US20050005567A1 - Moisture barriers for building construction - Google Patents

Moisture barriers for building construction Download PDF

Info

Publication number
US20050005567A1
US20050005567A1 US10/890,542 US89054204A US2005005567A1 US 20050005567 A1 US20050005567 A1 US 20050005567A1 US 89054204 A US89054204 A US 89054204A US 2005005567 A1 US2005005567 A1 US 2005005567A1
Authority
US
United States
Prior art keywords
board
moisture barrier
building structure
building
construction material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/890,542
Inventor
Chris Meister
Peter Simonelli
Abdul Razzak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bondo Corp
Original Assignee
Bondo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bondo Corp filed Critical Bondo Corp
Priority to US10/890,542 priority Critical patent/US20050005567A1/en
Publication of US20050005567A1 publication Critical patent/US20050005567A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/02Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against ground humidity or ground water
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/12Load-carrying floor structures formed substantially of prefabricated units with wooden beams

Definitions

  • the subject matter herein relates to building construction materials having moisture barriers for use in building structures.
  • Moisture is known to cause warping, cracking, buckling, rotting and other damage to wood building materials in building structures and can create an environment for the growth of mold, mildew and termites in or on the wood.
  • Moisture in the form of precipitation or condensation may enter a building structure by penetrating the sides (walls) or the roof; moisture and moisture vapor from ground water and other sources may enter a building structure by penetrating the floor of the structure through concrete slabs or unfinished crawl spaces.
  • Newly fabricated building structures are particularly vulnerable to the entry of moisture since it is not usually possible or practical to install complete roofing or exterior wall protection systems immediately after the basic building structure is erected.
  • moisture barriers have been developed to prevent damage to building structures.
  • conventional moisture barriers suffer from lack of durability in that they degrade upon exposure to moisture, heat, and other conditions that are present in the environment or are created by systems such as radiant heating systems.
  • conventional moisture barriers have proven unsatisfactory for use in new construction in that they do not provide adequate protection to enable accelerated building of structural and other systems inside a newly framed building structure. Accordingly, an non-conventional moisture barrier is required that does not degrade over time or with repeated heating and cooling or with exposure to moisture, heat or other environmental factors.
  • building construction materials comprise a moisture barrier comprising non-vulcanized, modified rubber.
  • the moisture barrier does not degrade over time, especially when exposed to moisture or heating/cooling or freeze/thaw cycles.
  • the building construction materials comprise a board to which is permanently adhered a non-vulcanized cured, modified rubber comprising a non-tacky surface.
  • building structures which comprise several discrete structural portions, including a roof portion, a floor portion and a wall portion, in which one or more of each of the said portions comprise the building construction materials comprising a moisture barrier as described above.
  • FIG. 1 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards.
  • the boards are installed directly over a concrete slab having installed a radiant heating system, and the moisture barrier is oriented towards the concrete slab.
  • FIG. 2 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards.
  • the boards are installed directly over an in floor radiant heating system and the moisture barrier is oriented towards the radiant heating system.
  • the radiant heating system is installed over lower subfloor which is installed over a crawl space.
  • FIG. 3 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards. The boards are installed directly over a crawl space and the moisture barrier is oriented towards the crawl space.
  • the moisture barrier is made of a rubberized material that is initially in a liquid formulation.
  • such formulations have rubber polymers in solution along with solvents such as methylene chloride and petroleum distillates, and other additive. These materials include polymeric rubber, adhesion promoters (agents that enhance binding to the substrate surface), and diluents and thinners (agents that enhance miscibility and reduce viscosity of the liquid solution).
  • liquid rubberized coating material formulations include surface acting agents that stabilize the mixture, inert reinforcement powders, and UV (ultraviolet light) protection agents.
  • polymeric rubber include: poly-butadiene, poly-isoprene, poly-ethylene-butylene, and polystyrene ethylene-butylene.
  • Examples of surface acting agents include: suspending agents, deaerating agents, fume silica, clays, castor oil-based materials, surfactants.
  • Examples of adhesion promoters include: silane coupling agents, modified polymeric coupling agents, titinates.
  • Examples of inert reinforcement powders include: talc powder, clays, calcium carbonates.
  • plasticizers include: DOP and DIBP.
  • Examples of diluents and thinners include: organic solvents (aromatic or aliphatic); xylene; kerosene.
  • An example of a UV protection additive is tinuvin, made by Ciba Geigy.
  • liquid rubberized coatings examples include “Dynatron Dyna-Pro Rubberized Undercoat” and “Mar-Hyde Paintable Rubber Undercoating,” which are commonly used as undercoatings in the automotive and marine industries.
  • the liquid rubberized coating material is cured to form a non-tacky surface when it is applied to the wood board.
  • the liquid rubberized coating material does not require additional treatment, pressurizing, heating, vulcanizing or other processing steps.
  • the moisture barriers are described as having thicknesses that are described in units of “mil.” A mil refers to a unit of length equal to one thousandth of an inch or 0.0254 millimeter.
  • the non-vulcanized, cured liquid rubberized materials have been used effectively to prepare moisture barriers having thicknesses from 2 to 22 mil. For use in floors lacking radiant heating systems, thickness of 6 to 8 mil is acceptable. For use with in-floor radiant heating systems, application of these rubberized materials to thicknesses of about 10 to 12 mils provided optimal results.
  • roofing systems exposed to normal conditions (wind speed from 10 to 60 mph, sun exposure, moisture, temperature from about ⁇ 10° F. to 110° F.), thicknesses ranging from 8 to 12 mil are acceptable.
  • thicknesses from 15 to 20 mil is desirable.
  • Rubberized coating materials are applied to boards to provide building construction materials, building structures, and roofing, wall, flooring and deck systems with moisture barriers.
  • the materials may be applied in liquid form, by coating dipping or by using brushes, sprayers, squeegees and other means for applying liquids and allowed to dry or cure in ambient environment into a flexible non-tacky solid state permanently attached to the wood board.
  • the rubberized materials may also be applied in the form of pre-cured membranes that are permanently affixed to the boards using heat, glue or other bonding methods or agents.
  • the moisture barriers are contacted permanently with the surface of the board substrate; optionally, the moisture barriers may be contacted with the surface of the board at least in part through covalent chemical bonds between components of the moisture barrier and components of the board.
  • wood board refers to boards used as construction materials that are made of or comprise wood; wood boards may also comprise other materials. Boards have six sides; typically, two sides of a board comprise a large percentage of the overall surface area of the board, and are most alternately referred to as sides or faces; the remaining four sides of a board each comprise a small percentage of the overall surface area of the board, and are alternately referred to as the edges.
  • Wood boards that may be used according to the present disclosure include solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board, and the like.
  • the wood boards may optionally have a tongue and groove construction or other similar inter-fitting construction for fitting one or more wood boards tightly together.
  • the wood boards may be provided in any length or width, and likewise have any of a variety of thickness dimensions. For example, wood boards may have thicknesses of 1 ⁇ 2′′, 3 ⁇ 8′′, 5 ⁇ 8′′, 3 ⁇ 4′′ or 11 ⁇ 8′′.
  • the moisture barrier is permanently attached to and entirely covers at least one side of a wood board.
  • the moisture barrier entirely covers from one to five sides of the wood board and does not cover any part of one or more of the remaining six sides of the wood board.
  • the moisture barrier entirely covers from one to five sides of the wood board, and partially covers one or more of the remaining six sides of the wood board.
  • the moisture barrier entirely covers five sides of the wood board and covers only part of the surface of the remaining side of the wood board.
  • partially covers and “partially covered,” as used herein to describe the extent of coverage of the surfaces of a wood board with a moisture barrier, means that only part of the total surface area of a wood board, or only part of a discrete side of a wood board, is covered with the moisture barrier.
  • only part of the surfaces means that less than substantially 100% of the total surface of the board is covered with the moisture barrier, however, 100% of any one side may be covered (i.e., entirely covered) so long as at least one side is only partially covered.
  • roofing systems may be constructed with the moisture barrier facing the exterior of the building structure so as to limit the entry of moisture into the structure.
  • the gaps between the construction materials may be sealed with tape, such as flashing membrane, or other appropriate sealing materials.
  • the roofing systems may also comprise other layers such as styrofoam insulation or thermal blanket materials.
  • the final, surface layer of the roofing system may comprise wood, asphalt shingles, slate, tile, metal, or other finishing materials.
  • Wall systems may be constructed with the moisture barrier facing the exterior of the building structure.
  • the gaps between the construction materials may be sealed with tape, such as flashing membrane, or other appropriate sealing materials.
  • the wall system may also comprise other layers such as styrofoam or blown insulation.
  • the final, surface layer of the wall system may comprise wood, metal, or vinyl siding, shakes or shingles, stone, or brick veneer, lathe and stucco siding, or other finishing materials.
  • Flooring systems may be supported by structural joists, or floor trusses, which in turn may be installed over either a concrete slab or a crawl space, and supported by some type of concrete slab so as to elevate the structural joists and flooring system above the ground.
  • a flooring system may further include a “finished” hardwood stone, carpet, tile, vinyl, or cork floor above a first wood subfloor.
  • the finished floor may overlay an optional radiant heating system above a second wood subfloor, which is supported by the structural joists.
  • radiant heating systems for flooring one example is a radiant heating system that includes lightweight concrete or Gypcrete sections having heat pipes displaced throughout the length of the lightweight concrete or Gypcrete sections. The radiant heating system keeps the flooring system, and consequently the building structure, warm during cold temperature seasons.
  • Flooring systems may be installed with the moisture barrier facing either towards or away from the source of moisture.
  • the construction material with the moisture barrier is installed below a hardwood floor, either directly over a slab, crawl space or in a floor heating system.
  • the moisture barrier is installed in two layers.
  • a lower sub floor is installed over a concrete or Gypcrete slab or crawl pace with the moisture barrier facing away from the slab or crawl space.
  • An in floor radiant heating system is then installed over this lower sub floor using lightweight concrete to encase the heating system.
  • Above the encased heating system an upper sub floor is installed, with the moisture barrier facing toward the heating system.
  • the hardwood flooring is installed above this upper sub floor.
  • Foundation (below grade): Plywood foundations may be installed with the moisture barrier facing the exterior of the building structure. Seams between the wood boards must be sealed with tape or a flashing membrane, and the wood boards are nailed to studs, such as 2 ⁇ 6 studs, which are anchored to the structure footing using anchor bolts.
  • Deck systems may be constructed with 3 ⁇ 4′′ or 11 ⁇ 8′′ tongue and groove plywood or OSB boards with moisture barriers and installed to form the deck subfloor, with the moisture barrier facing the elements. Seams between the edges of the boards are sealed with tape or flashing membrane. Preferably, membrane is applied along all vertical surfaces and extending from 12′′ to 18′′ on to the deck surface. After coated plywood is installed and taped to prevent leaking an additional layer (membrane) is optionally applied to overlap all seams by at least 6′′. A 1 ⁇ 4′′ thick protection mat is installed over optional second membrane. Sleeper system, 11 ⁇ 2′′ ⁇ 11 ⁇ 2′′, is installed on top of protection mat. Wood decking is attached to sleeper system using attachment means to avoid penetrating the moisture barriers below. If stone or other material is used for the finished deck surface, the sleeper system is replaced with a setting bed (made, for example, with mortar mix) to set the stone or other material.
  • a setting bed made, for example, with mortar mix
  • Interior water exposed spaces such as showers, whirlpools, tubs and the like may be constructed using building construction materials with moisture barriers. The materials are installed with the moisture barriers facing toward the moisture conditions.
  • the building construction materials comprising moisture barriers as provided herein can be used to effectively “dry-in” framed structures so as to shorten the time from framing to roughing-in.
  • building structures are constructed by first building a frame (“framing”) then by further build up of the various portions of the structure, such as the floors, roof, walls, facia and soffets.
  • the next layer of the structure which usually comprises wood boards that are unfinished and are not intended for exposure to the environmental elements for extended periods of time, as well as other components such as, for example, the exterior windows and doors and brick, stone or concrete, are installed.
  • weatherproofed roofing and siding materials are installed. After installation of weatherproofed roofing materials (and optionally, siding materials), the interior work is begun with installation of plumbing, electrical and HVAC systems (“roughing-in”).
  • the period of time that elapses from framing to roughing-in ranges from about 2 weeks to about 6 weeks for a two-story, wood-based building structure of 4,000 to 10,000 square feet or more.
  • the long delay between framing and interior work is almost exclusively due to the need to avoid the damaging effects of the environmental elements, including wind, precipitation and sunlight, on interior systems, such as electrical wiring.
  • a dried-in structure may be achieved much earlier in the construction process by use of construction materials protected with moisture barriers, as described herein. These construction materials may be installed immediately during framing of the structure.
  • the installed construction materials When used in conjunction with appropriate flashing and tape materials (for example, Ultra-Shield EPDM flashing membrane or similar products), the installed construction materials will effectively bar the penetration of the elements, particularly moisture, into the structure, thus permitting roughing-in to occur much sooner after framing, or approximately 2-4 weeks earlier than usual.
  • appropriate flashing and tape materials for example, Ultra-Shield EPDM flashing membrane or similar products
  • a suitably dried-in structure will have the construction materials with the moisture barrier installed to form at least the roof portion. Either or both the wall and floor portions may also have the construction materials installed. These dried-in structures are “intermediate building structures” in that additional layers such as siding, roofing materials, and flooring components remain to be installed. Dried-in structures, and the methods for making them, permit acceleration of the building schedule by permitting rough-in to commence early.
  • a building structure 234 having a flooring system 202 including an adequate moisture barrier is shown in FIG. 1 .
  • the moisture and condensation barrier 236 is coated onto the undersides and the edges of a plurality of wood boards (such as plywood, chipboard, particle board, etc.) that form a wood subfloor 238 under the hardwood floor 206 .
  • the moisture and condensation barrier 236 generally comprises a rubberized material that can be sprayed, painted or otherwise coated onto the wood board for the subfloor 238 , with application occurring either in the field before or after installation, or elsewhere before installation.
  • the moisture and condensation barrier 236 can then be allowed to dry or cure to form a flexible non-tacky solid that is permanently attached to the wood board, is resistant to penetration by water, is durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles) and can allow nails and staples to pass through in order to affix the wood board for the subfloor 238 to other components of the building structure 234 , if needed.
  • the flooring system 202 is shown placed between the walls 210 above the concrete slab 230 supported above the ground 216 .
  • the concrete slab 230 also serves as an optional radiant heating system having the heat pipes 218 displaced throughout the concrete slab 213 .
  • the moisture and condensation barrier 236 is installed in the flooring system 202 oriented away from the interior of the building structure 234 .
  • the moisture and condensation barrier 236 may be installed in the flooring system 202 oriented toward the interior of the building structure 234 .
  • the moisture and condensation barrier 236 may be installed on two levels of wood subfloor 238 with one level being oriented toward and one level being oriented away from the interior of the building structure 234 .
  • the same flooring system 202 with the moisture and condensation barrier 236 coated onto the wood boards of the wood subfloor 238 may also be incorporated into a building structure (not shown) not having the radiant heating system.
  • the flooring system 202 may be installed into a building structure (not shown) having a concrete slab on grade that is positioned directly on the ground 216 .
  • Bondo formulation 9706 was used to form the moisture barrier 236 .
  • Bondo formulation 9706 is only one example of a non-vulcanized rubber material that may be used according to this invention. This liquid rubberized coating material was coated onto solid wood boards to a thickness of approximately 6-8 mil. The coating was applied using a roller and approximately 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid that was permanently attached to the wood board, was resistant to penetration by water, was durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles). The coated boards were installed to form a wood subfloor 238 under the hardwood floor 206 .
  • a building structure 240 having a flooring system 202 including an adequate moisture barrier 236 is shown in FIG. 2 .
  • the moisture and condensation barrier 236 is coated onto the wood boards that form the wood subfloor 238 under the hardwood floor 206 .
  • the flooring system 202 is shown placed between the walls 210 and the flooring system 202 is elevated above the ground 216 by the concrete or Gypcrete slab 230 and the structural joists 228 .
  • the embodiment also includes the radiant heating system 224 (having the heat pipes 218 and sleeper system 229 ) supported on the second wood subfloor 226 in the flooring system 202 .
  • Bondo formulation 9706 was used to form the moisture barrier, and was coated onto the wood boards that form the wood subfloor under the hardwood floor. This liquid rubberized coating material was coated onto solid wood boards to a thickness of approximately 6-8 mil. The coating was applied using a roller and approx 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid that was permanently attached to the wood board, was resistant to penetration by water, was durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles). The coated boards were installed to form a wood subfloor under the hardwood floor, with the moisture barrier facing towards the heating system.
  • a building structure 242 flooring system 202 including an adequate moisture barrier 236 is shown in FIG. 3 .
  • the moisture and condensation barrier 236 is coated onto the plurality of wood boards that form the wood subfloor 238 under the hardwood floor 206 .
  • the flooring system 202 is shown placed between the walls 210 and the flooring system 202 is elevated above the ground 216 by the concrete slab 230 and the structural joists 228 .
  • the embodiment does not include a radiant heating system, so the wood subfloor 238 having the coated-on moisture and condensation barrier 236 is supported directly on the structural joists 228 .
  • Previously-installed hardwood flooring was removed to reveal the sub-floor 238 , which was installed on structural joists 228 over an earthen crawl space (ground 216 ).
  • Bondo formulation 9706 was used to form the moisture barrier, and was coated directly on to the upper surface of the wood boards of the installed sub floor.
  • the liquid rubberized coating material was coated onto to a thickness of approximately 6-8 mil using a roller and approximately 3 coats were applied.
  • the moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid.
  • a hard wood floor 206 was installed over the coated sub floor 238 boards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Floor Finish (AREA)

Abstract

Moisture and condensation barriers for protecting wood from damage in building structures, particularly wood that is or may be exposed to moisture from internal or external sources, wherein such barriers comprise a non-vulcanized liquid rubberized coating material coated on to one or more portions of wood members of building structures.

Description

    PRIORITY CLAIM
  • This application claims priority to U.S. patent application Ser. No. 09/874,801, filed Jun. 5, 2001, and U.S. Provisional Patent Application 60/486,542, filed Jul. 11, 2003, each of which is incorporated by reference herein in its entirety.
  • FIELD
  • The subject matter herein relates to building construction materials having moisture barriers for use in building structures.
  • BACKGROUND
  • Moisture is known to cause warping, cracking, buckling, rotting and other damage to wood building materials in building structures and can create an environment for the growth of mold, mildew and termites in or on the wood. Moisture in the form of precipitation or condensation may enter a building structure by penetrating the sides (walls) or the roof; moisture and moisture vapor from ground water and other sources may enter a building structure by penetrating the floor of the structure through concrete slabs or unfinished crawl spaces. Newly fabricated building structures are particularly vulnerable to the entry of moisture since it is not usually possible or practical to install complete roofing or exterior wall protection systems immediately after the basic building structure is erected. The potentially damaging effects of moisture is a particular impediment to the progress of building, since interior building work cannot proceed prior to the installation of appropriate moisture barriers on the roof and other portions of a framed building structure. Moisture and condensation are also a problem in building structures having radiant heating systems. Condensation that forms as a result of frequent cycling of the systems and moisture released through leaks or ruptures in the systems can cause serious damage to the floor and other portions of a building structure.
  • Various types of moisture barriers have been developed to prevent damage to building structures. However, conventional moisture barriers suffer from lack of durability in that they degrade upon exposure to moisture, heat, and other conditions that are present in the environment or are created by systems such as radiant heating systems. Additionally, conventional moisture barriers have proven unsatisfactory for use in new construction in that they do not provide adequate protection to enable accelerated building of structural and other systems inside a newly framed building structure. Accordingly, an non-conventional moisture barrier is required that does not degrade over time or with repeated heating and cooling or with exposure to moisture, heat or other environmental factors.
  • SUMMARY
  • In accordance with the present disclosure, building construction materials are provided that comprise a moisture barrier comprising non-vulcanized, modified rubber. The moisture barrier does not degrade over time, especially when exposed to moisture or heating/cooling or freeze/thaw cycles. The building construction materials comprise a board to which is permanently adhered a non-vulcanized cured, modified rubber comprising a non-tacky surface.
  • Also provided are building structures which comprise several discrete structural portions, including a roof portion, a floor portion and a wall portion, in which one or more of each of the said portions comprise the building construction materials comprising a moisture barrier as described above.
  • Also provided are methods for constructing building structures wherein one or more portions of the structures are constructed with a building construction material that comprises a moisture barrier as described above.
  • Additional features and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The features and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention, and together with the description, serve to explain the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards. The boards are installed directly over a concrete slab having installed a radiant heating system, and the moisture barrier is oriented towards the concrete slab.
  • FIG. 2 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards. The boards are installed directly over an in floor radiant heating system and the moisture barrier is oriented towards the radiant heating system. The radiant heating system is installed over lower subfloor which is installed over a crawl space.
  • FIG. 3 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards. The boards are installed directly over a crawl space and the moisture barrier is oriented towards the crawl space.
  • DETAILED DESCRIPTION
  • Moisture Barriers made with Liquid Rubberized Coating Materials
  • The moisture barrier is made of a rubberized material that is initially in a liquid formulation. Generically, such formulations have rubber polymers in solution along with solvents such as methylene chloride and petroleum distillates, and other additive. These materials include polymeric rubber, adhesion promoters (agents that enhance binding to the substrate surface), and diluents and thinners (agents that enhance miscibility and reduce viscosity of the liquid solution). Preferably, liquid rubberized coating material formulations include surface acting agents that stabilize the mixture, inert reinforcement powders, and UV (ultraviolet light) protection agents. Examples of polymeric rubber include: poly-butadiene, poly-isoprene, poly-ethylene-butylene, and polystyrene ethylene-butylene. Examples of surface acting agents include: suspending agents, deaerating agents, fume silica, clays, castor oil-based materials, surfactants. Examples of adhesion promoters include: silane coupling agents, modified polymeric coupling agents, titinates. Examples of inert reinforcement powders include: talc powder, clays, calcium carbonates. Examples of plasticizers include: DOP and DIBP. Examples of diluents and thinners include: organic solvents (aromatic or aliphatic); xylene; kerosene. An example of a UV protection additive is tinuvin, made by Ciba Geigy.
  • Examples of commercially available liquid rubberized coatings include “Dynatron Dyna-Pro Rubberized Undercoat” and “Mar-Hyde Paintable Rubber Undercoating,” which are commonly used as undercoatings in the automotive and marine industries.
  • The liquid rubberized coating material is cured to form a non-tacky surface when it is applied to the wood board. For curing, the liquid rubberized coating material does not require additional treatment, pressurizing, heating, vulcanizing or other processing steps. The moisture barriers are described as having thicknesses that are described in units of “mil.” A mil refers to a unit of length equal to one thousandth of an inch or 0.0254 millimeter. The non-vulcanized, cured liquid rubberized materials have been used effectively to prepare moisture barriers having thicknesses from 2 to 22 mil. For use in floors lacking radiant heating systems, thickness of 6 to 8 mil is acceptable. For use with in-floor radiant heating systems, application of these rubberized materials to thicknesses of about 10 to 12 mils provided optimal results. For roofing systems exposed to normal conditions (wind speed from 10 to 60 mph, sun exposure, moisture, temperature from about −10° F. to 110° F.), thicknesses ranging from 8 to 12 mil are acceptable. For extreme weather conditions (wind speed at or above 60 mph, sun exposure, moisture, temperature from about −40° F. to 180° F.), or for extended exposure to normal conditions (i.e., up to about 90 days), thicknesses from 15 to 20 mil is desirable.
  • Preparing Construction Materials having Rubberized Moisture Barriers
  • Rubberized coating materials are applied to boards to provide building construction materials, building structures, and roofing, wall, flooring and deck systems with moisture barriers. The materials may be applied in liquid form, by coating dipping or by using brushes, sprayers, squeegees and other means for applying liquids and allowed to dry or cure in ambient environment into a flexible non-tacky solid state permanently attached to the wood board. The rubberized materials may also be applied in the form of pre-cured membranes that are permanently affixed to the boards using heat, glue or other bonding methods or agents. In either case, the moisture barriers are contacted permanently with the surface of the board substrate; optionally, the moisture barriers may be contacted with the surface of the board at least in part through covalent chemical bonds between components of the moisture barrier and components of the board.
  • The term “wood board” as used herein refers to boards used as construction materials that are made of or comprise wood; wood boards may also comprise other materials. Boards have six sides; typically, two sides of a board comprise a large percentage of the overall surface area of the board, and are most alternately referred to as sides or faces; the remaining four sides of a board each comprise a small percentage of the overall surface area of the board, and are alternately referred to as the edges.
  • Wood boards that may be used according to the present disclosure include solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board, and the like. The wood boards may optionally have a tongue and groove construction or other similar inter-fitting construction for fitting one or more wood boards tightly together. The wood boards may be provided in any length or width, and likewise have any of a variety of thickness dimensions. For example, wood boards may have thicknesses of ½″, ⅜″, ⅝″, ¾″ or 1⅛″.
  • The moisture barrier is permanently attached to and entirely covers at least one side of a wood board. Optionally, the moisture barrier entirely covers from one to five sides of the wood board and does not cover any part of one or more of the remaining six sides of the wood board. Optionally, the moisture barrier entirely covers from one to five sides of the wood board, and partially covers one or more of the remaining six sides of the wood board. Preferably, the moisture barrier entirely covers five sides of the wood board and covers only part of the surface of the remaining side of the wood board.
  • The terms “partially covers” and “partially covered,” as used herein to describe the extent of coverage of the surfaces of a wood board with a moisture barrier, means that only part of the total surface area of a wood board, or only part of a discrete side of a wood board, is covered with the moisture barrier.
  • The term “entirely covers,” as used herein to describe the extent of coverage of a discrete side of a wood board with a moisture barrier, means that substantially 100% of the surface area of a discrete side of a wood board is covered with the moisture barrier.
  • The term “only part of the surfaces,” as used herein to describe the extent of coverage of the surfaces of a wood board with a moisture barrier, means that less than substantially 100% of the total surface of the board is covered with the moisture barrier, however, 100% of any one side may be covered (i.e., entirely covered) so long as at least one side is only partially covered.
  • Installation of Building Construction Materials having Rubberized Moisture Barriers Roofing Installation
  • Roofing systems may be constructed with the moisture barrier facing the exterior of the building structure so as to limit the entry of moisture into the structure. The gaps between the construction materials may be sealed with tape, such as flashing membrane, or other appropriate sealing materials. The roofing systems may also comprise other layers such as styrofoam insulation or thermal blanket materials. The final, surface layer of the roofing system may comprise wood, asphalt shingles, slate, tile, metal, or other finishing materials.
  • Walls and Siding Installation
  • Wall systems may be constructed with the moisture barrier facing the exterior of the building structure. The gaps between the construction materials may be sealed with tape, such as flashing membrane, or other appropriate sealing materials. The wall system may also comprise other layers such as styrofoam or blown insulation. The final, surface layer of the wall system may comprise wood, metal, or vinyl siding, shakes or shingles, stone, or brick veneer, lathe and stucco siding, or other finishing materials.
  • Flooring Installation
  • Flooring systems may be supported by structural joists, or floor trusses, which in turn may be installed over either a concrete slab or a crawl space, and supported by some type of concrete slab so as to elevate the structural joists and flooring system above the ground. A flooring system may further include a “finished” hardwood stone, carpet, tile, vinyl, or cork floor above a first wood subfloor. The finished floor may overlay an optional radiant heating system above a second wood subfloor, which is supported by the structural joists. There are many types of radiant heating systems for flooring; one example is a radiant heating system that includes lightweight concrete or Gypcrete sections having heat pipes displaced throughout the length of the lightweight concrete or Gypcrete sections. The radiant heating system keeps the flooring system, and consequently the building structure, warm during cold temperature seasons.
  • Flooring systems may be installed with the moisture barrier facing either towards or away from the source of moisture. The construction material with the moisture barrier is installed below a hardwood floor, either directly over a slab, crawl space or in a floor heating system. In some cases, the moisture barrier is installed in two layers. In such flooring systems, a lower sub floor is installed over a concrete or Gypcrete slab or crawl pace with the moisture barrier facing away from the slab or crawl space. An in floor radiant heating system is then installed over this lower sub floor using lightweight concrete to encase the heating system. Above the encased heating system an upper sub floor is installed, with the moisture barrier facing toward the heating system. The hardwood flooring is installed above this upper sub floor.
  • Foundation Installation
  • Foundation (below grade): Plywood foundations may be installed with the moisture barrier facing the exterior of the building structure. Seams between the wood boards must be sealed with tape or a flashing membrane, and the wood boards are nailed to studs, such as 2×6 studs, which are anchored to the structure footing using anchor bolts.
  • Waterproof Deck Installation
  • Deck systems may be constructed with ¾″ or 1⅛″ tongue and groove plywood or OSB boards with moisture barriers and installed to form the deck subfloor, with the moisture barrier facing the elements. Seams between the edges of the boards are sealed with tape or flashing membrane. Preferably, membrane is applied along all vertical surfaces and extending from 12″ to 18″ on to the deck surface. After coated plywood is installed and taped to prevent leaking an additional layer (membrane) is optionally applied to overlap all seams by at least 6″. A ¼″ thick protection mat is installed over optional second membrane. Sleeper system, 1½″×1½″, is installed on top of protection mat. Wood decking is attached to sleeper system using attachment means to avoid penetrating the moisture barriers below. If stone or other material is used for the finished deck surface, the sleeper system is replaced with a setting bed (made, for example, with mortar mix) to set the stone or other material.
  • Interior Water Exposed Spaces
  • Interior water exposed spaces such as showers, whirlpools, tubs and the like may be constructed using building construction materials with moisture barriers. The materials are installed with the moisture barriers facing toward the moisture conditions.
  • Constructing Dried-In, Intermediate Building Structures
  • The building construction materials comprising moisture barriers as provided herein can be used to effectively “dry-in” framed structures so as to shorten the time from framing to roughing-in. Traditionally, building structures are constructed by first building a frame (“framing”) then by further build up of the various portions of the structure, such as the floors, roof, walls, facia and soffets. After framing, the next layer of the structure, which usually comprises wood boards that are unfinished and are not intended for exposure to the environmental elements for extended periods of time, as well as other components such as, for example, the exterior windows and doors and brick, stone or concrete, are installed. Thereafter, weatherproofed roofing and siding materials are installed. After installation of weatherproofed roofing materials (and optionally, siding materials), the interior work is begun with installation of plumbing, electrical and HVAC systems (“roughing-in”).
  • The period of time that elapses from framing to roughing-in ranges from about 2 weeks to about 6 weeks for a two-story, wood-based building structure of 4,000 to 10,000 square feet or more. The long delay between framing and interior work is almost exclusively due to the need to avoid the damaging effects of the environmental elements, including wind, precipitation and sunlight, on interior systems, such as electrical wiring. A dried-in structure may be achieved much earlier in the construction process by use of construction materials protected with moisture barriers, as described herein. These construction materials may be installed immediately during framing of the structure. When used in conjunction with appropriate flashing and tape materials (for example, Ultra-Shield EPDM flashing membrane or similar products), the installed construction materials will effectively bar the penetration of the elements, particularly moisture, into the structure, thus permitting roughing-in to occur much sooner after framing, or approximately 2-4 weeks earlier than usual.
  • A suitably dried-in structure will have the construction materials with the moisture barrier installed to form at least the roof portion. Either or both the wall and floor portions may also have the construction materials installed. These dried-in structures are “intermediate building structures” in that additional layers such as siding, roofing materials, and flooring components remain to be installed. Dried-in structures, and the methods for making them, permit acceleration of the building schedule by permitting rough-in to commence early.
  • EXAMPLES Example 1 Installation of a Moisture Barrier above an In-Floor Radiant Heating System Installed on Grade in a Concrete Slab
  • A building structure 234 having a flooring system 202 including an adequate moisture barrier is shown in FIG. 1. In this embodiment, the moisture and condensation barrier 236 is coated onto the undersides and the edges of a plurality of wood boards (such as plywood, chipboard, particle board, etc.) that form a wood subfloor 238 under the hardwood floor 206. The moisture and condensation barrier 236 generally comprises a rubberized material that can be sprayed, painted or otherwise coated onto the wood board for the subfloor 238, with application occurring either in the field before or after installation, or elsewhere before installation. The moisture and condensation barrier 236 can then be allowed to dry or cure to form a flexible non-tacky solid that is permanently attached to the wood board, is resistant to penetration by water, is durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles) and can allow nails and staples to pass through in order to affix the wood board for the subfloor 238 to other components of the building structure 234, if needed. That product commonly referenced by the trade name “Dynatron (.TM.) Dyna-Pro Rubberized Undercoat” (.TM.) available from Bondo Corporation of Atlanta, Ga., is an acceptable example of such a rubberized material. Additionally, that product commonly referenced by the trade name “Mar-Hyde Paintable Rubber Undercoating” (.TM.) available from Bondo/Mar-Hyde Corporation of Atlanta, Ga. is also an acceptable example of such a rubberized material. Additionally, the product Bondo formulation 9706 can be used. The flooring system 202 is shown placed between the walls 210 above the concrete slab 230 supported above the ground 216. The concrete slab 230 also serves as an optional radiant heating system having the heat pipes 218 displaced throughout the concrete slab 213. In the embodiment shown in FIG. 1, the moisture and condensation barrier 236 is installed in the flooring system 202 oriented away from the interior of the building structure 234. In alternate embodiments (not shown), the moisture and condensation barrier 236 may be installed in the flooring system 202 oriented toward the interior of the building structure 234. In further embodiments (not shown), the moisture and condensation barrier 236 may be installed on two levels of wood subfloor 238 with one level being oriented toward and one level being oriented away from the interior of the building structure 234. The same flooring system 202 with the moisture and condensation barrier 236 coated onto the wood boards of the wood subfloor 238 may also be incorporated into a building structure (not shown) not having the radiant heating system. Likewise, the flooring system 202 may be installed into a building structure (not shown) having a concrete slab on grade that is positioned directly on the ground 216.
  • Commercially available Bondo formulation 9706 was used to form the moisture barrier 236. Bondo formulation 9706 is only one example of a non-vulcanized rubber material that may be used according to this invention. This liquid rubberized coating material was coated onto solid wood boards to a thickness of approximately 6-8 mil. The coating was applied using a roller and approximately 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid that was permanently attached to the wood board, was resistant to penetration by water, was durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles). The coated boards were installed to form a wood subfloor 238 under the hardwood floor 206.
  • Example 2 Installation of a Moisture Barrier above an In-Floor Radiant Heating System Installed over a Crawl Space
  • In another embodiment, a building structure 240 having a flooring system 202 including an adequate moisture barrier 236 is shown in FIG. 2. In this flooring system 202 the moisture and condensation barrier 236 is coated onto the wood boards that form the wood subfloor 238 under the hardwood floor 206. The flooring system 202 is shown placed between the walls 210 and the flooring system 202 is elevated above the ground 216 by the concrete or Gypcrete slab 230 and the structural joists 228. The embodiment also includes the radiant heating system 224 (having the heat pipes 218 and sleeper system 229) supported on the second wood subfloor 226 in the flooring system 202.
  • Bondo formulation 9706 was used to form the moisture barrier, and was coated onto the wood boards that form the wood subfloor under the hardwood floor. This liquid rubberized coating material was coated onto solid wood boards to a thickness of approximately 6-8 mil. The coating was applied using a roller and approx 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid that was permanently attached to the wood board, was resistant to penetration by water, was durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles). The coated boards were installed to form a wood subfloor under the hardwood floor, with the moisture barrier facing towards the heating system.
  • Example 3 Retro-Installation of a Moisture Barrier over a Crawl Space
  • A building structure 242 flooring system 202 including an adequate moisture barrier 236 is shown in FIG. 3. In this flooring system 202 the moisture and condensation barrier 236 is coated onto the plurality of wood boards that form the wood subfloor 238 under the hardwood floor 206. The flooring system 202 is shown placed between the walls 210 and the flooring system 202 is elevated above the ground 216 by the concrete slab 230 and the structural joists 228. The embodiment does not include a radiant heating system, so the wood subfloor 238 having the coated-on moisture and condensation barrier 236 is supported directly on the structural joists 228.
  • Previously-installed hardwood flooring was removed to reveal the sub-floor 238, which was installed on structural joists 228 over an earthen crawl space (ground 216). Bondo formulation 9706 was used to form the moisture barrier, and was coated directly on to the upper surface of the wood boards of the installed sub floor. The liquid rubberized coating material was coated onto to a thickness of approximately 6-8 mil using a roller and approximately 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid. A hard wood floor 206 was installed over the coated sub floor 238 boards.
  • It should be understood that every maximum numerical limitation given throughout this specification will include every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
  • While particular embodiments of the subject invention have been described, it will be obvious to those skilled in the art that various changes and modifications of the subject invention can be made without departing from the spirit and scope of the invention. In addition, while the present invention has been described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not by way of limitation and the scope of the invention is defined by the appended claims which should be construed as broadly as the prior art will permit.

Claims (27)

1. A building construction material comprising: a wood board; and a moisture barrier having a non-tacky surface and comprising a non-vulcanized, modified rubber, permanently attached to the board and covering only part of the surfaces of the board.
2. A building construction material as recited in claim 1 wherein the moisture barrier has a thickness in a range selected from the group consisting of at least 6 to 8 mil, at least 8 to 12 mil, at least 12 to 14 mil, at least 14 to 18 mil, and at least 18 to 20 mil
3. A building construction material as recited in claim 2 wherein the moisture barrier entirely covers the surface of only one side of the wood board.
4. A building construction material as recited in claim 2 wherein the moisture barrier entirely covers the surfaces at least one but not more than five sides of the wood board.
5. A building construction material as recited in any one of claims 1-4 wherein said wood board is selected from the group consisting of solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board.
6. A building structure having a floor portion, a wall portion, and a roof portion, wherein said roof portion comprises a building construction material as recited in claim 1, said building construction material having a moisture barrier that is at least 6 to 20 mil thick.
7. A building structure as recited in claim 6 wherein said floor portion comprises a building construction material as recited in claim 1, said building construction material having a moisture barrier that is at least 6 to 12 mil thick.
8. A building structure as recited in claim 6 wherein said wall portion comprises a building construction material as recited in claim 1, said building construction material having a moisture barrier that is at least 6 to 12 mil thick.
9. A building structure having a floor portion, a wall portion, and a roof portion, wherein at least one portion of said building structure comprises a plurality of wood boards which have a moisture barrier permanently attached to only part of the surfaces, and wherein said moisture barrier has a non-tacky surface and comprises a non-vulcanized, modified rubber.
10. A building structure as recited in claim 9 wherein the roof portion comprises a plurality of wood boards having a moisture barrier that is at least 18 to 20 mil thick, and wherein the floor portion comprises a plurality of boards having a moisture barrier that is at least 8 to 10 mil thick, and wherein the wall portion comprises a plurality of wood boards having a moisture barrier that is at least 6 to 12 mil thick.
11. A building structure as recited in any one of claims 6-10, wherein the moisture barrier is permanently attached to the wood board prior to its installation in the building structure.
12. A building structure as recited in any one of claims 6-10 wherein said wood boards are selected from the group consisting of solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board.
13. A method of protecting a framed building structure from the damaging effects of moisture, comprising:
providing a building structure frame comprising a floor portion, a wall portion, and a roof portion, and having an interior space defined by the floor, wall and roof portions;
providing a building construction material comprising a board, and a moisture barrier having a non-tacky surface and comprising a non-vulcanized, cured liquid rubberized material, wherein said material is permanently attached to the board and covers only part of the surfaces of the board; and
combining said building construction material with said building structure frame to form an intermediate building structure, wherein the building construction material is installed on the building structure frame to form part of one or more of the roof, floor or wall portions of the building structure.
14. A method as recited in claim 13 wherein the building construction material is installed to form part of the roof portion, with the moisture barrier facing away from the interior space.
15. A method as recited in claim 13 wherein the building construction material is installed to form part of the wall portion with the moisture barrier facing away from the interior space.
16. A method as recited in claim 13 wherein the building construction material is installed to form part of the floor portion, with the moisture barrier facing toward the interior space.
17. A method as recited in claim 13 wherein the building construction material is installed to form part of the wall portion, with the moisture barrier facing toward the interior space.
18. A method as recited in claim 13 wherein the building construction material is installed to form part of the floor portion, with the moisture barrier facing away from the interior space.
19. A building structure having an interior portion which is exposed to moisture conditions, wherein at said interior portion of said building structure comprises a plurality of wood boards which have a moisture barrier permanently attached to only part of the surfaces, and wherein said moisture barrier has a non-tacky surface and comprises a non-vulcanized, modified rubber.
20. A building structure according to claim 19, wherein the plurality of wood boards are installed to form part of one or more of the roof, floor, or wall portions of the building structure.
21. A building structure according to claim 20, wherein the plurality of wood boards are installed to form part of the floor portion of the building structure.
22. A building structure according to claim 20, wherein the plurality of wood boards are installed to facing away from the interior space.
23. A building structure according to claim 20, wherein the plurality of wood boards are installed to facing toward the interior space.
24. A building structure according to claim 20, wherein the moisture barrier attached to the plurality of wood boards is at least 8 to 10 mil thick.
25. A building structure according to claim 20, wherein the plurality of wood boards are selected from the group consisting of solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board.
26. A building structure according to claim 20, wherein the moisture barrier is attached to the plurality of wood boards either before or after installation in the building structure.
27. A building structure according to claim 20, wherein the moisture barrier is attached to the plurality of wood boards after installation in the building structure.
US10/890,542 2003-07-11 2004-07-12 Moisture barriers for building construction Abandoned US20050005567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/890,542 US20050005567A1 (en) 2003-07-11 2004-07-12 Moisture barriers for building construction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48654203P 2003-07-11 2003-07-11
US10/890,542 US20050005567A1 (en) 2003-07-11 2004-07-12 Moisture barriers for building construction

Publications (1)

Publication Number Publication Date
US20050005567A1 true US20050005567A1 (en) 2005-01-13

Family

ID=33567921

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/890,542 Abandoned US20050005567A1 (en) 2003-07-11 2004-07-12 Moisture barriers for building construction

Country Status (1)

Country Link
US (1) US20050005567A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080028719A1 (en) * 2006-02-27 2008-02-07 Rutledge Richard J Floor truss systems and methods
US20090106327A1 (en) * 2007-10-19 2009-04-23 Oracle International Corporation Data Recovery Advisor
US20090107611A1 (en) * 2007-10-26 2009-04-30 Michael Damian Bowe Weather-resistive barrier for buildings
US20090139181A1 (en) * 2007-11-30 2009-06-04 Michael Damian Bowe Weather-resistive barrier for buildings
US20090297760A1 (en) * 2008-05-28 2009-12-03 Q'so Incorporated Method for Surface Coating for Improved Weatherability of Building Products
CN110820809A (en) * 2019-11-06 2020-02-21 中国建筑第四工程局有限公司 Construction method and structure for preventing ground from being wetted
CN113914377A (en) * 2021-11-09 2022-01-11 湖南高速铁路职业技术学院 Underground assembly type building waterproof structure
US11536026B2 (en) 2017-08-14 2022-12-27 Gcp Applied Technologies Inc. Integral weather barrier panels

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US865651A (en) * 1906-09-12 1907-09-10 Castner Electrolytic Alkali Co Bleaching-powder chamber.
US1403142A (en) * 1920-12-24 1922-01-10 Harry N Atwood Composite laminated structure and method of producing same
US1819147A (en) * 1929-01-30 1931-08-18 Ohio Rubber Co Rubber covered article and method of producing same
US2149026A (en) * 1937-12-01 1939-02-28 Othmar A Moeller Wood flooring
US2875101A (en) * 1954-07-29 1959-02-24 Joseph R Ehrlich Rubber coated wood
US3189514A (en) * 1959-06-15 1965-06-15 Mead Corp Composite board
US3505770A (en) * 1968-11-25 1970-04-14 Phillips Petroleum Co Building construction
US3518800A (en) * 1969-06-24 1970-07-07 Connor Forest Ind Flooring system
US3579941A (en) * 1968-11-19 1971-05-25 Howard C Tibbals Wood parquet block flooring unit
US3619964A (en) * 1969-12-10 1971-11-16 Frank Passaro Flooring panels
US3770536A (en) * 1969-05-09 1973-11-06 Parkwood Laminates Inc Method of making and installing a laminated product
US3962168A (en) * 1974-01-24 1976-06-08 Edwards Hugh K Non-skid coating and method
US3969558A (en) * 1972-07-18 1976-07-13 Dantani Plywood Co., Ltd. Veneer sheet of a plurality of thin flat sections of wood
US4019922A (en) * 1973-03-30 1977-04-26 Advance Coatings Company Fire-resistant resin
US4076569A (en) * 1976-04-14 1978-02-28 Arnold Buchbinder Process for upgrading plywood panels
US4109041A (en) * 1976-07-26 1978-08-22 Champion International Corporation Construction panel with non-skid surface and method of fabrication
US4117305A (en) * 1977-03-23 1978-09-26 Bristol Products, Inc. Heat sump system for building structures
US4204106A (en) * 1979-01-08 1980-05-20 Bristol Products, Inc. Electrical heating system for building structures
US4242390A (en) * 1977-03-03 1980-12-30 Ab Wicanders Korkfabriker Floor tile
US4449342A (en) * 1982-06-10 1984-05-22 Abendroth Carl W Flooring system
US4480175A (en) * 1982-09-16 1984-10-30 Brasky Joseph L Directional electrical heating panel assembly
US4554428A (en) * 1981-02-28 1985-11-19 Mitsubishi Denki Kabushiki Kaisha Electrospark machining control device
US4562103A (en) * 1979-10-23 1985-12-31 Hering Reinhard F Weather resistant boards
US4644720A (en) * 1984-11-01 1987-02-24 Schneider Raymond H Hardwood flooring system
US4677801A (en) * 1984-09-13 1987-07-07 Martin Bard Wall, ceiling and/or floor formation and a method for producing it
US4690848A (en) * 1979-10-23 1987-09-01 Hering Reinhard F Weather-resistant lignocellulose or other organic or inorganic material boards and process for their production
US4699834A (en) * 1986-10-20 1987-10-13 Henry Schiffer An intermediate floor
US4798364A (en) * 1987-01-22 1989-01-17 Scott Samuel C Reinforced form liner for surface texturing of concrete structures
US4910936A (en) * 1982-06-10 1990-03-27 Aga Corporation Flooring system
US4952775A (en) * 1988-05-14 1990-08-28 Matsushita Electric Works, Ltd. Floor heating panel
US5137764A (en) * 1990-12-06 1992-08-11 Doyle Dennis J Floor structure incorporating a vapor and gas barrier
US5464680A (en) * 1991-01-25 1995-11-07 Worldtech Coatings, Inc. Plastic-coated concrete form panel
US5497590A (en) * 1995-03-06 1996-03-12 Counihan; James Resilient flooring
US5510198A (en) * 1995-02-22 1996-04-23 Eastman Chemical Company Re-usable cement forms
US5879491A (en) * 1994-10-11 1999-03-09 Yuki Japan Co., Ltd. Method of installing a floor heating apparatus
US6136408A (en) * 1997-11-25 2000-10-24 J. M. Huber Corporation Surface treatment for wood materials including oriented strand board
US6179942B1 (en) * 1995-06-07 2001-01-30 Havco Wood Products, Inc. Method of manufacturing composite wood flooring
US6189279B1 (en) * 1999-02-12 2001-02-20 L&P Property Management Company Floating floor underlay
US6224700B1 (en) * 1998-11-11 2001-05-01 Mar-Flex Systems, Inc. Methods for waterproofing architectural surfaces
US6231994B1 (en) * 1998-04-27 2001-05-15 Clyde Totten Treated encapsulated wooden workpiece and method
US20010049917A1 (en) * 2000-06-05 2001-12-13 Peter Simonelli Moisture and condensation barrier for building structures

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US865651A (en) * 1906-09-12 1907-09-10 Castner Electrolytic Alkali Co Bleaching-powder chamber.
US1403142A (en) * 1920-12-24 1922-01-10 Harry N Atwood Composite laminated structure and method of producing same
US1819147A (en) * 1929-01-30 1931-08-18 Ohio Rubber Co Rubber covered article and method of producing same
US2149026A (en) * 1937-12-01 1939-02-28 Othmar A Moeller Wood flooring
US2875101A (en) * 1954-07-29 1959-02-24 Joseph R Ehrlich Rubber coated wood
US3189514A (en) * 1959-06-15 1965-06-15 Mead Corp Composite board
US3579941A (en) * 1968-11-19 1971-05-25 Howard C Tibbals Wood parquet block flooring unit
US3505770A (en) * 1968-11-25 1970-04-14 Phillips Petroleum Co Building construction
US3770536A (en) * 1969-05-09 1973-11-06 Parkwood Laminates Inc Method of making and installing a laminated product
US3518800A (en) * 1969-06-24 1970-07-07 Connor Forest Ind Flooring system
US3619964A (en) * 1969-12-10 1971-11-16 Frank Passaro Flooring panels
US3969558A (en) * 1972-07-18 1976-07-13 Dantani Plywood Co., Ltd. Veneer sheet of a plurality of thin flat sections of wood
US4019922A (en) * 1973-03-30 1977-04-26 Advance Coatings Company Fire-resistant resin
US3962168A (en) * 1974-01-24 1976-06-08 Edwards Hugh K Non-skid coating and method
US4076569A (en) * 1976-04-14 1978-02-28 Arnold Buchbinder Process for upgrading plywood panels
US4109041A (en) * 1976-07-26 1978-08-22 Champion International Corporation Construction panel with non-skid surface and method of fabrication
US4242390A (en) * 1977-03-03 1980-12-30 Ab Wicanders Korkfabriker Floor tile
US4117305A (en) * 1977-03-23 1978-09-26 Bristol Products, Inc. Heat sump system for building structures
US4204106A (en) * 1979-01-08 1980-05-20 Bristol Products, Inc. Electrical heating system for building structures
US4690848A (en) * 1979-10-23 1987-09-01 Hering Reinhard F Weather-resistant lignocellulose or other organic or inorganic material boards and process for their production
US4562103A (en) * 1979-10-23 1985-12-31 Hering Reinhard F Weather resistant boards
US4554428A (en) * 1981-02-28 1985-11-19 Mitsubishi Denki Kabushiki Kaisha Electrospark machining control device
US4449342A (en) * 1982-06-10 1984-05-22 Abendroth Carl W Flooring system
US4910936A (en) * 1982-06-10 1990-03-27 Aga Corporation Flooring system
US4480175A (en) * 1982-09-16 1984-10-30 Brasky Joseph L Directional electrical heating panel assembly
US4677801A (en) * 1984-09-13 1987-07-07 Martin Bard Wall, ceiling and/or floor formation and a method for producing it
US4644720A (en) * 1984-11-01 1987-02-24 Schneider Raymond H Hardwood flooring system
US4699834A (en) * 1986-10-20 1987-10-13 Henry Schiffer An intermediate floor
US4798364A (en) * 1987-01-22 1989-01-17 Scott Samuel C Reinforced form liner for surface texturing of concrete structures
US4952775A (en) * 1988-05-14 1990-08-28 Matsushita Electric Works, Ltd. Floor heating panel
US5137764A (en) * 1990-12-06 1992-08-11 Doyle Dennis J Floor structure incorporating a vapor and gas barrier
US5464680A (en) * 1991-01-25 1995-11-07 Worldtech Coatings, Inc. Plastic-coated concrete form panel
US5879491A (en) * 1994-10-11 1999-03-09 Yuki Japan Co., Ltd. Method of installing a floor heating apparatus
US5510198A (en) * 1995-02-22 1996-04-23 Eastman Chemical Company Re-usable cement forms
US5497590A (en) * 1995-03-06 1996-03-12 Counihan; James Resilient flooring
US6179942B1 (en) * 1995-06-07 2001-01-30 Havco Wood Products, Inc. Method of manufacturing composite wood flooring
US6136408A (en) * 1997-11-25 2000-10-24 J. M. Huber Corporation Surface treatment for wood materials including oriented strand board
US6231994B1 (en) * 1998-04-27 2001-05-15 Clyde Totten Treated encapsulated wooden workpiece and method
US6224700B1 (en) * 1998-11-11 2001-05-01 Mar-Flex Systems, Inc. Methods for waterproofing architectural surfaces
US6189279B1 (en) * 1999-02-12 2001-02-20 L&P Property Management Company Floating floor underlay
US20010049917A1 (en) * 2000-06-05 2001-12-13 Peter Simonelli Moisture and condensation barrier for building structures
US6922963B2 (en) * 2000-06-05 2005-08-02 Bondo Corporation Moisture and condensation barrier for building structures

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080028719A1 (en) * 2006-02-27 2008-02-07 Rutledge Richard J Floor truss systems and methods
US20090106327A1 (en) * 2007-10-19 2009-04-23 Oracle International Corporation Data Recovery Advisor
US20090107611A1 (en) * 2007-10-26 2009-04-30 Michael Damian Bowe Weather-resistive barrier for buildings
US20090107080A1 (en) * 2007-10-26 2009-04-30 Michael Damian Bowe Weather-resistive barrier for buildings
US8151538B2 (en) 2007-10-26 2012-04-10 Rohm And Haas Company Weather resistive barrier for buildings
US20090139181A1 (en) * 2007-11-30 2009-06-04 Michael Damian Bowe Weather-resistive barrier for buildings
US8112966B2 (en) 2007-11-30 2012-02-14 Rohm And Haas Company Weather resistive barrier for buildings
US20090297760A1 (en) * 2008-05-28 2009-12-03 Q'so Incorporated Method for Surface Coating for Improved Weatherability of Building Products
US11536026B2 (en) 2017-08-14 2022-12-27 Gcp Applied Technologies Inc. Integral weather barrier panels
CN110820809A (en) * 2019-11-06 2020-02-21 中国建筑第四工程局有限公司 Construction method and structure for preventing ground from being wetted
CN113914377A (en) * 2021-11-09 2022-01-11 湖南高速铁路职业技术学院 Underground assembly type building waterproof structure

Similar Documents

Publication Publication Date Title
US11377860B2 (en) System and method for a vented and water control siding
US6516580B1 (en) Synthetic stucco system with moisture absorption control
US5732520A (en) Synthetic stucco system
US9963875B1 (en) Exterior wall cladding system for buildings
CA2975972C (en) System and method for a vented and water control siding, vented and water control sheathing and vented and water control trim-board
US10294669B2 (en) Method of waterproofing building roofs and building panels
JP2021513622A (en) Prefabricated insulated building panel with at least one hardened cementum layer bonded to the insulation
US9719247B2 (en) Reinforced water-resistant board with traffic coat
US20110036035A1 (en) Compositions and methods for coating surfaces
US11391048B2 (en) Panelized lath and drainage plane system for building exteriors
US20050005567A1 (en) Moisture barriers for building construction
AU2010246910B2 (en) Floor for a modular building
US20190024398A1 (en) Remediated water-damage to a structure
US20050252133A1 (en) Moisture and condensation barriers for building structures
KR100216633B1 (en) Urethane shingle method
Watts Cladding the timber frame
UA59497C2 (en) Method for making parquet cover

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION