed Critical Chiron Corp
Priority to US11/095,129 priority Critical patent/US20050281779A1/en
Publication of US20050281779A1 publication Critical patent/US20050281779A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/195Chemokines, e.g. RANTES
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16211Human Immunodeficiency Virus, HIV concerning HIV gagpol
    • C12N2740/16234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention relates to the area of immune responses to genetic immunization. More particularly, the invention relates to enhancing immune responses to DNA immunogens using immune co-stimulatory molecules.
  • mice In mice, several DNA vaccines have been effective at inducing long-lived antibody and cytotoxic T lymphocyte (CTL) responses and have conferred protective immunity against a number of viruses, bacteria, parasites, and tumors (1-8).
  • CTL cytotoxic T lymphocyte
  • Various approaches to enhance immune responses mediated by genetic immunization include co-injection of polynucleotides encoding co-stimulatory molecules which improve immunogen presentation to lymphocytes, such as B7-1 or B7-2, or cytokines, such as GM-CSF, IL-2, IL-2, and IL-12, to create an optimal cytokine microenvironment for T cell priming (11-19).
  • further enhancement of immune responses to genetic immunization is desirable for immunizing mammals, particularly, humans, against immunogens such as virus- and tumor-specific immunogens.
  • the composition comprises a DNA immunogen and a chemokine or a polynucleotide encoding a chemokine.
  • Another embodiment of the invention provides a method of enhancing an immune response to a DNA immunogen in a mammal.
  • a chemokine or a first polynucleotide encoding a chemokine and a DNA immunogen are administered to the mammal.
  • An immune response to the DNA immunogen is thereby enhanced.
  • the present invention thus provides the art with the information that chemokines can be used to enhance an immune response of a mammal to a DNA immunogen.
  • the invention can be used to, inter alia, to immunize or vaccinate a mammal against an infectious disease or a tumor.
  • FIG. 1 shows the immunization and bleeding schedules for animals immunized with HCV immunogens.
  • FIG. 2 shows the immunization and bleeding schedules for animals immunized with granulocyte-macrophage colony-stimulating factor (GM-CSF).
  • GM-CSF granulocyte-macrophage colony-stimulating factor
  • FIG. 3 shows the immunization and bleeding schedules for animals immunized with HCV immunogens and RANTES.
  • FIG. 4 shows the immunization and bleeding schedules for animals immunized with HCV immunogens and macrophage inflammatory protein 1 ⁇ (MIP-1 ⁇ ).
  • FIG. 5 shows the increased anti-HIV gag antibody titer in mice immunized with a plasmid encoding HV gag and a plasmid encoding the chemokine B lymphocyte chemokine (BLC).
  • a chemokine or a polynucleotide encoding a chemokine can be used to enhance an immune response in a mammal to a DNA immunogen.
  • This method can be used inter alia, to increase immunological resistance to pathogens, such as viruses, and bacteria, and to tumor-associated immunogens.
  • Chemokines generally function as chemoattractants for cells which they recruit from the blood to sites of infection.
  • administration of a chremokine either together with or in addition to a DNA immunogen, effectively recruits various cell populations, including antigen presenting cells and effector cells, to the site of administration or its vicinity.
  • administration of a polynucleotide encoding a chemokine can result in local chemokine secretion which induces migration of antigen presenting cells and/or lymphocytes to the site of administration and which enhances immune responses to the DNA immunogen.
  • Local chemokine secretion can also enhance the migration of cells which have taken up the DNA immunogen or polypeptides encoded by the DNA immunogen to the lymph nodes, where priming of specific T cells can occur.
  • Chemokines which can be used in the method of the invention include, but are not limited to, B lymphocyte chemokine (BLC), IL-8, PBP/ ⁇ -TG/NAP-2, macrophage inflammatory proteins MIP-1 ⁇ , MIP-1 ⁇ , and MIP-3 ⁇ , macrophage chemoattractant and activating factor (MCP-1 or MCAF), MCP-2, MCP-3, I-309, C10, HCC-1, RANTES ( r egulated upon a ctivation, n ormal T cell e xpressed and s ecreted), lymphotactin, SCM-1, eotaxin, MGSA, PF4, NAP-2, IP-10, ENA-78, EMF-1, GCP-2, SLC, ELC, and SDF-1.
  • BLC B lymphocyte chemokine
  • IL-8 PBP/ ⁇ -TG/NAP-2
  • MIP-1 ⁇ macrophage inflammatory proteins
  • MIP-1 ⁇ macrophage chemoattrac
  • the immune response which is enhanced can be any response which is influenced by chemokines, including, but not limited to, antibody production or cytotoxic T lymphocyte (CTL) response resulting from chemoattraction and/or activation of antigen presenting cells, such as dendritic cells, macrophages, and monocytes, chemoattraction and/or activation of neutrophils, including eosinophils, and chemoattraction and/or activation of naive T cells, memory T cells, and pre-T cells to the thymus.
  • CTL cytotoxic T lymphocyte
  • antibody titer can be measured by assays such as agglutination, immunoprecipitation, or ELISA.
  • Attraction or activation of eosinophils, dendritic cells, basophils, and neutrophils can also be measured.
  • Assays for determining eosinophil attraction are described in Dahinden et al., J. Exp. Med. 179: 751 (1994), Weber et al., J. Immunol. 154: 4166 (1995), and Noso et al., Biochem. Biophys. Res. Commun. 200: 1470 (1994).
  • Attraction of dendritic cells can be measured as described, for example, in Sozzani et al., J. Immunol. 155: 3292 (1995).
  • Assays for attracting basophils are taught in Dahinden et al., J.
  • the DNA immunogen can be any contiguous sequence of deoxyribonucleotides encoding a polypeptde which is capable of eliciting an immune response.
  • polynucleotides encoding immunogenic polypeptides of viruses such as HIV viruses (e.g., gag, pol, or env), herpes viruses (i.e., HSV-1, HSV-1, HSV-2), Epstein-Barr virus, varicella-zoster virus, cytomegalovirus, and hepatitis B virus (HBV), hepatitis C virus (HCV), and human papilloma viruses (i.e., HPV-16, -18, and -31) can serve as a DNA immunogen.
  • viruses such as HIV viruses (e.g., gag, pol, or env)
  • herpes viruses i.e., HSV-1, HSV-1, HSV-2
  • Epstein-Barr virus i.e., varicella-zoster virus,
  • DNA which encodes polypeptide immunogens of other infectious agents can function as a DNA immunogen in the method of the invention.
  • DNA which encodes polypeptides specifically expressed by a tumor such as EGFRvIII, Ras, or p185 HER2 , or polypeptides which are expressed both by a tumor and by the corresponding normal tissue, can also function as a DNA immunogen.
  • a DNA immunogen can comprise coding sequences for more than one immunogenic polypeptide.
  • a chemokine and a DNA immunogen can be administered to a mammal, preferably a human, by any means known in the art, including parenteral, intranasal, or intramuscular injection, or coated onto small metal projectiles and injected using a biological ballistic gun (“gene gun”).
  • a chemokine and a DNA immunogen can be administered successively.
  • the chemokine can be administered prior to administration of the DNA immunogen, or the DNA immunogen can be administered prior to the administration of the chemokine.
  • a polynucleotide encoding the chemokine can also be administered.
  • a polynucleotide encoding the chemokine and a polynucleotide comprising the DNA immunogen are co-injected.
  • the polynucleotides can also be administered successively, in any order.
  • a single polynucleotide comprising both chemokine-encoding sequences and the DNA immunogen can be administered, or the DNA immunogen and the chemokine-encoding polynucleotide can be provided separately and mixed together prior to administration.
  • the invention also provides immunogenic compositions comprising a DNA immunogen and a chemokine or a polynucleotide encoding a chemokine.
  • the composition can optionally comprise a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers are well known to those in the art. Such carriers include, but are not limited to, large, slowly metabolized macromolecules, such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles.
  • compositions of the invention can also be used in compositions of the invention, for example, mineral salts such as hydrochlorides, hydrobromides, phosphates, or sulfates, as well as salts of organic acids such as acetates, proprionates, malonates, or benzoates.
  • Compositions of the invention can also contain liquids, such as water, saline, glycerol, and ethanol, as well substances such as wetting agents, emulsifying agents, or pH buffering agents.
  • Liposomes such as those described in U.S. Pat. No. 5,422,120, WO 95/13796, WO 91/14445, or EP 524,968 B1, can also be used as a carrier for a composition of the invention.
  • compositions of the invention can be used as vaccine compositions, for example, to enhance an immune response of a mammal, including a human, to an infectious agent or a tumor.
  • the particular dosages of chemokine and DNA immunogen which are sufficient to enhance an immune response to the DNA immunogen will vary according to the chemokine and DNA immunogen being used and the mammal to which the chemokine and DNA immunogen are being administered.
  • the amounts of each active agent in the examples described below provide general guidance for the range of each component to be utilized by the practitioner upon optimizing the method of the present invention for practice either in vitro or in vivo.
  • 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, or 5 mg of a chemokine protein, a polynucleotide encoding a chemokine, or a polynucleotide comprising a DNA immunogen will be administered to a large mammal, such as a baboon or a human.
  • the actual dose and schedule may vary depending on whether the compositions are administered in combination with other pharmaceutical compositions or depending on individual differences in pharmacokinetics, drug disposition, and metabolism.
  • Each plasmid comprises a CMV enhancer/promoter and is Kanamycin-resistant. Plasmids were prepared by an alkaline lysis method from E. coli bacteria and purified using Qiagen purification systems. After purification, plasmids were stored at ⁇ 80° C., at a concentration of 1 mg/ml.
  • Plasmid pCMVKm ⁇ NS comprises hepatitis C viral DNA encoding HCV polypeptides ANS3, NS4, NS5a, and NS5b (immunogen for animal Group 1).
  • Plasmid NS-GM2 encodes HCV polypeptides ⁇ NS3, NS4, NS5b, NS5b, and hGM-CSF (immunogen for animal Group 2).
  • Plasmid pCMVLhRantes encodes human RANTES protein.
  • pCMVLhMIP1a encodes MIP-1 ⁇ .
  • pCMVKm ⁇ NS was premixed with either pCMVLhRantes (immunogen for animal Group 3) or pCMVLhMIP1a (immunogen for animal Group 4).
  • Each plasmid was at a concentration of 1 mg/ml of DNA, for a total of 2 mg/ml of DNA per mixed immunogen.
  • the left and right tibialis anterior muscle was injected with 400 ⁇ L of DNA for a total of 800 ⁇ l intramuscular injection per baboon, using a 1 ml syringe.
  • the immunogens were injected slowly, over about 10 seconds. After injection, the needle was removed slowly, to reduce leakage.
  • Each of two separates sites of the upper back was injected with 100 ⁇ l of DNA for a total of 200 ⁇ l intradermal injection per baboon, using a 0.3 ml U-100 Insulin syringe.
  • the skin at the sites of injection was shaved.
  • the needle was inserted the needle bevel up into the skin and then rotated 90 degrees so that the bevel pointed to the side.
  • the 100 ⁇ l was slowly injected over about 10 seconds. After injection, the needle was slowly rotated so that the -bevel was up.,again then withdrawn slowly to reduce leakage.
  • Group 1 (animals CKS44, CKS45, CK546, and CK547) received inoculations of pCMVKm ⁇ NS (HCV immunogens) and were bled according to the schedule in FIG. 1 .
  • Group 2 (animals CK548, CK549, CK550, and CK551) received inoculations of NS-GM2 (HCV immunogens and GM-CSF) and were bled according to the schedule in FIG. 2 .
  • Group 3 (animals CK552, CKS53, CK554, and CKS55) received inoculations of pCMVKm ⁇ NS and pCMVLhRantes (HCV immunogens and RANTES) according to the schedule in FIG. 3 .
  • Group 4 (animals CK556, CK557, CK558, and CK559) received inoculations of pCMVKm ⁇ NS and pCMVLhMIP1a (HCV immunogens and MIP-1 ⁇ ) and were bled according to the schedule in FIG. 4 .
  • Immunizations were carried out as described in Example 2, above. At each of the times indicated in the bleeding schedules, blood was drawn from the femoral vein while the baboons were under anesthesia (Ketamine®, 10 mg/ml). Blood was treated with heparin. B and T cells were isolated from these blood samples and used in the cytotoxic T lymphocyte assays described below.
  • T cells from each animal to lyse its autologous B cell line infected with vaccinia virus encoding the same immunogens used to immunize the animals was tested using a standard 51 Cr-release assay. Ratios of effector Cr cells) to target (B cells) of 40:1, 10:1, and 2:1 were tested.
  • Percent Lysis was Calculated in Each Assay. A positive CTL response was noted if at least 10% more lysis occurred with homologous cells (stimulated with a vaccinia virus encoding an HCV immunogen) than with heterologous cells (stimulated with a vaccinia virus encoding an unrelated immunogen) for each of the two highest effector to target cell ratios tested..
  • Table I shows the number of animals with positive responses in a cytotoxic T lymphocyte assay. TABLE I Number of animals with CTL responses Immunogen No. of Animals pCMVNS3-5 0/4 pCMVNS3-5 & MIP-1 ⁇ 1/4 pCMVNS3-5 & RANTES 0/4
  • Table II shows percent lysis of target cells from animal CK556 after restimulation. Homologous cells were stimulated with vaccinia virus encoding HCV polypeptide NS3. TABLE II Percent lysis of targets after restimulation (animal CK556) Effector:Target Homologous 1 Heterologous 2 pre-immunization 40:1 2 11 pre-immunization 10:1 6 10 pre-immunization 2:1 7 6 2 weeks post 3rd 40:1 27 ⁇ 1 immunization 2 weeks post 3rd 10:1 17 ⁇ 1 immunization 2 weeks post 3rd 2:1 11 ⁇ 1 immunization
  • Balb/c mice received bilateral injections into the anterior tibialis muscle of 10 ⁇ g of a p55 plasmid, which encodes HIV gag, either alone or together with a total of 100 ⁇ g of a plasmid encoding B lymphocyte chemokine (BLC; Nature 391, 799-803, 1998). Fifty ⁇ g of BLC-encoding plasmid were injected into each muscle.
  • BLC B lymphocyte chemokine
  • FIG. 5 shows that anti-gag antibody titer in immunized mice is increased at three weeks after immunization and continues to increase up to at least six weeks.
  • Bovine herpesvirus 1 immune responses in mice and cattle injected with plasmid DNA. J Virol 67:5664-7.
  • MIP-1 alpha Human macrophage inflammatory protein alpha
  • MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 177:1821-6.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The immune response to a DNA immunogen in a mammal can be enhanced by administration of a chemokine or a polynucleotide encoding the chemokine. This method can be used, for example, to immunize or vaccinate a mammal against an infectious disease or a tumor.

Description

  • This application claims the benefit of co-pending provisional application Ser. No. 60/082,600 filed Apr. 22, 1998, which is incorporated by reference herein.
  • TECHNICAL AREA OF THE INVENTION
  • The invention relates to the area of immune responses to genetic immunization. More particularly, the invention relates to enhancing immune responses to DNA immunogens using immune co-stimulatory molecules.
  • BACKGROUND OF THE INVENTION
  • The use of genetic immunization, or immunization with DNA encoding polypeptide immunogens, to prime immune responses is viewed as a promising vaccine strategy. This technology offers potential improvements compared to other types of vaccines, such as subunit proteins complexed with adjuvants or inactivated or attenuated viral preparations. In addition to the practical advantages of simplicity of construction and modification, injection of genetic material encoding for polypeptide immunogens results in synthesis of the immunogens in the host. Thus, these immunogens are presented to the host immune system with native post-translational modifications, structure, and conformation.
  • In mice, several DNA vaccines have been effective at inducing long-lived antibody and cytotoxic T lymphocyte (CTL) responses and have conferred protective immunity against a number of viruses, bacteria, parasites, and tumors (1-8). Various approaches to enhance immune responses mediated by genetic immunization have been investigated. In addition to variations in dosage, route or boosting regimens, these variations include co-injection of polynucleotides encoding co-stimulatory molecules which improve immunogen presentation to lymphocytes, such as B7-1 or B7-2, or cytokines, such as GM-CSF, IL-2, IL-2, and IL-12, to create an optimal cytokine microenvironment for T cell priming (11-19). However, further enhancement of immune responses to genetic immunization is desirable for immunizing mammals, particularly, humans, against immunogens such as virus- and tumor-specific immunogens.
  • Thus, there is a need in the art for methods of enhancing the immune responses to DNA immunogens.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to provide a method of enhancing an immune response to a DNA immunogen. This and other objects of the invention are provided by one or more of the embodiments described below.
  • One embodiment of the invention provides an immunogenic composition. The composition comprises a DNA immunogen and a chemokine or a polynucleotide encoding a chemokine.
  • Another embodiment of the invention provides a method of enhancing an immune response to a DNA immunogen in a mammal. A chemokine or a first polynucleotide encoding a chemokine and a DNA immunogen are administered to the mammal. An immune response to the DNA immunogen is thereby enhanced.
  • The present invention thus provides the art with the information that chemokines can be used to enhance an immune response of a mammal to a DNA immunogen. The invention can be used to, inter alia, to immunize or vaccinate a mammal against an infectious disease or a tumor.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1. FIG. 1 shows the immunization and bleeding schedules for animals immunized with HCV immunogens.
  • FIG. 2. FIG. 2 shows the immunization and bleeding schedules for animals immunized with granulocyte-macrophage colony-stimulating factor (GM-CSF).
  • FIG. 3. FIG. 3 shows the immunization and bleeding schedules for animals immunized with HCV immunogens and RANTES.
  • FIG. 4. FIG. 4 shows the immunization and bleeding schedules for animals immunized with HCV immunogens and macrophage inflammatory protein 1α (MIP-1α).
  • FIG. 5. FIG. 5 shows the increased anti-HIV gag antibody titer in mice immunized with a plasmid encoding HV gag and a plasmid encoding the chemokine B lymphocyte chemokine (BLC).
  • DETAILED-DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • It is a discovery of the present invention that administration of a chemokine or a polynucleotide encoding a chemokine can be used to enhance an immune response in a mammal to a DNA immunogen. This method can be used inter alia, to increase immunological resistance to pathogens, such as viruses, and bacteria, and to tumor-associated immunogens.
  • Chemokines generally function as chemoattractants for cells which they recruit from the blood to sites of infection. Thus, administration of a chremokine, either together with or in addition to a DNA immunogen, effectively recruits various cell populations, including antigen presenting cells and effector cells, to the site of administration or its vicinity. Similarly, administration of a polynucleotide encoding a chemokine can result in local chemokine secretion which induces migration of antigen presenting cells and/or lymphocytes to the site of administration and which enhances immune responses to the DNA immunogen. Local chemokine secretion can also enhance the migration of cells which have taken up the DNA immunogen or polypeptides encoded by the DNA immunogen to the lymph nodes, where priming of specific T cells can occur.
  • Chemokines which can be used in the method of the invention include, but are not limited to, B lymphocyte chemokine (BLC), IL-8, PBP/β-TG/NAP-2, macrophage inflammatory proteins MIP-1α, MIP-1β, and MIP-3α, macrophage chemoattractant and activating factor (MCP-1 or MCAF), MCP-2, MCP-3, I-309, C10, HCC-1, RANTES (regulated upon activation, normal T cell expressed and secreted), lymphotactin, SCM-1, eotaxin, MGSA, PF4, NAP-2, IP-10, ENA-78, EMF-1, GCP-2, SLC, ELC, and SDF-1. Certain chemokines may be more effective in combination with a particular DNA immunogen than others at stimulating an immune response; optimization of the DNA immunogen-chemokine combination can be carried out using routine assays in standard animal models (see Examples 1 and 2).
  • The immune response which is enhanced can be any response which is influenced by chemokines, including, but not limited to, antibody production or cytotoxic T lymphocyte (CTL) response resulting from chemoattraction and/or activation of antigen presenting cells, such as dendritic cells, macrophages, and monocytes, chemoattraction and/or activation of neutrophils, including eosinophils, and chemoattraction and/or activation of naive T cells, memory T cells, and pre-T cells to the thymus.
  • Measurement of enhanced immune responses can be carried out as is known in the art. For example, antibody titer can be measured by assays such as agglutination, immunoprecipitation, or ELISA.
  • Assays for chemotaxis relating to neutrophils are described in Walz et al. (1987), Biochem. Biophys. Res. Commun. 149: 755; Yoshimura et al. (1987), Proc. Natl. Acad Sci. USA 84: 9233, and Schroder et al. (1987), J. Immunol. 139: 3474. Chemotaxis of lymphocytes can be assayed as described in Larsen et al., Science 243: 1464: (1989) and Carr et al., Proc. Natl. Acad. Sci. USA 91: 3652 (1994).
  • Assays for chemotaxis of tumor-infiltrating lymphocytes are described in Liao et al. (1995), J. Exp. Med. 182: 1301; for hemopoietic progenitors, in Aiuti et al. (1997), J. Exp. Med. 185: 11 1; for monocytes, in Valente et al. (1988), Biochem. 27: 4162; and for natural killer cells, in Loetscher et al. (1996), J. Immunol. 156: 322, and in Allavena et al. (1994), Eur. J. Immunol. 24: 3233.
  • Attraction or activation of eosinophils, dendritic cells, basophils, and neutrophils, can also be measured. Assays for determining eosinophil attraction are described in Dahinden et al., J. Exp. Med. 179: 751 (1994), Weber et al., J. Immunol. 154: 4166 (1995), and Noso et al., Biochem. Biophys. Res. Commun. 200: 1470 (1994). Attraction of dendritic cells can be measured as described, for example, in Sozzani et al., J. Immunol. 155: 3292 (1995). Assays for attracting basophils are taught in Dahinden et al., J. Exp. Med 179: 751 (1994), Alam et al., J. Immunol. 152: 1298 (1994), and Alam et al., J. Exp. Med. 176: 781 (1992). Activation of neutrophils is taught in Maghazaci et al., Eur. J. Immunol. 26: 315 (1996) and Taub et al., J. Immunol. 155: 3877 (1995). Cytotoxic T lymphocyte assays can also be used to measure enhanced immune response to a DNA immunogen (see Example 1, below).
  • The DNA immunogen can be any contiguous sequence of deoxyribonucleotides encoding a polypeptde which is capable of eliciting an immune response. For example, polynucleotides encoding immunogenic polypeptides of viruses such as HIV viruses (e.g., gag, pol, or env), herpes viruses (i.e., HSV-1, HSV-1, HSV-2), Epstein-Barr virus, varicella-zoster virus, cytomegalovirus, and hepatitis B virus (HBV), hepatitis C virus (HCV), and human papilloma viruses (i.e., HPV-16, -18, and -31) can serve as a DNA immunogen. DNA which encodes polypeptide immunogens of other infectious agents, such as bacteria, fungi, or yeast, can function as a DNA immunogen in the method of the invention. DNA which encodes polypeptides specifically expressed by a tumor, such as EGFRvIII, Ras, or p185HER2, or polypeptides which are expressed both by a tumor and by the corresponding normal tissue, can also function as a DNA immunogen. If desired, a DNA immunogen can comprise coding sequences for more than one immunogenic polypeptide.
  • A chemokine and a DNA immunogen can be administered to a mammal, preferably a human, by any means known in the art, including parenteral, intranasal, or intramuscular injection, or coated onto small metal projectiles and injected using a biological ballistic gun (“gene gun”). Alternatively, a chemokine and a DNA immunogen can be administered successively. The chemokine can be administered prior to administration of the DNA immunogen, or the DNA immunogen can be administered prior to the administration of the chemokine.
  • A polynucleotide encoding the chemokine can also be administered. Preferably, a polynucleotide encoding the chemokine and a polynucleotide comprising the DNA immunogen are co-injected. The polynucleotides can also be administered successively, in any order. For co-administration, a single polynucleotide comprising both chemokine-encoding sequences and the DNA immunogen can be administered, or the DNA immunogen and the chemokine-encoding polynucleotide can be provided separately and mixed together prior to administration.
  • The invention also provides immunogenic compositions comprising a DNA immunogen and a chemokine or a polynucleotide encoding a chemokine. The composition can optionally comprise a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known to those in the art. Such carriers include, but are not limited to, large, slowly metabolized macromolecules, such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Pharmaceutically acceptable salts can also be used in compositions of the invention, for example, mineral salts such as hydrochlorides, hydrobromides, phosphates, or sulfates, as well as salts of organic acids such as acetates, proprionates, malonates, or benzoates. Compositions of the invention can also contain liquids, such as water, saline, glycerol, and ethanol, as well substances such as wetting agents, emulsifying agents, or pH buffering agents. Liposomes, such as those described in U.S. Pat. No. 5,422,120, WO 95/13796, WO 91/14445, or EP 524,968 B1, can also be used as a carrier for a composition of the invention.
  • Compositions of the invention can be used as vaccine compositions, for example, to enhance an immune response of a mammal, including a human, to an infectious agent or a tumor. The particular dosages of chemokine and DNA immunogen which are sufficient to enhance an immune response to the DNA immunogen will vary according to the chemokine and DNA immunogen being used and the mammal to which the chemokine and DNA immunogen are being administered. The amounts of each active agent in the examples described below provide general guidance for the range of each component to be utilized by the practitioner upon optimizing the method of the present invention for practice either in vitro or in vivo. Generally, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, or 5 mg of a chemokine protein, a polynucleotide encoding a chemokine, or a polynucleotide comprising a DNA immunogen will be administered to a large mammal, such as a baboon or a human.
  • Such ranges by no means preclude use of a higher or lower amount of a component, as might be warranted in a particular application. For example, the actual dose and schedule may vary depending on whether the compositions are administered in combination with other pharmaceutical compositions or depending on individual differences in pharmacokinetics, drug disposition, and metabolism.
  • The following are provided for exemplification purposes only and are not intended to limit the scope of the invention described in broad terms above.
  • EXAMPLE 1
  • Co-administration of HCV Immunogens and MIP-1α Increases Lysis of Autologous B Cells Infected with Vaccinia Virus Encoding HCV Polypeptide NAS3
  • HCV Immunogens.
  • Each plasmid comprises a CMV enhancer/promoter and is Kanamycin-resistant. Plasmids were prepared by an alkaline lysis method from E. coli bacteria and purified using Qiagen purification systems. After purification, plasmids were stored at −80° C., at a concentration of 1 mg/ml.
  • Plasmid pCMVKmΔNS comprises hepatitis C viral DNA encoding HCV polypeptides ANS3, NS4, NS5a, and NS5b (immunogen for animal Group 1). Plasmid NS-GM2 encodes HCV polypeptides ΔNS3, NS4, NS5b, NS5b, and hGM-CSF (immunogen for animal Group 2). Plasmid pCMVLhRantes encodes human RANTES protein. pCMVLhMIP1a encodes MIP-1α.
  • For the immunization protocols described below, pCMVKmΔNS was premixed with either pCMVLhRantes (immunogen for animal Group 3) or pCMVLhMIP1a (immunogen for animal Group 4). Each plasmid was at a concentration of 1 mg/ml of DNA, for a total of 2 mg/ml of DNA per mixed immunogen.
  • Injection of HCV Immunogens into Baboons.
  • On the day of injection, one vial (marked with the plasmid name and animal group) per animal was removed from the freezer, thawed at room temperature, and gently mixed. Each immunogen was injected both intramuscularly and intradermally. The total volume injected per animal was 1 ml.
  • The left and right tibialis anterior muscle was injected with 400 μL of DNA for a total of 800 μl intramuscular injection per baboon, using a 1 ml syringe. The immunogens were injected slowly, over about 10 seconds. After injection, the needle was removed slowly, to reduce leakage.
  • Each of two separates sites of the upper back was injected with 100 μl of DNA for a total of 200 μl intradermal injection per baboon, using a 0.3 ml U-100 Insulin syringe. The skin at the sites of injection was shaved. At each site, the needle was inserted the needle bevel up into the skin and then rotated 90 degrees so that the bevel pointed to the side. The 100 μl was slowly injected over about 10 seconds. After injection, the needle was slowly rotated so that the -bevel was up.,again then withdrawn slowly to reduce leakage.
  • Immunization and Bleeding Schedules for Four Groups of Baboons.
  • Baboons in each of four groups were immunized and bled according to the following schedule. Group 1 (animals CKS44, CKS45, CK546, and CK547) received inoculations of pCMVKmΔNS (HCV immunogens) and were bled according to the schedule in FIG. 1. Group 2 (animals CK548, CK549, CK550, and CK551) received inoculations of NS-GM2 (HCV immunogens and GM-CSF) and were bled according to the schedule in FIG. 2. Group 3 (animals CK552, CKS53, CK554, and CKS55) received inoculations of pCMVKmΔNS and pCMVLhRantes (HCV immunogens and RANTES) according to the schedule in FIG. 3. Group 4 (animals CK556, CK557, CK558, and CK559) received inoculations of pCMVKmΔNS and pCMVLhMIP1a (HCV immunogens and MIP-1α) and were bled according to the schedule in FIG. 4.
  • Immunizations were carried out as described in Example 2, above. At each of the times indicated in the bleeding schedules, blood was drawn from the femoral vein while the baboons were under anesthesia (Ketamine®, 10 mg/ml). Blood was treated with heparin. B and T cells were isolated from these blood samples and used in the cytotoxic T lymphocyte assays described below.
  • CTL Assays.
  • Autologous B cell lines from each animal were established by transforming B cells with H. papio. Separate samples of peripheral blood mononuclear cells were restimulated with immortalized autologous B cells infected with a recombinant vaccinia virus that encodes each of the HCV immunogens (NS3, NS4, NS5a, and NS5b). Two weeks later, CD8+ T lymphocytes were purified from the samples using magnetic beads.
  • The ability of T cells from each animal to lyse its autologous B cell line infected with vaccinia virus encoding the same immunogens used to immunize the animals was tested using a standard 51Cr-release assay. Ratios of effector Cr cells) to target (B cells) of 40:1, 10:1, and 2:1 were tested.
  • Percent Lysis was Calculated in Each Assay. A positive CTL response was noted if at least 10% more lysis occurred with homologous cells (stimulated with a vaccinia virus encoding an HCV immunogen) than with heterologous cells (stimulated with a vaccinia virus encoding an unrelated immunogen) for each of the two highest effector to target cell ratios tested..
  • Table I shows the number of animals with positive responses in a cytotoxic T lymphocyte assay.
    TABLE I
    Number of animals with CTL responses
    Immunogen No. of Animals
    pCMVNS3-5 0/4
    pCMVNS3-5 & MIP- 1/4
    pCMVNS3-5 & RANTES 0/4
  • Table II shows percent lysis of target cells from animal CK556 after restimulation. Homologous cells were stimulated with vaccinia virus encoding HCV polypeptide NS3.
    TABLE II
    Percent lysis of targets after restimulation (animal CK556)
    Effector:Target Homologous1 Heterologous2
    pre-immunization 40:1 2 11
    pre-immunization 10:1 6 10
    pre-immunization  2:1 7 6
    2 weeks post 3rd 40:1 27 <1
    immunization
    2 weeks post 3rd 10:1 17 <1
    immunization
    2 weeks post 3rd  2:1 11 <1
    immunization

  • 1 stimulated with a vaccinia virus encoding HCV polypeptide NS3.

    2 stimulated with a vaccinia virus encoding an unrelated immunogen.
  • The results reported in Table II demonstrate that co-administration of HCV immunogens and the chemokine MIP-1α resulted in an increased lysis of autologous B cells infected with vaccinia virus encoding HCV polypeptide NS3.
  • EXAMPLE 2
  • Co-Administration of HIV Immunogens and BLC Increases the Titer of Anti-p55gag
  • Balb/c mice received bilateral injections into the anterior tibialis muscle of 10 μg of a p55 plasmid, which encodes HIV gag, either alone or together with a total of 100 μg of a plasmid encoding B lymphocyte chemokine (BLC; Nature 391, 799-803, 1998). Fifty μg of BLC-encoding plasmid were injected into each muscle.
  • The animals were bled at 3 and 6 weeks after immunization, and anti-p55gag antibody titer was measured by ELISA. FIG. 5 shows that anti-gag antibody titer in immunized mice is increased at three weeks after immunization and continues to increase up to at least six weeks.
  • NUMBERED REFERENCES
  • 1. Ulmer, J., et al. 1993. Heterologous protection against influenze by injection of DNA encoding a viral protein [see comments]. Science 259:1745-9.
  • 2. Fynan, E., R. et al. 1993. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 90:11478-82.
  • 3. Cox, G., et al. 1993. Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J Virol 67:5664-7.
  • 4. Sedegah, M., et al. 1994. Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc Natl Acad Sci USA 91:9866-70.
  • 5. Barry, M., et al. 1995. Protection against mycoplasma infection using expression-library immunization. Nature 377-632-5.
  • 6. Conry, R., et al. 1995. A carcinoembryonic antigen polynucleotide vaccine has in vivo antitumor activity. Gene Ther 2:59-65.
  • 7. Syrengelas, A., et al.. 1996. DNA immunization induces protective immunity against B-cell lymphoma Nat Med 2:1038-1041
  • 8. Tascon, R., et al. 1996. Vaccination against tuberculosis by DNA injection. Nat Med 2:888-92.
  • 9. Yasutomi, Y., et al. 1996. Simian immunodeficiency virus-specific cytotoxic T-lymphocyte induction through DNA vaccination of rhesus monkeys. J Virol 70:678-81.
  • 10. Letvin, M., et al. 1997. Potent protective anti-HIV immune responses generated by bimodal HIV envelope DNA plus protein vaccination. Proc Natl Acad Sci USA 94:9378-9383.
  • 11. Xiang, Z., and H. Ertl. 1995. Manipulation of the immune responses to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 2:129-35.
  • 12. Conry, R., et al. 1996. Selected strategies to augment polynucleotide immunization. Gene Ther 3:67-74.
  • 13. Irvine, K., et al. 1996. Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J. Immunol 156:238-45.
  • 14. Chow, Y., et al. 1997. Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B Surface antigen and interieukin-2. J Virol 71:169-78.
  • 15. Iwasaki, A., et al. 1997. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 158:4591-601.
  • 16. Kim, J., et al. 1997. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol 158:816-26.
  • 17. Okada, E., et al. 1997. Intranasal immunization of a DNA vaccine with IL-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HV-1 antigens. J Immunol 159:363847.
  • 18. Geissler, M., et al. 1997. Enhancement of cellular and humoral immune responses to hepatitis C virus core proteins .using DNA-based vaccines augmented with cytokine-expressing plasmids. J Immunol 158:1231-7.
  • 19. Larsen, D., et al. 1998. Coadministration of DNA encoding interleukin-6 and hemagglutinin confers protection from influenza virus challenge in mice. J Virol 72:1704-8.
  • 20. Butcher, E. 1991. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033-6.
  • 21. Springer, T. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301-14.
  • 22. Butcher, E., and L. Picker. 1996. Lymphocyte homing and homeostasis. Science 272:60-6.
  • 23. Schall, T., and K. Bacon. 1994. Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 6:865-73.
  • 24. Taub, D., et al. 1993. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta Science 260:355-8.
  • 25. Schall, T., et al. 1993. Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 177:1821-6.
  • 26. Schall, T., et al. 1990. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347:669-71.
  • 27. Rot, A., et al. 1992. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 176:1489-95.

Claims (29)

1. An immunogenic composition, comprising:
a DNA immunogen; and
a chemokine or a polynucleotide encoding a chemokine.
2. The immunogenic composition of claim 1 wherein the DNA immunogen comprises a polynucleotide encoding a viral immunogen.
3. The immunogenic composition of claim 2 wherein the polynucleotide encodes a hepatitis C virus non-structural polypeptide.
4. The immunogenic composition of claim 3 wherein the hepatitis C virus non-structural polypeptide is selected from the group consisting of NS3, NS4, NS5a, and NS5b.
5. The immunogenic composition of claim 2 wherein the polynucleotide encodes an HIV polypeptide.
6. The immunogenic composition of claim 5 wherein the HIV polypeptide is a gag polypeptide.
7. The immunogenic composition of claim 1 wherein the DNA immunogen comprises a polynucleotide encoding an immunogen expressed by a tumor.
8. The immunogenic composition of claim 1 wherein the chemokine is macrophage inflammatory protein 1α (MIP-1α).
9. The immunogenic composition of claim 1 wherein the chemokine is B lymphocyte chemokine (BLC).
10. The immunogenic composition of claim 1 further comprising a pharmaceutically acceptable carrier.
11. A method of enhancing an immune response to a DNA immunogen in a mammal, comprising the step of:
administering to the mammal (i) a chemokine or a first polynucleotide encoding a chemokine and (ii) a DNA immunogen, whereby an immune response to the DNA immunogen is enhanced.
12. The method of claim 11 wherein a chemokine is administered.
13. The method of claim 12 wherein the chemokine and the DNA immunogen are co-administered.
14. The method of claim 12 wherein the chemokine is administered prior to administration of the DNA immunogen.
15. The method of claim 12 wherein the DNA immunogen is administered prior to administration of the chemokine.
16. The method of claim 11 wherein a first polynucleotide encoding the chemokine is administered.
17. The method of claim 16 wherein the first polynucleotide and the DNA immunogen are co-administered.
18. The method of claim 16 wherein the polynucleotide is administered prior to administration of the DNA immunogen.
19. The method of claim 16 wherein the DNA immunogen is administered prior to administration of the first polynucleotide.
20. The method of claim 16 wherein a second polynucleotide which comprises (a) the first polynucleotide and (b) the DNA immunogen is administered.
21. The method of claim 11 wherein the chemokine is macrophage inflammatory protein 1α (MIP-1α).
22. The method of claim 11 wherein the chemokine is B lymphocyte chemokine (BLC).
23. The method of claim 11 wherein the DNA immunogen comprises a polynucleotide which encodes a hepatitis C virus non-structural polypeptide.
24. The method of claim 23 wherein the hepatitis C virus non-structural polypeptide is selected from the group consisting of NS3, NS4, NS5a, and NS5b.
25. The method of claim 23 wherein the polynucleotide encodes an HIV polypeptide.
26. The method of claim 25 wherein the HIV polypeptide is a gag polypeptide.
27. The method of claim 11 wherein the mammal is a human.
28. The method of claim 11 wherein the immune response is an antibody response.
29. The method of claim 11 wherein the immune response is a cytotoxic T lymphocyte response.
US11/095,129 1998-04-22 2005-03-29 Enhancing immune responses to genetic immunization by using a chemokine Abandoned US20050281779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/095,129 US20050281779A1 (en) 1998-04-22 2005-03-29 Enhancing immune responses to genetic immunization by using a chemokine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US8260098P 1998-04-22 1998-04-22
PCT/US1999/008802 WO1999053960A2 (en) 1998-04-22 1999-04-22 Enhancing immune responses to genetic immunization by using a chemokine
US09/673,798 US6919318B1 (en) 1998-04-22 1999-04-22 Enhancing immune responses to genetic immunization by using a chemokine
US11/095,129 US20050281779A1 (en) 1998-04-22 2005-03-29 Enhancing immune responses to genetic immunization by using a chemokine

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1999/008802 Division WO1999053960A2 (en) 1998-04-22 1999-04-22 Enhancing immune responses to genetic immunization by using a chemokine
US09/673,798 Division US6919318B1 (en) 1998-04-22 1999-04-22 Enhancing immune responses to genetic immunization by using a chemokine

Publications (1)

Publication Number Publication Date
US20050281779A1 true US20050281779A1 (en) 2005-12-22

Family

ID=35500514

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/673,798 Expired - Fee Related US6919318B1 (en) 1998-04-22 1999-04-22 Enhancing immune responses to genetic immunization by using a chemokine
US11/095,129 Abandoned US20050281779A1 (en) 1998-04-22 2005-03-29 Enhancing immune responses to genetic immunization by using a chemokine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/673,798 Expired - Fee Related US6919318B1 (en) 1998-04-22 1999-04-22 Enhancing immune responses to genetic immunization by using a chemokine

Country Status (1)

Country Link
US (2) US6919318B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919318B1 (en) * 1998-04-22 2005-07-19 Chiron Corporation Enhancing immune responses to genetic immunization by using a chemokine
US7708983B2 (en) * 1998-12-11 2010-05-04 Alfredo Garzino-Demo Directional induction of immune response by co-administration of antigens with chemokines
US7384641B2 (en) * 2000-06-12 2008-06-10 University Of Maryland Biotechnology Institute Immuno-modulating effects of chemokines in DNA vaccination
EP2550362B1 (en) 2010-03-25 2017-01-04 Oregon Health&Science University Cmv glycoproteins and recombinant vectors
CA2832109C (en) 2011-06-10 2021-07-06 Oregon Health & Science University Cmv glycoproteins and recombinant vectors
CA2789539A1 (en) 2011-09-12 2013-03-12 International Aids Vaccine Initiative Immunoselection of recombinant vesicular stomatitis virus expressing hiv-1 proteins by broadly neutralizing antibodies
US9402894B2 (en) 2011-10-27 2016-08-02 International Aids Vaccine Initiative Viral particles derived from an enveloped virus
EP2679596B1 (en) 2012-06-27 2017-04-12 International Aids Vaccine Initiative HIV-1 env glycoprotein variant
US20150065381A1 (en) 2013-09-05 2015-03-05 International Aids Vaccine Initiative Methods of identifying novel hiv-1 immunogens
US10058604B2 (en) 2013-10-07 2018-08-28 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers
EP3069730A3 (en) 2015-03-20 2017-03-15 International Aids Vaccine Initiative Soluble hiv-1 envelope glycoprotein trimers
EP3072901A1 (en) 2015-03-23 2016-09-28 International Aids Vaccine Initiative Soluble hiv-1 envelope glycoprotein trimers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846546A (en) * 1996-01-23 1998-12-08 St. Jude Children's Research Hospital Preparation and use of viral vectors for mixed envelope protein immunogenic composition against human immunodeficiency viruses
US6214540B1 (en) * 1997-03-26 2001-04-10 University Of Maryland Biotechnology Institute Chemokines that inhibit immunodeficiency virus infection and methods based thereon
US6297048B1 (en) * 1992-02-04 2001-10-02 Chiron Corporation Hepatitis therapeutics
US6355247B1 (en) * 1994-06-02 2002-03-12 Chiron Corporation Nucleic acid immunization using a virus-based infection/transfection system
US6383774B1 (en) * 1996-12-03 2002-05-07 Heska Corporation Parasitic nematode transglutaminase, nucleic acid molecules and uses thereof
US6569418B1 (en) * 1997-12-11 2003-05-27 University Of Maryland Biotechnology Institute Immuno-modulating effects of chemokines in DNA vaccination
US6919318B1 (en) * 1998-04-22 2005-07-19 Chiron Corporation Enhancing immune responses to genetic immunization by using a chemokine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2172536T3 (en) 1993-06-15 2002-10-01 British Biotech Pharm LIBERATION AND MOBILIZATION OF HEMATOPOYETIC CELLS.
CA2201592A1 (en) 1994-10-03 1996-04-18 The Government Of The United States Of America, Represented By The Secre Tary, Department Of Health And Human Services Enhanced immune response by introduction of cytokine gene and/or costimulatory molecule b7 gene in a recombinant virus expressing system
US5935568A (en) 1995-05-18 1999-08-10 National Jewish Medical & Research Center Gene therapy for effector cell regulation
EP0869812B1 (en) 1995-11-30 2004-03-24 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES C-c chemokines that inhibit retrovirus infection
WO1998015286A1 (en) 1996-10-08 1998-04-16 La Jolla Institute For Allergy & Immunology Carbohydrate-specific cytolytic t cells
CA2314006A1 (en) 1997-12-11 1999-06-17 Robert C. Gallo Method and composition to enhance the efficacy of a vaccine using chemokines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297048B1 (en) * 1992-02-04 2001-10-02 Chiron Corporation Hepatitis therapeutics
US6355247B1 (en) * 1994-06-02 2002-03-12 Chiron Corporation Nucleic acid immunization using a virus-based infection/transfection system
US5846546A (en) * 1996-01-23 1998-12-08 St. Jude Children's Research Hospital Preparation and use of viral vectors for mixed envelope protein immunogenic composition against human immunodeficiency viruses
US6383774B1 (en) * 1996-12-03 2002-05-07 Heska Corporation Parasitic nematode transglutaminase, nucleic acid molecules and uses thereof
US6214540B1 (en) * 1997-03-26 2001-04-10 University Of Maryland Biotechnology Institute Chemokines that inhibit immunodeficiency virus infection and methods based thereon
US6569418B1 (en) * 1997-12-11 2003-05-27 University Of Maryland Biotechnology Institute Immuno-modulating effects of chemokines in DNA vaccination
US6919318B1 (en) * 1998-04-22 2005-07-19 Chiron Corporation Enhancing immune responses to genetic immunization by using a chemokine

Also Published As

Publication number Publication date
US6919318B1 (en) 2005-07-19

Similar Documents

Publication Publication Date Title
US20050281779A1 (en) Enhancing immune responses to genetic immunization by using a chemokine
Cohen et al. Modulating the immune response to genetic immunization
Calarota et al. Enhancement of human immunodeficiency virus type 1‐DNA vaccine potency through incorporation of T‐helper 1 molecular adjuvants
US8586055B2 (en) DNA immunization protocols
Ou‐Yang et al. Co‐delivery of GM‐CSF gene enhances the immune responses of hepatitis C viral core protein‐expressing DNA vaccine: role of dendritic cells
AU2004231464B2 (en) Immunogenic composition and methods
Lu et al. Macrophage inflammatory protein-1α (MIP-1α) expression plasmid enhances DNA vaccine-induced immune response against HIV-1
Schadeck et al. A dose sparing effect by plasmid encoded IL-12 adjuvant on a SIVgag-plasmid DNA vaccine in rhesus macaques
CN111358953A (en) Vaccine vector for efficiently inducing humoral immune response of organism, preparation method and application thereof
US20130078276A1 (en) Vectors expressing hiv antigens and gm-csf and related methods of generating an immune response
NZ535148A (en) HIV peptides, antigens, vaccine compositions, immunoassay kit and a method of detecting antibodies induced by HIV
EP1119630B1 (en) Nucleic acid constructs for genetic immunisation
Leitner et al. Type I Interferons are essential for the efficacy of replicase-based DNA vaccines
US20070026015A1 (en) Method
CA2326685C (en) Enhancing immune responses to genetic immunization by using a chemokine
MX2007004734A (en) Combination of a recombinant mycobacterium and a biologically active agent as a vaccine.
US20090169503A1 (en) Dna-based vaccination of retroviral-infected individuals undergoing treatment
Flynn et al. Factors influencing cellular immune responses to feline immunodeficiency virus induced by DNA vaccination
Ishii et al. Prevention of neonatal tolerance by a plasmid encoding granulocyte-macrophage colony stimulating factor
EP2021356B1 (en) Hiv vaccine
EP1250933A1 (en) Vaccines including as an adjuvant high dose type I IFN
Sin et al. Improving DNA vaccines targeting viral infection
JP5635950B2 (en) Immunogenic compositions and methods
RU2362586C2 (en) Pharmaceutical compositions for therapeutic application
KR20170081646A (en) Therapeutic compositions and methods for inducing an immune response to herpes simplex virus type 2(hsv-2)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION