US20050155680A1 - High ductility, high hot tensile strength tungsten wire and method of manufacture - Google Patents

High ductility, high hot tensile strength tungsten wire and method of manufacture Download PDF

Info

Publication number
US20050155680A1
US20050155680A1 US10/759,645 US75964504A US2005155680A1 US 20050155680 A1 US20050155680 A1 US 20050155680A1 US 75964504 A US75964504 A US 75964504A US 2005155680 A1 US2005155680 A1 US 2005155680A1
Authority
US
United States
Prior art keywords
wire
tensile strength
tungsten
annealing
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/759,645
Inventor
Gyorgy Nagy
Istvan Meszaros
Tamas Gal
Attila Nagy
Peter Jusztin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Hungary Kft
General Electric Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/759,645 priority Critical patent/US20050155680A1/en
Assigned to GE HUNGARY RT. reassignment GE HUNGARY RT. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAL, TAMAS, JUSZTIN, PETER, MESZAROS, ISTVAN, NAGY, ATTILA, NAGY, GYORGY
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GE HUNGARY RT.
Priority to DE602005003240T priority patent/DE602005003240T2/en
Priority to EP05250198A priority patent/EP1555331B1/en
Publication of US20050155680A1 publication Critical patent/US20050155680A1/en
Priority to US11/839,813 priority patent/US20080135139A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/045Manufacture of wire or bars with particular section or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/04Incandescent bodies characterised by the material thereof
    • H01K1/08Metallic bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K3/00Apparatus or processes adapted to the manufacture, installing, removal, or maintenance of incandescent lamps or parts thereof
    • H01K3/02Manufacture of incandescent bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K3/00Apparatus or processes adapted to the manufacture, installing, removal, or maintenance of incandescent lamps or parts thereof
    • H01K3/02Manufacture of incandescent bodies
    • H01K3/04Machines therefor

Definitions

  • This invention relates to a high ductility and high hot tensile strength tungsten wire for incandescent lamp filaments, and a method for manufacturing such a tungsten wire.
  • Lamps with an incandescent filament have been known for a long time.
  • the filaments are made of a tungsten wire, which is wound into a coil.
  • the dimensions of the coil determine not only the light output of the lamp, but also the optical properties of the light beams emerging from an optical projector system.
  • Such projector systems are found, among others, in headlights of automobiles or slide projectors.
  • Lamps with small filaments have better optical parameters, and allow the formation of a well-defined projected beam, even with small-sized projecting optics. Beside, projector systems not only require small filaments, but also very high lumen output.
  • the small external dimensions mean that the inner diameter of the coils is also small, in the order of the wire diameter.
  • the inner diameter of the coil largely corresponds to the diameter of the mandrel, on which the filament is wound during manufacturing of the coil.
  • the ratio of the diameter of the mandrel to the wire diameter is termed as the mandrel ratio.
  • the mandrel ratio The ratio of the diameter of the mandrel to the wire diameter.
  • non-sag filaments so-called non-sag filaments.
  • the non-sag ability of a filament is closely related to the hot tensile strength of the tungsten wire from which the filament is made.
  • Hot tensile strength (hereinafter HTS) is measured at 1620° C., and desired values are above 0.16-24 N/mg/200 mm.
  • the wire is annealed (heat treated). This annealing forms the mechanical properties of the wire to enable the assembly of the filaments on an automated mounting machine without breakage.
  • the required optical parameters may be obtained only with coils having a very small mandrel ratio, in the order of 2 to 1.5, or even lower. This extreme mandrel ratio requires that the wire remains ductile on room temperature, otherwise the wire may split or break during the winding process, particularly at those parts of the coil, which must endure the largest shaping tension or shaping stress.
  • Ductility of the wire is closely correlated with its cold tensile strength (hereinafter CTS), in the sense that a wire with low CTS has a high ductility, while higher CTS values correspond to low ductility.
  • CTS is measured at room temperature, and desired values for high-end, low mandrel ratio filament wires are between 0.5-0.7 N/mg/200 mm.
  • the ductility of the wire may be influenced with the annealing process. Namely, by the proper selection of times and temperatures of the annealing in combination with the parameters of the wire drawing, the desired ductility (or the CTS) may be accomplished.
  • HTS values move in tandem with CTS values. With other words, if the annealing were directed towards increasing the ductility of the wire (and thereby lowering the CTS), inevitably the HTS values also decreased. Conversely, when the annealing were directed towards increased HTS values, the ductility of the wire decreased.
  • U.S. Pat. No. 3,278,281 discloses a process for manufacturing a non-sag tungsten wire.
  • the process involves the preparation of a thorium-doped tungsten alloy, which is swaged and subsequently drawn to wire size.
  • the drawing is done in multiple drawing passes, with multiple annealing steps between the drawing passes.
  • This known process proposes annealing after each five passes, and at temperatures of 1700° C.
  • the resultant wire has outstanding non-sag properties, but operates best in lamps with a relatively low efficiency, and is less suitable for high-end lamps requiring both high temperature and high vibration resistance.
  • a method for manufacturing a high ductility and high hot tensile strength tungsten wire for incandescent lamp filaments comprises the steps of preparing a tungsten alloy, swaging a tungsten rod from the alloy, and drawing the swaged rod to wire size in multiple drawing passes.
  • the wire is annealed between predetermined draws. It is proposed that an annealing is performed before the final drawing pass, by annealing the wire at a temperature between 1 100-1300° C.
  • a tungsten wire for incandescent lamp filament which has high ductility and high hot tensile strength.
  • the tungsten wire of the invention has a cold tensile strength—hot tensile strength ratio not exceeding 3.5.
  • the disclosed method may be performed with standard tungsten wire manufacturing equipment.
  • the cold tensile strength—hot tensile strength ratio of the wire is unexpectedly lowered, by lowering of the CTS value, and simultaneously maintaining, in some instances even increasing the HTS value.
  • the filaments made from the proposed tungsten wire are resistant against vibration, tolerate low mandrel ratios, and support high operating temperatures.
  • FIG. 1 is a side view of an automotive lamp with a tungsten filament
  • FIG. 2 is an enlarged view of a tungsten filament
  • FIG. 3 is an illustrative figure explaining the concept of the mandrel ratio
  • FIG. 4 is a schematic illustration of a wire drawing process
  • FIG. 5 is another schematic illustration of a step in the tungsten wire manufacturing process.
  • the lamp 1 has a sealed lamp envelope 2 , typically made of glass. 1 .
  • the envelope 2 has a sealed inner volume 6 filled with a suitable gas, like argon, krypton or xenon.
  • the inner volume 6 contains a filament 8 .
  • the filament 8 is made of a tungsten wire.
  • the filament 8 may be single coiled, or double coiled (or coil-coiled), as shown in FIG. 2 .
  • Such coiled-coiled filaments are commonly used for higher wattage lamps or high-end lamps.
  • the filament 8 must also be capable of high color temperature operation, i. e. in the heated state, its operating temperature may be above 2900° K., and in extreme cases it may even reach 3200° K.
  • the filament 8 may contain an aluminum-potassium-silicon (AKS) additive, or other dopants.
  • the dopants are added to the tungsten alloy during the manufacturing of the filament, as will be explained below.
  • the filament coil is formed during manufacturing by winding the wire 9 of the filament 8 on a mandrel 10 , as illustrated in FIG. 3 .
  • Filaments for high-end lamps require low mandrel ratio, in order to obtain proper optical and luminous parameters.
  • the mandrel ratio is defined as the ratio of the diameter d m of the mandrel to the wire thickness d w , i. e. the mandrel ratio is d m /d w (see also FIG. 3 ).
  • This requires a wire 9 having a sufficiently high ductility, which corresponds to a relatively low CTS value, preferably as low as 0.7-0.5 N/mg/200 mm.
  • the ductility needed for a coiling with small mandrel ratio is increased by annealing the wire during the wire production, as will be explained below.
  • the wire manufacturing method starts with the preparation of a tungsten alloy, optionally comprising various additives, such as aluminum, potassium, silicon. Further additives may be selected from the group of Th, ThO, YO, LaO, CeO, Re. The beneficial effects of such additives are known in the art, and need not be discussed here.
  • the alloy powder is pressed and presintered.
  • the pressing and presintering is also made in a known manner, in order to prepare the alloy powder for the sintering.
  • the alloy powder is sintered with direct current. This is a known process step in powder metallurgy.
  • the specific parameters of the sintering i. e. temperature, atmosphere composition and sintering current are dependent of the geometrical and other parameters of the furnace. Typical values of sintering current are between 3000 and 6000 A, and the sintering is done in a hydrogen atmosphere.
  • the sintering of a tungsten alloy is also disclosed in U.S. Pat. Nos. 6,066,019, 5,742,891 and 4,678,718.
  • a tungsten alloy wire is formed from the sintered alloy ingot.
  • the forming of a filament is done with known metalworking techniques, e. g. rolling, swaging and wire drawing.
  • the swaging forms a tungsten rod from the alloy, which is suitable for drawing to wire size.
  • the tungsten rod may be also annealed and/or re-crystallized. This process step is known in the art.
  • the swaged rod is subsequently drawn to wire size in multiple drawing passes.
  • the diameter of the wire 9 decreases as the wire 9 is forced through a series of drawing dies 11 , 12 , 13 , of which only three is shown in FIG. 4 . ( FIG. 4 is not to scale.).
  • the wire 9 is drawn from the swaged rod to final size in twenty to forty drawing passes, depending on the final wire diameter. With this method, wire diameters between 0.3-0.04 mm are customarily produced.
  • the drawing causes intensive stresses in the crystal structure of the tungsten wire, which is at least partly compensated by annealing the wire between predetermined draws, typically after each 3-4-5 or more drawing passes, depending on the desired result. This annealing may be done by electric heating, or by heating with a gas burner 15 , as shown in FIGS. 4 and 5 . Both types of heating are known in the art.
  • the drawings are not made at room temperature, but the wire 9 is pre-heated during the drawing passes, typically to 500-900° C.
  • the drawing tools contacting the wire 9 i.e. the drawing dies 11 , 12 , 13 can also be heated with a suitable known heating equipment (not shown), typically to 300-400° C.
  • an annealing is performed before the final drawing pass.
  • the wire is heated to a temperature between 1100-1300° C., the actual temperature used depending on the wire diameter.
  • wires with a larger diameter are annealed at a higher temperature, and thinner wires at a lower temperature.
  • the tungsten undergoes a crystal structure change that improves its ductility, without adversely affecting the final HTS value of the wire. This means that the wire will maintain its good non-sag property, but will not break or split when wound even to small mandrel ratio coils.
  • FIG. 5 shows the annealing being performed with a gas burner 16 before the wire 9 is forced through the die 14 during the final drawing pass, as the wire 9 is drawn to final size.
  • the final drawing pass after said annealing is done at a different drawing speed than the previous drawing passes.
  • the final draw is done at a slower drawing speed than the preceding draw.
  • the last drawing pass as indicated by the arrow 22 —may be performed at a drawing speed approx. 65% of the speed of the last but one drawing, the latter being indicated by the arrow 21 . Therefore, the wire 9 is changed from one drawing line to another, as indicated by the arrow 23 in FIG. 5 .
  • the proposed method results in a tungsten wire with outstanding non-sag and ductility properties. Due to the fact that the HTS of the wire does not decrease together with the decrease of the CTS value, it is possible to manufacture tungsten wires having a cold tensile strength—hot tensile strength ratio not exceeding 3.5.
  • the proposed type of tungsten wire is applicable for all types of lamps, and it is principally recommended for the production of special high-end and automotive lamps with double spiral filaments of small mandrel ratio.
  • a classical example is a 24 V, 21 W stop lamp for automobiles, which is subjected to a high number of switch on—switch off cycles, beside the intensive vibration.
  • the application of this wire will largely reduce the breakage or deterioration of the filaments during manufacture of the coils, and also increases the lifetime of the lamps.
  • the general mechanical properties of the filaments of special incandescent lamps with small mandrel ratio are improved, while it is still possible to produce both the wire and the filaments with standard manufacturing equipment.
  • the improved ductility of the wire will result in superior filament winding quality.
  • the wire retains its desired fibrous structure, which is essential for long-life, non-sag filaments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Extraction Processes (AREA)
  • Resistance Heating (AREA)

Abstract

A method for manufacturing a high ductility and high hot tensile strength tungsten wire for incandescent lamp filaments is disclosed. The method comprises the steps of preparing a tungsten alloy, swaging a tungsten rod from the alloy, and drawing the swaged rod to wire size in multiple drawing passes. In the method, the wire is annealed between predetermined draws. It is proposed that an annealing is performed before the final drawing pass, by annealing the wire at a temperature between 1100-1300° C. There is also provided a tungsten wire for incandescent lamp filament, which has high ductility and high hot tensile strength. The tungsten wire of the invention has a cold tensile strength—hot tensile strength ratio not exceeding 3.5.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to a high ductility and high hot tensile strength tungsten wire for incandescent lamp filaments, and a method for manufacturing such a tungsten wire.
  • Lamps with an incandescent filament have been known for a long time. In most applications, the filaments are made of a tungsten wire, which is wound into a coil. The dimensions of the coil determine not only the light output of the lamp, but also the optical properties of the light beams emerging from an optical projector system. Such projector systems are found, among others, in headlights of automobiles or slide projectors. Lamps with small filaments have better optical parameters, and allow the formation of a well-defined projected beam, even with small-sized projecting optics. Beside, projector systems not only require small filaments, but also very high lumen output.
  • Therefore, coils with extremely small external dimensions are being produced for automotive lamps and projector lamps. The small external dimensions mean that the inner diameter of the coils is also small, in the order of the wire diameter. The inner diameter of the coil largely corresponds to the diameter of the mandrel, on which the filament is wound during manufacturing of the coil. The ratio of the diameter of the mandrel to the wire diameter is termed as the mandrel ratio. In this manner, coils with a small inner diameter will also have a small mandrel ratio. Since the diameter of the filament wire also has a practical lower limit, filaments with small mandrel ratio are necessary for the best possible light efficiency. Further, high light output also requires high filament temperatures. At high temperatures, the sagging of the filament poses serious problems. Therefore, it is sought to manufacture so-called non-sag filaments. The non-sag ability of a filament is closely related to the hot tensile strength of the tungsten wire from which the filament is made. Hot tensile strength (hereinafter HTS) is measured at 1620° C., and desired values are above 0.16-24 N/mg/200 mm.
  • During wire production, the wire is annealed (heat treated). This annealing forms the mechanical properties of the wire to enable the assembly of the filaments on an automated mounting machine without breakage. As mentioned above, in some instances the required optical parameters may be obtained only with coils having a very small mandrel ratio, in the order of 2 to 1.5, or even lower. This extreme mandrel ratio requires that the wire remains ductile on room temperature, otherwise the wire may split or break during the winding process, particularly at those parts of the coil, which must endure the largest shaping tension or shaping stress. Ductility of the wire is closely correlated with its cold tensile strength (hereinafter CTS), in the sense that a wire with low CTS has a high ductility, while higher CTS values correspond to low ductility. CTS is measured at room temperature, and desired values for high-end, low mandrel ratio filament wires are between 0.5-0.7 N/mg/200 mm.
  • It is known in the art that the ductility of the wire may be influenced with the annealing process. Namely, by the proper selection of times and temperatures of the annealing in combination with the parameters of the wire drawing, the desired ductility (or the CTS) may be accomplished. However, it was noted that HTS values move in tandem with CTS values. With other words, if the annealing were directed towards increasing the ductility of the wire (and thereby lowering the CTS), inevitably the HTS values also decreased. Conversely, when the annealing were directed towards increased HTS values, the ductility of the wire decreased.
  • For example, U.S. Pat. No. 3,278,281 discloses a process for manufacturing a non-sag tungsten wire. The process involves the preparation of a thorium-doped tungsten alloy, which is swaged and subsequently drawn to wire size. The drawing is done in multiple drawing passes, with multiple annealing steps between the drawing passes. This known process proposes annealing after each five passes, and at temperatures of 1700° C. The resultant wire has outstanding non-sag properties, but operates best in lamps with a relatively low efficiency, and is less suitable for high-end lamps requiring both high temperature and high vibration resistance.
  • Another known process for the manufacture of a tungsten wire is disclosed in U.S. Pat. No. 4,863,527. This process also involves the swaging of a tungsten alloy rod, and a subsequent drawing to size. During drawing, it is proposed to perform multiple annealing steps, at temperatures around 1560-1620° C. This known process results in a wire having a relatively low CTS, but high ductility.
  • The publication “The Metallurgy of Doped/Non Sag Tungsten” by E. Pink and L. Bartha, spublished by Elsevier Applied Science, London and New York, 1989, further discloses that a tungsten wire need to be annealed during drawing (see pp. 78-79), because the wire strength will increase as the wire is drawn to smaller diameters. According to this literature source, the annealing will reduce the wire ductility. Depending on the final wire size, a combination of anneals is used to optimize the properties of the final wire.
  • However, none of the known processes teach a method which would result in a hight HTS of the wire, while reducing its CTS value. Therefore, there is a need for a method which is able to lower the CTS value of a tungsten filament, and accomplishing high ductility of the wire, while maintaining a high HTS value of the same wire. Also, there is a need for a tungsten wire which has a low CTS/HTS ratio. There is also need for a method which accomplishes these results without the use of any additional or specific tungsten wire manufactuing equipment, i. e. which does not require any radical change in exisiting manufacturing facilities.
  • SUMMARY OF THE INVENTION
  • In an embodiment of the present invention, there is provided a method for manufacturing a high ductility and high hot tensile strength tungsten wire for incandescent lamp filaments. The method comprises the steps of preparing a tungsten alloy, swaging a tungsten rod from the alloy, and drawing the swaged rod to wire size in multiple drawing passes. In the method, the wire is annealed between predetermined draws. It is proposed that an annealing is performed before the final drawing pass, by annealing the wire at a temperature between 1 100-1300° C.
  • In an embodiment of another aspect of the invention, there is also provided a tungsten wire for incandescent lamp filament, which has high ductility and high hot tensile strength. The tungsten wire of the invention has a cold tensile strength—hot tensile strength ratio not exceeding 3.5.
  • The disclosed method may be performed with standard tungsten wire manufacturing equipment. By performing the annealing before the last drawing pass, the cold tensile strength—hot tensile strength ratio of the wire is unexpectedly lowered, by lowering of the CTS value, and simultaneously maintaining, in some instances even increasing the HTS value. Accordingly, the filaments made from the proposed tungsten wire are resistant against vibration, tolerate low mandrel ratios, and support high operating temperatures.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The invention will now be described with reference to the enclosed drawings, where
  • FIG. 1 is a side view of an automotive lamp with a tungsten filament,
  • FIG. 2 is an enlarged view of a tungsten filament,
  • FIG. 3 is an illustrative figure explaining the concept of the mandrel ratio,
  • FIG. 4 is a schematic illustration of a wire drawing process, and
  • FIG. 5 is another schematic illustration of a step in the tungsten wire manufacturing process.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to FIGS. 1 and 2, there is shown an automotive lamp 1. The lamp 1 has a sealed lamp envelope 2, typically made of glass. 1. The envelope 2 has a sealed inner volume 6 filled with a suitable gas, like argon, krypton or xenon. The inner volume 6 contains a filament 8. The filament 8 is made of a tungsten wire. In certain embodiments, the filament 8 may be single coiled, or double coiled (or coil-coiled), as shown in FIG. 2. Such coiled-coiled filaments are commonly used for higher wattage lamps or high-end lamps. Often, the filament 8 must also be capable of high color temperature operation, i. e. in the heated state, its operating temperature may be above 2900° K., and in extreme cases it may even reach 3200° K.
  • The filament 8 may contain an aluminum-potassium-silicon (AKS) additive, or other dopants. The dopants are added to the tungsten alloy during the manufacturing of the filament, as will be explained below.
  • The filament coil is formed during manufacturing by winding the wire 9 of the filament 8 on a mandrel 10, as illustrated in FIG. 3. Filaments for high-end lamps require low mandrel ratio, in order to obtain proper optical and luminous parameters. The mandrel ratio is defined as the ratio of the diameter dm of the mandrel to the wire thickness dw, i. e. the mandrel ratio is dm/dw (see also FIG. 3). This requires a wire 9 having a sufficiently high ductility, which corresponds to a relatively low CTS value, preferably as low as 0.7-0.5 N/mg/200 mm. In the wire manufacturing method, the ductility needed for a coiling with small mandrel ratio is increased by annealing the wire during the wire production, as will be explained below.
  • The wire manufacturing method starts with the preparation of a tungsten alloy, optionally comprising various additives, such as aluminum, potassium, silicon. Further additives may be selected from the group of Th, ThO, YO, LaO, CeO, Re. The beneficial effects of such additives are known in the art, and need not be discussed here.
  • Following the alloy powder preparation, the alloy powder is pressed and presintered. The pressing and presintering is also made in a known manner, in order to prepare the alloy powder for the sintering. Thereafter, the alloy powder is sintered with direct current. This is a known process step in powder metallurgy. The specific parameters of the sintering, i. e. temperature, atmosphere composition and sintering current are dependent of the geometrical and other parameters of the furnace. Typical values of sintering current are between 3000 and 6000 A, and the sintering is done in a hydrogen atmosphere. The sintering of a tungsten alloy is also disclosed in U.S. Pat. Nos. 6,066,019, 5,742,891 and 4,678,718.
  • Following sintering, a tungsten alloy wire is formed from the sintered alloy ingot. The forming of a filament is done with known metalworking techniques, e. g. rolling, swaging and wire drawing. The swaging forms a tungsten rod from the alloy, which is suitable for drawing to wire size. During swaging, the tungsten rod may be also annealed and/or re-crystallized. This process step is known in the art.
  • The swaged rod is subsequently drawn to wire size in multiple drawing passes. As illustrated in FIG. 4, the diameter of the wire 9 decreases as the wire 9 is forced through a series of drawing dies 11,12,13, of which only three is shown in FIG. 4. (FIG. 4 is not to scale.). Typically, the wire 9 is drawn from the swaged rod to final size in twenty to forty drawing passes, depending on the final wire diameter. With this method, wire diameters between 0.3-0.04 mm are customarily produced. The drawing causes intensive stresses in the crystal structure of the tungsten wire, which is at least partly compensated by annealing the wire between predetermined draws, typically after each 3-4-5 or more drawing passes, depending on the desired result. This annealing may be done by electric heating, or by heating with a gas burner 15, as shown in FIGS. 4 and 5. Both types of heating are known in the art.
  • The drawings are not made at room temperature, but the wire 9 is pre-heated during the drawing passes, typically to 500-900° C. The drawing tools contacting the wire 9, i.e. the drawing dies 11,12,13 can also be heated with a suitable known heating equipment (not shown), typically to 300-400° C.
  • In the proposed tungsten wire manufacturing method, an annealing is performed before the final drawing pass. During this annealing, the wire is heated to a temperature between 1100-1300° C., the actual temperature used depending on the wire diameter. Typically, wires with a larger diameter are annealed at a higher temperature, and thinner wires at a lower temperature. As a result of this annealing just before the final drawing pass, the tungsten undergoes a crystal structure change that improves its ductility, without adversely affecting the final HTS value of the wire. This means that the wire will maintain its good non-sag property, but will not break or split when wound even to small mandrel ratio coils.
  • This step of the method is illustrated in FIG. 5, which shows the annealing being performed with a gas burner 16 before the wire 9 is forced through the die 14 during the final drawing pass, as the wire 9 is drawn to final size.
  • In a preferred embodiment, as shown in FIG. 5, the final drawing pass after said annealing is done at a different drawing speed than the previous drawing passes. Most preferably, the final draw is done at a slower drawing speed than the preceding draw. For example, the last drawing pass—as indicated by the arrow 22—may be performed at a drawing speed approx. 65% of the speed of the last but one drawing, the latter being indicated by the arrow 21. Therefore, the wire 9 is changed from one drawing line to another, as indicated by the arrow 23 in FIG. 5. Of course, it is also possible to make the final drawing on the same drawing line, though it will cause interruptions in a continuous production, hence it is preferable to use another drawing line for the last drawing.
  • The proposed method results in a tungsten wire with outstanding non-sag and ductility properties. Due to the fact that the HTS of the wire does not decrease together with the decrease of the CTS value, it is possible to manufacture tungsten wires having a cold tensile strength—hot tensile strength ratio not exceeding 3.5.
  • For example, with a 240 mg/200 mm size tungsten wire hot tensile strength values of 0.16 N/mg/200 mm were accomplished. For the same wire, a cold tensile strength value of 0.52 N/mg/200 mm was accomplished resulting in a CTS/HTS ratio of 3.25.
  • For another wire with a 5.2 mg/200 mm size, hot tensile strength values of 0.210 N/mg/200 mm were accomplished. For the same wire, a cold tensile strength value of 0.745 N/mg/200 mm was accomplished, resulting in a CTS/HTS ratio of 3.43. Such thin and ductile wires are well suited for small mandrel ratio coils.
  • Some illustrative CTS and HTS values obtained with the method are listed in the table below:
    TABLE I
    Decrease in
    Wire Size CTS HTS CTS/HTS
    mg/200 mm Technology N/mg/200 mm N/mg/200 mm CTS/HTS ratio, %
    5.17 Prior art 0.960 0.217 4.42
    5.17 Annealed* 0.745 0.210 3.43 23
    41.60 Prior art 0.723 0.1600 4.52
    41.60 Annealed* 0.607 0.1770 3.43 25
    77.60 Prior art 0.610 0.1550 3.94
    77.60 Annealed* 0.570 0.1700 3.35 15
    240.00 Prior art 0.551 0.1740 3.75
    240.00 Annealed* 0.520 0.16.00 3.25 14

    Annealed* = Annealed before the final drawing pass
  • The proposed type of tungsten wire is applicable for all types of lamps, and it is principally recommended for the production of special high-end and automotive lamps with double spiral filaments of small mandrel ratio. A classical example is a 24 V, 21 W stop lamp for automobiles, which is subjected to a high number of switch on—switch off cycles, beside the intensive vibration. The application of this wire will largely reduce the breakage or deterioration of the filaments during manufacture of the coils, and also increases the lifetime of the lamps.
  • With the suggested method, the general mechanical properties of the filaments of special incandescent lamps with small mandrel ratio are improved, while it is still possible to produce both the wire and the filaments with standard manufacturing equipment. This means in practice that the production facilities for traditional K, Si, Al doped tungsten wire may be used, while decreasing defect rate of the filaments during production and use. The improved ductility of the wire will result in superior filament winding quality. The wire retains its desired fibrous structure, which is essential for long-life, non-sag filaments.
  • The invention is not limited to the shown and disclosed embodiments, but other elements, improvements and variations are also within the scope of the invention. For example, it is clear for those skilled in the art that beside the annealing step before the last drawing pass, a number of further annealing steps may be performed during the various drawing passes, in combination with re-crystallization or similar heat treatments.

Claims (16)

1. A method for manufacturing a high ductility and high hot tensile strength tungsten wire for incandescent lamp filaments, comprising the steps of
preparing a tungsten alloy,
swaging a tungsten rod from the alloy,
drawing the swaged rod to wire size in multiple drawing passes,
annealing the wire between predetermined draws,
in which an annealing is performed before the final drawing pass, by annealing the wire at a temperature between 1100-1300° C.
2. The method of claim 1, in which the final drawing pass after said annealing is done at a different drawing speed than the previous drawing passes.
3. The method of claim 2, in which the final drawing pass after said annealing is done at a slower drawing speed than the previous drawing passes.
4. The method of claim 3, in which the final drawing pass after said annealing is done at a drawing speed substantially 0.65 times the drawing speed of the previous drawing pass.
5. The method of claim 1, in which the wire is drawn from the swaged rod to final size in twenty to forty drawing passes.
6. The method of claim 1, in which the wire is pre-heated during the drawing passes.
7. The method of claim 6, in which the wire is pre-heated to 500-900° C. during the drawing passes.
8. The method of claim 1, in which the drawing tools are pre-heated during the drawing passes.
9. The method of claim 8, in which the drawing tools are pre-heated to 300-400° C. during the drawing passes.
10. The method of claim 1, in which the wire is further annealed between drawing passes preceding the final drawing pass.
11. A tungsten wire for incandescent lamp filament, having high ductility and high hot tensile strength, having a cold tensile strength - hot tensile strength ratio not exceeding 3.5.
12. The wire of claim 11, having a hot tensile strength between 0.16-0.24 N/mg/200 mm, measured at 1620° C.
13. The wire of claim 11, having a cold tensile strength between 0.50-0.75 N/mg/200 mm, measured at room temperature.
14. The wire of claim 11, being formed as a coil, and having a mandrel ratio not exceeding 2.
15. The wire of claim 11, comprising additives selected from the group of Al, K, Si.
16. The wire of claim 11, comprising additives selected from the group of Th, ThO, YO, LaO, CeO, Re.
US10/759,645 2004-01-16 2004-01-16 High ductility, high hot tensile strength tungsten wire and method of manufacture Abandoned US20050155680A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/759,645 US20050155680A1 (en) 2004-01-16 2004-01-16 High ductility, high hot tensile strength tungsten wire and method of manufacture
DE602005003240T DE602005003240T2 (en) 2004-01-16 2005-01-14 Highly-transformable and high-temperature tungsten wire and method for its production
EP05250198A EP1555331B1 (en) 2004-01-16 2005-01-14 High ductility, high hot tensile strength tungsten wire and method of manufacture
US11/839,813 US20080135139A1 (en) 2004-01-16 2007-08-16 High ductility, high hot tensile strength tungsten wire and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/759,645 US20050155680A1 (en) 2004-01-16 2004-01-16 High ductility, high hot tensile strength tungsten wire and method of manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/839,813 Continuation US20080135139A1 (en) 2004-01-16 2007-08-16 High ductility, high hot tensile strength tungsten wire and method of manufacture

Publications (1)

Publication Number Publication Date
US20050155680A1 true US20050155680A1 (en) 2005-07-21

Family

ID=34620723

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/759,645 Abandoned US20050155680A1 (en) 2004-01-16 2004-01-16 High ductility, high hot tensile strength tungsten wire and method of manufacture
US11/839,813 Abandoned US20080135139A1 (en) 2004-01-16 2007-08-16 High ductility, high hot tensile strength tungsten wire and method of manufacture

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/839,813 Abandoned US20080135139A1 (en) 2004-01-16 2007-08-16 High ductility, high hot tensile strength tungsten wire and method of manufacture

Country Status (3)

Country Link
US (2) US20050155680A1 (en)
EP (1) EP1555331B1 (en)
DE (1) DE602005003240T2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009154A1 (en) * 2006-06-20 2008-01-24 Xiamen Honglu Tungsten-Molybdenum Industry Co., Ltd A method for producing filament for halogen lamp
US20120269967A1 (en) * 2011-04-22 2012-10-25 Applied Materials, Inc. Hot Wire Atomic Layer Deposition Apparatus And Methods Of Use
US9440272B1 (en) 2011-02-07 2016-09-13 Southwire Company, Llc Method for producing aluminum rod and aluminum wire
US20180161883A1 (en) * 2016-12-09 2018-06-14 Michael T. Stawovy Tungsten heavy metal alloy powders and methods of forming them
CN111593215A (en) * 2020-04-23 2020-08-28 中国科学院金属研究所 Preparation method of high-strength plastic-matched titanium alloy Kirschner wire

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7093476B2 (en) * 2004-09-15 2006-08-22 Ut-Battelle, Llc Method for fabricating thin californium-containing radioactive source wires
CN101868306A (en) * 2007-11-21 2010-10-20 株式会社东芝 The manufacture method of tungsten filament
CN103632920B (en) * 2013-12-09 2016-06-15 佛山克莱汽车照明股份有限公司 A kind of automotive halogen lamp filament processes Processes and apparatus
CN106906396A (en) * 2017-03-06 2017-06-30 威海多晶钨钼科技有限公司 A kind of uniform fine grain Tungsten Bar and preparation method thereof
CN113186438B (en) * 2021-01-20 2022-09-13 厦门虹鹭钨钼工业有限公司 Alloy wire and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2489912A (en) * 1941-12-13 1949-11-29 Westinghouse Electric Corp Method of producing tungsten alloys
US3236699A (en) * 1963-05-09 1966-02-22 Gen Electric Tungsten-rhenium alloys
US3278281A (en) * 1957-09-13 1966-10-11 Westinghouse Electric Corp Thoriated tungsten filament or wire and method of making same
US4678718A (en) * 1985-04-01 1987-07-07 Shanghai Lamp Factory Process and usage of ceriated tungsten electrode material
US4863527A (en) * 1987-06-05 1989-09-05 Gte Products Corporation Process for producing doped tungsten wire with low strength and high ductility
US5604321A (en) * 1995-07-26 1997-02-18 Osram Sylvania Inc. Tungsten-lanthana alloy wire for a vibration resistant lamp filament
US6066019A (en) * 1998-12-07 2000-05-23 General Electric Company Recrystallized cathode filament and recrystallization method
US6191466B1 (en) * 1999-04-12 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device containing a diode
US6419758B1 (en) * 1999-09-10 2002-07-16 General Electric Company Cathode wire filament for x-ray tube applications
US20020145373A1 (en) * 2001-03-19 2002-10-10 General Electric Company Tungsten-rhenium filament and method for producing same
US20040244879A1 (en) * 2001-10-09 2004-12-09 Takashi Tanaka Tunsten wire, cathode heater, and filament for vibration service lamp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190466B1 (en) * 1997-01-15 2001-02-20 General Electric Company Non-sag tungsten wire

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2489912A (en) * 1941-12-13 1949-11-29 Westinghouse Electric Corp Method of producing tungsten alloys
US3278281A (en) * 1957-09-13 1966-10-11 Westinghouse Electric Corp Thoriated tungsten filament or wire and method of making same
US3236699A (en) * 1963-05-09 1966-02-22 Gen Electric Tungsten-rhenium alloys
US4678718A (en) * 1985-04-01 1987-07-07 Shanghai Lamp Factory Process and usage of ceriated tungsten electrode material
US4863527A (en) * 1987-06-05 1989-09-05 Gte Products Corporation Process for producing doped tungsten wire with low strength and high ductility
US5604321A (en) * 1995-07-26 1997-02-18 Osram Sylvania Inc. Tungsten-lanthana alloy wire for a vibration resistant lamp filament
US5742891A (en) * 1995-07-26 1998-04-21 Osram Sylvania Inc. Tungsten-lanthana alloy wire for a vibration resistant lamp filament
US6066019A (en) * 1998-12-07 2000-05-23 General Electric Company Recrystallized cathode filament and recrystallization method
US6191466B1 (en) * 1999-04-12 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device containing a diode
US6419758B1 (en) * 1999-09-10 2002-07-16 General Electric Company Cathode wire filament for x-ray tube applications
US20020145373A1 (en) * 2001-03-19 2002-10-10 General Electric Company Tungsten-rhenium filament and method for producing same
US20040244879A1 (en) * 2001-10-09 2004-12-09 Takashi Tanaka Tunsten wire, cathode heater, and filament for vibration service lamp

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009154A1 (en) * 2006-06-20 2008-01-24 Xiamen Honglu Tungsten-Molybdenum Industry Co., Ltd A method for producing filament for halogen lamp
US9440272B1 (en) 2011-02-07 2016-09-13 Southwire Company, Llc Method for producing aluminum rod and aluminum wire
US10518304B2 (en) 2011-02-07 2019-12-31 Southwire Company, Llc Method for producing aluminum rod and aluminum wire
US20120269967A1 (en) * 2011-04-22 2012-10-25 Applied Materials, Inc. Hot Wire Atomic Layer Deposition Apparatus And Methods Of Use
US20180161883A1 (en) * 2016-12-09 2018-06-14 Michael T. Stawovy Tungsten heavy metal alloy powders and methods of forming them
US10807168B2 (en) * 2016-12-09 2020-10-20 H.C. Starck Inc. Tungsten heavy metal alloy powders and methods of forming them
US11389872B2 (en) 2016-12-09 2022-07-19 H.C. Starck Solutions Euclid, LLC Tungsten heavy metal alloy powders and methods of forming them
US11840750B2 (en) 2016-12-09 2023-12-12 H.C. Starck Solutions Euclid, LLC Tungsten heavy metal alloy powders and methods of forming them
US11913095B2 (en) 2016-12-09 2024-02-27 H.C. Starck Solutions Euclid, LLC Fabrication of metallic parts by additive manufacturing
CN111593215A (en) * 2020-04-23 2020-08-28 中国科学院金属研究所 Preparation method of high-strength plastic-matched titanium alloy Kirschner wire

Also Published As

Publication number Publication date
DE602005003240T2 (en) 2008-09-11
US20080135139A1 (en) 2008-06-12
EP1555331A1 (en) 2005-07-20
EP1555331B1 (en) 2007-11-14
DE602005003240D1 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US20080135139A1 (en) High ductility, high hot tensile strength tungsten wire and method of manufacture
EP1435398B1 (en) Tunsten wire, cathode heater, and filament for vibration service lamp
US6624577B2 (en) Tungsten-rhenium filament and method for producing same
HUT57472A (en) Small sag filament as well as incandescent lamp and projector lamp therewith
EP1335410B1 (en) Tungsten-rhenium filament and method for producing same
EP0818804B1 (en) ARC tube for discharge lamp device
US20110215718A1 (en) Halogen incandescent lamp for operation on mains voltage
US5680003A (en) Coiled-coil filament design for an incandescent lamp
US4616682A (en) Method of manufacturing helically wound filaments and filaments manufactured by means of this method
US4863527A (en) Process for producing doped tungsten wire with low strength and high ductility
US6190466B1 (en) Non-sag tungsten wire
US3662789A (en) Mandrel for manufacturing filament coils and method for manufacturing filament coils
US3411959A (en) Method for producing tantalum carbide and tantalum-alloy carbide filaments
US20030122464A1 (en) Electric Lamp
WO2008009154A1 (en) A method for producing filament for halogen lamp
JPH1186800A (en) Tungsten wire and manufacture thereof, and filament and its manufacture thereof
US3208811A (en) Process for flashing incandescent lamps
JPH03219039A (en) Rhenium-tungsten alloy material excellent in workability and its manufacture
WO2005059950A3 (en) Electric incandescent lamp and method for fabrication thereof
JPH0232340B2 (en) MORIBUDENZAI
JPS63166952A (en) Manufacture of molybdenum material
US3275398A (en) Apparatus for heat treating lamp filaments
US3682720A (en) Manufacture of substantially non-sagging refractory metal wire
JP2024059120A (en) Manufacturing method for iridium alloy wire
JPH0250187B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: GE HUNGARY RT., HUNGARY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAGY, GYORGY;MESZAROS, ISTVAN;GAL, TAMAS;AND OTHERS;REEL/FRAME:014906/0034

Effective date: 20040108

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GE HUNGARY RT.;REEL/FRAME:014906/0004

Effective date: 20040108

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION