US20050000824A1 - Phosphorus-borates with low melting points - Google Patents

Phosphorus-borates with low melting points Download PDF

Info

Publication number
US20050000824A1
US20050000824A1 US10/496,663 US49666304A US2005000824A1 US 20050000824 A1 US20050000824 A1 US 20050000824A1 US 49666304 A US49666304 A US 49666304A US 2005000824 A1 US2005000824 A1 US 2005000824A1
Authority
US
United States
Prior art keywords
radical
salts
borate
salt
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/496,663
Inventor
Michael Schmidt
Urs Welz-Biermann
Julian Vaughan-Spickers
Ken Seddon
Andrew Downard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Assigned to MERCK PATENTS GMBH reassignment MERCK PATENTS GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOWNARD, ANDREW, SCHMIDT, MICHAEL, SEDDON, KEN, VAUGHAN-SPICKERS, JULIAN, WELZ-BIERMANN, URS
Publication of US20050000824A1 publication Critical patent/US20050000824A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute

Definitions

  • the present invention relates to phosphorous borates, methods for their preparation and to the use of these salts in primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells. Furthermore, the present invention relates to the use of these salts as hydraulic liquid, conducting salt, catalyst, solvent, electrolyte or starting compound.
  • Weakly associated salts are the basis of many electrolytes. They are useful in electrochemical cells such as batteries, electronic parts such as capacitors, double layer capacitors, super or ultra capacitors as well as for organic synthesis, especially catalysis.
  • Solvent-free ionic liquids or “room temperature molten salts” were first disclosed in U.S. Pat. No. 2,446,331.
  • a disadvantage of these first molten salts and a serious problem with any solvent-free ionic liquid containing strong Lewis acids such as AlCl 3 is the liberation of toxic gases upon exposure to moisture. Work in room temperature melts has been dominated by the use of AlCl 3 and 1-ethyl-3-methylimidazolium (EMI) chloride.
  • Wilkes and Zaworotko presented new solvent-free ionic liquids in 1992, EMI BF 4 and EMI O 2 CCH 3 (J. Chem. Soc. Commun., 1992, S. 965).
  • these ionic media suffer from the same problems with moisture as previous compounds. Because BF 4 ⁇ - and CH 3 CO 2 ⁇ -anions oxidize at relatively low potentials, they are unsuitable for use in electrochemical cells.
  • U.S. Pat. No. 5,827,602 teaches ionic liquids comprising a number of heterocyclic organic cations and imides or methanides as counteranion. These ionic liquids demonstrate good conducting properties. A disadvantage of these salts lies with the costly preparation of the starting compounds, in particular the preparation of the anions.
  • a further problem underlying the present invention is the provision of more powerful and more stable primary and secondary batteries, capacitors, supercapacitors and galvanic cells.
  • the present invention relates to salts wherein at least two of the radicals R 1 , R 2 , R 3 , R 4 are identical and/or bound to each other by single or double bonds.
  • a further preferred embodiment relates to salts, wherein at least two of the radicals R 5 , R 6 , R 7 , R 8 are identical and/or bound to each other by single or double bonds.
  • More preferred salts are those, wherein at least one of the radicals, R 5 , R 6 , R 7 and R 8 denotes, in each case independently of one another, a radical selected from the group consisting of phenyl-, naphthyl-, anthracenyl, phenanthrenyl, pyridyl-, pyracyl- or pyrimidyl-radicals, that may be further substituted by at least one halogen radical, preferably a F- or Cl-radical and/or at least one radical of the formula —C q F (2q+1 ⁇ x) H x , wherein 1 ⁇ q ⁇ 6 and 0 ⁇ x ⁇ 2q+1.
  • the present invention relates to salts, wherein at least two of the radicals R 5 , R 6 , R 7 or R 8 denote a 2,2′-biphenyl-diolato(2′)O,O′-, a 1,2-benzen-diolato(2-)O,O′- or a salicylato(2-)-radical.
  • the salts of the present invention provide a number of advantages. They are not sensitive to hydrolysis. Their tendency to decompose is very small. They have a high thermal stability and they are soluble in most standard aprotic solvents, even in unpolar solvents of low viscosity such as toluene or hexane. In addition, these salts demonstrate a very large temperature range of up to several hundred degrees Celcius in which they are in a stable molten state. For example, [P(C 6 H 13 ) 3 Cl 4 H 29 )][B(OC(O)(C 6 H 4 )O) 2 ] is a liquid from ⁇ 150 to +300° C.
  • these salts are suitable for a number of applications, such as electrochemical applications or as hydraulic liquid, or for the catalysis of organic reactions or as inert solvent for highly reactive chemicals. They are especially useful as salts for electrolytes. Electrolytes comprising said salts are electrochemically stable, temperature and humidity resistant. Also, such electrolytes demonstrate an excellent cyclic behavior and performance in electrical cells.
  • a further aspect of the present invention relates to a method for the preparation of salts, wherein a salt of the general formula [II] [PR 1 R 2 R 3 R 4 ] a + A a ⁇ [II] and a salt of the general formula [III] K b+ [B(OR 5 ) n (OR 6 ) m (OR 7 ) o (OR 8 ) p ] b ⁇ [III] wherein
  • the resulting salt is purified by separating the byproduct K + A ⁇ by precipitation, ionic exchange chromatography or by evaporation, if K + denotes hydrogen.
  • aprotic solvents are available for the preparation of the salts, such as, for example, esters, ethers, carbonates, nitrites, sulfonicacidesters, toluene, methylenechloride, CHCl 3 .
  • Preferred suitable solvents are acetonitrile, THF (tetrahydrofurane) or a mixture of at least two of these solvents.
  • More preferred suitable solvent are aprotic solvents, preferably acetonitrile or THF (tetrahydrofurane) or a mixture of at least two aprotic solvents, wherein the resulting salt K + A ⁇ is unsoluble.
  • aprotic solvents preferably acetonitrile or THF (tetrahydrofurane) or a mixture of at least two aprotic solvents, wherein the resulting salt K + A ⁇ is unsoluble.
  • a preferred temperature range for mixing the salts of formula [II] and [III] is 0 to 100° C., more preferably 0 to 50° C. and most preferably 10 to 40° C.
  • reaction is carried out in a solvent or solvent mixture that is directly suitable for use in a secondary or primary battery, a capacitor, a supercapacitor or a galvanic cell.
  • Preferred solvents or solvent mixtures that are directly suitable for use in a secondary or primary battery, a capacitor or a galvanic cell are organic carbonates, preferably an ethylenecarbonate, propylenecarbonate, butylene-carbonate, dimethylcarbonate, diethylcarbonate, ethylmethylcarbonate, methylpropylcarbonate or a mixture of at least two of these solvents.
  • the method according to the present invention provides almost pure salts in high yield with little impurities. Often the reaction proceeds to give quantitative yields and only traces of impurities. If necessary, the salts may be further purified according to standard methods, for example, by recrystallisation in a suitable solvent or solvent mixture. A suitable solvent or solvent mixture can easily be selected by preliminary experiments.
  • the method for preparing the salts according to the invention is simply, efficient and without any complicated or dangerous steps.
  • the present invention relates to the use of at least one of the salts according to the invention alone or in combination with further salts and/or additives in primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells.
  • the salts are suitable for preparing electrolytes, preferably electrolytes for primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells.
  • Such an electrolyte comprises at least one compound of the present invention.
  • the preparation of soluble or solid electrolytes is well known to the average expert in the field of electrochmistry (for example: D. Linden, Handbook of Batteries, Second Edition, McGraw-Hill Inc., New York 1995; J. Barthel and H.-J. Gores, Solution Chemistry: A Cutting Edge in Modern Electrochemical Technology in G. Mamantov and A. I. Popov (publishers) Chemistry of Nonaquous Solutions, Current Progress, VCH Verlagstician, Weinheim 1994).
  • Electrolytes can be prepared as a solution or a solid material.
  • a solid electrolyte may be a polymer electrolyte optionally comprising a cross-linked polymer and at least one conducting salt or a gel electrolyte that comprises at least one solvent in addition to at least one conducting salt and an optional cross-linked polymer.
  • these electrolytes have a salt concentration of the electrolyte of 0.01-3 mol/l, preferably of 0.01-2 mol/l, most preferably of 0.1-1.5 mol/l.
  • Electrolytes according to the present invention provide excellent electrochemical properties for most uses in batteries, conductors and galvanic cells. These electrolytes provide excellent conductivity as well as stability and safety.
  • a hydraulic liquid comprising at least one compound of the general formula [I].
  • Primary batteries, secondary batteries, capacitors, supercapacitors, galvanic cells or hydraulic liquids according to the present invention are suitable to be employed under extreme conditions such as high temperatures or high humidity without an effect on the performance or life span of the device or liquid.
  • the present invention relates to the use of a salt according to the present invention as a solvent or as a conducting salt in an electrolyte of electrochemical devices.
  • salts of the present invention are used as a catalyst solvent, electrolyte or starting compound for the preparation of organic compounds.
  • Viscosity was measured using an LVDV-II Brookfield Cone and Plate Viscometer (1% accuracy, 0.2 repeatability).
  • the sample cup of the viscometer was fitted with luer and purge fittings, so that a positive current of dry dinitrogen was maintained at all times during the measurements, thus avoiding absorption of atmospheric moisture.
  • the sample cup was jacketed with a circulating water bath that was controlled by a circulator bath Grant LTD 6G (+0.1° C. accuracy).
  • the electrochemical cell was constructed from materials purchased from Bioanalytical Systems, Inc. (BAS).
  • the non-aqueous reference electrode was a silver wire immersed in a glass tube containing a 0.100 mol L-1 solution of AgNO 3 in the [bmim][NO 3 ] ionic liquid which was separated from the bulk solution by a Vycor plug. All potentials reported are referenced against the Ag(I)/Ag couple.
  • the counter electrode was a platinum coil immersed directly in the bulk solution.
  • the solution was held in a glass vial fitted with a Teflon cap with holes for the electrodes and a nitrogen line.

Abstract

The present invention relates to phosphorous borates, methods for their preparation and to the use of these salts in primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells. Furthermore, the present invention relates to the use of these salts as hydraulic liquid, conducting salt, catalyst, solvent, electrolyte or starting compound.

Description

  • The present invention relates to phosphorous borates, methods for their preparation and to the use of these salts in primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells. Furthermore, the present invention relates to the use of these salts as hydraulic liquid, conducting salt, catalyst, solvent, electrolyte or starting compound.
  • Weakly associated salts are the basis of many electrolytes. They are useful in electrochemical cells such as batteries, electronic parts such as capacitors, double layer capacitors, super or ultra capacitors as well as for organic synthesis, especially catalysis.
  • Solvent-free ionic liquids or “room temperature molten salts” were first disclosed in U.S. Pat. No. 2,446,331. A disadvantage of these first molten salts and a serious problem with any solvent-free ionic liquid containing strong Lewis acids such as AlCl3 is the liberation of toxic gases upon exposure to moisture. Work in room temperature melts has been dominated by the use of AlCl3 and 1-ethyl-3-methylimidazolium (EMI) chloride. Wilkes and Zaworotko presented new solvent-free ionic liquids in 1992, EMI BF4 and EMI O2CCH3 (J. Chem. Soc. Commun., 1992, S. 965). However, these ionic media suffer from the same problems with moisture as previous compounds. Because BF4 - and CH3CO2 -anions oxidize at relatively low potentials, they are unsuitable for use in electrochemical cells.
  • U.S. Pat. No. 5,827,602 teaches ionic liquids comprising a number of heterocyclic organic cations and imides or methanides as counteranion. These ionic liquids demonstrate good conducting properties. A disadvantage of these salts lies with the costly preparation of the starting compounds, in particular the preparation of the anions.
  • Accordingly, there is a need for the provision of solvent-free ionic liquids that demonstrate a broad temperature range in a molten state and at the same time are suitable for electrochemical applications and economical in their preparation.
  • A further problem underlying the present invention is the provision of more powerful and more stable primary and secondary batteries, capacitors, supercapacitors and galvanic cells.
  • This problem is solved according to the present invention by providing new salts of the general formula [I],
    [PR1R2R3R4]+[B(OR5)n(OR6)m(OR7)o(OR8)p]  [I]
    wherein
      • R1, R2, R3, R4 denote, in each case independently of one another, a C1-20 linear, branched or cyclic, saturated or unsaturated aliphatic radical or a C6-20-aromatic or heteroaromatic radical,
      • wherein the aliphatic, aromatic or heteroaromatic radicals may comprise one or more ether functional groups and/or may be further substituted, preferably further substituted by at least one radical of the formula —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1,
      • R5, R6, R7 and R8 denote, in each case independently of one another, a C6-20 aromatic or heteroaromatic radical, that may be further substituted by at least one halogen-radical, preferably a F- or Cl-radical and/or at least one radical of the formula —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1,
      • or a C1-8, linear, branched or cyclic, saturated or unsaturated, aliphatic radical, that may be further substituted by at least one halogen-radical, preferably a F- or Cl-radical and/or at least one radical of the formula —N(CqF(2q+1−x)Hx)2, —O(CqF(2q+1−x)Hx), —SO2 (CqF(2q+1−x)Hx) or —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1,
      • or a carboxylic-, dicarboxylic- or hydroxycarboxylic, linear, branched or cyclic, saturated or unsaturated C1-8-aliphatic or C6-20-aromatic or heteroaromatic radical that may be further substituted by at least one halogen-radical, preferably a F- or Cl-radical and/or at least one radical of the formula —N(CqF(2q+1−x)Hx)2, —O(CqF(2q+1−x)Hx), —SO2 (CqF(2q+1−x)Hx) or —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1,
        and wherein
      • at least two of the radicals R1, R2, R3, R4 may be bound to each other by single or double bonds, and/or
      • at least two of the radicals R5, R6, R7, R8 may be bound to each other by single or double bonds,
      • and 0≦n, m, o, p≦4 and m+n+o+p=4
        and wherein the following salts are disclaimed:
      • Bis[salicylato(2-)]borate (III)tetrabutylphosphonium,
      • Tetrakis[1-naphthalenolato (1-)]-borate-tetraphenylphosphonium,
      • Bis[2-hydroxybenzoato(2-)]-borate-tetrabutylphosphonium,
      • Bis[1,2-benzodiolato(2-), O, O′]-borate-tetraphenylphosphonium,
      • Tetrabutoxy(1-)borate-tetraphenylphosphonium,
      • Tetrakis(1,1′biphenyl-4,4′-diolato)-borate-tetraphenylphosphonium,
      • Bis[2,3-naphthalendiolato(2-) O, O′]-borate-tetraphenylphosphonium.
  • In a preferred embodiment the present invention relates to salts wherein at least two of the radicals R1, R2, R3, R4 are identical and/or bound to each other by single or double bonds.
  • A further preferred embodiment relates to salts, wherein at least two of the radicals R5, R6, R7, R8 are identical and/or bound to each other by single or double bonds.
  • More preferred salts are those, wherein at least one of the radicals, R5, R6, R7 and R8 denotes, in each case independently of one another, a radical selected from the group consisting of phenyl-, naphthyl-, anthracenyl, phenanthrenyl, pyridyl-, pyracyl- or pyrimidyl-radicals, that may be further substituted by at least one halogen radical, preferably a F- or Cl-radical and/or at least one radical of the formula —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1.
  • Further more preferred salts are those, wherein at least one of the radicals R1, R2, R3, R4 denotes phenyl or C1-20-alkyl, most preferably C6H13- or C14H29-alkyl.
  • In a most preferred embodiment the present invention relates to salts, wherein at least two of the radicals R5, R6, R7 or R8 denote a 2,2′-biphenyl-diolato(2′)O,O′-, a 1,2-benzen-diolato(2-)O,O′- or a salicylato(2-)-radical.
  • Furthermore, most preferred salt are those, wherein [B(OR5)n(OR6)m (OR7)o(OR8)p] denotes bis[2,2′-biphenyl-diolato(2′)O,O′]-borate, bis[1,2-benzen-diolato(2-)O,O′]-borate or bis[salicylato(2-)]-borate.
  • The salts of the present invention provide a number of advantages. They are not sensitive to hydrolysis. Their tendency to decompose is very small. They have a high thermal stability and they are soluble in most standard aprotic solvents, even in unpolar solvents of low viscosity such as toluene or hexane. In addition, these salts demonstrate a very large temperature range of up to several hundred degrees Celcius in which they are in a stable molten state. For example, [P(C6H13)3Cl4H29)][B(OC(O)(C6H4)O)2] is a liquid from −150 to +300° C. Therefore, these salts are suitable for a number of applications, such as electrochemical applications or as hydraulic liquid, or for the catalysis of organic reactions or as inert solvent for highly reactive chemicals. They are especially useful as salts for electrolytes. Electrolytes comprising said salts are electrochemically stable, temperature and humidity resistant. Also, such electrolytes demonstrate an excellent cyclic behavior and performance in electrical cells.
  • A further aspect of the present invention relates to a method for the preparation of salts, wherein a salt of the general formula [II]
    [PR1R2R3R4]a +Aa−  [II]
    and a salt of the general formula [III]
    Kb+[B(OR5)n(OR6)m(OR7)o(OR8)p]b−  [III]
    wherein
      • A denotes an anion, a=1 to 3, preferably a=1, more preferably an anion chosen from Cl, Br, or 1,
      • K+ denotes a cation, b=1 to 3, preferably b=1, more preferably a cation chosen from H, Li, K, Na, Ag or NR1 4 +,
      • and R1, R2, R3, R4, R5, R6, R7, R8 n, m, o, p, have the meanings according to claim 1,
        are disolved in a suitable solvent and mixed and the resulting salt is isolated and/or purified.
  • Standard methods well known to those skilled in the art may be used for the isolation and/or purification of the resulting salt.
  • In a preferred embodiment the resulting salt is purified by separating the byproduct K+A by precipitation, ionic exchange chromatography or by evaporation, if K+ denotes hydrogen.
  • A number of suitable aprotic solvents are available for the preparation of the salts, such as, for example, esters, ethers, carbonates, nitrites, sulfonicacidesters, toluene, methylenechloride, CHCl3.
  • Preferred suitable solvents are acetonitrile, THF (tetrahydrofurane) or a mixture of at least two of these solvents.
  • More preferred suitable solvent are aprotic solvents, preferably acetonitrile or THF (tetrahydrofurane) or a mixture of at least two aprotic solvents, wherein the resulting salt K+A is unsoluble.
  • A preferred temperature range for mixing the salts of formula [II] and [III] is 0 to 100° C., more preferably 0 to 50° C. and most preferably 10 to 40° C.
  • In a preferred embodiment the reaction is carried out in a solvent or solvent mixture that is directly suitable for use in a secondary or primary battery, a capacitor, a supercapacitor or a galvanic cell.
  • Preferred solvents or solvent mixtures that are directly suitable for use in a secondary or primary battery, a capacitor or a galvanic cell are organic carbonates, preferably an ethylenecarbonate, propylenecarbonate, butylene-carbonate, dimethylcarbonate, diethylcarbonate, ethylmethylcarbonate, methylpropylcarbonate or a mixture of at least two of these solvents.
  • The method according to the present invention provides almost pure salts in high yield with little impurities. Often the reaction proceeds to give quantitative yields and only traces of impurities. If necessary, the salts may be further purified according to standard methods, for example, by recrystallisation in a suitable solvent or solvent mixture. A suitable solvent or solvent mixture can easily be selected by preliminary experiments.
  • The method for preparing the salts according to the invention is simply, efficient and without any complicated or dangerous steps.
  • In a further aspect, the present invention relates to the use of at least one of the salts according to the invention alone or in combination with further salts and/or additives in primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells.
  • The salts are suitable for preparing electrolytes, preferably electrolytes for primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells.
  • Such an electrolyte comprises at least one compound of the present invention. The preparation of soluble or solid electrolytes is well known to the average expert in the field of electrochmistry (for example: D. Linden, Handbook of Batteries, Second Edition, McGraw-Hill Inc., New York 1995; J. Barthel and H.-J. Gores, Solution Chemistry: A Cutting Edge in Modern Electrochemical Technology in G. Mamantov and A. I. Popov (publishers) Chemistry of Nonaquous Solutions, Current Progress, VCH Verlagsgemeinschaft, Weinheim 1994).
  • Electrolytes can be prepared as a solution or a solid material. A solid electrolyte may be a polymer electrolyte optionally comprising a cross-linked polymer and at least one conducting salt or a gel electrolyte that comprises at least one solvent in addition to at least one conducting salt and an optional cross-linked polymer.
  • In a preferred embodiment, these electrolytes have a salt concentration of the electrolyte of 0.01-3 mol/l, preferably of 0.01-2 mol/l, most preferably of 0.1-1.5 mol/l.
  • Electrolytes according to the present invention provide excellent electrochemical properties for most uses in batteries, conductors and galvanic cells. These electrolytes provide excellent conductivity as well as stability and safety.
  • In a further aspect of the present invention relates to primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells comprising at least one of the salts of the present invention.
  • In a further aspect of the present invention relates to a hydraulic liquid comprising at least one compound of the general formula [I].
  • Primary batteries, secondary batteries, capacitors, supercapacitors, galvanic cells or hydraulic liquids according to the present invention are suitable to be employed under extreme conditions such as high temperatures or high humidity without an effect on the performance or life span of the device or liquid.
  • In a further aspect the present invention relates to the use of a salt according to the present invention as a solvent or as a conducting salt in an electrolyte of electrochemical devices.
  • Preferably, salts of the present invention are used as a catalyst solvent, electrolyte or starting compound for the preparation of organic compounds.
  • EXAMPLES
  • The following examples merely serve to illustrate the invention in an exemplary manner. The examples are not meant to limit the general concept of the present invention in any way.
  • The following abbrevations will be used below:
    BBPB bis[2,2′-biphenyl-diolato(2′)O,O′)-borate
    BBB bis[1,2-benzene-diolato(2-)O,O]-borate
    BSB bis[salicylato(2-)]-borate
    C6 C6H13
    C14 C14H29
  • Example 1 Synthesis and Characterisation of [(C6)3P(C14)] [BBPB]
  • Both, Li[BBPB] (2.61 g, 6.75 mmol) and [(C6)3P(C14)][Cl] (3.51 g, 6.75 mmol) were each dissolved completely in 150 ml acetonitrile to give clear, colourless solutions. Upon addition of the former to the latter no change was produced initially. A fine white precipitate developed over the first several minutes of stirring. After three hours of stirring at room temperature the solution was filtered through a sintered glass funnel (#3) to give a clear, colourless filtrate. Removal of the solvent by rotavap yielded a white slurry, which was taken up in 125 ml CH2Cl2. This solution was washed repeatedly with water (5×300 mL) until the solution became clear and pale yellow in color. Removal of the solvent by rotavap produced a pale yellow, viscous liquid. This was heated to 100° C. under vacuum for three hours to remove any residual solvent. The total yield of product, identified as [(C6)3P(C14)][BBPB], was 5.30 g (90%).
  • Example 2 Synthesis and Characterisation of [(C3P(C14)[]BBB]
  • Both Li[BBB] (1.87 g, 7.99 mmol) and [(C6)3P(C14)][Cl] (3.65 g, 7.03 mmol) were dissolved completely in 100 ml THF each to give clear, colourless solutions. These were combined in a 250 ml round-bottom flask and allowed to stir for one hour, during which time no changes were observed. The reaction mixture was then cooled in an ice-bath and 20 ml cold hexane were added, producing a hazy, white precipitate. This mixture was filtered though a sintered glass funnel (#3) and the solvent was removed by rotavap. The resulting yellow liquid was taken up in 100 ml CH2Cl2 and washed with water repeatedly (5×300 ml). Removal of the solvent by rotavap yielded a clear, slightly pink liquid, which reverted to a solid after several hours at room temperature. This precipitate was heated to 100° C. under vacuum for one hour to remove any residual solvent.
  • Total yield of this solid, identified as [(C6)3P(C14)][BBB], was 4.07 g (5.72 mmol, 81 mol %). Melting point: 49° C.; (decomposition above 200° C., no freezing point observed). Solubility: see table 1 Analysis calculated for C44H76BO4P [%]: C, 74.34; H,10.78; N, 0.00. Found: C; 74.09; H, 10.98; N, 0.00. 1H-NMR [300 MHz, δ(TMS in CDCl3)] in CDCl3 at 25° C.: δ=6.59 (s, 8 H, anion); 2.17-0.88 (m, 68 H, cation). 13C-NMR [75.45 MHz, δ(TMS in CDCl3)] in CDCl3 at 25° C.: δ=152.06, 118.23, 108.94 (s, anion); 32.31-14.30 (various s, cation). 31P-NMR [121.49 MHz] in CDCl3 at 25° C.: δ=30.3. 11B-NMR [160.46 MHz, δ(BF3.OEt2 in D2O)] in D6-acetone at 25° C.: δ=10.87.
  • Example 3 Synthesis and Characterisation of [(C6)3P(C14)][BSB]
  • Both, Li[BSB] (5.75 g, 19.84 mmol) and [(C6)3P(C14)][Cl] (10.29 g, 19.81 mmol) were dissolved with gentle heating in 75 ml acetonitrile each to give clear, colourless solutions. These were combined in a 500 ml round-bottom flask. No changes were observed initially, but after several seconds a white precipitate developed. The reaction was allowed to stir for one hour at room temperature during which time no further changes were observed. Filtration through a sintered glass funnel (#3) gave a clear, colourless filtrate and a small amount of white powder (LiCl). Removal of the solvent by from the filtrate by rotavap gave a white slurry. This was taken up in 150 ml CH2Cl2 and washed with water repeatedly (8×300 ml), producing a clear, faintly yellow liquid. Removal of the solvent by rotavap yielded a clear, colourless oil, which was heated to 90° C. under vacuum for one hour to remove any residual solvent.
  • Total yield of liquid, identified as [(C6)3P(C14)][BSB], was 14.51 g (18.92 mmol, 96%). No freezing/melting points observed in the range −150 to 300° C. Solubility: see table 1. Viscosity: see table 2 Electrochemical stability: see FIG. 1 Analysis calculated for C44H76BO4P [%]: C, 72.05; H, 9.99; N, 0.00. Found: C; 70.70; H, 10.16; N, 0.05. 1H-NMR [300 MHz, δ(TMS in CDCl3)] in D6-acetone at 25° C.: δ=7.98 (m, 2 H), 7.25 (m, 2 H), 6.73 (m, 4 H) (anion); 2.21-0.75 (m, 68 H, cation) 13C-NMR [75.45 MHz, δ(TMS in CDCl3)] in CDCl3 at 25° C.: δ=165.41, 161.21, 135.27, 130.75, 119.42, 117.54 (s, anion); 33.06-14.70 (various s, cation) 31P-NMR [121.49 MHz] in D6-acetone at 25° C.: δ=33.5. 11B-NMR [160.46 MHz, δ(BF3.OEt2 in D60)] in D6-acetone at 25° C.: δ=0.20.
  • Physicochemical Characterisation of the Salts of the Examples Example 4 Determination of Solubility
  • Solubility was determined only qualitatively by mixing approximately 0.5 ml of the ionic liquid with the same amount of organic solvent and shaking. All samples were checked a second time after several hours to ensure, that no slow phase separation had occured.
    TABLE 1
    Solubility of [R4P] [X] (X = BBB, BSB, BBPB; R4P = (C6)3P(C14)
    Solvent [R4P] [BBB] [R4P] [BSB] [R4P] [BBPB]
    water N N N
    acetone Y Y Y
    iso-propyl alcohol Y* Y Y*
    diethyl ether Y Y Y
    tetrahydrofurane Y Y Y
    dichloromethane Y Y Y
    chloroform Y Y Y
    hexane N** N** Y
    toluene Y Y Y
    acetonitrile Y* Y* Y*

    Y stands for soluble,

    N stands for not soluble

    *gentle heating required

    **mixture becomes cloudy, then separates into two clear layers
  • Example 5 Determination of Viscosity
  • Viscosity was measured using an LVDV-II Brookfield Cone and Plate Viscometer (1% accuracy, 0.2 repeatability). The sample cup of the viscometer was fitted with luer and purge fittings, so that a positive current of dry dinitrogen was maintained at all times during the measurements, thus avoiding absorption of atmospheric moisture. The sample cup was jacketed with a circulating water bath that was controlled by a circulator bath Grant LTD 6G (+0.1° C. accuracy).
    TABLE 2
    Viscosity [cP] of [R4P] [X] (X = BBB, BSB, BBPB;
    R4P = (C6)3P(C14)
    Temperature [R4P] [R4P] [R4P]
    (° C.) [BSB] [BBB] [BBPB]
    5 7334 95020
    10 4241 59233
    15 2663 6184 33737
    20 1730 3735 20660
    25 1164 2439 12813
    30 801.4 1593 8245
    35 566.3 1087 5453
    40 407.0 739.8 3675
    45 300.4 538.1 2703
    50 229.6 386.7 1953
    55 171.4 288.3 1393
    60 132.6 217.2 1022
    65 106.3 168.2 759.0
    70 85.1 126.3 550.7
    75 68.4 100.2 333.9
    80 56.4 81.0 209.2
    85 47.2 65.2 173.0
    90 39.9 50.2 177.8
    95 34.1 40.91
  • Example 6 Determination of Electrochemical Stability of [(C6)3P(C14)][BSB]
  • All electrochemical experiments were carried out with an EG&G PARC Model 283 potentiostat/galvanostat connected to a PC through an IEEE488 bus and controlled using EG&G Parc Model 270/250 Research Electrochemistry version 4.23 software. Positive feedback iR compensation was employed to liminate errors due to solution resistance. The electrochemical cell was constructed from materials purchased from Bioanalytical Systems, Inc. (BAS). The non-aqueous reference electrode was a silver wire immersed in a glass tube containing a 0.100 mol L-1 solution of AgNO3 in the [bmim][NO3] ionic liquid which was separated from the bulk solution by a Vycor plug. All potentials reported are referenced against the Ag(I)/Ag couple. The counter electrode was a platinum coil immersed directly in the bulk solution. For voltammetry, the working disk electrodes used were platinum (A=2.01×10-2 cm2) and glassy carbon (A=7.07×10-2 cm2. The solution was held in a glass vial fitted with a Teflon cap with holes for the electrodes and a nitrogen line.

Claims (25)

1. Salts of the general formula [I],

[PR1R2R3R4]+[B(OR5)n(OR6)m(OR7)o(OR8)p]  [I]
wherein
R1, R1, R3, R4 denote, in each case independently of one another, a C1-20 linear, branched or cyclic, saturated or unsaturated aliphatic radical or a C6-20-aromatic or heteroaromatic radical,
wherein the aliphatic, aromatic or heteroaromatic radicals may comprise one or more ether functional groups and/or may be further substituted, preferably further substituted by at least one radical of the formula —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1,
R5, R6, R7 and R8 denote, in each case independently of one another, a C6-20 aromatic or heteroaromatic radical, that may be further substituted by at least one halogen-radical, preferably a F- or Cl-radical and/or at least one radical of the formula —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1,
or a C1-8, linear, branched or cyclic, saturated or unsaturated, aliphatic radical, that may be further substituted by at least one halogen-radical, preferably a F- or Cl-radical and/or at least one radical of the formula —N(CqF(2q+1−x)Hx)2, —O(CqF(2q+1−x)Hx), —SO2 (CqF(2q+1−x)Hx) or —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1,
or a carboxylic-, dicarboxylic- or hydroxycarboxylic, linear, branched or cyclic, saturated or unsaturated C1-8-aliphatic or C6-20-aromatic or heteroaromatic radical that may be further substituted by at least one halogen-radical, preferably a F- or Cl-radical and/or at least one radical of the formula —N(CqF(2q+1−x)Hx)2, —O(CqF(2q+1−x)Hx), —SO2 (CqF(2q+1−x)Hx) or —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1,
and wherein
at least two of the radicals R1, R2, R3, R4 may be bound to each other by single or double bonds, and/or
at least two of the radicals R5, R6, R7, R8 may be bound to each other by single or double bonds,
and 0≦n, m, o, p≦4 and m+n+o+p=4
and wherein the following salts are disclaimed:
Bis[salicylato(2-)]borate (III)-tetrabutylphosphonium,
Tetrakis[1-naphthalenolato(1-)]-borate-tetraphenylphosphonium,
Bis[2-hydroxybenzoato(2-)]-borate-tetrabutylphosphonium,
Bis[1,2-benzodiolato(2-), O,O′]-borate-tetraphenylphosphonium,
Tetrabutoxy(1-)borate-tetraphenylphosphonium,
Tetrakis(1,1′biphenyl-4,4′-diolato)-borate-tetraphenylphosphonium,
Bis[2,3-naphthalendiolato(2-) O,O′]-borate-tetraphenylphosphonium.
2. Salts according to claim 1, characterized in that at least two of the radicals R1, R2, R3, R4 are identical and/or bound to each other by single or double bonds.
3. Salts according to claim 1, characterized in that at least two of the radicals R5, R6, R7, R8 are identical and/or bound to each other by single or double bonds.
4. Salts according to claim 1, characterized in that at least one of the radicals, R5, R6, R7 and R8 denotes, in each case independently of one another, a radical selected from the group consisting of phenyl-, naphthyl-, anthracenyl, phenanthrenyl, pyridyl-, pyracyl- or pyrimidyl-radicals, that may be further substituted by at least one halogen radical, preferably a F- or Cl-radical and/or at least one radical of the formula —CqF(2q+1−x)Hx, wherein 1≦q≦6 and 0≦x≦2q+1.
5. Salt according to claim 1, wherein at least one of the radicals R1, R2, R3, R4 denotes phenyl or C1-20-alkyl, preferably C6H13- oder C14H29-alkyl.
6. Salt according to claim 1, wherein at least two of the radicals R5, R6, R7 or R8 denote a 2,2′-biphenyl-diolato(2′)O,O′-, a 1,2-benzen-diolato(2-) O,O′- or a salicylato(2-)-radical.
7. Salt according to claim 1, wherein [B(OR5)n(OR6)m(OR7)o(OR8)p] denotes bis[2,2′-biphenyl-diolato(2′)O,O′]-borate, bis[1,2-benzen-diolato(2-)O,O′]-borate or bis[salicylato(2-)]-borate.
8. Method for the preparation of salts, wherein a salt of the general formula [II]

[PR1R2R3R4]a +Aa−  [II]
and a salt of the general formula [III]

Kb+[B(OR5)n(OR6)m(OR7)o(OR8)p]b   [III]
wherein
A denotes an anion, a=1 to 3, preferably a=1, more preferably an anion chosen from Cl, Br or I,
K+ denotes a cation, b=1 to 3, preferably b=1, more preferably a cation chosen from H, Li, K, Na, Ag or NR1 4 +,
and R1, R2, R3, R4, R5, R6, R7, R8 , n, m, o, p, have the meanings according to claim 1, are disolved in a suitable solvent and mixed and the resulting salt is isolated and/or purified.
9. Method according to claim 8, wherein the resulting salt is purified by separating the byproduct K+A by precipitation, ionic exchange chromatography or by evaporation, if K+ denotes hydrogen.
10. Method according to claim 8, wherein the suitable solvent is acetonitrile or THF (tetrahydrofurane) or a mixture of at least two of these solvents.
11. Method according to claim 8, wherein the suitable solvent is an aprotic solvent, preferably acetonitrile or THF (tetrahydrofurane) or a mixture of at least two aprotic solvents, wherein the resulting salt K+A is unsoluble.
12. Method according to claim 8 wherein the mixing of the salts of formula [II] and [III] is performed at a temperature of 0 to 100° C., preferably 0 to 50° C., more preferably 10 to 40° C.
13. Method according to claim 8, wherein the reaction is carried out in a solvent or solvent mixture that is directly suitable for use in a secondary or primary battery, a capacitor, a supercapacitor or a galvanic cell.
14. Method according to claim 13, wherein the solvent is an organic carbonate, preferably an ethylenecarbonate, propylenecarbonate, butylene-carbonate, dimethylcarbonate, diethylcarbonate, ethylmethylcarbonate, methylpropylcarbonate or a mixture of at least two of these solvents.
15. Use of at least one of the salts according to claim 1 alone or in combination with further salts and/or additives in primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells.
16. Electrolyte, preferably for primary batteries, secondary batteries, capacitors, supercapacitors and/or galvanic cells, comprising at least one compound of the general formula [I] according to claim 8.
17. Electrolyte according to claim 16, wherein the salt concentration of the electrolyte is 0.01-3 mol/l, preferably 0.01-2 mol/l, most preferably 0.1-1.5 mol/l.
18. Primary battery comprising at least one compound of the general formula [I] according to claim 1.
19. Secondary battery comprising at least one compound of the general formula [I] according to claim 1.
20. Capacitor comprising at least one compound of the general formula [I] according to claim 1.
21. Supercapacitor comprising at least one compound of the general formula [I] according to claim 1.
22. Galvanic cell comprising at least one compound of the general formula [I] according to claim 1.
23. Hydraulic liquid comprising at least one compound of the general formula [I] according to claim 1.
24. Use of a salt according to claim 1 as an ionic liquid or as a conducting salt in an electrolyte of electrochemical devices.
25. Use of a salt according to claim 1 as a catalyst, solvent, electrolyte or starting compound for the preparation of organic compounds.
US10/496,663 2001-11-28 2002-10-31 Phosphorus-borates with low melting points Abandoned US20050000824A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP01127468 2001-11-28
EP01127468.5 2001-11-28
PCT/EP2002/012163 WO2003045960A1 (en) 2001-11-28 2002-10-31 Phosphorus-borates with low melting points

Publications (1)

Publication Number Publication Date
US20050000824A1 true US20050000824A1 (en) 2005-01-06

Family

ID=8179278

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/496,663 Abandoned US20050000824A1 (en) 2001-11-28 2002-10-31 Phosphorus-borates with low melting points

Country Status (14)

Country Link
US (1) US20050000824A1 (en)
EP (1) EP1448574B1 (en)
JP (1) JP2005515194A (en)
KR (1) KR20040061002A (en)
CN (1) CN1596262A (en)
AT (1) ATE297938T1 (en)
AU (1) AU2002346813B2 (en)
BR (1) BR0214490A (en)
CA (1) CA2468416A1 (en)
DE (1) DE60204719T2 (en)
IN (1) IN2004KO00858A (en)
TW (1) TW529199B (en)
WO (1) WO2003045960A1 (en)
ZA (1) ZA200405023B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170332096A1 (en) * 2016-05-11 2017-11-16 Advanced Micro Devices, Inc. System and method for dynamically stitching video streams

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650586B2 (en) * 2013-07-23 2017-05-16 The Boeing Company Redox couple-based mitigation of fluid-flow-driven electrochemical surface degradation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422975A (en) * 1981-08-03 1983-12-27 Exxon Research And Engineering Co. Organic salt compositions in extraction processes
US5660947A (en) * 1993-05-13 1997-08-26 Wuhr; Manfred Electrolyte for use in a galvanic cell
US5824602A (en) * 1996-10-21 1998-10-20 The United States Of America As Represented By The United States Department Of Energy Helicon wave excitation to produce energetic electrons for manufacturing semiconductors
US20010033964A1 (en) * 1999-12-10 2001-10-25 Merck Patent Gesellschaft Mit Beschrankter Haftung Alkylspiroborate salts for use in electrochemical cells
US20030120006A1 (en) * 1998-12-09 2003-06-26 The B.F. Goodrich Company In mold addition polymerization of norbornene-type monomers using group 10 metal complexes
US6783896B2 (en) * 2000-10-03 2004-08-31 Central Glass Company, Limited Electrolyte for electrochemical device
US7166724B2 (en) * 2000-05-30 2007-01-23 Merck Patent Gmbh Ionic liquids

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827602A (en) * 1995-06-30 1998-10-27 Covalent Associates Incorporated Hydrophobic ionic liquids
WO1999040025A1 (en) * 1998-02-03 1999-08-12 Acep Inc. Novel materials useful as electrolytic solutes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422975A (en) * 1981-08-03 1983-12-27 Exxon Research And Engineering Co. Organic salt compositions in extraction processes
US5660947A (en) * 1993-05-13 1997-08-26 Wuhr; Manfred Electrolyte for use in a galvanic cell
US5824602A (en) * 1996-10-21 1998-10-20 The United States Of America As Represented By The United States Department Of Energy Helicon wave excitation to produce energetic electrons for manufacturing semiconductors
US20030120006A1 (en) * 1998-12-09 2003-06-26 The B.F. Goodrich Company In mold addition polymerization of norbornene-type monomers using group 10 metal complexes
US20010033964A1 (en) * 1999-12-10 2001-10-25 Merck Patent Gesellschaft Mit Beschrankter Haftung Alkylspiroborate salts for use in electrochemical cells
US7166724B2 (en) * 2000-05-30 2007-01-23 Merck Patent Gmbh Ionic liquids
US6783896B2 (en) * 2000-10-03 2004-08-31 Central Glass Company, Limited Electrolyte for electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170332096A1 (en) * 2016-05-11 2017-11-16 Advanced Micro Devices, Inc. System and method for dynamically stitching video streams

Also Published As

Publication number Publication date
TW529199B (en) 2003-04-21
DE60204719T2 (en) 2006-05-18
JP2005515194A (en) 2005-05-26
EP1448574A1 (en) 2004-08-25
ZA200405023B (en) 2005-05-31
KR20040061002A (en) 2004-07-06
CN1596262A (en) 2005-03-16
IN2004KO00858A (en) 2006-05-19
AU2002346813A1 (en) 2003-06-10
WO2003045960A1 (en) 2003-06-05
BR0214490A (en) 2004-09-14
ATE297938T1 (en) 2005-07-15
EP1448574B1 (en) 2005-06-15
CA2468416A1 (en) 2003-06-05
DE60204719D1 (en) 2005-07-21
AU2002346813B2 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
US6693212B1 (en) Tris(oxalato)phosphates, method for their preparation and their use
JP3913474B2 (en) Lithium bisoxalate borate, its preparation and use as a conductive salt
EP2090565B1 (en) Ionic liquids of quaternary ammonium salts
US5660947A (en) Electrolyte for use in a galvanic cell
KR100346821B1 (en) Lithium fluorophosphates and their use as conducting salts
Lee et al. Ionic liquids containing an ester group as potential electrolytes
US8168806B2 (en) Boron chelate complexes
EP1698631B1 (en) Ionic liquid, method for producing same, double layer capacitor comprising same, and lithium battery
WO2009136608A1 (en) Ionic liquid
UA73914C2 (en) Ion compounds with delocalised anionic charge and use thereof as ion conductors components or catalyst
KR20000068159A (en) Process for preparing lithium-borate complexes
CN104321328B (en) Ionic compound with siloxy
US20110070486A1 (en) Ionic liquid
EP1127888B1 (en) Lithium fluoralkylphosphates and their use as electrolyte salts
US20020022182A1 (en) Fluoroalkyl phosphates for use in electrochemical cells
KR20010062269A (en) Alkylspiroborate salts for use in electrochemical cells
KR20020036760A (en) Tetrakisfluoroalkylborate salts and their use as conducting salts
RU2246499C2 (en) Method for preparing lithium complex salts for using in chemical current source
KR100685563B1 (en) Stable bistrifluoromethylamide salts and process for preparing them
EP1448574B1 (en) Phosphorus-borates with low melting points
KR20010020789A (en) Process for the purification of methanide electrolytes
WO2003001623A2 (en) Conducting salts comprising niobium or tantalum
KR20020020697A (en) Method for purifying methanide electrolytes(ii)

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCK PATENTS GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHMIDT, MICHAEL;WELZ-BIERMANN, URS;VAUGHAN-SPICKERS, JULIAN;AND OTHERS;REEL/FRAME:015755/0611

Effective date: 20040323

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION