US20050067064A1 - Steel surface hardness using laser deposition and active gas shielding - Google Patents

Steel surface hardness using laser deposition and active gas shielding Download PDF

Info

Publication number
US20050067064A1
US20050067064A1 US10/674,213 US67421303A US2005067064A1 US 20050067064 A1 US20050067064 A1 US 20050067064A1 US 67421303 A US67421303 A US 67421303A US 2005067064 A1 US2005067064 A1 US 2005067064A1
Authority
US
United States
Prior art keywords
steel
laser
hardness
nitrogen
steel surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/674,213
Inventor
Sudarsanam Babu
Richard Martukanitz
Jay Tressler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penn State Research Foundation
UT Battelle LLC
Original Assignee
Penn State Research Foundation
UT Battelle LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penn State Research Foundation, UT Battelle LLC filed Critical Penn State Research Foundation
Priority to US10/674,213 priority Critical patent/US20050067064A1/en
Assigned to PENN STATE RESEARCH FOUNDATION reassignment PENN STATE RESEARCH FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARTUKANITZ, RICHARD P., TRESSLER, JAY F.
Assigned to UT-BATTELLE, LLC reassignment UT-BATTELLE, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BABU, SUDARSANAM S.
Publication of US20050067064A1 publication Critical patent/US20050067064A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen

Definitions

  • the present invention relates generally to laser metal deposition methodology for making hard surface steel alloys. More particularly, it relates to making high-hardness steel surfaces and improved control of bead contours by the use of active nitrogen shielding together with laser surface alloying of premixed steel powders and carbide powders on a steel surface.
  • Laser surface alloying is a versatile process through which one can modify the surface properties of metals and ceramics to obtain required properties.
  • the properties of the surface are modified by localized melting and solidification.
  • the LSA process alters the solidified microstructure by alloy-induced transformations, composite strengthening through the production of a coating comprised of a matrix material and second-phase particles, or a combination of both.
  • the most common uses are for improving resistance to corrosion, abrasion, erosion, oxidation, and wear (1).
  • LSA processing of steel surfaces relies on choosing the laser power and modifying the material characteristics to produce harder surfaces.
  • the addition of alloying elements to the molten pool modifies the liquid pool composition.
  • the alloying elements are added by pre-placing powders on the substrate, pre-blending the matrix powder and hard particles and feeding directly into the laser beam and material interaction region, or by injecting the hard particles into the trailing edge of the molten pool.
  • Some processes have also combined the various methods for providing the powder additions, as well as the use of solid wire for the matrix material.
  • LSA processing of steel has been performed with inert gas shielding using argon or helium to avoid contamination by oxygen and nitrogen.
  • shielding gas composition we have carefully modified the shielding gas composition, hard particle powder composition, laser surface alloying process parameters, and matrix powder composition in order to achieve harder steel alloy surfaces and better bead formation on steel surfaces.
  • the invention is a method of controlling bead shape in a steel alloy laser deposition process comprising laser melting an addition of titanium carbide powder and steel powder mixture to a steel surface using a shielding gas comprising 1% to 100% nitrogen.
  • the shielding gas can further comprise an inert gas and/or air.
  • the invention is a method of controlling bead shape in a steel alloy laser deposition process comprising laser melting an addition of material comprised of titanium carbide and steel on a steel surface in air.
  • the invention is a method for producing a high-hardness steel surface comprising the steps of: introducing an addition of a powder mixture containing 10 to 60 weight percent titanium carbide powder and the balance steel onto a steel surface by preplacing the mixture on the surface, feeding the mixture into the interaction area, or combining the preplacing and feeding of the addition components; laser melting the powder additions and a relatively small amount of the steel surface using 1% to 100% nitrogen as shielding gas; and cooling at a rate such that a steel surface with fine titanium carbonitride particles is formed.
  • FIG. 1 a is a photomicrograph of laser bead made on a 431 martensitic steel powder with argon shielding of 20 cfh.
  • FIG. 1 b is a photomicrograph of laser bead made on premixed 431 martensitic steel and 20% TiC powders with argon shielding of 20 cfh.
  • FIG. 1 c is a photomicrograph of laser bead made on premixed 431 martensitic steel and 20% TiC powder with mixture of 18 cfh of argon and 2 cfh of nitrogen as shielding gas.
  • FIG. 1 d is a photomicrograph of laser bead shape made on premixed 431 martensitic steel and 20% TiC powders in air.
  • FIG. 1 e is a photomicrograph of laser bead shape made on premixed 431 martensitic steel and 20% TiC powder with nitrogen shielding of 20 cfh.
  • FIG. 1 f is a comparison of bead outline showing the effect of gradually increasing nitrogen content on the bead shape.
  • FIG. 2 a is a high magnification optical photomicrograph of laser bead made on 431 martensitic steel powders with argon shielding of 20 cfh.
  • FIG. 2 b is a high magnification optical photomicrograph of laser bead made on premixed 431 martensitic steel and 20% TiC powder with argon shielding of 20 cfh.
  • FIG. 2 c. is a is a high magnification optical photomicrograph of laser bead made on a premixed 431 martensitic steel and 20% TiC powder with shielding made with mixture of 18 cfh of argon and 2 cfh of nitrogen.
  • FIG. 2 d is a high magnification optical photomicrograph of laser bead made on a premixed 431 martensitic steel and 20% TiC powder with shielding made in air with no intentional shielding.
  • FIG. 2 e is a high magnification optical photomicrograph of laser bead made on premixed 431 martensitic steel and 20% TiC powder with nitrogen shielding of 20 cfh.
  • FIG. 3 a is the measured hardness distribution image of laser bead made on 431 martensitic steel powders with argon shielding of 20 cfh.
  • FIG. 3 b is the measured hardness distribution image of laser bead made on premixed 431 martensitic steel and 20% TiC powders with argon shielding of 20.
  • FIG. 3 c is the measured hardness distribution image of laser bead made on premixed 431 martensitic steel and 20% TiC powders with shielding made with mixture of 18 cfh of argon and 2 cfh of nitrogen.
  • FIG. 3 d is the measured hardness distribution image of laser bead made on premixed 431 martensitic steel and 20% TiC powders with shielding made in air with no intentional shielding.
  • FIG. 3 e is the measured hardness distribution image of laser bead made on premixed 431 martensitic steel and 20% TiC powders with nitrogen shielding of 20 cfh.
  • FIG. 4 is the comparison of hardness distributions in the laser deposits made with different conditions.
  • FIG. 5 is the comparison of average hardness of the laser deposits for various conditions.
  • harder surface coatings are produced in a laser metal deposition process carried out using active nitrogen shielding and by adding titanium carbide (TiC) particles in a steel matrix.
  • TiC titanium carbide
  • the harder surface compounds are formed by reaction of the dissolved titanium, carbon and nitrogen which forms harder particles in a steel matrix. Inert gas shielding can be eliminated while yielding better hardness and providing control over the bead shape.
  • a mild steel of 1020 type was chosen as the substrate for the experimentation.
  • the matrix was designed to be of type 431 martensitic steel composition.
  • the specifications are given in Table 1.
  • the types of hard particle powders used in the experimentation include titanium carbide (TiC), titanium nitride (TiN) and standard tungsten carbide (WC) powders.
  • the specifications of TiC and TiN powders are given Table 1. TABLE 1 Specifications of 431 steel and TiC and TiN powders 431 Powder Sulzer Metco 42C powder, commercial 431 alloy purity, size ⁇ 325 + 80 size, and lot number W53351 TiC Powder AEE Corporation, 99.9% purity, size estimated at ⁇ 325 + 150, and lot number CAS-7440-33-7. TiN Powder Alfa Products Corporation, 99% purity, size estimated at ⁇ 325 + 150, and lot number 031986.
  • the laser deposition was made in a Hobart Model HLP 3000 3.0 kW Nd:YAG laser with fiber optic beam delivery and f16 focus optics. A laser power of 2430 W was used in all experiments. The energy absorption for this experimental setup at 2 mm powder thickness was approximately 70%. In all the experiments the powder material to be melted by laser process was premixed and preplaced on the substrate surface. The width of the powder layer was 0.20 inches. The thickness of the powder layer was 0.08 inch.
  • the details of the experimental conditions used in the experiments are given in Table 2.
  • the laser bead shape and microstructure in the coatings were characterized using optical microscopy after standard etching.
  • the hardness distributions in the coatings were measured with an automated hardness tester with 300 and 500 g loads and are given in terms of Vickers Hardness Number (HV). See FIGS. 4 and 5 .
  • the laser bead shape shows extensive melting of the substrate compared to other conditions.
  • FIG. 1 f shows the effect of gradually increasing the nitrogen content in the shielding gas. With the increase in nitrogen content, the weld pool shape became smaller and smaller. The results show that one can modify the bead shape by controlling the nitrogen content in the shielding gas.
  • the microstructures obtained in conditions 1, 7, 8, 9, and 14 are shown in FIG. 2 .
  • the microstructure from condition 1 did not contain any carbide and showed only martensite matrix (see FIG. 2 a ).
  • the microstructures from conditions 7 (see FIG. 2 b ), 8 (see FIG. 2 c ), 9 (see FIG. 2 d ), and 14 (see FIG. 2 e ) showed the presence of fine carbides in the form of particles and also dendritic form.
  • the microstructure from condition 8 shows some coarse TiC particles which have not melted completely.
  • the hardness distribution in conditions 1 are compared in FIG. 3 .
  • the hardness distributions were measured one one-half of the cross sections shown in FIG. 1 a - 1 e.
  • the hardness values were measured at a spatial resolution of 200 micro-meters ( ⁇ m).
  • the distributions are shown in a gray scale image format. The darker contrast indicates higher hardness and lighter contrast shows low hardness. Qualitative overview of the images showed that the condition 14 attained highest hardness.
  • the hardness distributions are compared in FIG. 4 .
  • the results show that the coating made with (condition 14) 431 steel powders with 20% TiC under 20 cfh nitrogen shielding produced the maximum hardness. This result shows that by increasing the nitrogen content in the shielding the hardness of the coating can be increased. TABLE 3 Measured Hardness Data in the substrate and the coatings produced in different conditions.
  • the average hardness of the deposits made in conditions 1, 7, 8, 9, and 14 were calculated by assuming a Gaussian distribution. The values are compared in FIG. 5 and in Table 3. The maximum hardness in the coating was occasionally above 1000 HV (see Table 3). This is attributed to sampling of coarse carbides present in the coating by the hardness indenter. Therefore, for true representation of coating performance, the average hardness is evaluated further.
  • a maximum hardness of 280 to 300 HV in the substrate is related to the formation of martensite in the regions close to the laser bead due to rapid cooling from the single-phase austenite region.
  • the average hardness of the coating in condition 1 was 437.76 HV.
  • On adding 20% TiC (condition 7) lead to an increase in average hardness to 573.69 HV. This 31% increase in hardness is attributed to the addition of TiC to the deposit.
  • the average hardness of condition 8 was 621.07 HV. This 8% increase in hardness was attributed to increasing levels of dissolved nitrogen, as well as the hard Ti(CN) compound formed by reaction with the dissolved titanium and carbon.
  • condition 9 The average hardness of condition 9 was 637.08 HV. This shows only a 2% increase in hardness over condition 8. Although one would expect higher levels of nitrogen dissolution in condition 9, the hardness increase was only 2%. This is attributed to deleterious effects of possible oxygen contamination.
  • condition 14 was 724.39 HV. This shows that 13% increase in hardness compared to condition 9 can be achieved by 100% nitrogen shielding.
  • Condition 8 gave a 31% increase in the hardness compared to condition 7.
  • condition 14 gave a 65% increase in the hardness compared to condition 7.
  • the hardness data conclusively show that use of laser metal deposition, 431 steel powders, the addition of TiC powders and 100% nitrogen shielding increases the surface hardness of the laser deposits.

Abstract

The addition of a steel and titanium carbide mixture is laser melted on a steel surface in air or in a shielding gas having a significant nitrogen content. The resulting steel surface has improved hardness and bead shape.

Description

    STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • The United States Government has rights in this invention pursuant to contract no. DE-AC05-00OR22725 between the United States Department of Energy and UT-Battelle, LLC.
  • FIELD OF THE INVENTION
  • The present invention relates generally to laser metal deposition methodology for making hard surface steel alloys. More particularly, it relates to making high-hardness steel surfaces and improved control of bead contours by the use of active nitrogen shielding together with laser surface alloying of premixed steel powders and carbide powders on a steel surface.
  • BACKGROUND OF THE INVENTION
  • Laser surface alloying (LSA) is a versatile process through which one can modify the surface properties of metals and ceramics to obtain required properties. The properties of the surface are modified by localized melting and solidification. The LSA process alters the solidified microstructure by alloy-induced transformations, composite strengthening through the production of a coating comprised of a matrix material and second-phase particles, or a combination of both. The most common uses are for improving resistance to corrosion, abrasion, erosion, oxidation, and wear (1).
  • Current LSA processing of steel surfaces relies on choosing the laser power and modifying the material characteristics to produce harder surfaces. The addition of alloying elements to the molten pool modifies the liquid pool composition. The alloying elements are added by pre-placing powders on the substrate, pre-blending the matrix powder and hard particles and feeding directly into the laser beam and material interaction region, or by injecting the hard particles into the trailing edge of the molten pool. Some processes have also combined the various methods for providing the powder additions, as well as the use of solid wire for the matrix material. In all cases, LSA processing of steel has been performed with inert gas shielding using argon or helium to avoid contamination by oxygen and nitrogen.
  • Recently, 100% nitrogen shielding was used in laser surface alloying of titanium alloys to produce harder titanium surfaces (2) Such a nitrogen shield process cannot be extended to steels, however, since it is well known that excess amounts of nitrogen dissolution into liquid steel will lead to gas porosity (3). No use of nitrogen shielding for laser surface alloying of steels is known prior to this invention.
  • We have carefully modified the shielding gas composition, hard particle powder composition, laser surface alloying process parameters, and matrix powder composition in order to achieve harder steel alloy surfaces and better bead formation on steel surfaces.
  • REFERENCES
  • 1. S. S. Babu et. al., “Toward Prediction of Microstructural Evolution during Laser Surface Alloying”, Metallurgical and Materials transactions A, Vol. 33A, pp. 1189-1200, (2002).
  • 2. I. Garcia, et. al., “(Ti,Al)/(Ti,Al)N Coatings Produced by Laser Surface Alloying”, Materials Letters, Vol. 53, pp. 44-51, (2002).
  • 3. S. Kou, “Welding Metallurgy”, John Wiley & Sons, New York, p. 64, (1987).
  • OBJECTS OF THE INVENTION
  • It is an object of this invention to modify the gas shielding used with steel alloy laser surface alloying processes to allow excess nitrogen to enter the liquid steel.
  • It is another object of this invention to utilize alloying elements in a steel alloy laser surface alloying process such that the alloying elements will dissolve in the liquid steel and react with dissolved nitrogen to form fine hard particles before the onset of solidification of the steel matrix.
  • It is another object of this invention to select laser surfacing process parameters in a steel alloy laser surface alloying process that will allow for dissolution of particles, dissolution of nitrogen from a shielding gas and also provide the proper cooling rate to allow for re-precipitation of fine hard particles.
  • It is a further object of this invention to select a matrix composition in a steel alloy laser surface alloying process that does not adversely influence the dissolution and re-precipitation of hard particles.
  • Further and other objectives of the present invention will become apparent from the description contained herein.
  • SUMMARY OF THE INVENTION
  • In one embodiment, the invention is a method of controlling bead shape in a steel alloy laser deposition process comprising laser melting an addition of titanium carbide powder and steel powder mixture to a steel surface using a shielding gas comprising 1% to 100% nitrogen. The shielding gas can further comprise an inert gas and/or air.
  • In another embodiment, the invention is a method of controlling bead shape in a steel alloy laser deposition process comprising laser melting an addition of material comprised of titanium carbide and steel on a steel surface in air.
  • In a further embodiment, the invention is a method for producing a high-hardness steel surface comprising the steps of: introducing an addition of a powder mixture containing 10 to 60 weight percent titanium carbide powder and the balance steel onto a steel surface by preplacing the mixture on the surface, feeding the mixture into the interaction area, or combining the preplacing and feeding of the addition components; laser melting the powder additions and a relatively small amount of the steel surface using 1% to 100% nitrogen as shielding gas; and cooling at a rate such that a steel surface with fine titanium carbonitride particles is formed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 a is a photomicrograph of laser bead made on a 431 martensitic steel powder with argon shielding of 20 cfh.
  • FIG. 1 b is a photomicrograph of laser bead made on premixed 431 martensitic steel and 20% TiC powders with argon shielding of 20 cfh.
  • FIG. 1 c is a photomicrograph of laser bead made on premixed 431 martensitic steel and 20% TiC powder with mixture of 18 cfh of argon and 2 cfh of nitrogen as shielding gas.
  • FIG. 1 d is a photomicrograph of laser bead shape made on premixed 431 martensitic steel and 20% TiC powders in air.
  • FIG. 1 e is a photomicrograph of laser bead shape made on premixed 431 martensitic steel and 20% TiC powder with nitrogen shielding of 20 cfh.
  • FIG. 1 f is a comparison of bead outline showing the effect of gradually increasing nitrogen content on the bead shape.
  • FIG. 2 a. is a high magnification optical photomicrograph of laser bead made on 431 martensitic steel powders with argon shielding of 20 cfh.
  • FIG. 2 b. is a high magnification optical photomicrograph of laser bead made on premixed 431 martensitic steel and 20% TiC powder with argon shielding of 20 cfh.
  • FIG. 2 c. is a is a high magnification optical photomicrograph of laser bead made on a premixed 431 martensitic steel and 20% TiC powder with shielding made with mixture of 18 cfh of argon and 2 cfh of nitrogen.
  • FIG. 2 d. is a high magnification optical photomicrograph of laser bead made on a premixed 431 martensitic steel and 20% TiC powder with shielding made in air with no intentional shielding.
  • FIG. 2 e. is a high magnification optical photomicrograph of laser bead made on premixed 431 martensitic steel and 20% TiC powder with nitrogen shielding of 20 cfh.
  • FIG. 3 a is the measured hardness distribution image of laser bead made on 431 martensitic steel powders with argon shielding of 20 cfh.
  • FIG. 3 b is the measured hardness distribution image of laser bead made on premixed 431 martensitic steel and 20% TiC powders with argon shielding of 20.
  • FIG. 3 c is the measured hardness distribution image of laser bead made on premixed 431 martensitic steel and 20% TiC powders with shielding made with mixture of 18 cfh of argon and 2 cfh of nitrogen.
  • FIG. 3 d is the measured hardness distribution image of laser bead made on premixed 431 martensitic steel and 20% TiC powders with shielding made in air with no intentional shielding.
  • FIG. 3 e is the measured hardness distribution image of laser bead made on premixed 431 martensitic steel and 20% TiC powders with nitrogen shielding of 20 cfh.
  • FIG. 4 is the comparison of hardness distributions in the laser deposits made with different conditions.
  • FIG. 5 is the comparison of average hardness of the laser deposits for various conditions.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In this laser surface alloying process, harder surface coatings are produced in a laser metal deposition process carried out using active nitrogen shielding and by adding titanium carbide (TiC) particles in a steel matrix. In particular, the harder surface compounds are formed by reaction of the dissolved titanium, carbon and nitrogen which forms harder particles in a steel matrix. Inert gas shielding can be eliminated while yielding better hardness and providing control over the bead shape.
  • A mild steel of 1020 type was chosen as the substrate for the experimentation. The matrix was designed to be of type 431 martensitic steel composition. The specifications are given in Table 1. The types of hard particle powders used in the experimentation include titanium carbide (TiC), titanium nitride (TiN) and standard tungsten carbide (WC) powders. The specifications of TiC and TiN powders are given Table 1.
    TABLE 1
    Specifications of 431 steel and TiC and TiN powders
    431 Powder Sulzer Metco 42C powder, commercial 431 alloy purity,
    size −325 + 80 size, and lot number W53351
    TiC Powder AEE Corporation, 99.9% purity, size estimated
    at −325 + 150, and lot number CAS-7440-33-7.
    TiN Powder Alfa Products Corporation, 99% purity, size estimated
    at −325 + 150, and lot number 031986.
  • The laser deposition was made in a Hobart Model HLP 3000 3.0 kW Nd:YAG laser with fiber optic beam delivery and f16 focus optics. A laser power of 2430 W was used in all experiments. The energy absorption for this experimental setup at 2 mm powder thickness was approximately 70%. In all the experiments the powder material to be melted by laser process was premixed and preplaced on the substrate surface. The width of the powder layer was 0.20 inches. The thickness of the powder layer was 0.08 inch.
  • The details of the experimental conditions used in the experiments are given in Table 2. The laser bead shape and microstructure in the coatings were characterized using optical microscopy after standard etching. The hardness distributions in the coatings were measured with an automated hardness tester with 300 and 500 g loads and are given in terms of Vickers Hardness Number (HV). See FIGS. 4 and 5.
  • A laser bead with 431 steel powders alone and with argon shielding at 20 cubic feet per hour (cfh) was made first. The laser bead shape (see FIG. 1 a) shows extensive melting of the substrate compared to other conditions.
  • Mixing 20% by weight of TiC powders to the 431 steel powders (see FIG. 1 b) and with argon shielding at 20 cfh led to reduction in the size of the bead. In addition, the liquid metal flow over the substrate sides was reduced compared to the bead with no TiC additions.
  • In the next run, a small amount of nitrogen was mixed with argon shielding. This was done by mixing 2 cfh of nitrogen with 18 cfh argon. This led to smoother and smaller bead shape (see FIG. 1 c) compared to the previous conditions.
  • To evaluate the effect of increasing nitrogen, the shielding was completely removed and the effect of ambient air present during laser bead deposition was tested. The bead shape (see FIG. 1 d) was again smaller than previous conditions. However, the surface was rougher compared to previous conditions. This may have been due to oxygen contamination from the air.
    TABLE 2
    Experimental matrix used in the investigation to evaluate the effect of nitrogen,
    air and argon shielding with carbide and nitride particles
    Base Metal 1020 Mild Steel
    Beam Diameter 5 mm Nd: YAG
    Power 2430 W
    Optics F16 - Fiber Optic Delivery
    Laser Orientation 15° rear angle (Run # 1-22)
    15° forward angle (Run # 22-30)
    Gas Supply 0.375″ I.D. copper tube @ 30°
    Powder Thickness 0.080″ t × 2.5″ L (Run # 1-22)
    (thoroughly mixed) 2.5″ L (Run # 22-30)
    Matrix/Particle Material Shielding
    Run (% by wt) Speed (cfh) Powder
    # 431 TiN TiC WC (IPM) Ar N2 Delivery Notes
     1 100%  5 20 preplaced
     2 100%  5 18  2 preplaced
     3 100%  5 preplaced
     4 80% 20% 5 20 preplaced
     5 80% 20% 5 18  2 preplaced
     6 80% 20% 5 preplaced
     7 80% 20% 5 20 preplaced
     8 80% 20% 5 18  2 preplaced
     9 80% 20% 5 preplaced
    10 80% 20% 15 20 preplaced
    11 80% 20% 15 18  2 preplaced
    12 80% 20% 15 preplaced
    13 80% 20% 15 20 preplaced
    14 80% 20% 5 20 preplaced
    15 80% 20% 15 20 preplaced 3 passes & 3 mm overlap
    16 80% 20% 15 20 preplaced 3 passes & 3 mm overlap
    17 100%  15 20 preplaced
    18 100%  5 20 preplaced
    19 80% 20% 5 20 preplaced
    20 80% 20% 5 20 preplaced
    21 80% 20% 15 20 preplaced
    22 80% 20% 15 20 preplaced
    23 80% 30% 5 20 tube-fed reverse direction
    24 80% 30% 15 20 tube-fed reverse direction
    25 80% 30% 5 20 tube-fed reverse direction
    26 80% 30% 15 20 tube-fed reverse direction
    27 80% 30% 5 20 tube-fed reverse direction
    28 80% 30% 15 20 tube-fed reverse direction
    29 80% 30% 5 20 tube-fed reverse direction
    30 80% 30% 15 20 tube-fed reverse direction
    31 50% 50% 5 20 tube-fed reverse direction
  • In the next run, 100% nitrogen was used as a shielding gas by making the laser beads with 20 cfh flow of nitrogen around the bead region. The bead shape attained with this condition is shown in FIG. 1 e. Since there was no oxygen contamination in this experiment, the bead was much smoother. Interestingly, the bead was smaller than in previous runs.
  • A comparison of the outlines from all the laser beads is shown in FIG. 1 f. FIG. 1 f shows the effect of gradually increasing the nitrogen content in the shielding gas. With the increase in nitrogen content, the weld pool shape became smaller and smaller. The results show that one can modify the bead shape by controlling the nitrogen content in the shielding gas.
  • The microstructures obtained in conditions 1, 7, 8, 9, and 14 (see Table 2) are shown in FIG. 2. The microstructure from condition 1 did not contain any carbide and showed only martensite matrix (see FIG. 2 a). The microstructures from conditions 7 (see FIG. 2 b), 8 (see FIG. 2 c), 9 (see FIG. 2 d), and 14 (see FIG. 2 e) showed the presence of fine carbides in the form of particles and also dendritic form. The microstructure from condition 8 (see FIG. 2 c) shows some coarse TiC particles which have not melted completely.
  • The presence of fine particles smaller than original particle size indicates that most of the original TiC powders dissolve in the liquid steel. On dissolution, the super saturation of titanium and carbon increases as well as the nitrogen due to dissolution from the shielding environment. Then, during cooling from high temperature, the dissolved titanium, carbon and nitrogen react to precipitate as titanium carbonitride, Ti(CN). The presence of dendritic shaped Ti(CN) particles indicates these precipitates are forming much before the primary solidification of the steel matrix. The carbides obtained in condition 14 were much finer. This is attributed to the higher supersaturation of nitrogen, and is also partly due to faster cooling in the deposit due to the smaller bead shape.
  • The hardness distribution in conditions 1 (see FIG. 3 a), 7 (see FIG. 3 b), 8 (see FIG. 3 c), 9 (see FIG. 3 d), and 14 (see FIG. 3 e) are compared in FIG. 3. The hardness distributions were measured one one-half of the cross sections shown in FIG. 1 a-1 e. The hardness values were measured at a spatial resolution of 200 micro-meters (μm). The distributions are shown in a gray scale image format. The darker contrast indicates higher hardness and lighter contrast shows low hardness. Qualitative overview of the images showed that the condition 14 attained highest hardness.
  • The hardness distributions are compared in FIG. 4. The results show that the coating made with (condition 14) 431 steel powders with 20% TiC under 20 cfh nitrogen shielding produced the maximum hardness. This result shows that by increasing the nitrogen content in the shielding the hardness of the coating can be increased.
    TABLE 3
    Measured Hardness Data in the substrate and the coatings produced
    in different conditions.
    Minimum Maximum Minimum Maximum Average
    Substrate Substrate Coating Coating Coating
    Hardness, Hardness, Hardness, Hardness, Hardness,
    Run HV HV HV HV HV
    1 140.7 285.43 393.97 461.918 437.76
    7 136.18 249.25 529.65 1834.78 573.69
    8 172.36 244.72 579.4 1378.12 621.07
    9 154.27 258.29 602.01 1007.26 637.08
    14  167.84 298.99 651.76 1103.95 724.39
  • The average hardness of the deposits made in conditions 1, 7, 8, 9, and 14 were calculated by assuming a Gaussian distribution. The values are compared in FIG. 5 and in Table 3. The maximum hardness in the coating was occasionally above 1000 HV (see Table 3). This is attributed to sampling of coarse carbides present in the coating by the hardness indenter. Therefore, for true representation of coating performance, the average hardness is evaluated further.
  • The average substrate hardness close to the coating did not change much in all conditions tested. A maximum hardness of 280 to 300 HV in the substrate is related to the formation of martensite in the regions close to the laser bead due to rapid cooling from the single-phase austenite region.
  • The average hardness of the coating in condition 1 was 437.76 HV. On adding 20% TiC (condition 7) lead to an increase in average hardness to 573.69 HV. This 31% increase in hardness is attributed to the addition of TiC to the deposit.
  • The average hardness of condition 8 was 621.07 HV. This 8% increase in hardness was attributed to increasing levels of dissolved nitrogen, as well as the hard Ti(CN) compound formed by reaction with the dissolved titanium and carbon.
  • The average hardness of condition 9 was 637.08 HV. This shows only a 2% increase in hardness over condition 8. Although one would expect higher levels of nitrogen dissolution in condition 9, the hardness increase was only 2%. This is attributed to deleterious effects of possible oxygen contamination.
  • The average hardness of condition 14 was 724.39 HV. This shows that 13% increase in hardness compared to condition 9 can be achieved by 100% nitrogen shielding. Condition 8 gave a 31% increase in the hardness compared to condition 7. However, condition 14 gave a 65% increase in the hardness compared to condition 7.
  • The hardness data conclusively show that use of laser metal deposition, 431 steel powders, the addition of TiC powders and 100% nitrogen shielding increases the surface hardness of the laser deposits.
  • While there has been shown and described what are at present considered the preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications can be prepared therein without departing from the scope of the invention defined by the appended claims.

Claims (6)

1. A method of controlling bead shape in a steel alloy laser deposition process comprising laser melting a premixed titanium carbide powder and steel powder mixture on a steel surface using a shielding gas comprising 1% to 100% nitrogen.
2. The method of claim 1 wherein said shielding gas further comprises an inert gas.
3. The method of claim 1 wherein said shielding gas further comprises air.
4. A method of controlling bead shape in a steel alloy laser deposition process comprising laser melting an addition of material comprised of titanium carbide and steel on a steel surface in air.
5. A method for producing a high-hardness steel surface comprising the steps of:
a) introducing an addition of a powder mixture containing 10 to 60 weight percent titanium carbide powder and the balance steel onto a steel surface by preplacing said mixture on the surface, feeding said mixture into the interaction area, or combining the preplacing and feeding of the addition components;
b) laser melting said powder additions and a relatively small amount of the steel surface using 1% to 100% nitrogen as shielding gas; and
c) cooling at a rate such that a steel surface with fine titanium carbonitride particles is formed.
6. A high hardness martensitic steel surface with distributed carbide particles produced according to the method of claim 5.
US10/674,213 2003-09-29 2003-09-29 Steel surface hardness using laser deposition and active gas shielding Abandoned US20050067064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/674,213 US20050067064A1 (en) 2003-09-29 2003-09-29 Steel surface hardness using laser deposition and active gas shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/674,213 US20050067064A1 (en) 2003-09-29 2003-09-29 Steel surface hardness using laser deposition and active gas shielding

Publications (1)

Publication Number Publication Date
US20050067064A1 true US20050067064A1 (en) 2005-03-31

Family

ID=34376830

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/674,213 Abandoned US20050067064A1 (en) 2003-09-29 2003-09-29 Steel surface hardness using laser deposition and active gas shielding

Country Status (1)

Country Link
US (1) US20050067064A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026084A1 (en) 2010-07-05 2012-01-05 Mtu Aero Engines Gmbh Applying material layer on workpiece made of material containing titanium aluminide, comprises heating workpiece by induction at preheating temperature and applying powdery additive on heated surface of workpiece by deposition welding
EP3254783A1 (en) * 2016-06-07 2017-12-13 EOS GmbH Electro Optical Systems Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method
WO2017211602A1 (en) * 2016-06-07 2017-12-14 Eos Gmbh Electro Optical Systems Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779720A (en) * 1971-11-17 1973-12-18 Chromalloy American Corp Plasma sprayed titanium carbide tool steel coating
US3977837A (en) * 1973-11-06 1976-08-31 Chromalloy American Corporation Titanium carbide tool steel having improved properties
US4318739A (en) * 1979-06-05 1982-03-09 A. Finkl & Sons Co. Steel having improved surface and reduction of area transverse properties, and method of manufacture thereof
US5720830A (en) * 1992-11-19 1998-02-24 Sheffield Forgemasters Limited Engineering ferrous metals and method of making thereof
US5858463A (en) * 1995-10-17 1999-01-12 Ngk Insulators, Ltd. Method of regenerating extrusion die for ceramic honeycomb structural bodies
US5900077A (en) * 1997-12-15 1999-05-04 Caterpillar Inc. Hardness, strength, and fracture toughness steel
US6899773B2 (en) * 2003-02-07 2005-05-31 Advanced Steel Technology, Llc Fine-grained martensitic stainless steel and method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779720A (en) * 1971-11-17 1973-12-18 Chromalloy American Corp Plasma sprayed titanium carbide tool steel coating
US3977837A (en) * 1973-11-06 1976-08-31 Chromalloy American Corporation Titanium carbide tool steel having improved properties
US4318739A (en) * 1979-06-05 1982-03-09 A. Finkl & Sons Co. Steel having improved surface and reduction of area transverse properties, and method of manufacture thereof
US5720830A (en) * 1992-11-19 1998-02-24 Sheffield Forgemasters Limited Engineering ferrous metals and method of making thereof
US5858463A (en) * 1995-10-17 1999-01-12 Ngk Insulators, Ltd. Method of regenerating extrusion die for ceramic honeycomb structural bodies
US5900077A (en) * 1997-12-15 1999-05-04 Caterpillar Inc. Hardness, strength, and fracture toughness steel
US6899773B2 (en) * 2003-02-07 2005-05-31 Advanced Steel Technology, Llc Fine-grained martensitic stainless steel and method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026084A1 (en) 2010-07-05 2012-01-05 Mtu Aero Engines Gmbh Applying material layer on workpiece made of material containing titanium aluminide, comprises heating workpiece by induction at preheating temperature and applying powdery additive on heated surface of workpiece by deposition welding
WO2012069029A2 (en) 2010-07-05 2012-05-31 Mtu Aero Engines Gmbh Process and apparatus for applying layers of material to a workpiece made of tial
US9550255B2 (en) 2010-07-05 2017-01-24 Mtu Aero Engines Gmbh Process and apparatus for applying layers of material to a workpiece made of tiAl
EP3254783A1 (en) * 2016-06-07 2017-12-13 EOS GmbH Electro Optical Systems Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method
WO2017211602A1 (en) * 2016-06-07 2017-12-14 Eos Gmbh Electro Optical Systems Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method
CN109311088A (en) * 2016-06-07 2019-02-05 德国易欧司光电技术有限公司 For manufacturing the mixture of powders of three-dimension object by increasing material manufacturing method

Similar Documents

Publication Publication Date Title
Bartkowski et al. Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding
De Damborenea Surface modification of metals by high power lasers
US4015100A (en) Surface modification
Kathuria Some aspects of laser surface cladding in the turbine industry
Xu et al. Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel
Deuis et al. Metal-matrix composite coatings by PTA surfacing
EP0919638B1 (en) Laser clad pot roll sleeves and bushing for galvanizing baths
Montealegre et al. Surface treatments by laser technology
JPH0525655A (en) Method for hardening surface of aluminum base metal and surface hardened aluminum base member
US20130045334A1 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
Dobrzański et al. Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics
EP3371337B1 (en) Method of layer-by-layer construction of a metallic part
Yamaguchi et al. Porosity reduction in WC-12Co laser cladding by aluminum addition
Kim et al. Chromium carbide laser-beam surface-alloying treatment on stainless steel
Fatoba et al. Laser metal deposition influence on the mechanical properties of steels and stainless steel composites: a review
Babu et al. Reactive gas shielding during laser surface alloying for production of hard coatings
US20050067064A1 (en) Steel surface hardness using laser deposition and active gas shielding
US20120261459A1 (en) Laser metalworking using reactive gas
Babinets et al. Influence of modification and microalloying on deposited metal structure and properties
Valente et al. LASER cladding—a post processing technique for coating, repair and re-manufacturing
Lisiecki et al. Robotized fiber laser cladding of steel substrate by metal matrix composite powder at cryogenic conditions
CN112004961A (en) Article having a protective layer of nitrogen alloy and method of producing the same
Nowotny et al. Microstructure and wear properties of laser clad carbide coatings
Gassmann et al. Laser cladding of hard particles rich alloys
Do Vale et al. Effect of laser parameters on the characteristics of a laser clad AISI 431 stainless steel coating on carbon steel substrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: PENN STATE RESEARCH FOUNDATION, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTUKANITZ, RICHARD P.;TRESSLER, JAY F.;REEL/FRAME:014558/0263

Effective date: 20030926

Owner name: UT-BATTELLE, LLC, TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BABU, SUDARSANAM S.;REEL/FRAME:014558/0269

Effective date: 20030919

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION