US20050251113A1 - Computer assisted intramedullary rod surgery system with enhanced features - Google Patents

Computer assisted intramedullary rod surgery system with enhanced features Download PDF

Info

Publication number
US20050251113A1
US20050251113A1 US11/183,717 US18371705A US2005251113A1 US 20050251113 A1 US20050251113 A1 US 20050251113A1 US 18371705 A US18371705 A US 18371705A US 2005251113 A1 US2005251113 A1 US 2005251113A1
Authority
US
United States
Prior art keywords
surgical implant
rod
pose
surgical
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/183,717
Inventor
Thomas Kienzle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/183,717 priority Critical patent/US20050251113A1/en
Publication of US20050251113A1 publication Critical patent/US20050251113A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1703Guides or aligning means for drills, mills, pins or wires using imaging means, e.g. by X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1725Guides or aligning means for drills, mills, pins or wires for applying transverse screws or pins through intramedullary nails or pins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems

Definitions

  • This invention relates to a computer assisted surgery system for use in inserting interlocking screws in an intramedullary rod.
  • a current surgical treatment for fractures of the shaft of long bones is the insertion of an intramedullary rod (IM rod).
  • IM rod intramedullary rod
  • These devices are relatively rigid devices inserted into one end of the bone and down the center canal of the bone shaft, such that the fracture site is bridged.
  • Transverse holes in either end of the IM rod receive screws inserted transversely through the bone in order to lock the two bone fragments relative to one another.
  • the insertion of the screws farthest from the IM rod insertion hole is currently a difficult and time consuming procedure requiring numerous x-ray images.
  • An intraoperative x-ray machine (C-arm) is repeatedly fired and reoriented until it is exactly aligned with the transverse holes as evidenced by x-ray images displaying the holes as “perfect circles”.
  • the surgeon uses further x-ray images to align the drill tip with the images of the holes.
  • the surgeon uses the source-to-receiver axis of the C-arm as an external reference frame along which the long axis of the drill is oriented. Even after this, several attempts may be required to drill the holes into the bone and through the transverse holes.
  • Radiolucent drills and drill guides and laser sighting devices have been developed which, in the best cases, improve the speed and accuracy of hole placement, but still require a significant number of x-ray images to be obtained in order to first achieve a C-arm orientation that produces “perfect circles” in the images.
  • Image-guided approaches have been developed, but these too require the “perfect circle” alignment of the C-arm.
  • Most image guided systems display the drill trajectory over “perfect circle” images of the IM rod.
  • One system assists the surgeon in correctly orienting the C-arm to obtain “perfect circles”: “Surgical Navigation Based on Fluoroscopy Clinical Application for Computer-Assisted Distal Locking of Intramedullary Implants”, Suhm, et. al., Computer Aided Surgery 5:391-400, 2000.
  • Another difficulty with existing image guided systems is that the surgeon must align the drill guide while viewing an “end on” representation of the drill guide, which can be quite challenging.
  • U.S. Pat. No. 6,285,902 entitled “Computer Assisted Targeting Device for Use in Orthopaedic Surgery” describes a system in which, preferably, orthopaedic surgical tools outfitted with infrared LEDs are tracked by an optical localizing device. The poses of these tools are determined and graphic representations of the tools are superimposed on standard intraoperative x-ray images. This allows the surgeon to view, in real time, the position of the tool or tools with respect to an imaged body part or another tool or tools.
  • a drill guide outfitted with infrared LEDs is tracked and the trajectory of its bore is displayed on the x-ray image of the involved bone. This allows a surgeon to accurately predict the trajectory of a guide pin that passes through the bore of the drill guide.
  • the guide pin once inserted, is used as a reference for the insertion of implantable cannulated screws.
  • An alternative embodiment of the previous invention allows its use in the insertion of distal interlocking screws in an intramedullary (IM) rod by displaying the drill guide trajectory relative to a computer generated representation of a cross-section of the IM rod.
  • the current invention is an enhancement to the previous invention that adjusts the graphic representations of the IM rod based on information developed from the x-ray images. This facilitates the more accurate alignment of a drill through the holes and eliminates the need to align the x-ray beam with the holes in the IM rod. This can significantly reduce the amount of radiation involved in the procedure and reduce the time required to insert the screws.
  • one objective of the present invention is to provide a computer assisted surgery system for positioning an instrument relative to a portion of a surgical implant. More specifically, it assists a surgeon in drilling a hole through a long bone and through transversely oriented holes in an intramedullary rod (IM rod) during a fracture fixation procedure regardless of deformation of the IM rod.
  • IM rod intramedullary rod
  • Another objective of the invention is to provide a technique and apparatus for accurately displaying the trajectory of the drill relative to the holes of the IM rod.
  • Still another objective of the invention is to provide a technique and apparatus for using x-ray images of the IM rod to accurately determine the locations of the holes.
  • a computer assisted surgery system including a computer, a localizing device and a display monitor.
  • the system also includes a tracked adapter attached to the IM rod and a drill guide, both of which have their poses determined by the localizer.
  • the pose of the adapter and the IM rod are measured by the localizing device.
  • Two approximately orthogonal x-ray images are then obtained of the IM rod in the vicinity of the holes.
  • Image processing techniques are used to accurately determine the location of the IM rod from the x-ray images and an adjusted pose is calculated for the IM rod.
  • a graphic representation of the drill trajectory is displayed superimposed over the images of the IM rod and over a graphic representation of the IM rod, in order to assist the surgeon in placing the drill in the proper position relative to the IM rod holes.
  • FIG. 1 is a perspective view of an intramedullary rod inserted into a femur, a tracked adapter attached to the intramedullary rod, a drill guide, a partial C-arm, the computer assisted surgery system with localizer camera and display screen containing images and graphics.
  • FIG. 2 is a perspective view of the intramedullary rod with attached tracked adapter.
  • FIG. 3 is an example of a screen display of two images and a generated graphic with superimposed instrument representations.
  • FIG. 4 is a perspective view of an intramedullary rod inserted into a femur, a tracked adapter attached to the intramedullary rod, a drill guide, a partial C-arm, and a example of a screen display of an image with superimposed graphics.
  • FIG. 5 is a diagrammatic illustration of the software operation during pose adjustment.
  • An embodiment of the image guided system of U.S. Pat. No. 6,285,902 teaches a system for placing distal interlocking screws in an IM rod.
  • the system is based on a computer ( 121 ) that receives input from an x-ray imaging device ( 110 ) and a localizing device ( 120 ), and displays surgical instrument representations ( 123 ) over x-ray images ( 125 and 126 ) in real time.
  • a tracked adapter ( 129 ) is attached to the exposed end of the inserted IM rod ( 130 ) such that the pose of the rod can be tracked.
  • a drill guide ( 128 ) is also tracked, and a representation of its trajectory ( 123 ) is overlaid on x-ray images ( 125 and 126 ) of the IM rod ( 130 ). Additionally, the system displays, in a separate window ( 127 ), the drill guide trajectory ( 123 ) relative to a graphical representation ( 124 ) of a cross-section of the IM rod ( 130 ) at the level of the transverse interlocking holes ( 131 ) by projecting models of these instruments onto a picture plane ( 138 ).
  • the surgeon uses the AP image ( 126 ) of the IM rod ( 130 ) to align the drill guide ( 128 ) in the coronal plane, and the lateral image ( 125 ) and the cross sectional graphic ( 124 ) to align the drill guide ( 128 ) in the axial plane.
  • the current invention improves upon the previous invention by providing greater accuracy in generating the graphic representations ( 124 ) of the IM rod ( 130 ) relative to the drill guide ( 128 ), regardless of bending of the IM rod ( 130 ) or minor errors in attaching the adapter ( 129 ) to the IM rod ( 130 ).
  • This improvement allows the surgeon to use these relative graphic representations ( 124 and 123 ) alone to exactly align the drill guide ( 128 ) in the axial plane.
  • the surgeon still uses the AP view ( 126 ) to align the drill guide ( 128 ) in the coronal plane, there is no longer a need to rely on the lateral view ( 125 ), thus avoiding the difficulty of positioning a drill guide ( 128 ) using an “end-on” representation, during the axial alignment of the trajectory. It also eliminates the need for the surgeon to estimate the required anteroposterior position of the drill guide tip based on the distance between the IM rod and the femoral shaft cortex and the amount of axial rotation of the IM rod.
  • the IM rod ( 130 ) is inserted in the long bone ( 133 ) in the usual manner.
  • a tracking device preferably comprising an adapter ( 136 ) to the IM rod ( 130 ) and an array of three or more localizing emitters ( 137 ), is attached to the exposed end of the IM rod ( 130 ).
  • a coordinate frame, A is defined preferably at the interface between the IM rod ( 130 ) and the tracking device ( 129 ) and is in a known and fixed relationship to the localizing emitters ( 137 ).
  • Computer models of the features of the tracking adapter ( 129 ) and IM rod relative to coordinate frame A and graphic representations of features of the IM rod ( 130 ) relative to coordinate frame A are stored in the computer's long term memory.
  • a second coordinate frame, Z is defined relative to the localizing emitters ( 137 ) of the tracking device ( 129 ) and is preferably located on the IM rod ( 130 ) halfway between the transverse holes ( 131 ). It is oriented with the z-axis coincident to the long axis of the IM rod ( 130 ) and the x-axis parallel to the bore of the transverse holes ( 131 ).
  • Another coordinate frame, G is selected relative the localizing emitters ( 137 ) such that its x-axis and y-axis define a picture plane ( 138 ) upon which instrument representations may be projected to form an image for display.
  • the z-axis of coordinate frame G is preferably oriented such that it passes through the centers of both distal transverse holes ( 131 ), thus causing representations of both distal transverse holes ( 131 ) to project to the same location on the picture plane ( 138 ).
  • the picture plane ( 138 ) may be selected in any pose that is near-orthogonal (e.g., within 20 degrees) to the long axis of the IM rod without departing from the instant invention. Further, separate picture planes may be selected for each transverse hole through which the system is to assist the surgeon in inserting a screw.
  • a graphic representation of the IM rod ( 130 ) is projected onto the picture plane ( 138 ) defined by coordinate frame G. Because the picture plane ( 138 ) is defined to be substantially perpendicular to the long axis of the IM rod ( 130 ), the image projected on it will be an “end-view” of the IM rod graphic representation. This end-view image is projected onto the picture plane ( 138 ) and, as shown in FIG. 3 , is transformed into a graphic representation ( 124 ) of the IM rod and displayed in a field ( 127 ) of the display screen.
  • the software can display different versions of an instrument representation for different viewing angles.
  • the end-view version of the IM rod representation ( 124 ) is a pair of semicircles representing the cross section of the IM rod ( 130 ) with a gap between them representing the transverse holes ( 131 ). Virtual lines are additionally displayed as dashed lines extending from the straight portion of the semicircles to emphasize the orientation of the transverse screw holes ( 131 ).
  • the purpose of this representation ( 124 ) is to provide the surgeon with improved information regarding the orientation and location of the transverse holes ( 131 ) in the axial plane.
  • the C-arm ( 110 ) acquires x-ray images ( 125 and 126 ) of the bone ( 133 ) that include the transverse holes ( 131 ) of the inserted IM rod ( 130 ). These images ( 125 and 126 ) need not be exactly anteroposterior or exactly lateral with respect to the IM rod ( 130 ) (i.e., “perfect circles” need not be obtained).
  • the C-arm ( 110 ) need be oriented only to within about 30 degrees of exactly AP or lateral, and the misalignment may be either axial or oblique.
  • the pose of the C-arm ( 110 ) and the pose of the tracking device ( 129 ) and its related coordinate frame A are calculated by the localizing device ( 120 ) when the image is acquired. If the x-axis ( 134 ) or y-axis ( 135 ) of coordinate frame A is within, preferably, 30 degrees of the source-receiver axis of the C-arm ( 110 ), then the image is considered lateral or anteroposterier (AP) respectively.
  • AP anteroposterier
  • the software will generate an AP version of the graphic representation ( 145 ) of the IM rod which is intended to highlight the transverse holes ( 131 ).
  • This graphic representation ( 145 ) is defined relative to coordinate frame A, and is overlaid onto the AP image ( 126 ) of the IM rod ( 130 ).
  • This AP version of the IM rod representation ( 145 ) comprises lines along the sides of the transverse holes' image ( 141 ), with dashed virtual lines extending from either side to emphasize the orientation of the holes ( 141 ).
  • the drill guide representation ( 123 ) is displayed relative to the IM rod representation ( 145 ) as both are overlaid on the AP image ( 126 ) and improves the surgeon's ability to accurately align the drill guide ( 128 ) with the IM rod transverse holes ( 131 ) in the coronal plane.
  • the software will optionally generate a lateral version of the graphic representation ( 144 ) of the transverse holes ( 131 ).
  • This graphic representation ( 144 ) comprises two circles representing the openings of the two holes. It is overlaid on the transverse holes ( 141 ) seen in the lateral image ( 125 ) to improve the surgeons ability to identify the starting point for the drill. However, this is of less importance when compared to the utility of the cross-sectional graphic ( 127 ).
  • the graphic representation ( 124 , 144 and 145 ) of the IM rod ( 131 ) may take other forms including 3-D surface models, bitmaps, or other wireframe models. Any version of the graphic representations ( 124 , 144 and 145 ), regardless of view orientation, that provides the surgeon with sufficient information to orient the drill guide ( 128 ) relative to the IM rod ( 130 ) in a given plane may be used without departing from the instant invention.
  • the C-arm source-receiver axis ( 150 ) is within, preferably, 30 degrees of the x-axis or y-axis of coordinate frame Z then adjustment is to be performed along the y-axis or x-axis, respectively. While the following adjustment steps are illustrated in FIG. 4 , they are preferably performed without being displayed to the user. The adjustment is accomplished by projecting this adjustment axis ( 151 ) of the Z coordinate frame, onto the acquired image ( 125 ) using the conic projection model, and then analyzing the image data along a specific segment ( 156 ) of this projected line ( 155 ).
  • Image processing techniques known to those skilled in the art threshold the image data within the image data segment ( 156 ) and find the center ( 158 ) of the radio-opaque IM rod image ( 140 ). The difference between this image location ( 158 ) and the projected origin ( 157 ) of coordinate frame Z is calculated and the difference value stored. Alternatively, any image processing techniques, or other means for directly measuring the positional error of the IM rod ( 130 ) at or near the transverse holes ( 131 ) may be used without departing from the instant invention.
  • the corresponding Z frame x-axis and y-axis components are calculated by techniques known in the art. These difference components are then used to develop an adjustment transformation.
  • this adjustment transformation is applied to coordinate frame A, causing it to rotate such that the IM rod's AP and lateral graphic representations ( 144 and 145 ) defined relative to A, will align with the IM rod's x-ray images ( 140 ).
  • the positions of the cross sectional representation ( 124 ), the AP representation ( 145 ), and the optional lateral representation ( 144 ), which are displayed to the user more accurately represent the actual position of the IM rod ( 130 ).
  • the overlay of the graphic representations ( 124 , 144 and 145 ) may be corrected by the translation of coordinate frame A instead of by rotation.
  • the graphic representations ( 124 , 144 and 145 ) could be altered to effect the correction.
  • the coordinate frame A could be left unchanged and the graphic representations ( 123 , 144 and 145 ) could be altered to simulate the flexure of the IM rod ( 130 ).
  • Any correction means that uses the difference between the expected and actual positions of the IM rod ( 130 ) to modify its graphic representation in such a way to make it more accurate may be used without departing from the instant invention.
  • the image is acquired ( 160 ) and the poses of the C-arm and tracking clamp determined ( 161 ). If the y-axis of the Z coordinate frame is near-aligned with the C-arm ( 162 ) then project the Z frame x-axis onto the image ( 163 ), isolate an appropriate segment of image data along the projected line ( 164 ), apply a thresholding algorithm to emphasize the IM rod ( 165 ), find the center of the IM rod in the image data ( 166 ), and calculate the difference between the center of the IM rod's image and the projected Z-frame's origin as modeled ( 167 ).
  • the surgeon prepares to drill the holes in the bone ( 131 ).
  • the drill guide ( 128 ) generates a trajectory ( 123 ) that overlays both image fields ( 125 and 126 ) and projects onto the graphics field ( 127 ) as well.
  • the surgeon aligns the drill trajectory ( 123 ) to pass through the hole markers of the AP IM rod representation ( 145 ) and through the hole path on the cross sectional IM rod representation ( 124 ) in the graphics field ( 127 ).
  • the drill is advanced in the drill guide ( 128 ).
  • the second hole is prepared in a similar fashion and confirmatory x-rays are obtained prior to inserting appropriately sized screws. Alternately, self-tapping screws may be directly inserted with a suitable instrument.

Abstract

A computer assisted surgery system for positioning a surgical implant within a patient's body that includes a localizing device configured to measure a pose of the surgical implant, an imaging device adapted for acquiring images of the surgical implant, and a computer adapted for calculating an adjusted pose for the surgical implant based on information developed from the images so as to compensate for deformation of the surgical implant or inaccuracies in localization.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 10/756,020, entitled “Computer Assisted Intramedullary Rod Surgery System With Enhanced Features,” which was filed Jan. 12, 2004 (the “'020 application”), which is in turn a continuation of U.S. application Ser. No. 09/683,107, entitled “Computer Assisted Intramedullary Rod Surgery System With Enhanced Features,” which was filed Nov. 19, 2001, now U.S. Pat. No. 6,718,194 (the “'194 patent”), which claims the benefit of U.S. Provisional Application No. 60/249,697, which was filed Nov. 17, 2000 (the “'697 application”). The '020 application, the '194 patent, and the '697 application are hereby incorporated by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • This invention relates to a computer assisted surgery system for use in inserting interlocking screws in an intramedullary rod.
  • A current surgical treatment for fractures of the shaft of long bones (e.g., femur and tibia) is the insertion of an intramedullary rod (IM rod). These devices are relatively rigid devices inserted into one end of the bone and down the center canal of the bone shaft, such that the fracture site is bridged. Transverse holes in either end of the IM rod receive screws inserted transversely through the bone in order to lock the two bone fragments relative to one another. The insertion of the screws farthest from the IM rod insertion hole is currently a difficult and time consuming procedure requiring numerous x-ray images. An intraoperative x-ray machine (C-arm) is repeatedly fired and reoriented until it is exactly aligned with the transverse holes as evidenced by x-ray images displaying the holes as “perfect circles”. To establish a starting point, the surgeon uses further x-ray images to align the drill tip with the images of the holes. The surgeon then uses the source-to-receiver axis of the C-arm as an external reference frame along which the long axis of the drill is oriented. Even after this, several attempts may be required to drill the holes into the bone and through the transverse holes.
  • Several alternative approaches have been employed in an attempt to speed this process. External jigs have been tried with little success because inaccuracies in the jig, inaccuracy of the mounting between jig and IM rod, and deformation of the IM rod accumulate to cause the final jig hole positions to be unreliably aligned with the IM rod holes. Radiolucent drills and drill guides and laser sighting devices have been developed which, in the best cases, improve the speed and accuracy of hole placement, but still require a significant number of x-ray images to be obtained in order to first achieve a C-arm orientation that produces “perfect circles” in the images.
  • Image-guided approaches have been developed, but these too require the “perfect circle” alignment of the C-arm. Most image guided systems display the drill trajectory over “perfect circle” images of the IM rod. One system assists the surgeon in correctly orienting the C-arm to obtain “perfect circles”: “Surgical Navigation Based on Fluoroscopy Clinical Application for Computer-Assisted Distal Locking of Intramedullary Implants”, Suhm, et. al., Computer Aided Surgery 5:391-400, 2000. Another difficulty with existing image guided systems is that the surgeon must align the drill guide while viewing an “end on” representation of the drill guide, which can be quite challenging.
  • Several devices have been described (U.S. Pat. Nos. 5,411,503, 5,540,691, 6,074,394, 6,081,741) in which an emitter is inserted into the IM rod, down to the level of the interlocking holes, and transducers on the drill guide report the position of the drill trajectory relative to the holes. These devices, however, require equipment dedicated to this one surgical task, require the extra step of inserting an emitter to the level of the hole, and typically provide only rudimentary “end on” representations of the drill trajectory.
  • U.S. Pat. No. 6,285,902, incorporated herein by reference, entitled “Computer Assisted Targeting Device for Use in Orthopaedic Surgery” describes a system in which, preferably, orthopaedic surgical tools outfitted with infrared LEDs are tracked by an optical localizing device. The poses of these tools are determined and graphic representations of the tools are superimposed on standard intraoperative x-ray images. This allows the surgeon to view, in real time, the position of the tool or tools with respect to an imaged body part or another tool or tools. In the preferred embodiment, a drill guide outfitted with infrared LEDs is tracked and the trajectory of its bore is displayed on the x-ray image of the involved bone. This allows a surgeon to accurately predict the trajectory of a guide pin that passes through the bore of the drill guide. The guide pin, once inserted, is used as a reference for the insertion of implantable cannulated screws.
  • An alternative embodiment of the previous invention, described in the referenced patent, allows its use in the insertion of distal interlocking screws in an intramedullary (IM) rod by displaying the drill guide trajectory relative to a computer generated representation of a cross-section of the IM rod. The current invention is an enhancement to the previous invention that adjusts the graphic representations of the IM rod based on information developed from the x-ray images. This facilitates the more accurate alignment of a drill through the holes and eliminates the need to align the x-ray beam with the holes in the IM rod. This can significantly reduce the amount of radiation involved in the procedure and reduce the time required to insert the screws.
  • SUMMARY OF THE INVENTION
  • Accordingly, one objective of the present invention is to provide a computer assisted surgery system for positioning an instrument relative to a portion of a surgical implant. More specifically, it assists a surgeon in drilling a hole through a long bone and through transversely oriented holes in an intramedullary rod (IM rod) during a fracture fixation procedure regardless of deformation of the IM rod.
  • Another objective of the invention is to provide a technique and apparatus for accurately displaying the trajectory of the drill relative to the holes of the IM rod.
  • Still another objective of the invention is to provide a technique and apparatus for using x-ray images of the IM rod to accurately determine the locations of the holes.
  • These and other objects of the present invention are achieved by the use of a computer assisted surgery system, including a computer, a localizing device and a display monitor. The system also includes a tracked adapter attached to the IM rod and a drill guide, both of which have their poses determined by the localizer. With the IM rod inserted in a long bone, and the tracked adapter attached to the exposed end of the IM rod the pose of the adapter and the IM rod are measured by the localizing device. Two approximately orthogonal x-ray images are then obtained of the IM rod in the vicinity of the holes. Image processing techniques are used to accurately determine the location of the IM rod from the x-ray images and an adjusted pose is calculated for the IM rod. A graphic representation of the drill trajectory is displayed superimposed over the images of the IM rod and over a graphic representation of the IM rod, in order to assist the surgeon in placing the drill in the proper position relative to the IM rod holes.
  • BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 is a perspective view of an intramedullary rod inserted into a femur, a tracked adapter attached to the intramedullary rod, a drill guide, a partial C-arm, the computer assisted surgery system with localizer camera and display screen containing images and graphics.
  • FIG. 2 is a perspective view of the intramedullary rod with attached tracked adapter.
  • FIG. 3 is an example of a screen display of two images and a generated graphic with superimposed instrument representations.
  • FIG. 4 is a perspective view of an intramedullary rod inserted into a femur, a tracked adapter attached to the intramedullary rod, a drill guide, a partial C-arm, and a example of a screen display of an image with superimposed graphics.
  • FIG. 5 is a diagrammatic illustration of the software operation during pose adjustment.
  • DETAILED DESCRIPTION OF THE INVENTION
  • An embodiment of the image guided system of U.S. Pat. No. 6,285,902 teaches a system for placing distal interlocking screws in an IM rod. As shown in FIG. 1, the system is based on a computer (121) that receives input from an x-ray imaging device (110) and a localizing device (120), and displays surgical instrument representations (123) over x-ray images (125 and 126) in real time. A tracked adapter (129) is attached to the exposed end of the inserted IM rod (130) such that the pose of the rod can be tracked. A drill guide (128) is also tracked, and a representation of its trajectory (123) is overlaid on x-ray images (125 and 126) of the IM rod (130). Additionally, the system displays, in a separate window (127), the drill guide trajectory (123) relative to a graphical representation (124) of a cross-section of the IM rod (130) at the level of the transverse interlocking holes (131) by projecting models of these instruments onto a picture plane (138). During the procedure, the surgeon uses the AP image (126) of the IM rod (130) to align the drill guide (128) in the coronal plane, and the lateral image (125) and the cross sectional graphic (124) to align the drill guide (128) in the axial plane.
  • The current invention improves upon the previous invention by providing greater accuracy in generating the graphic representations (124) of the IM rod (130) relative to the drill guide (128), regardless of bending of the IM rod (130) or minor errors in attaching the adapter (129) to the IM rod (130). This improvement allows the surgeon to use these relative graphic representations (124 and 123) alone to exactly align the drill guide (128) in the axial plane. While the surgeon still uses the AP view (126) to align the drill guide (128) in the coronal plane, there is no longer a need to rely on the lateral view (125), thus avoiding the difficulty of positioning a drill guide (128) using an “end-on” representation, during the axial alignment of the trajectory. It also eliminates the need for the surgeon to estimate the required anteroposterior position of the drill guide tip based on the distance between the IM rod and the femoral shaft cortex and the amount of axial rotation of the IM rod. In the preferred embodiment, the IM rod (130) is inserted in the long bone (133) in the usual manner. While the invention will be preferably described for drilling holes in the bone (133) for the interlocking holes (131) in the end of the IM rod farthest from the exposed end, the system may be alternately used for all interlocking screws and associated implants. As shown in FIG. 2, a tracking device (129), preferably comprising an adapter (136) to the IM rod (130) and an array of three or more localizing emitters (137), is attached to the exposed end of the IM rod (130). The exposed end of the IM rod (130) is keyed to the adapter (136) such that the adapter (136) is attached to the inserted rod in a unique manner and the relationship is known within the limits of error of attachment preferably to within a few degrees and a few millimeters. A coordinate frame, A, is defined preferably at the interface between the IM rod (130) and the tracking device (129) and is in a known and fixed relationship to the localizing emitters (137). Computer models of the features of the tracking adapter (129) and IM rod relative to coordinate frame A and graphic representations of features of the IM rod (130) relative to coordinate frame A are stored in the computer's long term memory. A second coordinate frame, Z, is defined relative to the localizing emitters (137) of the tracking device (129) and is preferably located on the IM rod (130) halfway between the transverse holes (131). It is oriented with the z-axis coincident to the long axis of the IM rod (130) and the x-axis parallel to the bore of the transverse holes (131). Another coordinate frame, G, is selected relative the localizing emitters (137) such that its x-axis and y-axis define a picture plane (138) upon which instrument representations may be projected to form an image for display. The z-axis of coordinate frame G is preferably oriented such that it passes through the centers of both distal transverse holes (131), thus causing representations of both distal transverse holes (131) to project to the same location on the picture plane (138). Alternatively, the picture plane (138) may be selected in any pose that is near-orthogonal (e.g., within 20 degrees) to the long axis of the IM rod without departing from the instant invention. Further, separate picture planes may be selected for each transverse hole through which the system is to assist the surgeon in inserting a screw.
  • With the tracking device (129) attached to the IM rod (130) and its pose being read by the localizing device, a graphic representation of the IM rod (130) is projected onto the picture plane (138) defined by coordinate frame G. Because the picture plane (138) is defined to be substantially perpendicular to the long axis of the IM rod (130), the image projected on it will be an “end-view” of the IM rod graphic representation. This end-view image is projected onto the picture plane (138) and, as shown in FIG. 3, is transformed into a graphic representation (124) of the IM rod and displayed in a field (127) of the display screen. The software can display different versions of an instrument representation for different viewing angles. The end-view version of the IM rod representation (124) is a pair of semicircles representing the cross section of the IM rod (130) with a gap between them representing the transverse holes (131). Virtual lines are additionally displayed as dashed lines extending from the straight portion of the semicircles to emphasize the orientation of the transverse screw holes (131). The purpose of this representation (124) is to provide the surgeon with improved information regarding the orientation and location of the transverse holes (131) in the axial plane.
  • Returning to FIG. 1, the C-arm (110) acquires x-ray images (125 and 126) of the bone (133) that include the transverse holes (131) of the inserted IM rod (130). These images (125 and 126) need not be exactly anteroposterior or exactly lateral with respect to the IM rod (130) (i.e., “perfect circles” need not be obtained). The C-arm (110) need be oriented only to within about 30 degrees of exactly AP or lateral, and the misalignment may be either axial or oblique. The pose of the C-arm (110) and the pose of the tracking device (129) and its related coordinate frame A are calculated by the localizing device (120) when the image is acquired. If the x-axis (134) or y-axis (135) of coordinate frame A is within, preferably, 30 degrees of the source-receiver axis of the C-arm (110), then the image is considered lateral or anteroposterier (AP) respectively.
  • If the acquired image is determined to be an AP view then, as shown in FIG. 3, the software will generate an AP version of the graphic representation (145) of the IM rod which is intended to highlight the transverse holes (131). This graphic representation (145) is defined relative to coordinate frame A, and is overlaid onto the AP image (126) of the IM rod (130). This AP version of the IM rod representation (145) comprises lines along the sides of the transverse holes' image (141), with dashed virtual lines extending from either side to emphasize the orientation of the holes (141). The drill guide representation (123) is displayed relative to the IM rod representation (145) as both are overlaid on the AP image (126) and improves the surgeon's ability to accurately align the drill guide (128) with the IM rod transverse holes (131) in the coronal plane.
  • If the acquired image is determined to be a lateral view then the software will optionally generate a lateral version of the graphic representation (144) of the transverse holes (131). This graphic representation (144) comprises two circles representing the openings of the two holes. It is overlaid on the transverse holes (141) seen in the lateral image (125) to improve the surgeons ability to identify the starting point for the drill. However, this is of less importance when compared to the utility of the cross-sectional graphic (127).
  • Alternatively, the graphic representation (124, 144 and 145) of the IM rod (131) may take other forms including 3-D surface models, bitmaps, or other wireframe models. Any version of the graphic representations (124, 144 and 145), regardless of view orientation, that provides the surgeon with sufficient information to orient the drill guide (128) relative to the IM rod (130) in a given plane may be used without departing from the instant invention.
  • Additionally, as each image is acquired, adjustment of the position of the graphic representation (124, 144, and 145) of the IM rod (130) is performed to correct for any deviation due to flexure of the IM rod (131) or inaccuracies in attachment of the tracking device (129) or other conditions leading to inaccuracies in localizing the IM rod (130). Turning to FIG. 4, the poses of the IM rod tracking device (129) and the C-arm (110) are recorded at the time of image acquisition. If the C-arm source-receiver axis (150) is within, preferably, 30 degrees of the x-axis or y-axis of coordinate frame Z then adjustment is to be performed along the y-axis or x-axis, respectively. While the following adjustment steps are illustrated in FIG. 4, they are preferably performed without being displayed to the user. The adjustment is accomplished by projecting this adjustment axis (151) of the Z coordinate frame, onto the acquired image (125) using the conic projection model, and then analyzing the image data along a specific segment (156) of this projected line (155). Image processing techniques known to those skilled in the art threshold the image data within the image data segment (156) and find the center (158) of the radio-opaque IM rod image (140). The difference between this image location (158) and the projected origin (157) of coordinate frame Z is calculated and the difference value stored. Alternatively, any image processing techniques, or other means for directly measuring the positional error of the IM rod (130) at or near the transverse holes (131) may be used without departing from the instant invention.
  • When the difference value for AP, lateral, or both images have been processed, the corresponding Z frame x-axis and y-axis components are calculated by techniques known in the art. These difference components are then used to develop an adjustment transformation. Returning to FIG. 3, this adjustment transformation is applied to coordinate frame A, causing it to rotate such that the IM rod's AP and lateral graphic representations (144 and 145) defined relative to A, will align with the IM rod's x-ray images (140). After the adjustment rotations, the positions of the cross sectional representation (124), the AP representation (145), and the optional lateral representation (144), which are displayed to the user, more accurately represent the actual position of the IM rod (130).
  • Alternately, the overlay of the graphic representations (124, 144 and 145) may be corrected by the translation of coordinate frame A instead of by rotation. Or, instead, the graphic representations (124, 144 and 145) could be altered to effect the correction. For example, if the total difference is attributed to bending of the rod, the coordinate frame A could be left unchanged and the graphic representations (123, 144 and 145) could be altered to simulate the flexure of the IM rod (130). Any correction means that uses the difference between the expected and actual positions of the IM rod (130) to modify its graphic representation in such a way to make it more accurate may be used without departing from the instant invention.
  • In summary, the software steps required are shown in FIG. 5. The image is acquired (160) and the poses of the C-arm and tracking clamp determined (161). If the y-axis of the Z coordinate frame is near-aligned with the C-arm (162) then project the Z frame x-axis onto the image (163), isolate an appropriate segment of image data along the projected line (164), apply a thresholding algorithm to emphasize the IM rod (165), find the center of the IM rod in the image data (166), and calculate the difference between the center of the IM rod's image and the projected Z-frame's origin as modeled (167). If the x-axis of the Z frame is near aligned with the C-arm (168) then project the y-axis onto the image (169) and perform the image processing steps above (164-167). Calculate an adjustment transformation based on available x-axis and y-axis difference values (170).
  • Returning to FIG. 1, once the corrected IM rod representations (124 and 144 and 145 seen best in FIG. 3) are being displayed, the surgeon prepares to drill the holes in the bone (131). The drill guide (128) generates a trajectory (123) that overlays both image fields (125 and 126) and projects onto the graphics field (127) as well. As shown in FIG. 3, the surgeon aligns the drill trajectory (123) to pass through the hole markers of the AP IM rod representation (145) and through the hole path on the cross sectional IM rod representation (124) in the graphics field (127). Once the proper alignment is achieved, the drill is advanced in the drill guide (128). The second hole is prepared in a similar fashion and confirmatory x-rays are obtained prior to inserting appropriately sized screws. Alternately, self-tapping screws may be directly inserted with a suitable instrument.
  • While the above description relates to the placement of interlocking screws in intramedullary rods placed in long bones, persons skilled in the art will recognize the applicability of this invention to other devices in other locations of the body such as the insertion of screws into other implantable devices. Any procedure wherein a first device is positioned relative to a second device at a position that is not known with sufficient accuracy by use of a localizing device can be performed in a more accurate manner with this invention.

Claims (12)

1. A computer assisted surgery system for positioning a surgical implant within a patient's body, said system comprising:
a localizing device configured to measure a pose of the surgical implant;
an imaging device adapted for acquiring images of the surgical implant; and
a computer adapted for calculating an adjusted pose for the surgical implant based on information developed from the images so as to compensate for deformation of the surgical implant or inaccuracies in localization.
2. The system of claim 1, further comprising a display adapted for displaying a graphic representation of the surgical implant based on the adjusted pose of the surgical implant.
3. The system of claim 1, further comprising a surgical instrument defining a trajectory and a display device, and wherein the localizing device is further operative for measuring the pose of the surgical instrument and the display device is adapted to display a graphic representation of the trajectory relative to a graphic representation of the surgical implant, based on the measured pose of the surgical instrument and the adjusted pose of the implant.
4. The system of claim 1, wherein the imaging device is an X-ray imaging device.
5. The system of claim 1, wherein the information developed from the images is an adjustment to be applied to the pose of the surgical implant, said adjustment developed through image processing techniques applied to the images of the implant.
6. The system of claim 1, wherein the localizing device is an optical localizing device.
7. A method for positioning a surgical implant within a patient's body, wherein the surgical implant has one or more holes, the method comprising:
calculating an adjusted pose for the surgical implant based on information developed from acquired images of the surgical implant so as to compensate for deformation of the surgical implant or inaccuracies in localization.
8. The method of claim 7, further comprising displaying a graphic representation of the surgical implant based on the adjusted pose of the surgical implant.
9. The method of claim 7, further comprising:
measuring a pose of a surgical instrument; and
displaying a graphic representation of a trajectory of the surgical instrument relative to a graphic representation of the surgical implant, based on the measured pose of the surgical instrument and the adjusted pose of the implant.
10. A computer program product for positioning a surgical implant within a patient's body, wherein the surgical implant has one or more holes, said computer program product comprising:
instructions for calculating an adjusted pose for the surgical implant based on information developed from acquired images of the surgical implant so as to compensate for deformation of the surgical implant or inaccuracies in localization.
11. The computer program product of claim 10, further comprising instructions for displaying a graphic representation of the surgical implant based on the adjusted pose of the surgical implant.
12. The computer program product of claim 10, further comprising instructions for measuring a pose of a surgical instrument; and instructions for displaying a graphic representation of a trajectory of the surgical instrument relative to a graphic representation of the surgical implant, based on the measured pose of the surgical instrument and the adjusted pose of the implant.
US11/183,717 2000-11-17 2005-07-18 Computer assisted intramedullary rod surgery system with enhanced features Abandoned US20050251113A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/183,717 US20050251113A1 (en) 2000-11-17 2005-07-18 Computer assisted intramedullary rod surgery system with enhanced features

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24969700P 2000-11-17 2000-11-17
US09/683,107 US6718194B2 (en) 2000-11-17 2001-11-19 Computer assisted intramedullary rod surgery system with enhanced features
US10/756,020 US6922581B2 (en) 2000-11-17 2004-01-12 Computer assisted intramedullary rod surgery system with enhanced features
US11/183,717 US20050251113A1 (en) 2000-11-17 2005-07-18 Computer assisted intramedullary rod surgery system with enhanced features

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/756,020 Continuation US6922581B2 (en) 2000-11-17 2004-01-12 Computer assisted intramedullary rod surgery system with enhanced features

Publications (1)

Publication Number Publication Date
US20050251113A1 true US20050251113A1 (en) 2005-11-10

Family

ID=24742601

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/683,107 Expired - Lifetime US6718194B2 (en) 2000-11-17 2001-11-19 Computer assisted intramedullary rod surgery system with enhanced features
US10/756,020 Expired - Fee Related US6922581B2 (en) 2000-11-17 2004-01-12 Computer assisted intramedullary rod surgery system with enhanced features
US11/100,298 Active 2026-11-08 US8332012B2 (en) 2000-11-17 2005-04-06 Apparatus and method for improving the accuracy of navigated surgical instrument
US11/183,717 Abandoned US20050251113A1 (en) 2000-11-17 2005-07-18 Computer assisted intramedullary rod surgery system with enhanced features

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/683,107 Expired - Lifetime US6718194B2 (en) 2000-11-17 2001-11-19 Computer assisted intramedullary rod surgery system with enhanced features
US10/756,020 Expired - Fee Related US6922581B2 (en) 2000-11-17 2004-01-12 Computer assisted intramedullary rod surgery system with enhanced features
US11/100,298 Active 2026-11-08 US8332012B2 (en) 2000-11-17 2005-04-06 Apparatus and method for improving the accuracy of navigated surgical instrument

Country Status (4)

Country Link
US (4) US6718194B2 (en)
EP (1) EP1448093A4 (en)
AU (1) AU2002256236A1 (en)
WO (1) WO2003043485A2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080004603A1 (en) * 2006-06-29 2008-01-03 Intuitive Surgical Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US20080065109A1 (en) * 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Preventing instrument/tissue collisions
US20080120573A1 (en) * 2006-11-21 2008-05-22 Gilbert Phil G Business Process Diagram Visualization Using Heat Maps
US20080120153A1 (en) * 2006-11-21 2008-05-22 Nonemacher Michael N Business Process Diagram Data Collection
US20080120574A1 (en) * 2006-11-21 2008-05-22 Heredia Damion A Business Process Diagram Visualization Using Timeline-Based Heat Maps
US20080120121A1 (en) * 2006-11-21 2008-05-22 Gilbert Phil G Modification of a Diagram for Business Process Optimization
US20090192523A1 (en) * 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
WO2009118733A2 (en) * 2008-03-25 2009-10-01 K.M.B.Y. Ltd. Drill-aiming method and apparatus
US8571637B2 (en) 2008-01-21 2013-10-29 Biomet Manufacturing, Llc Patella tracking method and apparatus for use in surgical navigation
WO2013174401A1 (en) * 2012-05-23 2013-11-28 Stryker Trauma Gmbh Entry portal navigation
US8864652B2 (en) 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US8903546B2 (en) 2009-08-15 2014-12-02 Intuitive Surgical Operations, Inc. Smooth control of an articulated instrument across areas with different work space conditions
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US20150164445A1 (en) * 2012-05-23 2015-06-18 Stryker European Holdings I, Llc Locking screw length measurement
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9333042B2 (en) 2007-06-13 2016-05-10 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US9508149B2 (en) 2012-05-23 2016-11-29 Stryker European Holdings I, Llc Virtual 3D overlay as reduction aid for complex fractures
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
WO2022261548A1 (en) * 2021-06-11 2022-12-15 AccuJoint, Inc Adjustment system and method for patient position intraoperatively using radiographic measurements
US11925420B2 (en) 2015-08-05 2024-03-12 Accupredict, Inc. Adjustment system and method for patient position intraoperatively using radiographic measurements

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718194B2 (en) * 2000-11-17 2004-04-06 Ge Medical Systems Global Technology Company, Llc Computer assisted intramedullary rod surgery system with enhanced features
US7547307B2 (en) * 2001-02-27 2009-06-16 Smith & Nephew, Inc. Computer assisted knee arthroplasty instrumentation, systems, and processes
US7526112B2 (en) 2001-04-30 2009-04-28 Chase Medical, L.P. System and method for facilitating cardiac intervention
US7327862B2 (en) * 2001-04-30 2008-02-05 Chase Medical, L.P. System and method for facilitating cardiac intervention
US7237556B2 (en) * 2002-02-11 2007-07-03 Smith & Nephew, Inc. Image-guided fracture reduction
US20040073211A1 (en) * 2002-04-05 2004-04-15 Ed Austin Orthopaedic fixation method and device with delivery and presentation features
AU2003231915A1 (en) * 2002-06-17 2003-12-31 Mazor Surgical Technologies Ltd. Robot for use with orthopaedic inserts
US7060075B2 (en) * 2002-07-18 2006-06-13 Biosense, Inc. Distal targeting of locking screws in intramedullary nails
US20040068263A1 (en) * 2002-10-04 2004-04-08 Benoit Chouinard CAS bone reference with articulated support
EP1583470A1 (en) * 2003-01-07 2005-10-12 Philips Intellectual Property & Standards GmbH Method and arrangement for tracking a medical instrument
US7660623B2 (en) * 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
WO2004068406A2 (en) 2003-01-30 2004-08-12 Chase Medical, L.P. A method and system for image processing and contour assessment
US20050043609A1 (en) * 2003-01-30 2005-02-24 Gregory Murphy System and method for facilitating cardiac intervention
WO2004069040A2 (en) * 2003-02-04 2004-08-19 Z-Kat, Inc. Method and apparatus for computer assistance with intramedullary nail procedure
US20040204645A1 (en) * 2003-04-10 2004-10-14 Vahid Saadat Scope position and orientation feedback device
US20050021037A1 (en) * 2003-05-29 2005-01-27 Mccombs Daniel L. Image-guided navigated precision reamers
EP1491150A1 (en) * 2003-06-27 2004-12-29 Universite Libre De Bruxelles Method of acquiring informations in order to insert a locking screw in a hole of a metallic object
WO2005000129A1 (en) * 2003-06-27 2005-01-06 Aesculap Ag & Co. Kg Method and device for orienting a machining tool
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
EP1673026A2 (en) * 2003-10-06 2006-06-28 Smith & Nephew, Inc. Modular navigated portal
US7764985B2 (en) 2003-10-20 2010-07-27 Smith & Nephew, Inc. Surgical navigation system component fault interfaces and related processes
US7794467B2 (en) * 2003-11-14 2010-09-14 Smith & Nephew, Inc. Adjustable surgical cutting systems
US20070014452A1 (en) * 2003-12-01 2007-01-18 Mitta Suresh Method and system for image processing and assessment of a state of a heart
US7815644B2 (en) * 2003-12-19 2010-10-19 Masini Michael A Instrumentation and methods for refining image-guided and navigation-based surgical procedures
WO2005072629A1 (en) * 2004-01-16 2005-08-11 Smith & Nephew, Inc. Computer-assisted ligament balancing in total knee arthroplasty
US7333643B2 (en) * 2004-01-30 2008-02-19 Chase Medical, L.P. System and method for facilitating cardiac intervention
US7641660B2 (en) * 2004-03-08 2010-01-05 Biomet Manufacturing Corporation Method, apparatus, and system for image guided bone cutting
US7803158B2 (en) * 2004-03-26 2010-09-28 Depuy Products, Inc. Navigated pin placement for orthopaedic procedures
US20050228270A1 (en) * 2004-04-02 2005-10-13 Lloyd Charles F Method and system for geometric distortion free tracking of 3-dimensional objects from 2-dimensional measurements
ITMI20040695A1 (en) * 2004-04-08 2004-07-08 Teleios S R L AUTOMATIC POINTING EQUIPMENT FOR THE CORRECT POSITIONING OF THE DISTAL LOCKING SCREWS OF AN ENDOMIDOLLAR NAIL
EP1737375B1 (en) 2004-04-21 2021-08-11 Smith & Nephew, Inc Computer-aided navigation systems for shoulder arthroplasty
ITTO20040292A1 (en) * 2004-05-06 2004-08-06 Ezio Visentin CONNECTION BODY INTENDED TO BE INTRODUCED WITHIN A BONE STRUCTURE OF A HUMAN OR ANIMAL BODY AND SYSTEM FOR THE DETECTION OF AT LEAST A REFERENCE POINT PROVIDED IN THE CONNECTION BODY ITSELF.
US20060004284A1 (en) * 2004-06-30 2006-01-05 Frank Grunschlager Method and system for generating three-dimensional model of part of a body from fluoroscopy image data and specific landmarks
JP2008521573A (en) * 2004-12-02 2008-06-26 スミス アンド ネフュー インコーポレーテッド System, method and apparatus for automated software flow using instrument detection during computer assisted surgery
DE102005003318A1 (en) * 2005-01-17 2006-07-27 Aesculap Ag & Co. Kg Displaying method for the position of a medical instrument in which planes and an intersection line are defined and determined for the femur and inserted instrument
US8055487B2 (en) * 2005-02-22 2011-11-08 Smith & Nephew, Inc. Interactive orthopaedic biomechanics system
US8177788B2 (en) 2005-02-22 2012-05-15 Smith & Nephew, Inc. In-line milling system
EP1704825B1 (en) * 2005-03-22 2012-02-08 BrainLAB AG Guide wire navigation
US8554306B2 (en) 2005-03-22 2013-10-08 Brainlab Ag Guide wire navigation
US20070073136A1 (en) * 2005-09-15 2007-03-29 Robert Metzger Bone milling with image guided surgery
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
EP2081506B1 (en) * 2006-06-29 2010-09-08 L.r.s. Ortho Ltd. System for locating of distal holes of an intramedullary nail
EP2051647B1 (en) 2006-08-15 2010-12-01 AO Technology AG Method and device for computer assisted distal locking of intramedullary nails
WO2008071014A1 (en) * 2006-12-15 2008-06-19 Ao Technology Ag Method and device for computer assisted distal locking of intramedullary nails
US8784425B2 (en) * 2007-02-28 2014-07-22 Smith & Nephew, Inc. Systems and methods for identifying landmarks on orthopedic implants
EP2114264B1 (en) 2007-02-28 2019-07-03 Smith & Nephew, Inc. Instrumented orthopaedic implant for identifying a landmark
EP2114263B1 (en) 2007-02-28 2019-02-20 Smith & Nephew, Inc. System for identifying a landmark
US20100030219A1 (en) * 2007-07-01 2010-02-04 L.R.S. Ortho Ltd. Orthopedic navigation system and method
US20090025351A1 (en) * 2007-07-26 2009-01-29 Harry T. Faeldan Tri-wheeled modular housing telescopic grass trimmer
US20090088756A1 (en) * 2007-10-01 2009-04-02 General Electric Company System and method for securing surgical implant
EP2173269B1 (en) 2008-01-09 2012-11-07 Stryker Leibinger GmbH & Co. KG Stereotactic computer assisted surgery based on three-dimensional visualization
US9220514B2 (en) 2008-02-28 2015-12-29 Smith & Nephew, Inc. System and method for identifying a landmark
WO2010025575A1 (en) * 2008-09-03 2010-03-11 Ao Technology Ag A device for manipulating a bone or bone fragment or a surgical instrument, tool or implant and a method for positioning such a device
ES2659090T3 (en) 2009-03-20 2018-03-13 Orthoscan Incorporated Mobile image capture device
DE102009017243B4 (en) 2009-04-09 2019-06-27 Medizin & Service Gmbh System for determining deviations of the predetermined position of an invisible feature due to deformations of implants
US9031637B2 (en) * 2009-04-27 2015-05-12 Smith & Nephew, Inc. Targeting an orthopaedic implant landmark
US8945147B2 (en) 2009-04-27 2015-02-03 Smith & Nephew, Inc. System and method for identifying a landmark
US8086734B2 (en) 2009-08-26 2011-12-27 International Business Machines Corporation Method of autonomic representative selection in local area networks
USD674093S1 (en) 2009-08-26 2013-01-08 Smith & Nephew, Inc. Landmark identifier for targeting a landmark of an orthopaedic implant
US10588647B2 (en) * 2010-03-01 2020-03-17 Stryker European Holdings I, Llc Computer assisted surgery system
CN103096839A (en) 2010-06-03 2013-05-08 史密夫和内修有限公司 Orthopaedic implants
US9517107B2 (en) 2010-07-16 2016-12-13 Stryker European Holdings I, Llc Surgical targeting system and method
US20120330191A1 (en) * 2010-09-08 2012-12-27 Urs Hulliger Intramedullary Rod Tracking
WO2012082799A1 (en) 2010-12-13 2012-06-21 Orthoscan, Inc. Mobile fluoroscopic imaging system
US8890511B2 (en) 2011-01-25 2014-11-18 Smith & Nephew, Inc. Targeting operation sites
US9308050B2 (en) 2011-04-01 2016-04-12 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system and method for spinal and other surgeries
BR112013028627A2 (en) 2011-05-06 2017-01-24 Smith & Nephew Inc orthopedic device target limits
AU2012270983B2 (en) 2011-06-16 2016-09-22 Smith & Nephew, Inc. Surgical alignment using references
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10219811B2 (en) 2011-06-27 2019-03-05 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9314188B2 (en) * 2012-04-12 2016-04-19 Intellijoint Surgical Inc. Computer-assisted joint replacement surgery and navigation systems
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
JP2015528713A (en) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド Surgical robot platform
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
WO2014048447A1 (en) 2012-09-27 2014-04-03 Stryker Trauma Gmbh Rotational position determination
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
EP3019109B1 (en) 2013-07-08 2022-09-28 Brainlab AG Single-marker navigation
AU2014324020B2 (en) 2013-09-18 2019-02-07 iMIRGE Medical INC. Optical targeting and visualization of trajectories
US10433911B2 (en) 2013-09-18 2019-10-08 iMIRGE Medical INC. Optical targeting and visualization of trajectories
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
US9241771B2 (en) 2014-01-15 2016-01-26 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
WO2015121311A1 (en) 2014-02-11 2015-08-20 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
CN106659537B (en) 2014-04-24 2019-06-11 Kb医疗公司 The surgical instrument holder used in conjunction with robotic surgical system
WO2015193479A1 (en) * 2014-06-19 2015-12-23 KB Medical SA Systems and methods for performing minimally invasive surgery
JP6619414B2 (en) * 2014-07-07 2019-12-11 スミス アンド ネフュー インコーポレイテッド Positioning accuracy
EP3169252A1 (en) 2014-07-14 2017-05-24 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
US20160030062A1 (en) * 2014-07-29 2016-02-04 Rich Technologies, LLC Hole locating system
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
EP3258872B1 (en) 2015-02-18 2023-04-26 KB Medical SA Systems for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
JP6894431B2 (en) 2015-08-31 2021-06-30 ケービー メディカル エスアー Robotic surgical system and method
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US10709508B2 (en) 2016-07-28 2020-07-14 Medtronics Ps Medical, Inc. Tracked powered drill assembly
US10695135B2 (en) * 2016-11-08 2020-06-30 Kaohsiung Medical University Non-invasive positioning system and method for screwing and fixing a bone
JP7233841B2 (en) 2017-01-18 2023-03-07 ケービー メディカル エスアー Robotic Navigation for Robotic Surgical Systems
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US11166766B2 (en) 2017-09-21 2021-11-09 DePuy Synthes Products, Inc. Surgical instrument mounted display system
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
EP3492032B1 (en) 2017-11-09 2023-01-04 Globus Medical, Inc. Surgical robotic systems for bending surgical rods
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
ES1211339Y (en) * 2018-04-10 2018-07-20 Lamarca Mateu Jose Device for ophthalmic surgery
US10849711B2 (en) 2018-07-11 2020-12-01 DePuy Synthes Products, Inc. Surgical instrument mounted display system
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11406472B2 (en) 2018-12-13 2022-08-09 DePuy Synthes Products, Inc. Surgical instrument mounted display system
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11559359B2 (en) * 2019-08-09 2023-01-24 DePuy Synthes Products, Inc. Surgical instrument mounted display system
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11540887B2 (en) * 2020-06-05 2023-01-03 Stryker European Operations Limited Technique for providing user guidance in surgical navigation
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
FR3124942A1 (en) 2021-07-08 2023-01-13 Amplitude Assistance system for fixing a surgical implant in a patient's bone.
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
CN113893035A (en) * 2021-10-27 2022-01-07 杭州柳叶刀机器人有限公司 Joint replacement surgery navigation system and computer readable storage medium
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769092A (en) * 1996-02-22 1998-06-23 Integrated Surgical Systems, Inc. Computer-aided system for revision total hip replacement surgery
US5799055A (en) * 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US6167296A (en) * 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
US6226548B1 (en) * 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6285902B1 (en) * 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US6301495B1 (en) * 1999-04-27 2001-10-09 International Business Machines Corporation System and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan
US6370418B1 (en) * 1997-03-18 2002-04-09 Franciscus Pieter Bernoski Device and method for measuring the position of a bone implant
US6415171B1 (en) * 1999-07-16 2002-07-02 International Business Machines Corporation System and method for fusing three-dimensional shape data on distorted images without correcting for distortion
US6447448B1 (en) * 1998-12-31 2002-09-10 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors
US6470207B1 (en) * 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US6505062B1 (en) * 1998-02-09 2003-01-07 Stereotaxis, Inc. Method for locating magnetic implant by source field
US6654629B2 (en) * 2002-01-23 2003-11-25 Valentino Montegrande Implantable biomarker and method of use
US6718194B2 (en) * 2000-11-17 2004-04-06 Ge Medical Systems Global Technology Company, Llc Computer assisted intramedullary rod surgery system with enhanced features
US6773437B2 (en) * 1999-04-23 2004-08-10 Sdgi Holdings, Inc. Shape memory alloy staple
US7117027B2 (en) * 2001-02-07 2006-10-03 Synthes (Usa) Method for establishing a three-dimensional representation of a bone from image data

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
FR2634641A1 (en) 1988-07-28 1990-02-02 Michel Jean Pierre DEVICE FOR THE POSITIONING OF AT LEAST ONE FIXING MEMBER THROUGH AN IMPLANT, OF THE CENTRO-MEDULINAL NAIL TYPE
US5031203A (en) 1990-02-09 1991-07-09 Trecha Randal R Coaxial laser targeting device for use with x-ray equipment and surgical drill equipment during surgical procedures
DE9107298U1 (en) 1991-06-13 1991-07-25 Howmedica Gmbh, 2314 Schoenkirchen, De
US5274551A (en) 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
ZA942812B (en) 1993-04-22 1995-11-22 Pixsys Inc System for locating the relative positions of objects in three dimensional space
US5411503A (en) 1993-06-18 1995-05-02 Hollstien; Steven B. Instrumentation for distal targeting of locking screws in intramedullary nails
US5417688A (en) 1993-12-22 1995-05-23 Elstrom; John A. Optical distal targeting system for an intramedullary nail
WO1998032387A1 (en) 1997-01-28 1998-07-30 Krause William R Targeting device for relative positioning of a plurality of devices
US6081741A (en) 1998-06-05 2000-06-27 Vector Medical, Inc. Infrared surgical site locating device and method

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769092A (en) * 1996-02-22 1998-06-23 Integrated Surgical Systems, Inc. Computer-aided system for revision total hip replacement surgery
US5799055A (en) * 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US6167296A (en) * 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
US6370418B1 (en) * 1997-03-18 2002-04-09 Franciscus Pieter Bernoski Device and method for measuring the position of a bone implant
US6226548B1 (en) * 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE39133E1 (en) * 1997-09-24 2006-06-13 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6505062B1 (en) * 1998-02-09 2003-01-07 Stereotaxis, Inc. Method for locating magnetic implant by source field
US6447448B1 (en) * 1998-12-31 2002-09-10 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors
US6285902B1 (en) * 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US6697664B2 (en) * 1999-02-10 2004-02-24 Ge Medical Systems Global Technology Company, Llc Computer assisted targeting device for use in orthopaedic surgery
US6470207B1 (en) * 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US6773437B2 (en) * 1999-04-23 2004-08-10 Sdgi Holdings, Inc. Shape memory alloy staple
US6301495B1 (en) * 1999-04-27 2001-10-09 International Business Machines Corporation System and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan
US6415171B1 (en) * 1999-07-16 2002-07-02 International Business Machines Corporation System and method for fusing three-dimensional shape data on distorted images without correcting for distortion
US6718194B2 (en) * 2000-11-17 2004-04-06 Ge Medical Systems Global Technology Company, Llc Computer assisted intramedullary rod surgery system with enhanced features
US6922581B2 (en) * 2000-11-17 2005-07-26 Ge Medical Systems Global Technology Company, Llc Computer assisted intramedullary rod surgery system with enhanced features
US20050288679A1 (en) * 2000-11-17 2005-12-29 Kienzle Thomas C Iii Apparatus and method for improving the accuracy of navigated surgical instrument
US7117027B2 (en) * 2001-02-07 2006-10-03 Synthes (Usa) Method for establishing a three-dimensional representation of a bone from image data
US6654629B2 (en) * 2002-01-23 2003-11-25 Valentino Montegrande Implantable biomarker and method of use

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10433919B2 (en) 1999-04-07 2019-10-08 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US9232984B2 (en) 1999-04-07 2016-01-12 Intuitive Surgical Operations, Inc. Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US9101397B2 (en) 1999-04-07 2015-08-11 Intuitive Surgical Operations, Inc. Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US10271909B2 (en) 1999-04-07 2019-04-30 Intuitive Surgical Operations, Inc. Display of computer generated image of an out-of-view portion of a medical device adjacent a real-time image of an in-view portion of the medical device
US20080065109A1 (en) * 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Preventing instrument/tissue collisions
US9345387B2 (en) 2006-06-13 2016-05-24 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US10737394B2 (en) 2006-06-29 2020-08-11 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9801690B2 (en) 2006-06-29 2017-10-31 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical instrument
US10773388B2 (en) 2006-06-29 2020-09-15 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9788909B2 (en) * 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc Synthetic representation of a surgical instrument
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US11638999B2 (en) 2006-06-29 2023-05-02 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10730187B2 (en) 2006-06-29 2020-08-04 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US20140135792A1 (en) * 2006-06-29 2014-05-15 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical instrument
US20080004603A1 (en) * 2006-06-29 2008-01-03 Intuitive Surgical Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US11865729B2 (en) 2006-06-29 2024-01-09 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US20090192523A1 (en) * 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US10137575B2 (en) 2006-06-29 2018-11-27 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US20080120121A1 (en) * 2006-11-21 2008-05-22 Gilbert Phil G Modification of a Diagram for Business Process Optimization
US9606772B2 (en) 2006-11-21 2017-03-28 International Business Machines Corporation Business process diagram data collection
US8527311B2 (en) 2006-11-21 2013-09-03 International Business Machines Corporation Business process diagram visualization using heat maps
US20080120574A1 (en) * 2006-11-21 2008-05-22 Heredia Damion A Business Process Diagram Visualization Using Timeline-Based Heat Maps
US8041588B2 (en) 2006-11-21 2011-10-18 International Business Machines Corporation Business process diagram visualization using heat maps
US20080120153A1 (en) * 2006-11-21 2008-05-22 Nonemacher Michael N Business Process Diagram Data Collection
US7957992B2 (en) 2006-11-21 2011-06-07 International Business Machines Corporation Modification of a diagram for business process optimization
US20080120573A1 (en) * 2006-11-21 2008-05-22 Gilbert Phil G Business Process Diagram Visualization Using Heat Maps
US7953619B2 (en) 2006-11-21 2011-05-31 International Business Machines Corporation Business process diagram visualization using timeline-based heat maps
US10695136B2 (en) 2007-06-13 2020-06-30 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US10188472B2 (en) 2007-06-13 2019-01-29 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US10271912B2 (en) 2007-06-13 2019-04-30 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US11399908B2 (en) 2007-06-13 2022-08-02 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US11751955B2 (en) 2007-06-13 2023-09-12 Intuitive Surgical Operations, Inc. Method and system for retracting an instrument into an entry guide
US9629520B2 (en) 2007-06-13 2017-04-25 Intuitive Surgical Operations, Inc. Method and system for moving an articulated instrument back towards an entry guide while automatically reconfiguring the articulated instrument for retraction into the entry guide
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US11432888B2 (en) 2007-06-13 2022-09-06 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9333042B2 (en) 2007-06-13 2016-05-10 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9901408B2 (en) 2007-06-13 2018-02-27 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US8571637B2 (en) 2008-01-21 2013-10-29 Biomet Manufacturing, Llc Patella tracking method and apparatus for use in surgical navigation
WO2009118733A3 (en) * 2008-03-25 2010-03-11 K.M.B.Y. Ltd. Drill-aiming method and apparatus
WO2009118733A2 (en) * 2008-03-25 2009-10-01 K.M.B.Y. Ltd. Drill-aiming method and apparatus
US20110077657A1 (en) * 2008-03-25 2011-03-31 K.M.B.Y. Ltd Drill-aiming method and apparatus
US11638622B2 (en) 2008-06-27 2023-05-02 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9717563B2 (en) 2008-06-27 2017-08-01 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US8864652B2 (en) 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US11382702B2 (en) 2008-06-27 2022-07-12 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9516996B2 (en) 2008-06-27 2016-12-13 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the position and orienting of its tip
US10368952B2 (en) 2008-06-27 2019-08-06 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US10984567B2 (en) 2009-03-31 2021-04-20 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10282881B2 (en) 2009-03-31 2019-05-07 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US11941734B2 (en) 2009-03-31 2024-03-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10271915B2 (en) 2009-08-15 2019-04-30 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US8903546B2 (en) 2009-08-15 2014-12-02 Intuitive Surgical Operations, Inc. Smooth control of an articulated instrument across areas with different work space conditions
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US10772689B2 (en) 2009-08-15 2020-09-15 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US10959798B2 (en) 2009-08-15 2021-03-30 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US9956044B2 (en) 2009-08-15 2018-05-01 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US11596490B2 (en) 2009-08-15 2023-03-07 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US10537994B2 (en) 2010-02-12 2020-01-21 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US10828774B2 (en) 2010-02-12 2020-11-10 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9622826B2 (en) 2010-02-12 2017-04-18 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9855104B2 (en) * 2012-05-23 2018-01-02 Stryker European Holdings I, Llc Locking screw length measurement
US20150164445A1 (en) * 2012-05-23 2015-06-18 Stryker European Holdings I, Llc Locking screw length measurement
US10499961B2 (en) 2012-05-23 2019-12-10 Stryker European Holdings I, Llc Entry portal navigation
US9508149B2 (en) 2012-05-23 2016-11-29 Stryker European Holdings I, Llc Virtual 3D overlay as reduction aid for complex fractures
WO2013174401A1 (en) * 2012-05-23 2013-11-28 Stryker Trauma Gmbh Entry portal navigation
US11389255B2 (en) 2013-02-15 2022-07-19 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US11806102B2 (en) 2013-02-15 2023-11-07 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US11925420B2 (en) 2015-08-05 2024-03-12 Accupredict, Inc. Adjustment system and method for patient position intraoperatively using radiographic measurements
WO2022261548A1 (en) * 2021-06-11 2022-12-15 AccuJoint, Inc Adjustment system and method for patient position intraoperatively using radiographic measurements

Also Published As

Publication number Publication date
AU2002256236A1 (en) 2003-06-10
US20040143184A1 (en) 2004-07-22
WO2003043485A3 (en) 2004-01-22
US20020077541A1 (en) 2002-06-20
WO2003043485A2 (en) 2003-05-30
EP1448093A4 (en) 2009-09-09
EP1448093A2 (en) 2004-08-25
US8332012B2 (en) 2012-12-11
US20050288679A1 (en) 2005-12-29
AU2002256236A8 (en) 2003-06-10
US6718194B2 (en) 2004-04-06
US6922581B2 (en) 2005-07-26

Similar Documents

Publication Publication Date Title
US6922581B2 (en) Computer assisted intramedullary rod surgery system with enhanced features
US20230218323A1 (en) Stereotactic Computer Assisted Surgery Method and System
EP4159149A1 (en) Surgical navigation system, computer for performing surgical navigation method, and storage medium
JP4439393B2 (en) Robots for use with orthopedic inserts
US5772594A (en) Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6477400B1 (en) Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6917827B2 (en) Enhanced graphic features for computer assisted surgery system
US9433390B2 (en) System for measuring the true dimensions and orientation of objects in a two dimensional image
EP1491151A1 (en) Process for the acquisition of information intended for the insertion of a locking screw into an orifice of an endomedullary device
CN116687437A (en) Medical perspective device, medical navigation system, and medical image processing method
Stiehl et al. Computer-Assisted Osteosynthesis of Long Bone Fractures
Santos-Munné et al. Fluorotactic Surgery using Coordinated Fluoroscopy

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION