US20050142326A1 - Soundproofing floor covering and method for the production thereof - Google Patents

Soundproofing floor covering and method for the production thereof Download PDF

Info

Publication number
US20050142326A1
US20050142326A1 US10/519,872 US51987205A US2005142326A1 US 20050142326 A1 US20050142326 A1 US 20050142326A1 US 51987205 A US51987205 A US 51987205A US 2005142326 A1 US2005142326 A1 US 2005142326A1
Authority
US
United States
Prior art keywords
hot
melt adhesive
layer
floor covering
subsequent stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/519,872
Inventor
Hans Czerny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carcoustics Techconsult GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to CARCOUSTICS TECH CENTER GMBH reassignment CARCOUSTICS TECH CENTER GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CZERNY, HANS RUDOLF
Publication of US20050142326A1 publication Critical patent/US20050142326A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N3/00Arrangements or adaptations of other passenger fittings, not otherwise provided for
    • B60N3/04Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets
    • B60N3/048Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets characterised by their structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0815Acoustic or thermal insulation of passenger compartments
    • B60R13/083Acoustic or thermal insulation of passenger compartments for fire walls or floors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23979Particular backing structure or composition

Definitions

  • the invention relates to a sound-insulating floor covering, in particular for motor vehicles, comprising a carpet layer which on the underside comprises a base substrate, and a sub-layer which is bonded to the underside of the carpet layer by means of a hot-melt adhesive applied in multiple stages, as well as a method for the production of such a floor covering.
  • Sound insulation in motor vehicles is very important in relation to driving comfort and safety because a noticeable reduction in the noise level in the interior of the vehicle means a reduction in the impairment of both concentration and performance of the driver and passengers.
  • the driver is better able to perceive the traffic situation, and conversation in the passenger compartment is made easier.
  • DE 39 05 607 A1 describes a sound-insulating floor covering for motor vehicles, comprising a carpet layer and an acoustically effective layer which comprises a thermoformable absorbent plastic material that can be made into a foam, as well as a layer comprising a nonwoven fibre fabric.
  • the carpet layer of this floor covering comprises a support layer into which the pile or filament is inserted by tufting.
  • a coating of hot-melt or latex is applied for affixing the filament.
  • polyethylene powder is sintered onto the filament fixation layer.
  • the acoustically effective layer is followed by a foamed-on backing.
  • an additional laminated-on nonwoven sealant fabric or a heavy layer can be arranged between the acoustically effective layer and the foamed-on backing.
  • the production of this known floor covering is relatively expensive.
  • the floor covering according to the invention essentially comprises a carpet layer comprising a base substrate and a sub-layer which has been bonded to the underside of the carpet layer by a hot-melt adhesive applied in multiple stages, wherein directly to the base substrate of the carpet layer a hot-melt adhesive is applied which has an average mass flow rate of the melt ranging from 190 to 210 g/10 min, preferably approximately 200 g/10 min and has a lower melting point than a hot-melt adhesive applied in a subsequent stage, which adhesive has an average mass flow rate of the melt ranging from 140 to 160 g/10 min, preferably of approximately 150 g/10 min.
  • the floor covering according to the invention features a good connection between the fibre material of the carpet layer and the acoustically effective backing which is preferably made from a lightweight absorbent material.
  • a carpet layer with a particularly lightweight backing is achieved which shows no warping or shrinkage so that the carpet lies nice and flat.
  • the floor covering according to the invention has good rigidity and dimensional stability.
  • the hot-melt adhesive used is preferably in powdered form, for example an EVA or LD-PE hot-melt adhesive.
  • An advantageous embodiment of the floor covering according to the invention consists in that the base substrate of the carpet layer is a woven fabric, knitted fabric or nonwoven fabric, wherein the hot-melt adhesive which is applied directly to the base substrate, and the hot-melt adhesive applied in the subsequent stage form an adhesive layer which comprises a multitude of gaps which define fluid-permeable passages.
  • the sound-absorption performance of the floor covering according to the invention is improved.
  • the permeable carpet layer and the gaps present in the adhesive layer sound waves can penetrate right into the sound-absorbent sub-layer.
  • the sound-insulating sub-layer of the floor covering according to the invention preferably comprises a layer of nonwoven fibre fabric, in particular from a mixed PET/PP/PET nonwoven fibre fabric, and/or a heavy layer, in particular a foamed heavy layer.
  • Another advantageous embodiment of the floor covering according to the invention consists in that, preferably in the second hot-melt adhesive, mineral microbodies and/or hollow mineral microbodies, for example hollow glass spherules or hollow ceramic spherules, are contained.
  • mineral microbodies and/or hollow mineral microbodies for example hollow glass spherules or hollow ceramic spherules.
  • hollow bodies are light in weight and increase the strength and rigidity of the floor covering, respectively.
  • Hollow mineral microbodies are to be preferred because they are particularly light in weight and provide particularly good thermal and sound insulation.
  • the dimensional stability and rigidity of the floor covering according to the invention can be increased by crosslinking additives which are preferably added to the hot-melt adhesive applied in the subsequent stage.
  • these additives are melamine resin powder.
  • Melamine resin features good temperature resistance and in addition provides a certain flame-retardant effect.
  • a further advantageous embodiment of the floor covering according to the invention consists in that the hot-melt adhesive which is applied in the subsequent stage comprises a flame retardant.
  • a flame retardant Preferably aluminium hydroxide powder and/or magnesium hydroxide powder is used as a flame retardant.
  • FIG. 1 a cross section (not to scale) of a floor covering according to the invention.
  • FIG. 2 the basic design of a facility for producing the floor covering according to the invention.
  • the visible surface 1 of the floor covering shown in FIG. 1 comprises a carpet layer 2 with a base substrate 3 , into which the pile warp 4 is drawn by means of a multineedle machine. Later on, the pile warp is cut open so that a velour carpet results.
  • the base substrate 3 of the carpet layer 2 is permeable to sound waves. It can for example consist of a woven, knitted or nonwoven support fabric. Preferably the base substrate 3 is a spunbonded nonwoven fabric.
  • a hot-melt adhesive 5 is applied directly to the textile underside of the carpet layer 2 , which adhesive is preferably a hot-melt adhesive based on ethylene vinyl acetate (EVA) or low-density polyethylene (PE-LD).
  • EVA ethylene vinyl acetate
  • PE-LD low-density polyethylene
  • the hot-melt adhesive 5 is applied at a quantity of approximately 50 g/m 2 .
  • a second hot-melt adhesive 6 is applied to this first-applied hot-melt adhesive.
  • This second hot-melt adhesive can be an EVA or PE-LD adhesive. It is applied at a rate of approximately 150 g/m 2 .
  • the first-applied hot-melt adhesive 5 has an average mass flow rate of the melt of 190 to 210 g/10 min, preferably of approximately 200 g/10 min, and a lower melting point than the hot-melt adhesive 6 which is applied subsequently and which has an average mass flow rate of the melt of 140 to 160 g/10 min, preferably of approximately 150 g/10 min.
  • MFR mass flow rate
  • MFI melt-flow index
  • hot-melt adhesive 5 and the subsequently applied hot-melt adhesive 6 form an adhesive layer which comprises a multitude of gaps or recesses 16 which define fluid-permeable passages.
  • the hot-melt adhesive 5 and 6 thus predominantly binds to the pile fibres or pile knots of the carpet layer, where it forms a type of net.
  • the last-applied hot-melt adhesive 6 contains hollow mineral microbodies 7 , e.g. in the form of hollow glass spherules or hollow ceramic spherules.
  • the hollow glass spherules or hollow ceramic spherules stiffen the floor covering and also have a remarkably sound-insulating effect.
  • the hot-melt adhesive 6 can also comprise a duroplastically crosslinking additive and/or a flame retardant.
  • melamine resin powder is used as the duroplastically crosslinking additive.
  • aluminium hydroxide powder with a granular size of ⁇ 150 ⁇ m and/or a correspondingly fine magnesium hydroxide powder are/is used as a flame-retarding additive.
  • the hot-melt adhesive 6 can also contain particles which expand under the effect of heat or fire.
  • the particles comprise small hollow plastic particles which comprise a gas-proof envelope of a mixed polymer, which envelope is insoluble in water and which encapsulates liquid and/or gaseous hydrocarbon.
  • the hollow plastic particles have a grain diameter ranging from approx. 2 to 50 ⁇ m, preferably 10 to 20 ⁇ m. If the hollow plastic particles are heated up as a result of the effect of heat or fire, the liquid hydrocarbon changes to the gas phase. As the temperature rises, the pressure of the gaseous hydrocarbon increases. At the same time, the gas-proof envelope softens so that the volume of the hollow plastic particles increases to many times its former value.
  • the volume increase can be 30 to 50 times the original volume.
  • the material of the gas-proof envelope and the hydrocarbon enclosed therein are selected such that the volume increase (expansion) is triggered with the effect of heat from a certain temperature range onward.
  • the trigger temperature is preferably in excess of 100° C.
  • the envelope is so soft that it will finally burst if the temperature continues to increase, thus releasing the encapsulated hydrocarbon as a propellant gas.
  • the temperature range in which the propellant gas is released is above approximately 130° C.
  • the layer of nonwoven fibre fabric 8 preferably comprises a mixed PET/PP/PET nonwoven fibre fabric or spun fibre fabric. It is also within the scope of the invention to leave out the heavy layer 9 or the nonwoven fibre fabric 8 .
  • FIG. 2 shows the production of the floor covering according to the invention.
  • Reference number 10 designates a production plant in which the carpet layer 2 with a base substrate comprising a woven fabric, knitted fabric or nonwoven fabric is generated as continuous fabric. From the production plant 10 , the carpet layer or carpet line 2 is transported, by way of supporting rollers, to a reeling device 11 , wherein the visible side 1 of the carpet points downward and the base substrate points upward.
  • two heads 12 , 13 for scattering powder are arranged, spaced apart from each other in the direction of transport, which heads 12 , 13 are used for applying powdered hot-melt adhesive.
  • the head 12 for scattering powder is set in such a way in relation to the transport speed of the carpet line 2 that it applies powdered hot-melt adhesive at a rate of approx. 50 g/m 2 directly to the base substrate of the carpet layer 2 .
  • the head 13 for scattering powder which head follows in the direction of transport, is set in such a way that it applies powdered hot-melt adhesive 6 at a rate of approximately 150 g/m 2 to the first layer 5 of hot-melt adhesive.
  • the powdered hot-melt adhesive comprises the above-mentioned hollow microbodies 7 and if required one or several of the above-mentioned additives.
  • a heater 14 Downstream of the head 13 for scattering powder, when viewed in the direction of transport of the carpet line 2 , there is a heater 14 , for example in the form of an infrared radiator, by means of which heater both powdered hot-melt adhesives 5 and 6 are melted on together. Subsequently, at least one continuous line of nonwoven fibre fabric and/or heavy layer, which are/is reeled off a supply roll 15 , is laminated onto the reverse side of the carpet line 2 , which comprises the melted adhesive. Furthermore, for faster solidification of the adhesive, a cooling device (not shown) can be provided.
  • the hot-melt adhesive 5 and the hot-melt adhesive 6 applied in the subsequent stage are set and applied in such a way that after their melting-on and their solidification a net-like adhesive layer results which comprises a multitude of gaps or recesses which define fluid-permeable locations.
  • the first-applied powdered hot-melt adhesive 5 can be melted on already prior to the application of the second powdered hot-melt adhesive 6 by means of an additional heater (not shown) arranged upstream of the head 13 for scattering powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Carpets (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Floor Finish (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Passenger Equipment (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The invention relates to a sound-insulating floor covering, in particular for motor vehicles, comprising a carpet layer (2) which on the underside comprises a base substrate (3), and a sub-layer (8, 9) which is bonded to the underside of the carpet layer by means of a hot-melt adhesive (5, 6) which is applied in multiple stages. In order to economically produce such a floor covering which is light in weight, has good sound-insulating qualities and adequate rigidity, it is proposed that directly to the base substrate of the carpet layer (2) a hot-melt adhesive (5) is applied which has an average mass flow rate of the melt ranging from 190 to 210 g/10 min and has a lower melting point than a hot-melt adhesive (6) which is applied in a subsequent stage and has an average mass flow rate of the melt ranging from 140 to 160 g/10 min. Furthermore, the second hot-melt adhesive (6) can preferably comprise hollow mineral microbodies (7). Moreover, a method for the production of such a floor covering is described.

Description

  • The invention relates to a sound-insulating floor covering, in particular for motor vehicles, comprising a carpet layer which on the underside comprises a base substrate, and a sub-layer which is bonded to the underside of the carpet layer by means of a hot-melt adhesive applied in multiple stages, as well as a method for the production of such a floor covering.
  • Sound insulation in motor vehicles is very important in relation to driving comfort and safety because a noticeable reduction in the noise level in the interior of the vehicle means a reduction in the impairment of both concentration and performance of the driver and passengers. The driver is better able to perceive the traffic situation, and conversation in the passenger compartment is made easier.
  • A great number of sound insulating floor coverings for passenger motor vehicles have already been developed.
  • In many of these floor coverings the sound absorption performance is inadequate. While floor coverings for motor vehicles exist that provide satisfactory sound absorption performance, as a rule these floor coverings have a relatively high mass per unit area which is disadvantageous in view of the efforts made to reduce fuel consumption by reducing the vehicle's weight. Furthermore, in some known carpeting, dispersion adhesives or acrylates are used to bond the pile warp. However, these adhesives have only an inadequate stiffening effect. In contrast to this, thermoplastic adhesives can result in better stiffening but they have relatively high shrinkage values, which results in unsatisfactory flatness of a floor covering made with such adhesives.
  • DE 39 05 607 A1 describes a sound-insulating floor covering for motor vehicles, comprising a carpet layer and an acoustically effective layer which comprises a thermoformable absorbent plastic material that can be made into a foam, as well as a layer comprising a nonwoven fibre fabric. The carpet layer of this floor covering comprises a support layer into which the pile or filament is inserted by tufting. A coating of hot-melt or latex is applied for affixing the filament. For the purpose of bonding the following acoustically effective layer, polyethylene powder is sintered onto the filament fixation layer. The acoustically effective layer is followed by a foamed-on backing. As an alternative, an additional laminated-on nonwoven sealant fabric or a heavy layer can be arranged between the acoustically effective layer and the foamed-on backing. The production of this known floor covering is relatively expensive.
  • It is the object of the present invention to produce a sound-insulating floor covering of the type mentioned in the introduction, which floor covering is light in weight, has good sound-insulating qualities, adequate rigidity, low shrinkage values and is economical to produce. Furthermore, a method for producing such a floor covering is to be stated.
  • This object is met by a floor covering having the features of claim 1 and by a method having the features of claim 10 respectively. Preferred and advantageous embodiments of the invention are stated in the subordinate claims.
  • The floor covering according to the invention essentially comprises a carpet layer comprising a base substrate and a sub-layer which has been bonded to the underside of the carpet layer by a hot-melt adhesive applied in multiple stages, wherein directly to the base substrate of the carpet layer a hot-melt adhesive is applied which has an average mass flow rate of the melt ranging from 190 to 210 g/10 min, preferably approximately 200 g/10 min and has a lower melting point than a hot-melt adhesive applied in a subsequent stage, which adhesive has an average mass flow rate of the melt ranging from 140 to 160 g/10 min, preferably of approximately 150 g/10 min.
  • The floor covering according to the invention features a good connection between the fibre material of the carpet layer and the acoustically effective backing which is preferably made from a lightweight absorbent material. A carpet layer with a particularly lightweight backing is achieved which shows no warping or shrinkage so that the carpet lies nice and flat. Furthermore, the floor covering according to the invention has good rigidity and dimensional stability.
  • The hot-melt adhesive used is preferably in powdered form, for example an EVA or LD-PE hot-melt adhesive. As a result of the comparatively high mass flow rate of the melt and the comparatively low melting point of the first-applied hot-melt adhesive, an excellent wear-resistant pile fibre connection to the base substrate of the carpet layer is achieved.
  • An advantageous embodiment of the floor covering according to the invention consists in that the base substrate of the carpet layer is a woven fabric, knitted fabric or nonwoven fabric, wherein the hot-melt adhesive which is applied directly to the base substrate, and the hot-melt adhesive applied in the subsequent stage form an adhesive layer which comprises a multitude of gaps which define fluid-permeable passages. In this way the sound-absorption performance of the floor covering according to the invention is improved. By way of the permeable carpet layer and the gaps present in the adhesive layer, sound waves can penetrate right into the sound-absorbent sub-layer.
  • The sound-insulating sub-layer of the floor covering according to the invention preferably comprises a layer of nonwoven fibre fabric, in particular from a mixed PET/PP/PET nonwoven fibre fabric, and/or a heavy layer, in particular a foamed heavy layer.
  • Another advantageous embodiment of the floor covering according to the invention consists in that, preferably in the second hot-melt adhesive, mineral microbodies and/or hollow mineral microbodies, for example hollow glass spherules or hollow ceramic spherules, are contained. Such hollow bodies are light in weight and increase the strength and rigidity of the floor covering, respectively. Hollow mineral microbodies are to be preferred because they are particularly light in weight and provide particularly good thermal and sound insulation.
  • Furthermore, the dimensional stability and rigidity of the floor covering according to the invention can be increased by crosslinking additives which are preferably added to the hot-melt adhesive applied in the subsequent stage. Preferably, these additives are melamine resin powder. Melamine resin features good temperature resistance and in addition provides a certain flame-retardant effect.
  • A further advantageous embodiment of the floor covering according to the invention consists in that the hot-melt adhesive which is applied in the subsequent stage comprises a flame retardant. Preferably aluminium hydroxide powder and/or magnesium hydroxide powder is used as a flame retardant.
  • Further preferred and advantageous embodiments of the invention are disclosed in the subordinate claims.
  • Below, the invention is explained in detail with reference to a drawing which shows one embodiment. The following are diagrammatically shown:
  • FIG. 1 a cross section (not to scale) of a floor covering according to the invention; and
  • FIG. 2 the basic design of a facility for producing the floor covering according to the invention.
  • The visible surface 1 of the floor covering shown in FIG. 1 comprises a carpet layer 2 with a base substrate 3, into which the pile warp 4 is drawn by means of a multineedle machine. Later on, the pile warp is cut open so that a velour carpet results. The base substrate 3 of the carpet layer 2 is permeable to sound waves. It can for example consist of a woven, knitted or nonwoven support fabric. Preferably the base substrate 3 is a spunbonded nonwoven fabric.
  • A hot-melt adhesive 5 is applied directly to the textile underside of the carpet layer 2, which adhesive is preferably a hot-melt adhesive based on ethylene vinyl acetate (EVA) or low-density polyethylene (PE-LD). The hot-melt adhesive 5 is applied at a quantity of approximately 50 g/m2.
  • A second hot-melt adhesive 6 is applied to this first-applied hot-melt adhesive. This second hot-melt adhesive, too, can be an EVA or PE-LD adhesive. It is applied at a rate of approximately 150 g/m2.
  • The first-applied hot-melt adhesive 5 has an average mass flow rate of the melt of 190 to 210 g/10 min, preferably of approximately 200 g/10 min, and a lower melting point than the hot-melt adhesive 6 which is applied subsequently and which has an average mass flow rate of the melt of 140 to 160 g/10 min, preferably of approximately 150 g/10 min. Sometimes the mass flow rate (MFR) is also referred to as the melt-flow index (MFI). It describes the flow behaviour of a melt and is defined in ISO 1133 as well as in ASTM D 1238. Of course, the values of the mass flow rates applying to the two hot- melt adhesives 5 and 6 were determined under identical conditions, i.e. at identical pressure and identical temperature, namely at normal pressure 101325 Pa (=1.01325 bar) and 190° C.
  • It can be seen from the illustration that the hot-melt adhesive 5 and the subsequently applied hot-melt adhesive 6 form an adhesive layer which comprises a multitude of gaps or recesses 16 which define fluid-permeable passages.
  • The hot- melt adhesive 5 and 6 thus predominantly binds to the pile fibres or pile knots of the carpet layer, where it forms a type of net. The last-applied hot-melt adhesive 6 contains hollow mineral microbodies 7, e.g. in the form of hollow glass spherules or hollow ceramic spherules. The hollow glass spherules or hollow ceramic spherules stiffen the floor covering and also have a remarkably sound-insulating effect.
  • According to a preferred variant, the hot-melt adhesive 6 can also comprise a duroplastically crosslinking additive and/or a flame retardant. Preferably, melamine resin powder is used as the duroplastically crosslinking additive. Preferably aluminium hydroxide powder with a granular size of ≧150 μm and/or a correspondingly fine magnesium hydroxide powder are/is used as a flame-retarding additive.
  • As an alternative or in addition to the hollow mineral microbodies 7, the hot-melt adhesive 6 can also contain particles which expand under the effect of heat or fire. The particles comprise small hollow plastic particles which comprise a gas-proof envelope of a mixed polymer, which envelope is insoluble in water and which encapsulates liquid and/or gaseous hydrocarbon. The hollow plastic particles have a grain diameter ranging from approx. 2 to 50 μm, preferably 10 to 20 μm. If the hollow plastic particles are heated up as a result of the effect of heat or fire, the liquid hydrocarbon changes to the gas phase. As the temperature rises, the pressure of the gaseous hydrocarbon increases. At the same time, the gas-proof envelope softens so that the volume of the hollow plastic particles increases to many times its former value. For example, the volume increase can be 30 to 50 times the original volume. The material of the gas-proof envelope and the hydrocarbon enclosed therein are selected such that the volume increase (expansion) is triggered with the effect of heat from a certain temperature range onward. The trigger temperature is preferably in excess of 100° C. In a particular temperature range the envelope is so soft that it will finally burst if the temperature continues to increase, thus releasing the encapsulated hydrocarbon as a propellant gas. The temperature range in which the propellant gas is released is above approximately 130° C.
  • An acoustically effective sub-layer in the form of a layer of nonwoven fibre fabric 8 is next to the adhesive layer. Finally, a foamed heavy layer 9 is next to the layer of nonwoven fibre fabric 8. The layer of nonwoven fibre fabric 8 preferably comprises a mixed PET/PP/PET nonwoven fibre fabric or spun fibre fabric. It is also within the scope of the invention to leave out the heavy layer 9 or the nonwoven fibre fabric 8.
  • FIG. 2 shows the production of the floor covering according to the invention. Reference number 10 designates a production plant in which the carpet layer 2 with a base substrate comprising a woven fabric, knitted fabric or nonwoven fabric is generated as continuous fabric. From the production plant 10, the carpet layer or carpet line 2 is transported, by way of supporting rollers, to a reeling device 11, wherein the visible side 1 of the carpet points downward and the base substrate points upward.
  • Above the carpet line 2, two heads 12, 13 for scattering powder are arranged, spaced apart from each other in the direction of transport, which heads 12, 13 are used for applying powdered hot-melt adhesive. The head 12 for scattering powder is set in such a way in relation to the transport speed of the carpet line 2 that it applies powdered hot-melt adhesive at a rate of approx. 50 g/m2 directly to the base substrate of the carpet layer 2. In contrast, the head 13 for scattering powder, which head follows in the direction of transport, is set in such a way that it applies powdered hot-melt adhesive 6 at a rate of approximately 150 g/m2 to the first layer 5 of hot-melt adhesive. The powdered hot-melt adhesive comprises the above-mentioned hollow microbodies 7 and if required one or several of the above-mentioned additives.
  • Downstream of the head 13 for scattering powder, when viewed in the direction of transport of the carpet line 2, there is a heater 14, for example in the form of an infrared radiator, by means of which heater both powdered hot- melt adhesives 5 and 6 are melted on together. Subsequently, at least one continuous line of nonwoven fibre fabric and/or heavy layer, which are/is reeled off a supply roll 15, is laminated onto the reverse side of the carpet line 2, which comprises the melted adhesive. Furthermore, for faster solidification of the adhesive, a cooling device (not shown) can be provided.
  • The hot-melt adhesive 5 and the hot-melt adhesive 6 applied in the subsequent stage are set and applied in such a way that after their melting-on and their solidification a net-like adhesive layer results which comprises a multitude of gaps or recesses which define fluid-permeable locations.
  • Implementation of the invention is not limited to the embodiment described above. Rather, a number of variants are possible which, even if their design basically differs, make use of the inventive idea defined in the claims. For example, the first-applied powdered hot-melt adhesive 5 can be melted on already prior to the application of the second powdered hot-melt adhesive 6 by means of an additional heater (not shown) arranged upstream of the head 13 for scattering powder.

Claims (18)

1. A sound-insulating floor covering, in particular for motor vehicles, comprising a carpet layer (2) which on the underside comprises a base substrate (3), and a sub-layer (8, 9) which is bonded to the underside of the carpet layer by means of a hot-melt adhesive (5, 6) applied in multiple stages, wherein
directly to the base substrate of the carpet layer (2) a hot-melt adhesive (5) is applied which has an average mass flow rate of the melt ranging from 190 to 210 g/10 min and has a lower melting point than a hot-melt adhesive (6) which is applied in a subsequent stage and which has an average mass flow rate of the melt ranging from 140 to 160 g/10 min.
2. The floor covering according to claim 1, wherein
the hot-melt adhesive (5) which is applied directly to the base substrate (3) of the carpet layer (2) is applied at a lower mass per unit area than the hot-melt adhesive (6) which is applied in the subsequent stage.
3. The floor covering according to claim 1, wherein
at least one of the hot-melt adhesives (5, 6) comprises mineral microbodies and/or hollow mineral microbodies (7).
4. The floor covering according to claim 1 or 2, wherein
the hot-melt adhesive (6) which is applied in the subsequent stage comprises mineral microbodies and/or hollow mineral microbodies (7).
5. The floor covering according to claim 1, wherein
the base substrate (3) is a woven fabric, knitted fabric or nonwoven fabric, wherein the hot-melt adhesive (5) which is applied directly to the base substrate (3), and the hot-melt adhesive (6) which is applied in the subsequent stage form an adhesive layer which comprises a multitude of gaps (16) which define fluid-permeable passages.
6. The floor covering according to claim 1, wherein
the sub-layer comprises a layer of nonwoven fibre fabric (8) and/or a heavy layer (9).
7. The floor covering according to claim 1, wherein
the hot-melt adhesive (6) which is applied in the subsequent stage comprises one or several crosslinking additives.
8. The floor covering according to claim 1, wherein
the hot-melt adhesive (6) which is applied in the subsequent stage comprises a flame retardant.
9. The floor covering according to claim 1, wherein
the hot-melt adhesive (6) which is applied in the subsequent stage comprises particles which expand under the effect of heat.
10. A method for producing a floor covering according to claim 1, in which in several stages hot-melt adhesive (5, 6) is applied to the backing of a carpet layer (2) which on the underside comprises a textile base layer (3), and a sound-insulating sub-layer (8, 9) is applied to the hot-melt adhesive, wherein
a hot-melt adhesive (5) is applied directly to the base layer (3) of the carpet layer (2), which hot-melt adhesive (5) has an average mass flow rate of the melt ranging from 190 to 210 g/10 min, and a lower melting point than a hot-melt adhesive (6) which is applied in a subsequent stage and which has an average mass flow rate of the melt ranging from 140 to 160 g/10 min.
11. The method according to claim 10, wherein
the hot-melt adhesive (5) which is applied in the first stage is applied at a lower mass per unit area than the hot-melt adhesive (6) which is applied in the subsequent stage.
12. The method according to claim 10, wherein
the hot-melt adhesive (5) which is applied directly to the base layer (3) of the carpet layer (2) and the hot-melt adhesive (6) which is applied in the subsequent stage are each scattered-on in the form of powdered hot-melt adhesive, and are melted-on prior to the application of the sound-absorbent sub-layer, either together or spaced apart in time.
13. The method according to claim 10, wherein
mineral microbodies and/or hollow mineral microbodies (7) are added to the hot-melt adhesive (6) which is applied in the subsequent stage.
14. The method according to claim 10, wherein
a woven fabric, knitted fabric or nonwoven fabric is used as the base substrate (3), and the hot-melt adhesive (5) which is applied directly to the base substrate (3) of the carpet layer (2) and the hot-melt adhesive (6) which is applied in the subsequent stage are applied such that after solidification of the hot-melt adhesives (5, 6) an adhesive layer is formed which comprises a multitude of gaps which define fluid-permeable passages.
15. The method according to claim 10, wherein
a layer of nonwoven fibre fabric (8) and/or a heavy layer (9) are/is applied as a sound-absorbent sub-layer.
16. The method according to claim 10, wherein
a crosslinking additive is added to the hot-melt adhesive (6) which is applied in the subsequent stage.
17. The method according to claim 10, wherein
a flame retardant is added to the hot-melt adhesive (6) which is applied in the subsequent stage.
18. The method according to claim 10, wherein
particles which expand under the effect of heat are added to the hot-melt adhesive (6) which is applied in the subsequent stage.
US10/519,872 2002-07-01 2003-06-18 Soundproofing floor covering and method for the production thereof Abandoned US20050142326A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10229524.7 2002-07-01
DE2002129524 DE10229524B4 (en) 2002-07-01 2002-07-01 Sound-insulating floor covering and method for its production
PCT/EP2003/006423 WO2004002780A1 (en) 2002-07-01 2003-06-18 Soundproofing floor covering and method for the production thereof

Publications (1)

Publication Number Publication Date
US20050142326A1 true US20050142326A1 (en) 2005-06-30

Family

ID=29723599

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/519,872 Abandoned US20050142326A1 (en) 2002-07-01 2003-06-18 Soundproofing floor covering and method for the production thereof

Country Status (11)

Country Link
US (1) US20050142326A1 (en)
EP (1) EP1517812B1 (en)
JP (1) JP2005532212A (en)
CN (1) CN1665703A (en)
AT (1) ATE340102T1 (en)
AU (1) AU2003279679A1 (en)
BR (1) BR0312296A (en)
DE (2) DE10229524B4 (en)
MX (1) MXPA04012838A (en)
WO (1) WO2004002780A1 (en)
ZA (1) ZA200409877B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067001A1 (en) * 2005-02-10 2008-03-20 Andreas Sviridenko Sound-Absorbing Lining for Motor Vehicles, Particularly Engine Hood Lining
EP3971028A1 (en) * 2020-09-18 2022-03-23 Autoneum Management AG Automotive trim part with integrated heating device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111256A (en) * 2004-09-17 2006-04-27 Eidai Kako Kk Sound absorbing mat and manufacturing method thereof
JP5762762B2 (en) * 2011-01-31 2015-08-12 株式会社大和 Car mat
KR101393557B1 (en) * 2012-09-07 2014-05-12 현대자동차주식회사 Carpet for vehicle and method for manufacturing the same
BR102012030529A2 (en) * 2012-11-30 2014-09-09 Vanderlei Rezende Da Costa Sales INSULATING CARPET COATING WITH ACOUSTIC AND THERMAL PROPERTIES MADE IN MULTIPLE LAYERS IN ONE PROCESS
KR101558713B1 (en) * 2013-12-31 2015-10-07 현대자동차주식회사 Low-melting adhesive film
CN104192042B (en) * 2014-08-22 2016-08-24 无锡吉兴汽车部件有限公司 A kind of lightweight car acpistocs carpet and production method thereof
JP6360420B2 (en) * 2014-10-29 2018-07-18 林テレンプ株式会社 Interior material for automobile and method for manufacturing the same
WO2016115138A1 (en) * 2015-01-12 2016-07-21 Zephyros, Inc. Acoustic floor underlay system
KR101911538B1 (en) * 2016-11-14 2018-10-25 주식회사 휴비스 Eco-friendly Hot Melt Adhesive Film
KR102002940B1 (en) * 2018-01-26 2019-07-23 (주)두올 Eco-friendly hot melt type heat adhesive film and adhesive molding articles for vehicle using the same
CN111703136A (en) * 2020-06-12 2020-09-25 诺奥(福建)环保家居用品有限公司 Sound-insulation noise-reduction tufting engineering blanket and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819463A (en) * 1971-11-17 1974-06-25 Dow Chemical Co Carpet and preparation thereof
US4879163A (en) * 1987-09-24 1989-11-07 Bay Mills Limited Textiles containing interstices and processes for making such textiles
US4906497A (en) * 1987-11-16 1990-03-06 Uzin-Werk Georg Utz Gmbh & Co. Kg Microwave-activatable hot-melt adhesive
US5540968A (en) * 1994-03-03 1996-07-30 Milliken Research Corporation Cushioned backed carpet tile with stabilized nonwoven backing
US5656109A (en) * 1995-08-28 1997-08-12 Collins & Aikman Floorcoverings, Inc. Method of making inlaid floor coverings
US6838147B2 (en) * 1998-01-12 2005-01-04 Mannington Mills, Inc. Surface covering backing containing polymeric microspheres and processes of making the same
US20050038160A1 (en) * 2003-08-15 2005-02-17 Hall Matthew Scott Ethylene copolymers with hollow fillers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7601561L (en) * 1975-02-12 1976-08-13 Bury & Masco Ind SOUND INSULATED MATERIAL
DE8204934U1 (en) * 1982-02-23 1982-09-02 Boussac Saint Frères, S.A., 59800 Lille SOUND AND HEAT-INSULATING COATING MATERIAL RAIL FOR INTERIORS
US4871603A (en) * 1988-09-29 1989-10-03 Malone Thomas J Carpet tile with cushioned backing
DE3905607A1 (en) * 1989-02-23 1990-08-30 Bayerische Motoren Werke Ag LAYER BUILDING FOR THE PRODUCTION OF SOUND INSULATIONS, SOUND INSULATIONS AND METHOD FOR THE PRODUCTION OF THE LAYER BUILDING OR OF SOUND INSULATION
DE19960945B4 (en) * 1999-12-17 2004-07-08 Audi Ag Floor covering for motor vehicles
DE10044761A1 (en) * 2000-09-09 2002-04-18 Hp Chem Pelzer Res & Dev Ltd Soundproofing floor covering for the inside of vehicles, consists of a (non) textile surface connected to an existing floor covering using a micro-perforated film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819463A (en) * 1971-11-17 1974-06-25 Dow Chemical Co Carpet and preparation thereof
US4879163A (en) * 1987-09-24 1989-11-07 Bay Mills Limited Textiles containing interstices and processes for making such textiles
US4906497A (en) * 1987-11-16 1990-03-06 Uzin-Werk Georg Utz Gmbh & Co. Kg Microwave-activatable hot-melt adhesive
US5540968A (en) * 1994-03-03 1996-07-30 Milliken Research Corporation Cushioned backed carpet tile with stabilized nonwoven backing
US5656109A (en) * 1995-08-28 1997-08-12 Collins & Aikman Floorcoverings, Inc. Method of making inlaid floor coverings
US6838147B2 (en) * 1998-01-12 2005-01-04 Mannington Mills, Inc. Surface covering backing containing polymeric microspheres and processes of making the same
US20050038160A1 (en) * 2003-08-15 2005-02-17 Hall Matthew Scott Ethylene copolymers with hollow fillers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067001A1 (en) * 2005-02-10 2008-03-20 Andreas Sviridenko Sound-Absorbing Lining for Motor Vehicles, Particularly Engine Hood Lining
EP3971028A1 (en) * 2020-09-18 2022-03-23 Autoneum Management AG Automotive trim part with integrated heating device
WO2022058292A1 (en) * 2020-09-18 2022-03-24 Autoneum Management Ag Automotive trim part with integrated heating device

Also Published As

Publication number Publication date
EP1517812A1 (en) 2005-03-30
BR0312296A (en) 2005-04-12
DE10229524B4 (en) 2006-03-23
AU2003279679A1 (en) 2004-01-19
WO2004002780A1 (en) 2004-01-08
ATE340102T1 (en) 2006-10-15
JP2005532212A (en) 2005-10-27
DE50305129D1 (en) 2006-11-02
MXPA04012838A (en) 2005-03-31
CN1665703A (en) 2005-09-07
EP1517812B1 (en) 2006-09-20
ZA200409877B (en) 2006-07-26
DE10229524A1 (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US7658984B2 (en) Lightweight acoustic automotive carpet
US20050142326A1 (en) Soundproofing floor covering and method for the production thereof
US7682681B2 (en) Sound absorbing/sound blocking automotive trim products
US6720068B1 (en) Sound absorbent thin-layer laminate
US7700176B2 (en) Porous carpeting for vehicles and methods of producing same
CA2562508C (en) Molded interior trim installation material for automobile
US7464791B2 (en) Acoustic mats and methods for making the same
US20070298215A1 (en) Floor covering having a strong noise-reducing properties
JP4394638B2 (en) Molded interior materials for automobiles
JP2007203919A (en) Floor carpet for automobile, and manufacturing method thereof
US7537818B2 (en) Sound absorptive multilayer articles and methods of producing same
CN104302830A (en) Motor vehicle parts
US20070254130A1 (en) Laminates with sound absorbing porperties
US20110165810A1 (en) Fiber composite and method for manufacturing the same
KR100832350B1 (en) Noise absorbent carpet for vehicle
JP2006028708A (en) Sound-absorbing laminate and method for producing the same
KR100356412B1 (en) Internal Sheet of Moter and Method For Manufacturing The Same
JP2003341406A (en) Vehicular carpet and its manufacturing method
WO2004054795A1 (en) Laminated surface skin material and laminate for interior material
JP2008200288A (en) Floor mat for automobile and its manufacturing method
CN113574594A (en) Laminated sound absorbing material
JPWO2003053675A1 (en) Sound-absorbing and water-insulating mat
KR20080005212A (en) Fiber composite material and process for producing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARCOUSTICS TECH CENTER GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CZERNY, HANS RUDOLF;REEL/FRAME:016442/0609

Effective date: 20041216

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION