US20050100757A1 - Thermal barrier coating having a heat radiation absorbing topcoat - Google Patents

Thermal barrier coating having a heat radiation absorbing topcoat Download PDF

Info

Publication number
US20050100757A1
US20050100757A1 US10/712,821 US71282103A US2005100757A1 US 20050100757 A1 US20050100757 A1 US 20050100757A1 US 71282103 A US71282103 A US 71282103A US 2005100757 A1 US2005100757 A1 US 2005100757A1
Authority
US
United States
Prior art keywords
barrier coating
thermal barrier
layer
heat
article according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/712,821
Inventor
William Stowell
Bangalore Nagaraj
Andrew Skoog
Jane Murphy
John Ackerman
Daniel Ivkovich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Lanxess Solutions US Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US10/712,821 priority Critical patent/US20050100757A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MURPHY, JANE ANN, SKOOG, ANDREW JAY, ACKERMAN, JOHN FREDERICK, IVKOVICH, JR., DANIEL PETER, NAGARAJ, BANGALORE ASWATHA, STOWELL, WILLIAM RANDOLPH
Priority to EP04256966A priority patent/EP1531192A1/en
Publication of US20050100757A1 publication Critical patent/US20050100757A1/en
Assigned to CROMPTON CORPORATION reassignment CROMPTON CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CHEMTURA ORGANOMETALLICS GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • This invention relates to coating systems suitable for protecting components exposed to high-temperature environments, such as the hot gas flow path through a gas turbine engine. More particularly, this invention is directed to a multilayer thermal barrier coating (TBC) system characterized by a low coefficient of thermal conductivity and having a heat-absorbing topcoat.
  • TBC thermal barrier coating
  • TBC thermal barrier coatings
  • HPT high pressure turbine
  • Bond coat materials widely used in TBC systems include oxidation-resistant overlay coatings such as MCrAlX (where M is iron, cobalt and/or nickel, and X is yttrium or another rare earth element), pure oxidation resistant intermetallic compounds such as nickel aluminides, and oxidation-resistant diffusion coatings such as diffusion aluminides that contain aluminum intermetallics.
  • oxidation-resistant overlay coatings such as MCrAlX (where M is iron, cobalt and/or nickel, and X is yttrium or another rare earth element)
  • pure oxidation resistant intermetallic compounds such as nickel aluminides
  • oxidation-resistant diffusion coatings such as diffusion aluminides that contain aluminum intermetallics.
  • TBCs Ceramic materials and particularly binary yttria-stabilized zirconia (YSZ) are widely used as TBC materials because of their high temperature capability, low thermal conductivity, and relative ease of deposition such as by air plasma spraying (APS), flame spraying such as hyper-velocity oxy-fuel (HVOF), physical vapor deposition (PVD) and other known TBC application techniques.
  • APS air plasma spraying
  • HVOF hyper-velocity oxy-fuel
  • PVD physical vapor deposition
  • TBCs formed by these methods generally have a lower thermal conductivity than a dense ceramic of the same composition as a result of the presence of microstructural defects and pores at and between grain boundaries of the TBC microstructure.
  • TBC employed in the highest temperature regions of gas turbine engines are often deposited by electron beam physical vapor deposition (EBPVD), which yields a columnar, strain-tolerant grain structure that is able to expand and contract without causing damaging stresses that lead to spallation.
  • EBPVD electron beam physical vapor deposition
  • Similar columnar microstructures can be produced using other atomic and molecular vapor processes, such as sputtering (e.g., high and low pressure, standard or collimated plume), ion plasma deposition, and all forms of melting and evaporation deposition processes (e.g., cathodic arc, laser melting, etc.).
  • TBC thermal conductivity throughout the life of the component
  • thermal conductivities of TBC materials such as YSZ are known to increase over time when subjected to the operating environment of a gas turbine engine.
  • TBCs for gas turbine engine components are often deposited to a greater thickness than would otherwise be necessary.
  • internally cooled components such as blades and nozzles must be designed to have higher cooling flow. Both of these solutions are undesirable for reasons relating to cost, component life and engine efficiency.
  • TBCs are employed to thermally insulate components intended for more demanding engine designs.
  • known TBCs applied by APS methods at a thickness of about 12 mils exhibit heat radiation transparency of about 40% in the wavelength range of about 0.5 to about 5 microns.
  • R being the absolute scale for Fahrenheit temperature scale, wherein absolute zero is equal to 0 degrees R, and wherein absolute zero is equal to ⁇ 459.6 degrees F.
  • approximately 40% of the heat energy from the flame in the 0.5 to 5 micron wavelength region is transmitted through the TBC to the substrate despite the low thermal conductivity of the TBC.
  • FIG. 1 which represents a chart showing measured transmittance of a typical 12 mil thick TBC coating.
  • Reducing the total thermal load of the substrate would reduce the part temperature, ceteris paribus.
  • a reduction in thermal load can be accomplished by providing a TBC coating system with low thermal conductivity and having a heat-absorbing topcoat that reduces the heat transparency of the coating system, thereby reducing substrate component surface temperatures.
  • Such a system also allows for reduction in TBC coating thickness while maintaining component surface temperature below a predetermined maximum component surface temperature. Reduced TBC thickness, especially in applications such as combustors that require relatively thick TBCs, would result in a significant cost reduction, as well as weight reduction benefits.
  • the present invention provides a novel thermal barrier coating (TBC) system having a heat-absorbing topcoat disposed over a TBC undercoat, the topcoat reducing the thermal transparency of the TBC system, resulting in low thermal conductivity and low thermal transparency of the TBC system to the underlying substrate.
  • TBC system may include a bond coat over the substrate, the bond coat providing the means by which a TBC undercoat is adhered to a component surface.
  • the TBC undercoat of this invention preferably comprises yttria-stabilized zirconia (YSZ).
  • YSZ yttria-stabilized zirconia
  • An exemplary YSZ is described in U.S. Pat. No. 6,586,115 “Yttria-stabilized zirconia with reduced thermal conductivity.”
  • other zirconia-based ceramic materials could also be used as the undercoat in accordance with this invention, such as zirconia fully stabilized by yttria, nonstabilized zirconia, or zirconia partially or fully stabilized by ceria, magnesia, scandia and/or other oxides.
  • the topcoat may comprise any material that exhibits heat adsorption in a desired spectrum at environmental operating temperatures, such as but not limited to environmental operating temperature of about 2500 to about 4500 degrees Fahrenheit.
  • Exemplary topcoat materials may comprise alumina, hafnia, tantala, silica, platinum, nickel, iron, cobalt, chromium oxide, rare earth oxides, silicides, carbides, and any combination thereof.
  • the topcoat can be applied by any of several methods. For example, it can be applied by spraying a liquid mixture of at least one metallic element and at least one a ceramic precursor binder, followed by heating to thermally convert the binder to form a heat-absorbing ceramic-metallic matrix coating containing the at least one metallic element.
  • the topcoat can be applied over a TBC in the form of one or more thin film layers by methods such as, but not limited to, chemical vapor deposition (“CVD”), physical vapor deposition (PVD), plasma spray, and sputtering.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • FIG. 1 represents a chart showing measured transmittance of a typical 12 mil thick TBC coating.
  • FIGS. 2 through 3 represent cross-sectional views of thermal barrier coating systems in accordance with the embodiments of the present invention.
  • the present invention is generally applicable to components subjected to high temperatures, and particularly to components such as the high pressure and low pressure turbine vanes (nozzles) and blades (buckets), shrouds, combustor liners and augmentor hardware of gas turbine engines.
  • the invention provides a thermal barrier coating (TBC) system suitable for protecting those surfaces of a gas turbine engine component that are subjected to hot combustion gases. While the advantages of this invention will be described with reference to gas turbine engine components, the teachings of the invention are generally applicable to any component on which a TBC may be used to protect the component from a high temperature environment.
  • the coating systems in accordance with the preferred embodiments of this invention are represented in FIGS. 2 through 3 .
  • the coating system 10 , 110 is shown as including a metallic bond coat 12 that overlies the surface of a substrate 14 , the latter of which is typically a superalloy and the base material of the component protected by the coating systems 10 , 110 .
  • the bond coat 12 is preferably an aluminum-rich composition, such as an overlay coating of an MCrAlX alloy or a diffusion coating such as a diffusion aluminide or a diffusion platinum aluminide of a type known in the art.
  • Aluminum-rich bond coats of this type develop an aluminum oxide (alumina) scale, which is grown by oxidation of the bond coat 12 .
  • the alumina scale 16 chemically bonds a TBC undercoating 18 to the bond coat 12 and substrate 14 .
  • the bond coat layer 12 thickness is between about 2 to 10 mils and is uniform.
  • the bond coat layer 12 may also be treated, e.g., by peening and/or heat treating, to densify any voids and to improve the structure of the bond coating.
  • an alumina scale is formed on the bond coat by oxidation of the aluminum in the bond coat 12 , or alternatively may be formed directly on an aluminum-containing substrate 14 without utilizing a bond coat.
  • the thermal barrier coating layer or undercoat 18 comprised of a ceramic material such as YSZ, is then deposited on the bond coat 12 , for example by electron beam physical vapor deposition (EB-PVD) or other known methods.
  • EB-PVD electron beam physical vapor deposition
  • the TBC undercoating 18 of FIGS. 1 and 2 is only schematically represented.
  • one or more of the individual layers of the TBC undercoating 18 may have a strain-tolerant microstructure of columnar grains as a result of being deposited by a physical vapor deposition technique, such as EBPVD.
  • one or more of the layers may have a noncolumnar structure as a result of being deposited by such methods as plasma spraying, including air plasma spraying (APS).
  • Layers of this type are in the form of molten “splats,” resulting in a microstructure characterized by irregular flattened grains and a degree of inhomogeneity and porosity, which features are deleterious to thermal protection properties of the undercoating 18 .
  • the exposed surface of the thermal barrier coating 18 can be adjusted in order to provide a predetermined roughness of the exposed surface. Any known methods of measuring the roughness of the exposed surface may be utilized, and any known methods for polishing or roughening the exposed surface may be utilized to obtain a roughness that is about equal to the predetermined roughness. While the roughness may be adjusted to suit the particular type of TBC material, a preferred roughness is between about 80-125 microinches for a YSZ TBC.
  • the exposed TBC undercoating 18 surface may further also be cleaned to remove debris and contaminants from the exposed surface, such as by application of acetone or other solvents, followed by drying or heating to remove any residual solvent before applying a heat-absorbing topcoat layer onto the exposed surface so as to overlie the thermal barrier coating and form a continuous overcoat on the thermal barrier coating.
  • the present invention provides several different approaches to depositing the heat-absorbing topcoat 20 , 120 into the coating system of this invention. Contrary to expected results of adding a heat-absorbing material to a component designed to shed heat by convective transfer, it has been unexpectedly determined that the deposition of a heat-absorbing topcoat 20 , 120 over a TBC undercoat 18 reduces the thermal transparency of the TBC undercoat 18 by absorbing heat and preventing its direct transmission to the TBC undercoating 18 , thus subjecting the component substrate 14 to less heat radiation than a TBC without the heat-absorbing topcoat 20 , 120 .
  • the cooling holes act in a synergistic manner to produce a cooling airflow across the topcoat 20 , 120 , allowing the topcoat 20 , 120 to convectively shed absorbed heat.
  • the present invention provides compositions and structures for overcoating of a substrate 14 having a TBC undercoating 18 deposited thereon.
  • the overcoating here a topcoat 20 , 120 , reduces the thermal conductivity of the coating system 10 , 110 by including at least one heat-absorbent material.
  • Exemplary topcoat 20 , 120 component materials may comprise alumina, hafnia, tantala, silica, platinum, nickel, iron, cobalt, chromium oxide, rare earth oxides, silicides, carbides, and any combination thereof.
  • the topcoat 20 , 120 may further comprise a metallic-ceramic coating matrix that is formed by the deposition, such as by spraying, of a liquid mixture of at least one metallic element and at least one a ceramic precursor binder, followed by heating to a degree sufficient to thermally convert the binder and partially oxidize at least a portion of the metallic element(s) so as to form a heat-absorbing ceramic-metallic matrix coating 20 , 120 .
  • a metallic-ceramic coating matrix that is formed by the deposition, such as by spraying, of a liquid mixture of at least one metallic element and at least one a ceramic precursor binder, followed by heating to a degree sufficient to thermally convert the binder and partially oxidize at least a portion of the metallic element(s) so as to form a heat-absorbing ceramic-metallic matrix coating 20 , 120 .
  • the topcoat precursor may comprise a liquid or semi-liquid mixture of cobalt, iron, chromium (as the metallic element) and a ceramic precursor binder component such as silicone, any metal organic compound that can be heated or reacted with catalytic agents to form metal-organic type plastic materials, including but not limited to alumoxanes such as methoxyethoxyacetate alumoxane or acetate alumoxane, plasticized titanium ethoxide or tantalum ethoxide, or other plasticizable metal organic compound, wherein after applying the topcoat precursor to the TBC undercoating 18 , the topcoat 20 , 120 is heat treated (such as by heat gun or operation of the turbine engine) to at least partially oxidize the cobalt, iron, and/or chromium to form cobalt, iron, and/or chromium oxides and wherein the silicone is converted by heating to form silicone dioxide in a metallic-ceramic matrix that forms a continuous topcoat 20 , 120
  • the topcoat can be applied over a TBC in the form of one or more thin film layers by methods such as, but not limited to, chemical vapor deposition (“CVD”), physical vapor deposition (PVD, plasma spray) and sputtering.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • sputtering a ceramic precursor is included in the topcoat components
  • deposition of the topcoat components is followed by heating to thermally convert the ceramic precursor to yield a heat-absorbing ceramic-metallic matrix coating.
  • the topcoat layer is comprised of at least 25 weight percent metallic element, and at least 25 weight percent of the ceramic precursor binder component.
  • FIGS. 2 through 3 Exemplary embodiments of the invention are represented in FIGS. 2 through 3 .
  • Each embodiment incorporates a topcoat layer 20 , 120 over a TBC 10 , 110 .
  • the coating system 10 is shown as comprising a single undercoat layer 18 lying directly on the bond coat 12 , although multiple layer TBC undercoat layers 18 can also be provided within the scope of the invention.
  • a preferred composition for the TBC undercoat layer 18 is based on binary yttria-stabilized zirconia (YSZ), a particular notable example of which contains about 6 to about 8 weight percent yttria, with the balance zirconia.
  • YSZ binary yttria-stabilized zirconia
  • zirconia-based ceramic materials could also be used with this invention, such as zirconia fully stabilized by yttria, nonstabilized zirconia, or zirconia partially or fully stabilized by ceria, magnesia, scandia and/or other oxides.
  • a particularly suitable material for the undercoat layer 18 is YSZ containing about 4 to about 8 weight percent yttria (4-8% YSZ).
  • the undercoat layer 18 is deposited directly over the bond coat 12 that lies on the substrate 14 .
  • the undercoat layer 18 has thickness that is sufficient to provide a suitable stress distribution within the coating system 10 to promote the mechanical integrity of the coating.
  • a suitable thickness for this purpose is generally on the order of about 3 to about 30 mils (about 75 to about 750 micrometers), which is also believed to be sufficient to provide a physical barrier to a possible reaction between the bond coat 12 and any silica-containing layers applied over the undercoat 18 .
  • the topcoat 20 is applied over the undercoat layer 18 and is sufficiently thick to provide the desired level of heat absorption and thermal protection in combination with the undercoat layer 18 . While coating thickness depends on the particular application, a suitable thickness for the topcoat 20 is also about 2 to about 30 mils (about 75 to about 750 micrometers. Preferably, the coating is between about 8 to about 12 mils thick.
  • the coating system 110 differs from the embodiment of FIG. 2 by including in the topcoat 120 a plurality of heat-absorbing topcoat layers.
  • the TBC undercoating layer 18 lies directly on the bond coat 12 .
  • the first topcoat layer 122 lies directly on the undercoat layer 18 .
  • a preferred composition for the undercoating layer 18 is again based on YSZ, preferably 3-20% YSZ.
  • the topcoat 120 is formed to include at least two thin layers 122 and 124 of heat-absorbing material. Each thin topcoat layer 122 , 124 may have the same composition, though it is foreseeable that their compositions could differ.
  • Each topcoat layer 122 , 124 preferably has thicknesses of at least about 2 mils (about 50 micrometers) thickness, for a total thickness of as little 4 mils (about 125 micrometers) and as much as 50 (about 1250 micrometers) are foreseeable.
  • the combined thickness of the layers 122 , 124 preferably constitutes at least about one-third of the combined thickness of the coating system 10 in order for the coating system 110 to have a significant impact on heat transparency/opacity.
  • any number of TBC undercoat layers 18 and topcoat layers 20 , 122 and 124 can be combined.
  • the topcoat layers 20 , 122 and 124 are preferably arranged so that the layer 20 , 122 contacting the TBC undercoating 18 provides the highest level of mechanical adhesion to the bond coat 12 .
  • the outer topcoat layer 124 should be sufficiently thick to provide erosion protection to the TBC undercoat layer 18 and any intermediate thin layer 122 or layers.
  • a suitable thickness for this purpose is generally on the order of up to about 8-10 mils (about 250 micrometers).
  • each of the TBC systems 10 , 110 of this invention employs a TBC undercoat 18 whose thermal conductivity and heat transparency is reduced by the addition of a topcoat 20 , 120 having a higher heat absorption capacity than YSZ and other conventional TBC materials.

Abstract

Coating systems suitable for protecting components exposed to high-temperature environments, such as the hot gas flow path through a gas turbine engine. A multilayer thermal barrier coating (TBC) system characterized by a low coefficient of thermal conductivity and having a heat-absorbing topcoat comprised of the thermal decomposition product of at least one metallic element and at least one ceramic precursor binder component.

Description

    STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
  • Not applicable.
  • FIELD OF THE INVENTION
  • This invention relates to coating systems suitable for protecting components exposed to high-temperature environments, such as the hot gas flow path through a gas turbine engine. More particularly, this invention is directed to a multilayer thermal barrier coating (TBC) system characterized by a low coefficient of thermal conductivity and having a heat-absorbing topcoat.
  • BACKGROUND OF THE INVENTION
  • The use of thermal barrier coatings (TBC) on components such as combustors, high pressure turbine (HPT) blades and vanes is increasing in commercial as well as military gas turbine engines. The thermal insulation of a TBC enables such components to survive higher operating temperatures, increases component durability, and improves engine reliability. TBC is typically a ceramic material deposited on an environmentally-protective bond coat to form what is termed a TBC system. Bond coat materials widely used in TBC systems include oxidation-resistant overlay coatings such as MCrAlX (where M is iron, cobalt and/or nickel, and X is yttrium or another rare earth element), pure oxidation resistant intermetallic compounds such as nickel aluminides, and oxidation-resistant diffusion coatings such as diffusion aluminides that contain aluminum intermetallics.
  • Ceramic materials and particularly binary yttria-stabilized zirconia (YSZ) are widely used as TBC materials because of their high temperature capability, low thermal conductivity, and relative ease of deposition such as by air plasma spraying (APS), flame spraying such as hyper-velocity oxy-fuel (HVOF), physical vapor deposition (PVD) and other known TBC application techniques. TBCs formed by these methods generally have a lower thermal conductivity than a dense ceramic of the same composition as a result of the presence of microstructural defects and pores at and between grain boundaries of the TBC microstructure.
  • TBC employed in the highest temperature regions of gas turbine engines are often deposited by electron beam physical vapor deposition (EBPVD), which yields a columnar, strain-tolerant grain structure that is able to expand and contract without causing damaging stresses that lead to spallation. Similar columnar microstructures can be produced using other atomic and molecular vapor processes, such as sputtering (e.g., high and low pressure, standard or collimated plume), ion plasma deposition, and all forms of melting and evaporation deposition processes (e.g., cathodic arc, laser melting, etc.).
  • Regardless of the method of application, in order for a TBC to remain effective throughout the planned life cycle of the component it protects, it is important that the TBC has and maintains a low thermal conductivity throughout the life of the component, including high temperature excursions. However, the thermal conductivities of TBC materials such as YSZ are known to increase over time when subjected to the operating environment of a gas turbine engine. As a result, TBCs for gas turbine engine components are often deposited to a greater thickness than would otherwise be necessary. Alternatively, internally cooled components such as blades and nozzles must be designed to have higher cooling flow. Both of these solutions are undesirable for reasons relating to cost, component life and engine efficiency.
  • In view of the above, it can be appreciated that further improvements in TBC technology are desirable, particularly as TBCs are employed to thermally insulate components intended for more demanding engine designs. For example, known TBCs applied by APS methods at a thickness of about 12 mils exhibit heat radiation transparency of about 40% in the wavelength range of about 0.5 to about 5 microns. When exposed to a 4500R flame (R being the absolute scale for Fahrenheit temperature scale, wherein absolute zero is equal to 0 degrees R, and wherein absolute zero is equal to −459.6 degrees F.), approximately 40% of the heat energy from the flame in the 0.5 to 5 micron wavelength region is transmitted through the TBC to the substrate despite the low thermal conductivity of the TBC. This is illustrated by the FIG. 1, which represents a chart showing measured transmittance of a typical 12 mil thick TBC coating.
  • From the below graph, one can see that a black body radiating at ˜2060° F. produces much less energy than one radiating at 3680° F. or 4220° F. Thus, if a surface is maintained at about 2060° F. by means of convection, it can only radiate a maximum energy of the lowest line on the attached graph. However, in gas turbine combustors, for example, gas temperatures are in the range of 3500° F. to 4000° F. and higher under maximum conditions, such as those used for take-off of a gas turbine powered aircraft. If a TBC on such a combustor is 40% transparent to heat in the 0.8 to 3 micron range, much more energy will be transmitted through it from a 3680° F. source than from a 2060° F. source. Hence, stopping heat radiation from a 3680° F. source in an absorbing media on the surface of the TBC and maintaining the surface temperature of the TBC by means of convective airflow would significantly reduce the energy that reaches the combustor's metal wall when compared to allowing the heat from combustion flames to directly impinge upon a semi-transparent TBC.
    Figure US20050100757A1-20050512-P00001
  • Reducing the total thermal load of the substrate would reduce the part temperature, ceteris paribus. Such a reduction in thermal load can be accomplished by providing a TBC coating system with low thermal conductivity and having a heat-absorbing topcoat that reduces the heat transparency of the coating system, thereby reducing substrate component surface temperatures. Such a system also allows for reduction in TBC coating thickness while maintaining component surface temperature below a predetermined maximum component surface temperature. Reduced TBC thickness, especially in applications such as combustors that require relatively thick TBCs, would result in a significant cost reduction, as well as weight reduction benefits.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides a novel thermal barrier coating (TBC) system having a heat-absorbing topcoat disposed over a TBC undercoat, the topcoat reducing the thermal transparency of the TBC system, resulting in low thermal conductivity and low thermal transparency of the TBC system to the underlying substrate. The TBC system may include a bond coat over the substrate, the bond coat providing the means by which a TBC undercoat is adhered to a component surface.
  • The TBC undercoat of this invention preferably comprises yttria-stabilized zirconia (YSZ). An exemplary YSZ is described in U.S. Pat. No. 6,586,115 “Yttria-stabilized zirconia with reduced thermal conductivity.” However, other zirconia-based ceramic materials could also be used as the undercoat in accordance with this invention, such as zirconia fully stabilized by yttria, nonstabilized zirconia, or zirconia partially or fully stabilized by ceria, magnesia, scandia and/or other oxides.
  • The topcoat may comprise any material that exhibits heat adsorption in a desired spectrum at environmental operating temperatures, such as but not limited to environmental operating temperature of about 2500 to about 4500 degrees Fahrenheit. Exemplary topcoat materials may comprise alumina, hafnia, tantala, silica, platinum, nickel, iron, cobalt, chromium oxide, rare earth oxides, silicides, carbides, and any combination thereof.
  • Another advantage of the topcoat is that it can be applied by any of several methods. For example, it can be applied by spraying a liquid mixture of at least one metallic element and at least one a ceramic precursor binder, followed by heating to thermally convert the binder to form a heat-absorbing ceramic-metallic matrix coating containing the at least one metallic element. Alternatively, the topcoat can be applied over a TBC in the form of one or more thin film layers by methods such as, but not limited to, chemical vapor deposition (“CVD”), physical vapor deposition (PVD), plasma spray, and sputtering.
  • Other objects and advantages of this invention will be better appreciated from the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 represents a chart showing measured transmittance of a typical 12 mil thick TBC coating.
  • FIGS. 2 through 3 represent cross-sectional views of thermal barrier coating systems in accordance with the embodiments of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is generally applicable to components subjected to high temperatures, and particularly to components such as the high pressure and low pressure turbine vanes (nozzles) and blades (buckets), shrouds, combustor liners and augmentor hardware of gas turbine engines. The invention provides a thermal barrier coating (TBC) system suitable for protecting those surfaces of a gas turbine engine component that are subjected to hot combustion gases. While the advantages of this invention will be described with reference to gas turbine engine components, the teachings of the invention are generally applicable to any component on which a TBC may be used to protect the component from a high temperature environment.
  • The coating systems in accordance with the preferred embodiments of this invention are represented in FIGS. 2 through 3. In each embodiment, the coating system 10, 110 is shown as including a metallic bond coat 12 that overlies the surface of a substrate 14, the latter of which is typically a superalloy and the base material of the component protected by the coating systems 10, 110. As is typical with TBC coating systems for gas turbine engine components, the bond coat 12 is preferably an aluminum-rich composition, such as an overlay coating of an MCrAlX alloy or a diffusion coating such as a diffusion aluminide or a diffusion platinum aluminide of a type known in the art. Aluminum-rich bond coats of this type develop an aluminum oxide (alumina) scale, which is grown by oxidation of the bond coat 12. The alumina scale 16 chemically bonds a TBC undercoating 18 to the bond coat 12 and substrate 14. Preferably although not necessarily, the bond coat layer 12 thickness is between about 2 to 10 mils and is uniform. The bond coat layer 12 may also be treated, e.g., by peening and/or heat treating, to densify any voids and to improve the structure of the bond coating. Generally, an alumina scale is formed on the bond coat by oxidation of the aluminum in the bond coat 12, or alternatively may be formed directly on an aluminum-containing substrate 14 without utilizing a bond coat. The thermal barrier coating layer or undercoat 18 comprised of a ceramic material such as YSZ, is then deposited on the bond coat 12, for example by electron beam physical vapor deposition (EB-PVD) or other known methods. The TBC undercoating 18 of FIGS. 1 and 2 is only schematically represented. As known in the art, one or more of the individual layers of the TBC undercoating 18 may have a strain-tolerant microstructure of columnar grains as a result of being deposited by a physical vapor deposition technique, such as EBPVD. Alternatively, one or more of the layers may have a noncolumnar structure as a result of being deposited by such methods as plasma spraying, including air plasma spraying (APS). Layers of this type are in the form of molten “splats,” resulting in a microstructure characterized by irregular flattened grains and a degree of inhomogeneity and porosity, which features are deleterious to thermal protection properties of the undercoating 18.
  • After deposition of the TBC undercoating 18 and before application of a heat-absorbing topcoat 20, 120, the exposed surface of the thermal barrier coating 18 can be adjusted in order to provide a predetermined roughness of the exposed surface. Any known methods of measuring the roughness of the exposed surface may be utilized, and any known methods for polishing or roughening the exposed surface may be utilized to obtain a roughness that is about equal to the predetermined roughness. While the roughness may be adjusted to suit the particular type of TBC material, a preferred roughness is between about 80-125 microinches for a YSZ TBC. The exposed TBC undercoating 18 surface may further also be cleaned to remove debris and contaminants from the exposed surface, such as by application of acetone or other solvents, followed by drying or heating to remove any residual solvent before applying a heat-absorbing topcoat layer onto the exposed surface so as to overlie the thermal barrier coating and form a continuous overcoat on the thermal barrier coating.
  • The present invention provides several different approaches to depositing the heat-absorbing topcoat 20, 120 into the coating system of this invention. Contrary to expected results of adding a heat-absorbing material to a component designed to shed heat by convective transfer, it has been unexpectedly determined that the deposition of a heat-absorbing topcoat 20, 120 over a TBC undercoat 18 reduces the thermal transparency of the TBC undercoat 18 by absorbing heat and preventing its direct transmission to the TBC undercoating 18, thus subjecting the component substrate 14 to less heat radiation than a TBC without the heat-absorbing topcoat 20, 120. These effects significantly reduce the heat load on the substrate 14 such that an established active air cooling flow can produce a relatively low substrate temperature in a high-heat environment such as the flowpath of a gas turbine engine. In many applications of interest, such as combustor liners, exhaust nozzle liners, and other turbine engine flowpath parts, design of the hardware and cooling flow is intended to reduce the surface temperature (in this case of the heat-absorbing layer 20, 120) significantly below, for example, the flame temperature in a combustor. For example, when the topcoat 20, 120 is applied over a TBC-coated turbine blade having cooling holes therein, the cooling holes act in a synergistic manner to produce a cooling airflow across the topcoat 20, 120, allowing the topcoat 20, 120 to convectively shed absorbed heat.
  • The present invention provides compositions and structures for overcoating of a substrate 14 having a TBC undercoating 18 deposited thereon. The overcoating, here a topcoat 20, 120, reduces the thermal conductivity of the coating system 10, 110 by including at least one heat-absorbent material. Exemplary topcoat 20, 120 component materials may comprise alumina, hafnia, tantala, silica, platinum, nickel, iron, cobalt, chromium oxide, rare earth oxides, silicides, carbides, and any combination thereof. The topcoat 20, 120 may further comprise a metallic-ceramic coating matrix that is formed by the deposition, such as by spraying, of a liquid mixture of at least one metallic element and at least one a ceramic precursor binder, followed by heating to a degree sufficient to thermally convert the binder and partially oxidize at least a portion of the metallic element(s) so as to form a heat-absorbing ceramic- metallic matrix coating 20, 120.
  • For example, the topcoat precursor may comprise a liquid or semi-liquid mixture of cobalt, iron, chromium (as the metallic element) and a ceramic precursor binder component such as silicone, any metal organic compound that can be heated or reacted with catalytic agents to form metal-organic type plastic materials, including but not limited to alumoxanes such as methoxyethoxyacetate alumoxane or acetate alumoxane, plasticized titanium ethoxide or tantalum ethoxide, or other plasticizable metal organic compound, wherein after applying the topcoat precursor to the TBC undercoating 18, the topcoat 20, 120 is heat treated (such as by heat gun or operation of the turbine engine) to at least partially oxidize the cobalt, iron, and/or chromium to form cobalt, iron, and/or chromium oxides and wherein the silicone is converted by heating to form silicone dioxide in a metallic-ceramic matrix that forms a continuous topcoat 20, 120.
  • Alternatively, the topcoat can be applied over a TBC in the form of one or more thin film layers by methods such as, but not limited to, chemical vapor deposition (“CVD”), physical vapor deposition (PVD, plasma spray) and sputtering. Again, where a ceramic precursor is included in the topcoat components, deposition of the topcoat components is followed by heating to thermally convert the ceramic precursor to yield a heat-absorbing ceramic-metallic matrix coating.
  • In any embodiment, preferably, immediately upon application and prior to thermal decomposition, the topcoat layer is comprised of at least 25 weight percent metallic element, and at least 25 weight percent of the ceramic precursor binder component.
  • Exemplary embodiments of the invention are represented in FIGS. 2 through 3. Each embodiment incorporates a topcoat layer 20, 120 over a TBC 10, 110. With reference to FIG. 2, the coating system 10 is shown as comprising a single undercoat layer 18 lying directly on the bond coat 12, although multiple layer TBC undercoat layers 18 can also be provided within the scope of the invention. A preferred composition for the TBC undercoat layer 18 is based on binary yttria-stabilized zirconia (YSZ), a particular notable example of which contains about 6 to about 8 weight percent yttria, with the balance zirconia. However, other zirconia-based ceramic materials could also be used with this invention, such as zirconia fully stabilized by yttria, nonstabilized zirconia, or zirconia partially or fully stabilized by ceria, magnesia, scandia and/or other oxides. According to one aspect of the invention, a particularly suitable material for the undercoat layer 18 is YSZ containing about 4 to about 8 weight percent yttria (4-8% YSZ).
  • According to a preferred aspect of the first embodiment of FIG. 2, the undercoat layer 18 is deposited directly over the bond coat 12 that lies on the substrate 14. The undercoat layer 18 has thickness that is sufficient to provide a suitable stress distribution within the coating system 10 to promote the mechanical integrity of the coating. A suitable thickness for this purpose is generally on the order of about 3 to about 30 mils (about 75 to about 750 micrometers), which is also believed to be sufficient to provide a physical barrier to a possible reaction between the bond coat 12 and any silica-containing layers applied over the undercoat 18. The topcoat 20 is applied over the undercoat layer 18 and is sufficiently thick to provide the desired level of heat absorption and thermal protection in combination with the undercoat layer 18. While coating thickness depends on the particular application, a suitable thickness for the topcoat 20 is also about 2 to about 30 mils (about 75 to about 750 micrometers. Preferably, the coating is between about 8 to about 12 mils thick.
  • In FIG. 3, the coating system 110 differs from the embodiment of FIG. 2 by including in the topcoat 120 a plurality of heat-absorbing topcoat layers. As in the previous embodiment, the TBC undercoating layer 18 lies directly on the bond coat 12. The first topcoat layer 122 lies directly on the undercoat layer 18. A preferred composition for the undercoating layer 18 is again based on YSZ, preferably 3-20% YSZ. In contrast to the embodiment of FIG. 2, the topcoat 120 is formed to include at least two thin layers 122 and 124 of heat-absorbing material. Each thin topcoat layer 122, 124 may have the same composition, though it is foreseeable that their compositions could differ. Each topcoat layer 122, 124 preferably has thicknesses of at least about 2 mils (about 50 micrometers) thickness, for a total thickness of as little 4 mils (about 125 micrometers) and as much as 50 (about 1250 micrometers) are foreseeable. In the embodiment of FIG. 3, the combined thickness of the layers 122, 124 preferably constitutes at least about one-third of the combined thickness of the coating system 10 in order for the coating system 110 to have a significant impact on heat transparency/opacity.
  • Any number of TBC undercoat layers 18 and topcoat layers 20, 122 and 124 can be combined. However, the topcoat layers 20, 122 and 124 are preferably arranged so that the layer 20, 122 contacting the TBC undercoating 18 provides the highest level of mechanical adhesion to the bond coat 12. Additionally, in the embodiment of FIG. 3, the outer topcoat layer 124 should be sufficiently thick to provide erosion protection to the TBC undercoat layer 18 and any intermediate thin layer 122 or layers. A suitable thickness for this purpose is generally on the order of up to about 8-10 mils (about 250 micrometers).
  • In view of the above, it can be appreciated that each of the TBC systems 10, 110 of this invention employs a TBC undercoat 18 whose thermal conductivity and heat transparency is reduced by the addition of a topcoat 20, 120 having a higher heat absorption capacity than YSZ and other conventional TBC materials.
  • While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims (22)

1. A superalloy component comprising:
a superalloy substrate;
an alumina-containing bond coat layer on the substrate;
an adherent layer of ceramic material forming a thermal barrier coating on the alumina-containing bond coat layer; and
a heat-absorbing topcoat layer applied to the thermal barrier coating, the heat-absorbing topcoat layer comprised of the thermal decomposition product of a mixture comprised of at least one metallic element and at least one ceramic precursor binder component.
2. An article according to claim 1, wherein the topcoat layer has a thickness of between about 2 to about 30 mils.
3. An article according to claim 2, wherein the topcoat layer has a thickness of between about 8 to about 12 mils.
4. An article according to claim 1, wherein the at least one metallic element is selected from the group consisting of alumina, hafnia, tantala, silica, platinum, nickel, iron, cobalt, chromium oxide, and rare earth oxides
5. An article according to claim 1, wherein the at least one ceramic precursor binder component is selected from the group consisting of silicone, alumoxanes, plasticized titanium ethoxide or tantalum ethoxide, and other plasticizable metal organic compounds.
6. An article according to claim 1, wherein upon application and prior to thermal decomposition the topcoat layer is comprised of at least 25 weight percent metallic element, and at least 25 weight percent of the ceramic precursor binder.
7. An article according to claim 1, wherein the adherent layer of ceramic material is comprised of between about 3% to about 20% yttrium-stabilized zirconia (YSZ).
8. An article according to claim 1, wherein the overcoat layer is applied by spraying a mixture of the metallic element and the ceramic precursor binder onto the thermal barrier coating followed by heating of the deposited mixture to thermally convert the binder and to oxidize at least a portion of the metallic element to form a continuous topcoat layer.
9. An article according to claim 1, wherein the overcoat layer further comprises at least two thin layers of heat-absorbing material.
10. An article according to claim 9, wherein each thin layer is comprised of a different metallic element.
11. A superalloy article having a thermal barrier coating system, the system comprised of an alumina-containing bond coat layer, an adherent layer of ceramic material forming a thermal barrier coating on the alumina-containing bond coat layer; and a heat-absorbing topcoat layer applied to the thermal barrier coating, the heat-absorbing topcoat layer comprised of the thermal decomposition product of a mixture comprised of at least one metallic element and at least one ceramic precursor organic binder component, the article made in accordance with the method comprising the steps of:
preparing an exposed surface of the thermal barrier coating in order to provide a predetermined roughness of the exposed surface and to remove debris and contaminants from the exposed surface; and
applying a heat-absorbing topcoat layer onto the exposed surface so as to overlie the thermal barrier coating and form a continuous overcoat on the thermal barrier coating.
12. The article according to claim 11, wherein the predetermined roughness is between about 80-125 microinches.
13. The article according to claim 11, wherein the step of preparing the exposed surface comprises measuring the roughness of the exposed surface; determining the difference between the predetermined roughness and the measured roughness; and polishing or roughening the exposed surface based upon the difference until the roughness is about equal to the predetermined roughness.
14. The article according to claim 11, wherein the heat-absorbing overcoat is comprised of a mixture comprising a ceramic precursor in at least 25 weight percent, and a metallic element in at least 25 weight percent.
15. The article according to claim 11, wherein the step of applying is performed using a process selected from the group consisting of spraying, chemical vapor deposition, physical vapor deposition, plasma spraying, and sputtering.
16. The article according to claim 11, wherein step of applying is performed until the overcoat is between about 2 to about 30 mils thick.
17. The article according to claim 11, wherein step of applying is performed until the overcoat is between about 8 to about 12 mils thick.
18. An article according to claim 11, wherein the overcoat layer further comprises at least two thin layers of heat-absorbing material.
19. An article according to claim 18, wherein each separate layer is comprised of a different metallic element.
20. A coated superalloy component for use in the flowpath of a gas turbine engine, the coated component made by the process of:
providing a superalloy component comprising a flowpath part from a gas turbine engine assembly;
applying a thermal barrier coating system, the system comprised of an alumina-containing bond coat layer, an adherent layer of ceramic material forming a thermal barrier coating on the alumina-containing bond coat layer; and
applying a heat-absorbing topcoat layer to the exposed surface of the thermal barrier coating.
21. The coated article made by the process of claim 20, wherein the step of applying a heat-absorbing topcoat layer is comprised of the steps of:
providing a mixture comprised of at least one metallic element and at least one ceramic precursor binder component;
spraying the mixture onto the exposed surface of the thermal barrier coating so as to overlie the thermal barrier coating and form a continuous topcoat on the thermal barrier coating; and
heating the topcoat to a degree sufficient to thermally convert the at least one ceramic precursor binder component and to oxidize at least a portion of the metallic element to yield a heat-absorbing ceramic-metallic matrix topcoat.
22. The coated article made by the process of claim 20, wherein the step of applying a heat-absorbing topcoat layer is comprised of the steps of:
providing at least one metallic element selected from the group consisting of alumina, hafnia, tantala, silica, platinum, nickel, iron, cobalt, chromium oxide, and rare earth oxides; and
depositing the at least one metallic element onto the exposed surface of the thermal barrier coating so as to overlie the thermal barrier coating to form a heat-absorbing topcoat.
US10/712,821 2003-11-12 2003-11-12 Thermal barrier coating having a heat radiation absorbing topcoat Abandoned US20050100757A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/712,821 US20050100757A1 (en) 2003-11-12 2003-11-12 Thermal barrier coating having a heat radiation absorbing topcoat
EP04256966A EP1531192A1 (en) 2003-11-12 2004-11-10 Thermal barrier coating having a heat radiation absorbing topcoat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/712,821 US20050100757A1 (en) 2003-11-12 2003-11-12 Thermal barrier coating having a heat radiation absorbing topcoat

Publications (1)

Publication Number Publication Date
US20050100757A1 true US20050100757A1 (en) 2005-05-12

Family

ID=34435671

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/712,821 Abandoned US20050100757A1 (en) 2003-11-12 2003-11-12 Thermal barrier coating having a heat radiation absorbing topcoat

Country Status (2)

Country Link
US (1) US20050100757A1 (en)
EP (1) EP1531192A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085463A1 (en) * 2007-09-28 2009-04-02 General Electric Company Thermo-optically functional compositions, systems and methods of making
US20090162647A1 (en) * 2007-12-21 2009-06-25 Applied Materials, Inc. Erosion resistant yttrium comprising metal with oxidized coating for plasma chamber components
US20110059321A1 (en) * 2008-06-23 2011-03-10 General Electric Company Method of repairing a thermal barrier coating and repaired coating formed thereby
CN103524047A (en) * 2008-07-25 2014-01-22 Ppg工业俄亥俄公司 Aqueous suspension for pryrolytic spray coating, its coating product, mixing spray coating method and method for coating a glass substrate using a transparent film
CN113981366A (en) * 2021-12-28 2022-01-28 北京航空航天大学 Preparation method of thermal barrier coating, thermal barrier coating and turbine rotor blade

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263613A1 (en) * 2005-05-20 2006-11-23 General Electric Company Temperature dependent transparent optical coatings for high temperature absorption
US20060263209A1 (en) * 2005-05-20 2006-11-23 General Electric Company Temperature dependent transparent optical coatings for high temperature reflection
US20140186656A1 (en) * 2012-12-31 2014-07-03 United Technologies Corporation Spallation-Resistant Thermal Barrier Coating
US20160208371A1 (en) * 2013-08-27 2016-07-21 Agency For Science, Technology And Research Method of treating a thermal barrier coating

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123594A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article of improved environmental resistance
US4401697A (en) * 1980-01-07 1983-08-30 United Technologies Corporation Method for producing columnar grain ceramic thermal barrier coatings
US4676994A (en) * 1983-06-15 1987-06-30 The Boc Group, Inc. Adherent ceramic coatings
US4880614A (en) * 1988-11-03 1989-11-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US5176964A (en) * 1991-04-12 1993-01-05 Martin Marietta Corporation Diffuse black plasma sprayed coatings
US5238752A (en) * 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
US5270081A (en) * 1990-02-02 1993-12-14 Mtu Motoren-Und Turbinen-Union Muenchen Gmbh Iron-base alloy structural component having a corrosion-inhibiting coating, and method of producing the coating
US5616423A (en) * 1994-05-19 1997-04-01 Sumitomo Metal Industries, Ltd. Ceramic substrate having a multilayered metallic thin film
US5721060A (en) * 1988-12-05 1998-02-24 Martin Marietta Corportion High-temperature, High-emissivity, optically black boron surface
US5843078A (en) * 1997-07-01 1998-12-01 Sharkey; Hugh R. Radio frequency device for resurfacing skin and method
US5851679A (en) * 1996-12-17 1998-12-22 General Electric Company Multilayer dielectric stack coated part for contact with combustion gases
US6025177A (en) * 1998-03-30 2000-02-15 Sepracor Inc. Asymmetric grignard synthesis with cyclic 1,2 aminoalcohols
US6060177A (en) * 1998-02-19 2000-05-09 United Technologies Corporation Method of applying an overcoat to a thermal barrier coating and coated article
US6181727B1 (en) * 1999-04-19 2001-01-30 General Electric Company Coating for reducing operating temperatures of chamber components of a coating apparatus
US6210791B1 (en) * 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
US6312832B1 (en) * 1998-10-02 2001-11-06 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” Low thermal conductivity heat barrier coating, a metal article having such a coating, and a process for depositing the coating
US20020182362A1 (en) * 2000-10-12 2002-12-05 Stowell William R. Method for repairing a thermal barrier coating and repaiied coating formed thereby
US6586115B2 (en) * 2001-04-12 2003-07-01 General Electric Company Yttria-stabilized zirconia with reduced thermal conductivity
US20030198750A1 (en) * 2002-04-23 2003-10-23 Skoog Andrew Jay Method of applying a metallic heat rejection coating onto a gas turbine engine component
US20040170849A1 (en) * 2002-12-12 2004-09-02 Ackerman John Frederick Thermal barrier coating protected by infiltrated alumina and method for preparing same
US6921251B2 (en) * 2003-09-05 2005-07-26 General Electric Company Aluminide or chromide coating of turbine engine rotor component

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123594A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article of improved environmental resistance
US4401697A (en) * 1980-01-07 1983-08-30 United Technologies Corporation Method for producing columnar grain ceramic thermal barrier coatings
US4676994A (en) * 1983-06-15 1987-06-30 The Boc Group, Inc. Adherent ceramic coatings
US4880614A (en) * 1988-11-03 1989-11-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US5721060A (en) * 1988-12-05 1998-02-24 Martin Marietta Corportion High-temperature, High-emissivity, optically black boron surface
US5270081A (en) * 1990-02-02 1993-12-14 Mtu Motoren-Und Turbinen-Union Muenchen Gmbh Iron-base alloy structural component having a corrosion-inhibiting coating, and method of producing the coating
US5238752A (en) * 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
US5176964A (en) * 1991-04-12 1993-01-05 Martin Marietta Corporation Diffuse black plasma sprayed coatings
US5616423A (en) * 1994-05-19 1997-04-01 Sumitomo Metal Industries, Ltd. Ceramic substrate having a multilayered metallic thin film
US6210791B1 (en) * 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
US5851679A (en) * 1996-12-17 1998-12-22 General Electric Company Multilayer dielectric stack coated part for contact with combustion gases
US5843078A (en) * 1997-07-01 1998-12-01 Sharkey; Hugh R. Radio frequency device for resurfacing skin and method
US6060177A (en) * 1998-02-19 2000-05-09 United Technologies Corporation Method of applying an overcoat to a thermal barrier coating and coated article
US6025177A (en) * 1998-03-30 2000-02-15 Sepracor Inc. Asymmetric grignard synthesis with cyclic 1,2 aminoalcohols
US6312832B1 (en) * 1998-10-02 2001-11-06 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” Low thermal conductivity heat barrier coating, a metal article having such a coating, and a process for depositing the coating
US6181727B1 (en) * 1999-04-19 2001-01-30 General Electric Company Coating for reducing operating temperatures of chamber components of a coating apparatus
US20020182362A1 (en) * 2000-10-12 2002-12-05 Stowell William R. Method for repairing a thermal barrier coating and repaiied coating formed thereby
US6586115B2 (en) * 2001-04-12 2003-07-01 General Electric Company Yttria-stabilized zirconia with reduced thermal conductivity
US20030198750A1 (en) * 2002-04-23 2003-10-23 Skoog Andrew Jay Method of applying a metallic heat rejection coating onto a gas turbine engine component
US6720034B2 (en) * 2002-04-23 2004-04-13 General Electric Company Method of applying a metallic heat rejection coating onto a gas turbine engine component
US20040170849A1 (en) * 2002-12-12 2004-09-02 Ackerman John Frederick Thermal barrier coating protected by infiltrated alumina and method for preparing same
US6921251B2 (en) * 2003-09-05 2005-07-26 General Electric Company Aluminide or chromide coating of turbine engine rotor component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085463A1 (en) * 2007-09-28 2009-04-02 General Electric Company Thermo-optically functional compositions, systems and methods of making
US20090162647A1 (en) * 2007-12-21 2009-06-25 Applied Materials, Inc. Erosion resistant yttrium comprising metal with oxidized coating for plasma chamber components
JP2011509343A (en) * 2007-12-21 2011-03-24 アプライド マテリアルズ インコーポレイテッド Erosion resistant yttrium-containing metal with oxide film for plasma chamber components
US8129029B2 (en) * 2007-12-21 2012-03-06 Applied Materials, Inc. Erosion-resistant plasma chamber components comprising a metal base structure with an overlying thermal oxidation coating
US8758858B2 (en) 2007-12-21 2014-06-24 Applied Materials, Inc. Method of producing a plasma-resistant thermal oxide coating
TWI461572B (en) * 2007-12-21 2014-11-21 Applied Materials Inc Erosion resistant yttrium comprising metal with oxidized coating for plasma chamber components
US20110059321A1 (en) * 2008-06-23 2011-03-10 General Electric Company Method of repairing a thermal barrier coating and repaired coating formed thereby
CN103524047A (en) * 2008-07-25 2014-01-22 Ppg工业俄亥俄公司 Aqueous suspension for pryrolytic spray coating, its coating product, mixing spray coating method and method for coating a glass substrate using a transparent film
CN113981366A (en) * 2021-12-28 2022-01-28 北京航空航天大学 Preparation method of thermal barrier coating, thermal barrier coating and turbine rotor blade

Also Published As

Publication number Publication date
EP1531192A1 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
US6627323B2 (en) Thermal barrier coating resistant to deposits and coating method therefor
US5817371A (en) Thermal barrier coating system having an air plasma sprayed bond coat incorporating a metal diffusion, and method therefor
US7862901B2 (en) Yttria containing thermal barrier coating topcoat layer and method for applying the coating layer
EP1321542B1 (en) Thermal barrier coating systems and materials
US6607789B1 (en) Plasma sprayed thermal bond coat system
US6548190B2 (en) Low thermal conductivity thermal barrier coating system and method therefor
EP1686199B1 (en) Thermal barrier coating system
US6365281B1 (en) Thermal barrier coatings for turbine components
US6652987B2 (en) Reflective coatings to reduce radiation heat transfer
US20110151132A1 (en) Methods for Coating Articles Exposed to Hot and Harsh Environments
US6730413B2 (en) Thermal barrier coating
US20090110903A1 (en) Alumina-based protective coatings for thermal barrier coatings
EP1484427A2 (en) Top coating system for industrial turbine nozzle airfoils and other hot gas path components and related method
JP2002522646A (en) Multi-layer thermal insulation coating system
JPH11124691A (en) Gradient bonding coat for thermal barrier coating
EP3748031B1 (en) Reflective coating and coating process therefor
EP0992614B1 (en) Coatings for turbine components
US6933058B2 (en) Beta-phase nickel aluminide coating
US20050100757A1 (en) Thermal barrier coating having a heat radiation absorbing topcoat
US20070128458A1 (en) Protection of metallic surfaces against thermally-inducted wrinkling (rumpling)

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STOWELL, WILLIAM RANDOLPH;NAGARAJ, BANGALORE ASWATHA;SKOOG, ANDREW JAY;AND OTHERS;REEL/FRAME:014707/0121;SIGNING DATES FROM 20031106 TO 20031107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CROMPTON CORPORATION, CONNECTICUT

Free format text: CHANGE OF NAME;ASSIGNOR:CHEMTURA ORGANOMETALLICS GMBH;REEL/FRAME:018651/0564

Effective date: 20061130