US20040197619A1 - Coolant system for fuel processor - Google Patents

Coolant system for fuel processor Download PDF

Info

Publication number
US20040197619A1
US20040197619A1 US10/407,401 US40740103A US2004197619A1 US 20040197619 A1 US20040197619 A1 US 20040197619A1 US 40740103 A US40740103 A US 40740103A US 2004197619 A1 US2004197619 A1 US 2004197619A1
Authority
US
United States
Prior art keywords
coolant
processor
fuel
feed
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US10/407,401
Inventor
Vijay Deshpande
W. Wheat
Curtis Krause
Ralph Worsley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Development Corp
Original Assignee
Texaco Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Development Corp filed Critical Texaco Development Corp
Priority to US10/407,401 priority Critical patent/US20040197619A1/en
Assigned to TEXACO INC. AND TEXACO DEVELOPMENT CORPORATION reassignment TEXACO INC. AND TEXACO DEVELOPMENT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WORSLEY, RALPH S., KRAUSE, CURTIS L., WHEAT, W. SPENCER, DESHPANDE, VIJAY A.
Priority to MYPI20081999A priority patent/MY147114A/en
Priority to MXPA05010578A priority patent/MXPA05010578A/en
Priority to CN2004800135323A priority patent/CN1791460B/en
Priority to BRPI0409085-3A priority patent/BRPI0409085A/en
Priority to SG200716508-7A priority patent/SG165171A1/en
Priority to DK04758610.2T priority patent/DK1620636T3/en
Priority to KR1020057018876A priority patent/KR101138450B1/en
Priority to AT04758610T priority patent/ATE465807T1/en
Priority to JP2006509496A priority patent/JP2006523371A/en
Priority to CA2521372A priority patent/CA2521372C/en
Priority to AU2004227327A priority patent/AU2004227327B2/en
Priority to PCT/US2004/009783 priority patent/WO2004090298A2/en
Priority to DE602004026855T priority patent/DE602004026855D1/en
Priority to EP04758610A priority patent/EP1620636B1/en
Priority to ES04758610T priority patent/ES2346884T3/en
Priority to TW093109290A priority patent/TWI358848B/en
Priority to US10/954,679 priority patent/US8119299B2/en
Publication of US20040197619A1 publication Critical patent/US20040197619A1/en
Priority to NO20055163A priority patent/NO20055163L/en
Priority to HK06111419.4A priority patent/HK1090593A1/en
Priority to US11/765,700 priority patent/US20070243436A1/en
Priority to AU2010202932A priority patent/AU2010202932B2/en
Priority to JP2012231535A priority patent/JP2013157313A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/34Ring springs, i.e. annular bodies deformed radially due to axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention pertains to fuel cell power plants and, more particularly, to a coolant system for an integrated fuel cell power plant.
  • Fuel cell technology is an alternative energy source for more conventional energy sources employing the combustion of fossil fuels.
  • a fuel cell typically produces electricity, water, and heat from a fuel and oxygen. More particularly, fuel cells provide electricity from chemical oxidation-reduction reactions and possess significant advantages over other forms of power generation in terms of cleanliness and efficiency.
  • fuel cells employ hydrogen as the fuel and oxygen as the oxidizing agent. The power generation is proportional to the consumption rate of the reactants.
  • a significant disadvantage which inhibits the wider use of fuel cells is the lack of a widespread hydrogen infrastructure.
  • Hydrogen has a relatively low volumetric energy density and is more difficult to store and transport than the hydrocarbon fuels currently used in most power generation systems.
  • One way to overcome this difficulty is the use of “fuel processors” or “reformers” to convert the hydrocarbons to a hydrogen rich gas stream which can be used as a feed for fuel cells.
  • Hydrocarbon-based fuels such as natural gas, LPG, gasoline, and diesel, require conversion for use as fuel for most fuel cells.
  • Current art uses multi-step processes combining an initial conversion process with several clean-up processes.
  • the initial process is most often steam reforming (“SR”), autothermal reforming (“ATR”), catalytic partial oxidation (“CPOX”), or non-catalytic partial oxidation (“POX”).
  • SR steam reforming
  • ATR autothermal reforming
  • CPOX catalytic partial oxidation
  • POX non-catalytic partial oxidation
  • the clean-up processes are usually comprised of a combination of desulphurization, high temperature water-gas shift, low temperature water-gas shift, selective CO oxidation, or selective CO methanation.
  • Alternative processes include hydrogen selective membrane reactors and filters.
  • fuels can be used, some of them hybrids with fossil fuels, but the ideal fuel is hydrogen. If the fuel is, for instance, hydrogen, then the combustion is very clean and, as a practical matter, only the water is left after the dissipation and/or consumption of the heat and the consumption of the electricity. Most readily available fuels (e.g., natural gas, propane and gasoline) and even the less common ones (e.g., methanol and ethanol) include hydrogen in their molecular structure. Some fuel cell implementations therefore employ a “fuel processor” that processes a particular fuel to produce a relatively pure hydrogen stream used to fuel the fuel cell.
  • fuel processor that processes a particular fuel to produce a relatively pure hydrogen stream used to fuel the fuel cell.
  • a processor for a typical Polymer Electrolyte Fuel Cell (“PEFC”) also known as Proton Exchange Membrane Fuel Cell (“PEMFC”), generally comprises of reactor sections for hydrocarbon reforming, water gas shift and oxidation reactions. The reactions are carried at elevated temperatures and are a combination of heat generating, heat consuming or constant temperature variety. Therefore, heat management is critical for proper operation of the processor. Cool reaction feeds can be used to preheat the reactants, while cooling the products, thus managing the heat within the processor.
  • One difficulty with conventional cooling subsystems is the dependence between the reactor cooling and the temperatures of the reactor feeds and products.
  • the present invention is directed to resolving, or at least reducing, one or all of the problems mentioned above.
  • a coolant subsystem for use in a fuel processor and a method for its operation are disclosed.
  • the coolant subsystem is separate from the feed to the processor reactor and is capable of circulating a coolant through the processor reactor.
  • the constituent elements of the fuel processor are housed in a cabinet, and the coolant subsystem is capable of cooling both the processor reactor and the interior of the cabinet.
  • FIG. 1 conceptually illustrates a fuel processor constructed and operated in accordance with the present invention
  • FIG. 2 illustrates one particular embodiment of the fuel processor in FIG. 1;
  • FIG. 3 depicts one particular implementation of the coolant subsystem of FIG. 2;
  • FIG. 4 graphically illustrates the reforming process of the autothermal reformer of the fuel processor first shown in FIG. 2;
  • FIG. 5 conceptually illustrates an integrated fuel cell power plant fueled by the hydrogen gas stream produced by the fuel processor of FIG. 1;
  • FIG. 6A and FIG. 6B conceptually illustrate a computing apparatus as may be used in the implementation of one particular embodiment of the present invention.
  • FIG. 2 conceptually illustrates one particular embodiment 200 of the fuel processor 100 in FIG. 1.
  • the fuel processor 200 pumps the coolant 110 stored in a coolant storage, or reservoir, 202 through the coolant subsystem 102 , which comprises a heat exchange loop.
  • the coolant 110 is water.
  • the pump 204 pumps the coolant 110 from the reservoir 202 through the processor reactor 106 and a cooler 206 , and back into the reservoir 202 .
  • the temperature controlled coolant 110 is also, in this particular embodiment, supplied to and returned from one or more external users 208 between the processor reactor 106 and the cooler 118 in the illustrated embodiment.
  • the “external users” 208 may include mechanical systems not otherwise associated with the fuel processor 200 or any power plant of which it may be associated.
  • the fuel processor 200 may power a power plant for a building, and the external user 208 in this situation may be the air conditioning/heating mechanical system for the building.
  • the coolant subsystem 102 circulates coolant individually to the stages 210 b - 210 e through a respective one of a plurality of branches 226 a - 226 d .
  • Each of the branches 226 a - 226 d includes a temperature control unit 228 a - 228 e .
  • Each temperature control unit 228 a - 228 d includes a temperature sensor S i sensing the temperature in a respective stage 210 b - 210 e and an actuator 230 a - 230 d .
  • Each actuator 230 a - 230 d operates responsive to the sensed temperature in the respective stage 210 b - 210 e to throttle to flow of coolant 110 through the respective branch 226 a - 226 d.
  • FIG. 3 details one particular implementation of the cooler 206 in the coolant subsystem 102 of the illustrated embodiment.
  • coolant 110 is drawn from an external water supply 302 (shown in FIG. 3) into the reservoir 202 and circulated by the pump 204 .
  • the pump 204 circulates the coolant 110 to various parts of the processor reactor 106 and subsystems associated with it through the feeds DES, SHIFT, INERT, and PROX (shown in FIG. 3) over the lines 212 - 215 .
  • Coolant 110 previously circulated to the processor reactor 106 is returned to the coolant subsystem 102 through the feed RETURN (shown in FIG. 3) over the line 218 .
  • the coolant subsystem 102 is separate from the feed 104 and is capable of circulating the coolant 110 through the processor reactor 106 .
  • Heat exchanged to the coolant 110 by the processor reactor 106 components is dumped to the environment through the cooler 206 .
  • the cooler 206 in the illustrated embodiment includes two heat exchangers 304 and a plurality of fans 306 .
  • the fans 306 facilitate the heat exchange through the heat exchangers 304 .
  • the number of heat exchangers 304 and fans 306 is not material to the practice of the invention and that alternative embodiments may employ, e.g., one or three heat exchangers 304 and fans 306 .
  • the fans 306 also circulate air from the interior of the cabinet 112 (shown in FIG. 1) to the exterior of the cabinet 112 , i.e., they cool the interior of the cabinet 112 by circulating the heated air to the environment.
  • the coolant subsystem 102 is capable of cooling both the processor reactor 106 and the interior of the cabinet 112 at the same time.
  • the coolant subsystem 102 of the illustrated embodiment also can provide heating and/or cooling to other parts of the fuel processor 200 , or even to systems outside the fuel processor 200 .
  • the fuel processor 200 can provide thermal control to external users 208 , as is shown in FIG. 2. This functionality is provided through a connection 220 , which comprises an outlet 222 and an inlet 224 through which the coolant 110 may be circulated to and from the external users 208 .
  • the coolant subsystem 102 can provide cooling to other parts of the fuel processor 102 through the lines 308 , 310 and the feeds L 1 , L 2 .
  • the processor reactor 106 reforms the feed 104 into the hydrogen, or hydrogen enriched, gas stream 108 and effluent byproducts, such as water.
  • the feed 104 in the illustrated embodiment conveys a fuel, air, and water mixture from an oxidizer (not shown).
  • the effluent water byproduct (not shown) from the operation of the processor reactor 106 may be circulated back into the coolant subsystem 102 as a coolant 110 or may be drained from the fuel processor 200 .
  • FIG. 4 depicts a general process flow diagram illustrating the process steps included in the illustrative embodiments of the present invention. The following description associated with FIG. 4 is adapted from U.S. patent application Ser. No.
  • the fuel processor 200 feed 104 includes a hydrocarbon fuel, oxygen, and water mixture.
  • the oxygen can be in the form of air, enriched air, or substantially pure oxygen.
  • the water can be introduced as a liquid or vapor. The composition percentages of the feed components are determined by the desired operating conditions, as discussed below.
  • the fuel processor effluent stream from of the present invention includes hydrogen and carbon dioxide and can also include some water, unconverted hydrocarbons, carbon monoxide, impurities (e.g., hydrogen sulfide and ammonia) and inert components (e.g., nitrogen and argon, especially if air was a component of the feed stream).
  • impurities e.g., hydrogen sulfide and ammonia
  • inert components e.g., nitrogen and argon, especially if air was a component of the feed stream.
  • Process step A is an autothermal reforming process in which, in one particular embodiment, two reactions, a partial oxidation (formula I, below) and an optional steam reforming (formula II, below), are performed to convert the feed stream 104 into a synthesis gas containing hydrogen and carbon monoxide.
  • Formulas I and II are exemplary reaction formulas wherein methane is considered as the hydrocarbon:
  • the feed 104 is received by the processor reactor 106 from an oxidizer (not shown).
  • a higher concentration of oxygen in the feed stream favors partial oxidation whereas a higher concentration of water vapor favors steam reforming.
  • the ratios of oxygen to hydrocarbon and water to hydrocarbon are therefore characterizing parameters that affect the operating temperature and hydrogen yield.
  • the operating temperature of the autothermal reforming step A can range from about 550° C. to about 900° C., depending on the feed conditions and the catalyst.
  • the ratios, temperatures, and feed conditions are all examples of parameters controlled by the control system of the present invention.
  • the illustrated embodiment uses a catalyst bed of a partial oxidation catalyst in the reformer stage 210 a with or without a steam reforming catalyst.
  • Process step B is a cooling step performed in a cooling stage (not shown) for cooling the synthesis gas stream from process step A to a temperature of from about 200° C. to about 600° C., preferably from about 375° C. to about 425° C., to prepare the temperature of the synthesis gas effluent for the process step C (discussed below).
  • This cooling may be achieved with heat sinks, heat pipes or heat exchangers depending upon the design specifications and the need to recover/recycle the heat content of the gas stream using any suitable type of coolant.
  • the coolant for process step B may be the coolant 110 of the coolant subsystem 102 .
  • Process step C is a purifying step, performed in the desulphurization stage 210 b , and employs zinc oxide (ZnO) as a hydrogen sulfide absorbent.
  • ZnO zinc oxide
  • One of the main impurities of the hydrocarbon stream is sulfur, which is converted by the autothermal reforming step A to hydrogen sulfide.
  • the processing core used in process step C preferably includes zinc oxide and/or other material capable of absorbing and converting hydrogen sulfide, and may include a support (e.g., monolith, extrudate, pellet, etc.).
  • Desulphurization is accomplished by converting the hydrogen sulfide to water in accordance with the following reaction formula III:
  • the reaction is preferably carried out at a temperature of from about 300° C. to about 500° C., and more preferably from about 375° C. to about 425° C.
  • the effluent stream may then be sent to a mixing step D performed in module (not shown), in which water received from a water subsystem (not shown) is optionally added to the gas stream.
  • the addition of water lowers the temperature of the reactant stream as it vaporizes and supplies more water for the water gas shift reaction of process step E (discussed below).
  • the water vapor and other effluent stream components are mixed by being passed through a processing core of inert materials such as ceramic beads or other similar materials that effectively mix and/or assist in the vaporization of the water.
  • any additional water can be introduced with feed, and the mixing step can be repositioned to provide better mixing of the oxidant gas in the CO oxidation step G (discussed below). This temperature is also controlled by the control system of the present invention.
  • Process step E performed in the shift stage 210 c , is a water gas shift reaction that converts carbon monoxide to carbon dioxide in accordance with formula IV:
  • the concentration of carbon monoxide should preferably be lowered to a level that can be tolerated by fuel cells, typically below 50 ppm.
  • the water gas shift reaction can take place at temperatures of from 150° C. to 600° C. depending on the catalyst used. Under such conditions, most of the carbon monoxide in the gas stream is converted in this step. This temperature and concentration are more parameters controlled by the control system of the present invention.
  • process step F performed in the inert stage 210 d , is a cooling step.
  • Process step F reduces the temperature of the gas stream to produce an effluent having a temperature preferably in the range of from about 90° C. to about 150° C.
  • Oxygen from an air subsystem (not shown) is also added to the process in step F. The oxygen is consumed by the reactions of process step G described below.
  • Process step G performed in the preferential oxidation stage 210 e , is an oxidation step wherein almost all of the remaining carbon monoxide in the effluent stream is converted to carbon dioxide.
  • the processing is carried out in the presence of a catalyst for the oxidation of carbon monoxide.
  • Two reactions occur in process step G: the desired oxidation of carbon monoxide (formula V) and the undesired oxidation of hydrogen (formula VI) as follows:
  • Process step G reduces the carbon monoxide level to preferably less than 50 ppm, which is a suitable level for use in fuel cells.
  • the effluent 108 exiting the fuel processor is a hydrogen rich gas containing carbon dioxide and other constituents which may be present such as water, inert components (e.g., nitrogen, argon), residual hydrocarbon, etc.
  • Product gas may be used as the feed for a fuel cell or for other applications where a hydrogen rich feed stream is desired.
  • product gas may be sent on to further processing, for example, to remove the carbon dioxide, water or other components.
  • the coolant subsystem 102 is used to help achieve the temperatures for the process steps A-F, whatever they may be in a given embodiment.
  • Each of the stages 210 b - 210 e is cooled by a respective branch 226 a - 226 d of the coolant subsystem 102 .
  • the temperature sensor S i of each temperature control unit 228 a - 228 d senses the temperature within its respective stage 210 b - 210 e .
  • the respective temperature control unit 228 a - 228 d opens the respective actuator 230 a - 230 d to increase the flow of coolant 110 therethrough. If the temperature within the respective stage 210 b - 210 e approaches or exceeds the lower bound of the desired temperature range for the respective process step A-G, the respective temperature control unit 228 a - 228 d closes the respective actuator 230 a - 230 d to decrease the flow of coolant 110 therethrough.
  • the coolant 110 is circulated through the cooler 206 .
  • the heat exchanged from the stages 210 b - 210 e is dumped to the atmosphere. As was described above, this is accomplished by the fans 306 blowing air across the heat exchangers 304 . Blowing the air across the heat exchangers 304 also removes heated air from the cabinet 112 to the exterior of the cabinet 112 .
  • the interior of the cabinet 112 is cooled as the coolant subsystem 102 controls the temperatures of the process steps A-F in the stages 210 a - 210 e.
  • FIG. 5 conceptually illustrates a fuel cell power plant 500 in which the processor reactor (“PR”) 106 produces the hydrogen gas stream 108 to power a fuel cell 502 .
  • the power plant 500 is an “integrated” power plant, i.e., the operation of fuel processor 102 and the fuel cell 504 are interdependent.
  • the fuel processor 102 and fuel cell 504 are both housed in a cabinet 112 .
  • the fuel cell 504 is preferably a typical Polymer Electrolyte Fuel Cell (“PEFC”), also known as Proton Exchange Membrane Fuel Cell (“PEMFC”).
  • PEFC Polymer Electrolyte Fuel Cell
  • PEMFC Proton Exchange Membrane Fuel Cell
  • other types of fuel cells may be used. Note that not all aspects of the invention are limited to application in such an integrated power plant. Thus, some embodiments may be employed in a power plant that is not integrated.
  • the fuel processor 200 more particularly comprises several modular physical subsystems, namely:
  • the processor reactor 106 which is an autothermal reformer (“ATR”), that performs an oxidation-reduction reaction that reforms a fuel input to the fuel processor 100 into a gas 108 for the fuel cell 502 ;
  • ATR autothermal reformer
  • an oxidizer 506 which is an anode tailgas oxidizer (“ATO”) in the illustrated embodiment, that preheats water, fuel, and air to create a fuel mixture delivered as the feed 104 to the processor reactor 106 ;
  • ATO anode tailgas oxidizer
  • a fuel subsystem 508 that delivers an input fuel (natural gas, in the illustrated embodiment) to the oxidizer 506 for mixing into the feed 104 delivered to the processor reactor 106 ;
  • a water subsystem 510 that delivers water to the ATO 206 for mixing into the feed 104 delivered to the processor reactor 106 ;
  • an air subsystem 512 that delivers air to the ATO 206 for mixing into the feed 104 delivered to the processor reactor 106 ;
  • a coolant subsystem 102 that controls temperatures in the operation of the processor reactor 106 in a manner described above.
  • the power plant 500 also includes the control system 514 that controls the operation of the power plant 500 as a whole.
  • One task executed by the control system 514 is the temperature control for the process of the processor reactor 106 through the temperature control units 228 a - 228 d , as described above.
  • FIG. 6A and FIG. 6B One particular implementation 600 of the control system 514 , first shown in FIG. 2, is illustrated in FIG. 6A and FIG. 6B.
  • the control system may be implemented on a computing system comprising a number of computers such as the control system 514 , each of which may control some designated facet of the operation of the fuel processor 100 .
  • the computing apparatus 600 controls all aspects of the fuel processor 100 operation not under manual control.
  • the computing apparatus 600 is rack-mounted, but need not be rack-mounted in all embodiments. Indeed, this aspect of any given implementations is not material to the practice of the invention.
  • the computing apparatus 600 may be implemented as a desktop personal computer, a workstation, a notebook or laptop computer, an embedded processor, or the like.
  • the computing apparatus 600 illustrated in FIG. 6A and FIG. 6B includes a processor 605 communicating with storage 610 over a bus system 615 .
  • the storage 610 may include a hard disk and/or random access memory (“RAM”) and/or removable storage such as a floppy magnetic disk 617 and an optical disk 620 .
  • RAM random access memory
  • the storage 610 is encoded with a data structure 625 storing the data set acquired as discussed above, an operating system 630 , user interface software 635 , and an application 665 .
  • the user interface software 635 in conjunction with a display 640 , implements a user interface 645 .
  • the user interface 645 may include peripheral I/O devices such as a key pad or keyboard 650 , a mouse 655 , or a joystick 660 .
  • the processor 605 runs under the control of the operating system 630 , which may be practically any operating system known to the art.
  • the application 665 is invoked by the operating system 630 upon power up, reset, or both, depending on the implementation of the operating system 630 .
  • the software implemented aspects of the invention are typically encoded on some form of program storage medium or implemented over some type of transmission medium.
  • the program storage medium may be magnetic (e.g., a floppy disk or a hard drive) or optical (e.g., a compact disk read only memory, or “CD ROM”), and may be read only or random access.
  • the transmission medium may be twisted wire pairs, coaxial cable, optical fiber, or some other suitable transmission medium known to the art. The invention is not limited by these aspects of any given implementation.
  • FIG. 7 graphically illustrates the operational interface between the fuel processor 100 and the fuel cell 504 first shown in FIG. 5.
  • the interface includes a heat exchanger 700 through which coolant 110 may be circulated from the coolant subsystem 102 .
  • the heat exchange is controlled through a temperature control unit 702 that throttles the flow of the coolant 110 through the heat exchanger 700 responsive to the sensed temperature of the stream 108 .
  • the temperature control unit 702 is also controlled by the control system 514 in the same manner as the temperature control units 228 a - 228 d .
  • the heat exchanger 700 and the temperature control unit 702 comprise, in this particular embodiment, a portion of the coolant subsystem 102 .

Abstract

A coolant subsystem for use in a fuel processor and a method for its operation are disclosed. In accordance with a first aspect, the coolant subsystem is separate from the feed to the processor reactor and is capable of circulating a coolant through the processor reactor. In accordance with a second aspect, the constituent elements of the fuel processor are housed in a cabinet, and the coolant subsystem is capable of cooling both the processor reactor and the interior of the cabinet. In various alternatives, the fuel processor can be employed to reform a fuel for a fuel cell power plant and/or may be used to provide thermal control for unrelated mechanical systems.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention pertains to fuel cell power plants and, more particularly, to a coolant system for an integrated fuel cell power plant. [0002]
  • 2. Description of the Related Art [0003]
  • Fuel cell technology is an alternative energy source for more conventional energy sources employing the combustion of fossil fuels. A fuel cell typically produces electricity, water, and heat from a fuel and oxygen. More particularly, fuel cells provide electricity from chemical oxidation-reduction reactions and possess significant advantages over other forms of power generation in terms of cleanliness and efficiency. Typically, fuel cells employ hydrogen as the fuel and oxygen as the oxidizing agent. The power generation is proportional to the consumption rate of the reactants. [0004]
  • A significant disadvantage which inhibits the wider use of fuel cells is the lack of a widespread hydrogen infrastructure. Hydrogen has a relatively low volumetric energy density and is more difficult to store and transport than the hydrocarbon fuels currently used in most power generation systems. One way to overcome this difficulty is the use of “fuel processors” or “reformers” to convert the hydrocarbons to a hydrogen rich gas stream which can be used as a feed for fuel cells. Hydrocarbon-based fuels, such as natural gas, LPG, gasoline, and diesel, require conversion for use as fuel for most fuel cells. Current art uses multi-step processes combining an initial conversion process with several clean-up processes. The initial process is most often steam reforming (“SR”), autothermal reforming (“ATR”), catalytic partial oxidation (“CPOX”), or non-catalytic partial oxidation (“POX”). The clean-up processes are usually comprised of a combination of desulphurization, high temperature water-gas shift, low temperature water-gas shift, selective CO oxidation, or selective CO methanation. Alternative processes include hydrogen selective membrane reactors and filters. [0005]
  • Thus, many types of fuels can be used, some of them hybrids with fossil fuels, but the ideal fuel is hydrogen. If the fuel is, for instance, hydrogen, then the combustion is very clean and, as a practical matter, only the water is left after the dissipation and/or consumption of the heat and the consumption of the electricity. Most readily available fuels (e.g., natural gas, propane and gasoline) and even the less common ones (e.g., methanol and ethanol) include hydrogen in their molecular structure. Some fuel cell implementations therefore employ a “fuel processor” that processes a particular fuel to produce a relatively pure hydrogen stream used to fuel the fuel cell. [0006]
  • A processor for a typical Polymer Electrolyte Fuel Cell (“PEFC”), also known as Proton Exchange Membrane Fuel Cell (“PEMFC”), generally comprises of reactor sections for hydrocarbon reforming, water gas shift and oxidation reactions. The reactions are carried at elevated temperatures and are a combination of heat generating, heat consuming or constant temperature variety. Therefore, heat management is critical for proper operation of the processor. Cool reaction feeds can be used to preheat the reactants, while cooling the products, thus managing the heat within the processor. One difficulty with conventional cooling subsystems is the dependence between the reactor cooling and the temperatures of the reactor feeds and products. Another problem is that the fuel cell power plant, i.e., the fuel cell and its fuel processor, are frequently housed in a cabinet, which causes additional heat management problems. Conventional approaches to these problems applies a separate cabinet cooler. However, the separate cabinet coolers adversely impact the power and cost efficiencies of the power plant as a whole. [0007]
  • The present invention is directed to resolving, or at least reducing, one or all of the problems mentioned above. [0008]
  • SUMMARY OF THE INVENTION
  • A coolant subsystem for use in a fuel processor and a method for its operation are disclosed. In accordance with one aspect of the invention, the coolant subsystem is separate from the feed to the processor reactor and is capable of circulating a coolant through the processor reactor. In accordance with a second aspect of the present invention, the constituent elements of the fuel processor are housed in a cabinet, and the coolant subsystem is capable of cooling both the processor reactor and the interior of the cabinet. [0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which: [0010]
  • FIG. 1 conceptually illustrates a fuel processor constructed and operated in accordance with the present invention; [0011]
  • FIG. 2 illustrates one particular embodiment of the fuel processor in FIG. 1; [0012]
  • FIG. 3 depicts one particular implementation of the coolant subsystem of FIG. 2; [0013]
  • FIG. 4 graphically illustrates the reforming process of the autothermal reformer of the fuel processor first shown in FIG. 2; [0014]
  • FIG. 5 conceptually illustrates an integrated fuel cell power plant fueled by the hydrogen gas stream produced by the fuel processor of FIG. 1; [0015]
  • FIG. 6A and FIG. 6B conceptually illustrate a computing apparatus as may be used in the implementation of one particular embodiment of the present invention; and [0016]
  • FIG. 7 conceptually illustrates the operational interface between the fuel processor and the fuel cell of the power plant of FIG. 5.[0017]
  • While the invention is susceptible to various modifications and alternative forms, the drawings illustrate specific embodiments herein described in detail by way of example. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. [0018]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort, even if complex and time-consuming, would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. [0019]
  • FIG. 1 conceptually illustrates a [0020] fuel processor 100 constructed in accordance with the present invention. The fuel processor 100 comprises a coolant subsystem 102, a feed 104, and a processor reactor 106 that produces a hydrogen (or hydrogen-rich) gas stream 108. In accordance with one aspect of the invention, the coolant subsystem 102 is separate from the feed 104 and is capable of circulating a coolant 110 through the processor reactor 106. The coolant 110 may be any suitable coolant known to the art, e.g., water, a glycol, an oil, an alcohol, or the like. In accordance with a second aspect of the present invention, the constituent elements of the fuel processor 100 are housed in a cabinet 112, and the coolant subsystem 102 is capable of cooling both the processor reactor 106 and the interior of the cabinet 112.
  • FIG. 2 conceptually illustrates one [0021] particular embodiment 200 of the fuel processor 100 in FIG. 1. In pertinent part, and in general, the fuel processor 200 pumps the coolant 110 stored in a coolant storage, or reservoir, 202 through the coolant subsystem 102, which comprises a heat exchange loop. In the illustrated embodiment, the coolant 110 is water. More particularly, the pump 204 pumps the coolant 110 from the reservoir 202 through the processor reactor 106 and a cooler 206, and back into the reservoir 202. The temperature controlled coolant 110 is also, in this particular embodiment, supplied to and returned from one or more external users 208 between the processor reactor 106 and the cooler 118 in the illustrated embodiment. The “external users” 208 may include mechanical systems not otherwise associated with the fuel processor 200 or any power plant of which it may be associated. For instance, the fuel processor 200 may power a power plant for a building, and the external user 208 in this situation may be the air conditioning/heating mechanical system for the building.
  • The [0022] processor reactor 106 in the illustrated embodiment comprises several stages, including a reformer stage 210 a, a desulphurization stage 210 b, a shift stage 210 c, an inert stage 210 d, and a preferential oxidizing stage 210 e. The reformer stage 210 a is an autothermal reformer (“ATR”), and may be implemented using any suitable reformer known to the art. Note that alternative embodiments may employ other stages in addition to or in lieu of those illustrated, depending on the design constraints imposed by the intended end-use.
  • In the illustrated embodiment, the [0023] coolant subsystem 102 circulates coolant individually to the stages 210 b-210 e through a respective one of a plurality of branches 226 a-226 d. Each of the branches 226 a-226 d includes a temperature control unit 228 a-228 e. Each temperature control unit 228 a-228 d includes a temperature sensor Si sensing the temperature in a respective stage 210 b-210 e and an actuator 230 a-230 d. Each actuator 230 a-230 d operates responsive to the sensed temperature in the respective stage 210 b-210 e to throttle to flow of coolant 110 through the respective branch 226 a-226 d.
  • FIG. 3 details one particular implementation of the cooler [0024] 206 in the coolant subsystem 102 of the illustrated embodiment. Referring now to both FIG. 2 and FIG. 3, coolant 110 is drawn from an external water supply 302 (shown in FIG. 3) into the reservoir 202 and circulated by the pump 204. The pump 204 circulates the coolant 110 to various parts of the processor reactor 106 and subsystems associated with it through the feeds DES, SHIFT, INERT, and PROX (shown in FIG. 3) over the lines 212-215. Coolant 110 previously circulated to the processor reactor 106 is returned to the coolant subsystem 102 through the feed RETURN (shown in FIG. 3) over the line 218. Note that the coolant subsystem 102 is separate from the feed 104 and is capable of circulating the coolant 110 through the processor reactor 106.
  • Heat exchanged to the [0025] coolant 110 by the processor reactor 106 components is dumped to the environment through the cooler 206. The cooler 206 in the illustrated embodiment includes two heat exchangers 304 and a plurality of fans 306. The fans 306 facilitate the heat exchange through the heat exchangers 304. Note that the number of heat exchangers 304 and fans 306 is not material to the practice of the invention and that alternative embodiments may employ, e.g., one or three heat exchangers 304 and fans 306. The fans 306 also circulate air from the interior of the cabinet 112 (shown in FIG. 1) to the exterior of the cabinet 112, i.e., they cool the interior of the cabinet 112 by circulating the heated air to the environment. Thus, the coolant subsystem 102 is capable of cooling both the processor reactor 106 and the interior of the cabinet 112 at the same time.
  • The [0026] coolant subsystem 102 of the illustrated embodiment also can provide heating and/or cooling to other parts of the fuel processor 200, or even to systems outside the fuel processor 200. As was previously noted, the fuel processor 200 can provide thermal control to external users 208, as is shown in FIG. 2. This functionality is provided through a connection 220, which comprises an outlet 222 and an inlet 224 through which the coolant 110 may be circulated to and from the external users 208. As is shown in FIG. 3, the coolant subsystem 102 can provide cooling to other parts of the fuel processor 102 through the lines 308, 310 and the feeds L1, L2. Note that the lines 308, 310 circulate coolant 110 from the reservoir 211, i.e., cooled coolant 110. Note also that the flow of coolant 110 through the lines 308, 310 can be controlled not only in a gross sense by operation of the pump 204, but also in a finer sense by the valves 312, 314.
  • In operation, the [0027] processor reactor 106 reforms the feed 104 into the hydrogen, or hydrogen enriched, gas stream 108 and effluent byproducts, such as water. The feed 104 in the illustrated embodiment conveys a fuel, air, and water mixture from an oxidizer (not shown). Note that the effluent water byproduct (not shown) from the operation of the processor reactor 106 may be circulated back into the coolant subsystem 102 as a coolant 110 or may be drained from the fuel processor 200. FIG. 4 depicts a general process flow diagram illustrating the process steps included in the illustrative embodiments of the present invention. The following description associated with FIG. 4 is adapted from U.S. patent application Ser. No. 10/006,963, entitled “Compact Fuel Processor for Producing a Hydrogen Rich Gas,” filed Dec. 5, 2001, in the name of the inventors Curtis L. Krause, et al., and published Jul. 18, 2002, (Publication No. US2002/0094310 A1).
  • One of ordinary skill in the art should appreciate that a certain amount of progressive order is needed in the flow of the reactants through the [0028] processor reactor 106. The fuel processor 200 feed 104 includes a hydrocarbon fuel, oxygen, and water mixture. The oxygen can be in the form of air, enriched air, or substantially pure oxygen. The water can be introduced as a liquid or vapor. The composition percentages of the feed components are determined by the desired operating conditions, as discussed below. The fuel processor effluent stream from of the present invention includes hydrogen and carbon dioxide and can also include some water, unconverted hydrocarbons, carbon monoxide, impurities (e.g., hydrogen sulfide and ammonia) and inert components (e.g., nitrogen and argon, especially if air was a component of the feed stream).
  • Process step A is an autothermal reforming process in which, in one particular embodiment, two reactions, a partial oxidation (formula I, below) and an optional steam reforming (formula II, below), are performed to convert the [0029] feed stream 104 into a synthesis gas containing hydrogen and carbon monoxide. Formulas I and II are exemplary reaction formulas wherein methane is considered as the hydrocarbon:
  • CH4+½O2→2H2+CO  (I)
  • CH4+H2O→3H2+CO  (II)
  • The [0030] feed 104 is received by the processor reactor 106 from an oxidizer (not shown). A higher concentration of oxygen in the feed stream favors partial oxidation whereas a higher concentration of water vapor favors steam reforming. The ratios of oxygen to hydrocarbon and water to hydrocarbon are therefore characterizing parameters that affect the operating temperature and hydrogen yield.
  • The operating temperature of the autothermal reforming step A can range from about 550° C. to about 900° C., depending on the feed conditions and the catalyst. The ratios, temperatures, and feed conditions are all examples of parameters controlled by the control system of the present invention. The illustrated embodiment uses a catalyst bed of a partial oxidation catalyst in the [0031] reformer stage 210 a with or without a steam reforming catalyst.
  • Process step B is a cooling step performed in a cooling stage (not shown) for cooling the synthesis gas stream from process step A to a temperature of from about 200° C. to about 600° C., preferably from about 375° C. to about 425° C., to prepare the temperature of the synthesis gas effluent for the process step C (discussed below). This cooling may be achieved with heat sinks, heat pipes or heat exchangers depending upon the design specifications and the need to recover/recycle the heat content of the gas stream using any suitable type of coolant. For instance, the coolant for process step B may be the [0032] coolant 110 of the coolant subsystem 102.
  • Process step C is a purifying step, performed in the [0033] desulphurization stage 210 b, and employs zinc oxide (ZnO) as a hydrogen sulfide absorbent. One of the main impurities of the hydrocarbon stream is sulfur, which is converted by the autothermal reforming step A to hydrogen sulfide. The processing core used in process step C preferably includes zinc oxide and/or other material capable of absorbing and converting hydrogen sulfide, and may include a support (e.g., monolith, extrudate, pellet, etc.). Desulphurization is accomplished by converting the hydrogen sulfide to water in accordance with the following reaction formula III:
  • H2S+ZnO→H2O+ZnS  (III)
  • The reaction is preferably carried out at a temperature of from about 300° C. to about 500° C., and more preferably from about 375° C. to about 425° C. [0034]
  • Still referring to FIG. 4, the effluent stream may then be sent to a mixing step D performed in module (not shown), in which water received from a water subsystem (not shown) is optionally added to the gas stream. The addition of water lowers the temperature of the reactant stream as it vaporizes and supplies more water for the water gas shift reaction of process step E (discussed below). The water vapor and other effluent stream components are mixed by being passed through a processing core of inert materials such as ceramic beads or other similar materials that effectively mix and/or assist in the vaporization of the water. Alternatively, any additional water can be introduced with feed, and the mixing step can be repositioned to provide better mixing of the oxidant gas in the CO oxidation step G (discussed below). This temperature is also controlled by the control system of the present invention. [0035]
  • Process step E, performed in the [0036] shift stage 210 c, is a water gas shift reaction that converts carbon monoxide to carbon dioxide in accordance with formula IV:
  • H2O+CO→H2+CO2  (IV)
  • The concentration of carbon monoxide should preferably be lowered to a level that can be tolerated by fuel cells, typically below 50 ppm. Generally, the water gas shift reaction can take place at temperatures of from 150° C. to 600° C. depending on the catalyst used. Under such conditions, most of the carbon monoxide in the gas stream is converted in this step. This temperature and concentration are more parameters controlled by the control system of the present invention. [0037]
  • Returning again to FIG. 4, process step F, performed in the [0038] inert stage 210 d, is a cooling step. Process step F reduces the temperature of the gas stream to produce an effluent having a temperature preferably in the range of from about 90° C. to about 150° C. Oxygen from an air subsystem (not shown) is also added to the process in step F. The oxygen is consumed by the reactions of process step G described below.
  • Process step G, performed in the [0039] preferential oxidation stage 210 e, is an oxidation step wherein almost all of the remaining carbon monoxide in the effluent stream is converted to carbon dioxide. The processing is carried out in the presence of a catalyst for the oxidation of carbon monoxide. Two reactions occur in process step G: the desired oxidation of carbon monoxide (formula V) and the undesired oxidation of hydrogen (formula VI) as follows:
  • CO+½O2→CO2  (V)
  • H2+½O2→H2O  (VI)
  • The preferential oxidation of carbon monoxide is favored by low temperatures. Since both reactions produce heat it may be advantageous to optionally include a cooling element such as a cooling coil, disposed within the process. The operating temperature of process is preferably kept in the range of from about 90° C. to about 150° C. Process step G reduces the carbon monoxide level to preferably less than 50 ppm, which is a suitable level for use in fuel cells. [0040]
  • The [0041] effluent 108 exiting the fuel processor is a hydrogen rich gas containing carbon dioxide and other constituents which may be present such as water, inert components (e.g., nitrogen, argon), residual hydrocarbon, etc. Product gas may be used as the feed for a fuel cell or for other applications where a hydrogen rich feed stream is desired. Optionally, product gas may be sent on to further processing, for example, to remove the carbon dioxide, water or other components.
  • Note that each of the process steps A-G described above occurs within specified temperature ranges. The precise temperatures in the ranges are not material to the practice of the invention. Indeed, the nature and order of the steps are implementation specific depending on [0042] feed 104 input and the product gas stream 108 for a given application. Thus, the precise temperatures in the temperature ranges will be driven by implementation specific design constraints.
  • Returning now to FIG. 2 and FIG. 3, the [0043] coolant subsystem 102 is used to help achieve the temperatures for the process steps A-F, whatever they may be in a given embodiment. Each of the stages 210 b-210 e is cooled by a respective branch 226 a-226 d of the coolant subsystem 102. The temperature sensor Si of each temperature control unit 228 a-228 d senses the temperature within its respective stage 210 b-210 e. If the temperature within the respective stage 210 b-210 e approaches or exceeds the upper bound of the desired temperature range for the respective process step A-G, the respective temperature control unit 228 a-228 d opens the respective actuator 230 a-230 d to increase the flow of coolant 110 therethrough. If the temperature within the respective stage 210 b-210 e approaches or exceeds the lower bound of the desired temperature range for the respective process step A-G, the respective temperature control unit 228 a-228 d closes the respective actuator 230 a-230 d to decrease the flow of coolant 110 therethrough.
  • As the temperature control units [0044] 228 a-228 d control the temperature within their respective stages 210 b-210 e, the coolant 110 is circulated through the cooler 206. The heat exchanged from the stages 210 b-210 e is dumped to the atmosphere. As was described above, this is accomplished by the fans 306 blowing air across the heat exchangers 304. Blowing the air across the heat exchangers 304 also removes heated air from the cabinet 112 to the exterior of the cabinet 112. Thus, the interior of the cabinet 112 is cooled as the coolant subsystem 102 controls the temperatures of the process steps A-F in the stages 210 a-210 e.
  • As will be appreciated by those in the art having the benefit of this disclosure, [0045] fuel processor 100 in FIG. 1 will have additional components not shown. As should also be appreciated, the fuel processor 100 can be used in a variety of different contexts. FIG. 5 conceptually illustrates a fuel cell power plant 500 in which the processor reactor (“PR”) 106 produces the hydrogen gas stream 108 to power a fuel cell 502. The power plant 500 is an “integrated” power plant, i.e., the operation of fuel processor 102 and the fuel cell 504 are interdependent. The fuel processor 102 and fuel cell 504 are both housed in a cabinet 112. The fuel cell 504 is preferably a typical Polymer Electrolyte Fuel Cell (“PEFC”), also known as Proton Exchange Membrane Fuel Cell (“PEMFC”). However, other types of fuel cells may be used. Note that not all aspects of the invention are limited to application in such an integrated power plant. Thus, some embodiments may be employed in a power plant that is not integrated.
  • In the embodiment illustrated in FIG. 5, the [0046] fuel processor 200 more particularly comprises several modular physical subsystems, namely:
  • the [0047] processor reactor 106, which is an autothermal reformer (“ATR”), that performs an oxidation-reduction reaction that reforms a fuel input to the fuel processor 100 into a gas 108 for the fuel cell 502;
  • an [0048] oxidizer 506, which is an anode tailgas oxidizer (“ATO”) in the illustrated embodiment, that preheats water, fuel, and air to create a fuel mixture delivered as the feed 104 to the processor reactor 106;
  • a [0049] fuel subsystem 508, that delivers an input fuel (natural gas, in the illustrated embodiment) to the oxidizer 506 for mixing into the feed 104 delivered to the processor reactor 106;
  • a [0050] water subsystem 510, that delivers water to the ATO 206 for mixing into the feed 104 delivered to the processor reactor 106;
  • an [0051] air subsystem 512, that delivers air to the ATO 206 for mixing into the feed 104 delivered to the processor reactor 106; and
  • a [0052] coolant subsystem 102, that controls temperatures in the operation of the processor reactor 106 in a manner described above.
  • The [0053] power plant 500 also includes the control system 514 that controls the operation of the power plant 500 as a whole. One task executed by the control system 514 is the temperature control for the process of the processor reactor 106 through the temperature control units 228 a-228 d, as described above.
  • One [0054] particular implementation 600 of the control system 514, first shown in FIG. 2, is illustrated in FIG. 6A and FIG. 6B. Note that, in some embodiments, the control system may be implemented on a computing system comprising a number of computers such as the control system 514, each of which may control some designated facet of the operation of the fuel processor 100. However, in the illustrated embodiment, the computing apparatus 600 controls all aspects of the fuel processor 100 operation not under manual control. The computing apparatus 600 is rack-mounted, but need not be rack-mounted in all embodiments. Indeed, this aspect of any given implementations is not material to the practice of the invention. The computing apparatus 600 may be implemented as a desktop personal computer, a workstation, a notebook or laptop computer, an embedded processor, or the like.
  • The [0055] computing apparatus 600 illustrated in FIG. 6A and FIG. 6B includes a processor 605 communicating with storage 610 over a bus system 615. The storage 610 may include a hard disk and/or random access memory (“RAM”) and/or removable storage such as a floppy magnetic disk 617 and an optical disk 620. The storage 610 is encoded with a data structure 625 storing the data set acquired as discussed above, an operating system 630, user interface software 635, and an application 665. The user interface software 635, in conjunction with a display 640, implements a user interface 645. The user interface 645 may include peripheral I/O devices such as a key pad or keyboard 650, a mouse 655, or a joystick 660. The processor 605 runs under the control of the operating system 630, which may be practically any operating system known to the art. The application 665 is invoked by the operating system 630 upon power up, reset, or both, depending on the implementation of the operating system 630.
  • Some portions of the detailed descriptions herein are consequently presented in terms of a software implemented process involving symbolic representations of operations on data bits within a memory in a computing system or a computing device. These descriptions and representations are the means used by those in the art to most effectively convey the substance of their work to others skilled in the art. The process and operation require physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic, or optical signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. [0056]
  • It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantifies. Unless specifically stated or otherwise as may be apparent, throughout the present disclosure, these descriptions refer to the action and processes of an electronic device, that manipulates and transforms data represented as physical (electronic, magnetic, or optical) quantities within some electronic device's storage into other data similarly represented as physical quantities within the storage, or in transmission or display devices. Exemplary of the terms denoting such a description are, without limitation, the terms “processing,” “computing,” “calculating,” “determining,” “displaying,” and the like. [0057]
  • Note also that the software implemented aspects of the invention are typically encoded on some form of program storage medium or implemented over some type of transmission medium. The program storage medium may be magnetic (e.g., a floppy disk or a hard drive) or optical (e.g., a compact disk read only memory, or “CD ROM”), and may be read only or random access. Similarly, the transmission medium may be twisted wire pairs, coaxial cable, optical fiber, or some other suitable transmission medium known to the art. The invention is not limited by these aspects of any given implementation. [0058]
  • FIG. 7 graphically illustrates the operational interface between the [0059] fuel processor 100 and the fuel cell 504 first shown in FIG. 5. Note that the interface includes a heat exchanger 700 through which coolant 110 may be circulated from the coolant subsystem 102. The heat exchange is controlled through a temperature control unit 702 that throttles the flow of the coolant 110 through the heat exchanger 700 responsive to the sensed temperature of the stream 108. The temperature control unit 702 is also controlled by the control system 514 in the same manner as the temperature control units 228 a-228 d. Thus, the heat exchanger 700 and the temperature control unit 702 comprise, in this particular embodiment, a portion of the coolant subsystem 102.
  • This concludes the detailed description. The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below. [0060]

Claims (110)

What is claimed:
1. A fuel processor, comprising:
a processor reactor;
a feed to the processor reactor; and
a coolant subsystem separate from the feed and capable of circulating a coolant through the processor reactor.
2. The fuel processor of claim 1, wherein the processor reactor includes at least:
a first stage capable of receiving the feed and performing an autothermal reaction thereon;
a second stage capable of receiving the feed from the first stage and removing the sulfur therefrom;
a third stage capable of receiving the feed from the second stage and performing a first shift reaction thereon;
a fourth stage capable of receiving the feed from the third stage and performing a second shift reaction thereon; and
a fifth stage capable of receiving the feed from the fourth stage and preferentially oxidizing the received feed.
3. The fuel processor of claim 1, wherein the feed to the processor reactor conveys a fuel, air, and water mixture.
4. The fuel processor of claim 1, wherein the coolant subsystem includes:
a cooler capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom;
a coolant storage capable of storing coolant received from the cooler; and
a pump capable of pumping the stored coolant to the process reactor.
5. The fuel processor of claim 4, wherein the cooler comprises:
a heat exchanger; and
an air blower capable of cooling the heat exchanger.
6. The fuel processor of claim 5, wherein the cooler further comprises:
a second heat exchanger; and
a second air blower capable of cooling the second heat exchanger.
7. The fuel processor of claim 4, wherein the coolant comprises at least one of water, a glycol, an oil, and an alcohol.
8. The fuel processor of claim 4, wherein the coolant storage comprises a tank.
9. The fuel processor of claim 1, further comprising:
an oxidizer capable of heating fuel, water, and air and feeding the mixture to the process reactor via the feed;
a fuel supply subsystem of providing fuel to the oxidizer;
a water subsystem capable of providing water to the oxidizer;
an air subsystem capable of providing air to the oxidizer.
10. The fuel processor of claim 1, further comprising a connection to the at least one external user.
11. The fuel processor of claim 10, wherein the connection comprises an outlet and an inlet through which the coolant may be circulated to an external user.
12. The fuel processor of claim 10, further comprising an oxidizer capable preheating fuel, water, and air to generate a process feed stream introduced to the processor reactor through the feed.
13. The fuel processor of claim 12, wherein the oxidizer comprises an anode tailgas oxidizer.
14. The fuel processor of claim 1, wherein the coolant subsystem further comprises a plurality of temperature control units, each temperature control unit including:
a temperature sensor sensing the temperature of the coolant in a portion of the processor reactor through which the coolant is circulating; and
an actuator operated responsive to the sensed temperature in the portion to throttle to flow of coolant through the portion.
15. A power plant, comprising:
a fuel processor, including:
a processor reactor generating a reformate;
a feed to the processor reactor; and
a coolant subsystem separate from the feed and capable of circulating a coolant through the processor reactor; and
a fuel cell powered by the reformate generated by the processor reactor of the fuel processor.
16. The power plant of claim 15, wherein the processor reactor includes at least:
a first stage capable of receiving the feed and performing an autothermal reaction thereon;
a second stage capable of receiving the feed from the first stage and removing the sulfur therefrom;
a third stage capable of receiving the feed from the second stage and performing a first shift reaction thereon;
a fourth stage capable of receiving the feed from the third stage and performing a second shift reaction thereon; and
a fifth stage capable of receiving the feed from the fourth stage and preferentially oxidizing the received feed.
17. The power plant of claim 15, wherein the feed to the processor reactor conveys a fuel, air, and water mixture.
18. The power plant of claim 15, wherein the coolant subsystem includes:
a cooler capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom;
a coolant storage capable of storing coolant received from the cooler; and
a pump capable of pumping the stored coolant to the process reactor.
19. The power plant of claim 15, wherein the cooler comprises:
a heat exchanger; and
an air blower capable of cooling the heat exchanger by convection.
20. The power plant of claim 19, wherein the cooler further comprises:
a second heat exchanger; and
a second air blower capable of cooling the second heat exchanger by convection.
21. The power plant of claim 18, wherein the coolant comprises at least one of water, a glycol, an oil, and an alcohol.
22. The power plant of claim 18, wherein the coolant storage comprises a tank.
23. The power plant of claim 15, further comprising:
an oxidizer capable of preheating fuel, water, and air and feeding the mixture to the process reactor via the feed;
a fuel supply subsystem of providing fuel to the oxidizer;
a water subsystem capable of providing water to the oxidizer;
an air subsystem capable of providing air to the oxidizer.
24. The power plant of claim 15, further comprising a connection to the at least one external user.
25. The power plant of claim 24, wherein the connection comprises an outlet and an inlet through which the coolant may be circulated.
26. The power plant of claim 15, wherein the coolant subsystem further comprises a plurality of temperature control units, each temperature control unit including:
a temperature sensor sensing the temperature of the coolant in a portion of the fuel processor through which the coolant is circulating; and
an actuator operated responsive to the sensed temperature in the portoin to throttle to flow of coolant through the portion.
27. The power plant of claim 15, wherein the fuel cell comprises a polymer electrolyte fuel cell.
28. A method for use in processing a fuel for use in fuel processor, comprising:
feeding a fuel, water, and air mixture to a processor reactor;
reforming the mixture in the processor reactor; and
cooling the processor reactor with a coolant separate from the feed mixture to control the temperature of the reforming.
29. The method of claim 28, wherein reforming the mixture includes: performing an autothermal reaction;
cleaning sulfur from the feed;
performing at least one shift reaction from the cleaned feed; and
performing a preferential oxidation on the shifted feed.
30. The method of claim 28, wherein cooling the process reactor with a coolant include cooling the process reactor with at least one of water, a glycol, an oil, and an alcohol.
31. The method of claim 28, wherein cooling the processor reactor with the coolant separate from the feed mixture includes circulating the coolant through the processor reactor.
32. The method of claim 31, wherein circulating the coolant through the processor reactor includes:
exchanging heat from the coolant circulated from the processor reactor;
storing cooled coolant received; and
pumping the stored coolant to the process reactor.
33. The method of claim 31, wherein exchanging heat from the coolant includes cooling the coolant by convection.
34. The method of claim 28, wherein cooling the processor reactor with the coolant includes:
sensing the temperature of a portion of the processor reactor through which the coolant circulates; and
throttling a supply of the coolant through the portion of the processor responsive to the sensed temperature.
35. The method of claim 28, further comprising circulating the coolant to at least one external user.
36. An apparatus, comprising:
a cabinet; and
a fuel processor contained in the cabinet, the fuel processor including:
a processor reactor;
a feed to the processor reactor; and
a coolant subsystem capable of cooling the processor reactor and the interior of the cabinet.
37. The fuel processor of claim 36, wherein the processor reactor includes at least:
a first stage capable of receiving the feed and performing an autothermal reaction thereon;
a second stage capable of receiving the feed from the first stage and removing the sulfur therefrom;
a third stage capable of receiving the feed from the second stage and performing a first shift reaction thereon;
a fourth stage capable of receiving the feed from the third stage and performing a second shift reaction thereon; and
a fifth stage capable of receiving the feed from the fourth stage and preferentially oxidizing the received feed.
38. The fuel processor of claim 36, wherein the feed to the processor reactor conveys a fuel, air, and water mixture.
39. The apparatus of claim 36, wherein the coolant subsystem is capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom to cool the processor reactor and capable of circulating heat from the interior of the cabinet to the exterior of the cabinet to cool the interior of the cabinet.
40. The apparatus of claim 39, wherein the coolant subsystem comprises:
a heat exchanger; and
an air blower capable of cooling the heat exchanger and the cabinet interior by convection.
41. The apparatus of claim 40, wherein the cooler further comprises:
a second heat exchanger; and
a second air blower capable of cooling the heat exchanger and the cabinet interior by convection.
42. The apparatus of claim 39, wherein the coolant comprises at least one of water, a glycol, an oil, and an alcohol.
43. The apparatus of claim 36, wherein the coolant subsystem includes a cooler capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom and capable of circulating heat from the interior of the cabinet to the exterior of the cabinet.
44. The apparatus of claim 43, wherein the coolant subsystem further includes:
a coolant storage capable of storing coolant received from the cooler; and
a pump capable of pumping the stored coolant to the process reactor.
45. The apparatus of claim 43, wherein the cooler comprises:
a heat exchanger; and
an air blower capable of cooling the heat exchanger and the cabinet interior by convection.
46. The apparatus of claim 43, wherein the cooler further comprises:
a second heat exchanger; and
a second air blower capable of cooling the heat exchanger and the cabinet interior by convection.
47. The apparatus of claim 44, wherein the coolant storage comprises a tank.
48. The apparatus of claim 36, wherein the coolant subsystem includes:
a cooler capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom;
a coolant storage capable of storing coolant received from the cooler; and
a pump capable of pumping the stored coolant to the process reactor.
49. The apparatus of claim 36, further comprising:
an oxidizer capable of heating fuel, water, and air and feeding the mixture to the process reactor via the feed;
a fuel supply subsystem of providing fuel to the oxidizer;
a water subsystem capable of providing water to the oxidizer;
an air subsystem capable of providing air to the oxidizer.
50. The apparatus of claim 36, further comprising a connection to the at least one external user.
51. The apparatus of claim 50, wherein the connection comprises an outlet and an inlet through which the coolant may be circulated.
52. The fuel processor of claim 36, wherein the coolant subsystem further comprises a plurality of temperature control units, each temperature control unit including:
a temperature sensor sensing the temperature of the coolant in a portion of the processor reactor through which the coolant is circulating; and
an actuator operated responsive to the sensed temperature in the portion to throttle to flow of coolant through the portion.
53. A power plant, comprising:
a cabinet;
a fuel processor contained in the cabinet, the fuel processor including:
a processor reactor;
a feed to the processor reactor; and
a coolant subsystem capable of cooling the processor reactor and the interior of the cabinet.
a fuel cell contained in the cabinet and powered by the reformate generated by the processor reactor of the fuel processor.
54. The fuel processor of claim 53, wherein the processor reactor includes at least:
a first stage capable of receiving the feed and performing an autothermal reaction thereon;
a second stage capable of receiving the feed from the first stage and removing the sulfur therefrom;
a third stage capable of receiving the feed from the second stage and performing a first shift reaction thereon;
a fourth stage capable of receiving the feed from the third stage and performing a second shift reaction thereon; and
a fifth stage capable of receiving the feed from the fourth stage and preferentially oxidizing the received feed.
55. The fuel processor of claim 53, wherein the feed to the processor reactor conveys a fuel, air, and water mixture.
56. The power plant of claim 53, wherein the coolant subsystem is capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom to cool the processor reactor and capable of circulating heat from the interior of the cabinet to the exterior of the cabinet to cool the interior of the cabinet.
57. The power plant of claim 56, wherein the coolant subsystem comprises:
a heat exchanger; and
an air blower capable of cooling the heat exchanger and the cabinet interior by convection.
58. The power plant of claim 57, wherein the cooler further comprises:
a second heat exchanger; and
a second air blower capable of cooling the heat exchanger and the cabinet interior by convection.
59. The power plant of claim 56, wherein the coolant comprises at least one of water, a glycol, an oil, and an alcohol.
60. The power plant of claim 53, wherein the coolant subsystem includes a cooler capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom and capable of circulating heat from the interior of the cabinet to the exterior of the cabinet.
61. The power plant of claim 60, wherein the coolant subsystem further includes:
a coolant storage capable of storing coolant received from the cooler; and
a pump capable of pumping the stored coolant to the process reactor.
62. The power plant of claim 60, wherein the cooler comprises:
a heat exchanger; and
an air blower capable of cooling the heat exchanger and the cabinet interior by convection.
63. The power plant of claim 60, wherein the cooler further comprises:
a second heat exchanger; and
a second air blower capable of cooling the heat exchanger and the cabinet interior by convection.
64. The power plant of claim 61, wherein the coolant storage comprises a tank.
65. The power plant of claim 53, wherein the coolant subsystem includes:
a cooler capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom;
a coolant storage capable of storing coolant received from the cooler; and
a pump capable of pumping the stored coolant to the process reactor.
66. The power plant of claim 53, further comprising:
an oxidizer capable of preheating fuel, water, and air and feeding the mixture to the process reactor via the feed;
a fuel supply subsystem of providing fuel to the oxidizer;
a water subsystem capable of providing water to the oxidizer;
an air subsystem capable of providing air to the oxidizer.
67. The power plant of claim 53, further comprising a connection to the at least one external user.
68. The power plant of claim 67, wherein the connection comprises an outlet and an inlet through which the coolant may be circulated.
69. The fuel processor of claim 53, wherein the coolant subsystem further comprises a plurality of temperature control units, each temperature control unit including:
a temperature sensor sensing the temperature of the coolant in a portion of the fuel processor through which the coolant is circulating; and
an actuator operated responsive to the sensed temperature in the portion to throttle to flow of coolant through the portion.
70. The power plant of claim 53, wherein the fuel cell comprises a polymer electrolyte fuel cell.
71. A method for cooling a fuel processor, comprising:
circulating a coolant through a processor reactor of the fuel processor; and
cooling the circulated fluid through convection, the convection also circulating heated air from the interior of a cabinet for the fuel processor to the exterior.
72. The method of claim 71, wherein circulating the coolant through the processor reactor includes circulating the coolant through several different portions of the processor reactor.
73. The method of claim 71, wherein circulating the coolant through the processor reactor includes circulating at least one of water, a glycol, an oil, and an alcohol.
74. The method of claim 71, wherein circulating the coolant through the processor reactor includes circulating the coolant through the processor reactor separately from a feed to the processor reactor.
75. The method of claim 71, wherein cooling the circulating fluid through convection includes:
circulating the coolant through a heat exchanger; and
blowing air across the heat exchanger.
76. The method of claim 75, wherein cooling the circulating fluid through convection includes:
circulating the coolant through a second heat exchanger; and
blowing air across the second heat exchanger.
77. The method of claim 75, wherein blowing air across the heat exchanger circulates the heated air from the interior of the cabinet to the exterior.
78. A method for cooling a power plant, comprising:
circulating a coolant through a processor reactor of a fuel processor; and
cooling the circulated fluid through convection, the convection also circulating heated air from the interior of a cabinet for the power plant to the exterior.
79. The method of claim 78, wherein circulating the coolant through the processor reactor includes circulating the coolant through several different portions of the processor reactor.
80. The method of claim 78, wherein circulating the coolant through the processor reactor includes circulating at least one of water, a glycol, an oil, and an alcohol.
81. The method of claim 78, wherein circulating the coolant through the processor reactor includes circulating the coolant through the processor reactor separately from a feed to the processor reactor.
82. The method of claim 78, wherein cooling the circulating fluid through convection includes:
circulating the coolant through a heat exchanger; and
blowing air across the heat exchanger.
83. The method of claim 82, wherein cooling the circulating fluid through convection includes:
circulating the coolant through a second heat exchanger; and
blowing air across the second heat exchanger.
84. A fuel processor, comprising:
a processor reactor;
a feed to the processor reactor;
a coolant subsystem capable of circulating a coolant through the processor reactor; and
a connection to at least one external user of the fuel processor.
85. The fuel processor of claim 84, wherein the processor reactor includes at least:
a first stage capable of receiving the feed and performing an autothermal reaction thereon;
a second stage capable of receiving the feed from the first stage and removing the sulfur therefrom;
a third stage capable of receiving the feed from the second stage and performing a first shift reaction thereon;
a fourth stage capable of receiving the feed from the third stage and performing a second shift reaction thereon; and
a fifth stage capable of receiving the feed from the fourth stage and preferentially oxidizing the received feed.
86. The fuel processor of claim 84, wherein the feed to the processor reactor conveys a fuel, air, and water mixture.
87. The fuel processor of claim 84, wherein the coolant subsystem includes:
a cooler capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom;
a coolant storage capable of storing coolant received from the cooler; and
a pump capable of pumping the stored coolant to the process reactor.
88. The fuel processor of claim 87, wherein the cooler comprises:
a heat exchanger; and
an air blower capable of cooling the heat exchanger.
89. The fuel processor of claim 87, wherein the coolant comprises at least one of water, a glycol, an oil, and an alcohol.
90. The fuel processor of claim 87, wherein the coolant storage comprises a tank.
91. The fuel processor of claim 84, further comprising:
an oxidizer capable of heating fuel, water, and air and feeding the mixture to the process reactor via the feed;
a fuel supply subsystem of providing fuel to the oxidizer;
a water subsystem capable of providing water to the oxidizer;
an air subsystem capable of providing air to the oxidizer.
92. The fuel processor of claim 84, wherein the external user comprises a mechanical system not otherwise associated with the fuel processor.
93. The fuel processor of claim 92, wherein the mechanical system an air conditioning/heating mechanical system.
94. The fuel processor of claim 84, wherein the connection comprises an outlet and an inlet through which the coolant may be circulated to an external user.
95. The fuel processor of claim 84, further comprising an oxidizer capable preheating fuel, water, and air to generate a process feed stream introduced to the processor reactor through the feed.
96. The fuel processor of claim 84, wherein the coolant subsystem further comprises a plurality of temperature control units, each temperature control unit including:
a temperature sensor sensing the temperature of the coolant in a portion of the processor reactor through which the coolant is circulating; and
an actuator operated responsive to the sensed temperature in the portion to throttle to flow of coolant through the portion.
97. A power plant, comprising:
a fuel processor, including:
a processor reactor generating a reformate;
a feed to the processor reactor; and
a coolant subsystem capable of circulating a coolant through the processor reactor; and
a connection to at least one external user of the fuel processor; and
a fuel cell powered by the reformate generated by the processor reactor of the fuel processor.
98. The power plant of claim 97, wherein the processor reactor includes at least:
a first stage capable of receiving the feed and performing an autothermal reaction thereon;
a second stage capable of receiving the feed from the first stage and removing the sulfur therefrom;
a third stage capable of receiving the feed from the second stage and performing a first shift reaction thereon;
a fourth stage capable of receiving the feed from the third stage and performing a second shift reaction thereon; and
a fifth stage capable of receiving the feed from the fourth stage and preferentially oxidizing the received feed.
99. The power plant of claim 97, wherein the feed to the processor reactor conveys a fuel, air, and water mixture.
100. The power plant of claim 97, wherein the coolant subsystem includes:
a cooler capable of receiving coolant circulated from the processor reactor and exchanging heat therefrom;
a coolant storage capable of storing coolant received from the cooler; and
a pump capable of pumping the stored coolant to the process reactor.
101. The power plant of claim 97, wherein the cooler comprises:
a heat exchanger; and
an air blower capable of cooling the heat exchanger by convection.
102. The power plant of claim 101, wherein the cooler further comprises:
a second heat exchanger; and
a second air blower capable of cooling the second heat exchanger by convection.
103. The power plant of claim 100, wherein the coolant comprises at least one of water, a glycol, an oil, and an alcohol.
104. The power plant of claim 100, wherein the coolant storage comprises a tank.
105. The power plant of claim 97, further comprising:
an oxidizer capable of preheating fuel, water, and air and feeding the mixture to the process reactor via the feed;
a fuel supply subsystem of providing fuel to the oxidizer;
a water subsystem capable of providing water to the oxidizer;
an air subsystem capable of providing air to the oxidizer.
106. The power plant of claim 97, wherein the external user comprises a mechanical system not otherwise associated with the fuel processor.
107. The power plant of claim 106, wherein the mechanical system an air conditioning/heating mechanical system.
108. The power plant of claim 97, wherein the connection comprises an outlet and an inlet through which the coolant may be circulated.
109. The power plant of claim 97, wherein the coolant subsystem further comprises a plurality of temperature control units, each temperature control unit including:
a temperature sensor sensing the temperature of the coolant in a portion of the fuel processor through which the coolant is circulating; and
an actuator operated responsive to the sensed temperature in the portoin to throttle to flow of coolant through the portion.
110. The power plant of claim 97, wherein the fuel cell comprises a polymer electrolyte fuel cell.
US10/407,401 2003-04-04 2003-04-04 Coolant system for fuel processor Pending US20040197619A1 (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
US10/407,401 US20040197619A1 (en) 2003-04-04 2003-04-04 Coolant system for fuel processor
MYPI20081999A MY147114A (en) 2003-04-04 2004-03-29 Coolant system for fuel processor
ES04758610T ES2346884T3 (en) 2003-04-04 2004-03-30 REFRIGERANT SYSTEM FOR FUEL PROCESSOR.
CA2521372A CA2521372C (en) 2003-04-04 2004-03-30 Coolant system for fuel processor
DE602004026855T DE602004026855D1 (en) 2003-04-04 2004-03-30 COOLING SYSTEM FOR FUEL TREATMENT DEVICE
BRPI0409085-3A BRPI0409085A (en) 2003-04-04 2004-03-30 fuel processor, power installation, method for use in processing a fuel for use in the fuel processor, appliance, and, methods for cooling a fuel processor and for cooling a power installation
SG200716508-7A SG165171A1 (en) 2003-04-04 2004-03-30 Coolant system for fuel processor
DK04758610.2T DK1620636T3 (en) 2003-04-04 2004-03-30 Cooling system for fuel processing device
KR1020057018876A KR101138450B1 (en) 2003-04-04 2004-03-30 Coolant system for fuel processor
AT04758610T ATE465807T1 (en) 2003-04-04 2004-03-30 COOLING SYSTEM FOR FUEL TREATMENT DEVICE
JP2006509496A JP2006523371A (en) 2003-04-04 2004-03-30 Coolant system for fuel processor
MXPA05010578A MXPA05010578A (en) 2003-04-04 2004-03-30 Coolant system for fuel processor.
AU2004227327A AU2004227327B2 (en) 2003-04-04 2004-03-30 Coolant system for fuel processor
PCT/US2004/009783 WO2004090298A2 (en) 2003-04-04 2004-03-30 Coolant system for fuel processor
CN2004800135323A CN1791460B (en) 2003-04-04 2004-03-30 Coolant system for fuel processor
EP04758610A EP1620636B1 (en) 2003-04-04 2004-03-30 Coolant system for fuel processor
TW093109290A TWI358848B (en) 2003-04-04 2004-04-02 Coolant system for fuel processor
US10/954,679 US8119299B2 (en) 2003-04-04 2004-09-30 Coolant system for fuel processor
NO20055163A NO20055163L (en) 2003-04-04 2005-11-03 Dress system for reformers
HK06111419.4A HK1090593A1 (en) 2003-04-04 2006-10-18 Coolant system for fuel processor
US11/765,700 US20070243436A1 (en) 2003-04-04 2007-06-20 Coolant System for Fuel Processor
AU2010202932A AU2010202932B2 (en) 2003-04-04 2010-07-12 Coolant system for fuel processor
JP2012231535A JP2013157313A (en) 2003-04-04 2012-10-19 Coolant system for fuel processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/407,401 US20040197619A1 (en) 2003-04-04 2003-04-04 Coolant system for fuel processor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/954,679 Continuation-In-Part US8119299B2 (en) 2003-04-04 2004-09-30 Coolant system for fuel processor
US11/765,700 Division US20070243436A1 (en) 2003-04-04 2007-06-20 Coolant System for Fuel Processor

Publications (1)

Publication Number Publication Date
US20040197619A1 true US20040197619A1 (en) 2004-10-07

Family

ID=33097534

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/407,401 Pending US20040197619A1 (en) 2003-04-04 2003-04-04 Coolant system for fuel processor
US10/954,679 Expired - Fee Related US8119299B2 (en) 2003-04-04 2004-09-30 Coolant system for fuel processor
US11/765,700 Abandoned US20070243436A1 (en) 2003-04-04 2007-06-20 Coolant System for Fuel Processor

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/954,679 Expired - Fee Related US8119299B2 (en) 2003-04-04 2004-09-30 Coolant system for fuel processor
US11/765,700 Abandoned US20070243436A1 (en) 2003-04-04 2007-06-20 Coolant System for Fuel Processor

Country Status (19)

Country Link
US (3) US20040197619A1 (en)
EP (1) EP1620636B1 (en)
JP (2) JP2006523371A (en)
KR (1) KR101138450B1 (en)
CN (1) CN1791460B (en)
AT (1) ATE465807T1 (en)
AU (2) AU2004227327B2 (en)
BR (1) BRPI0409085A (en)
CA (1) CA2521372C (en)
DE (1) DE602004026855D1 (en)
DK (1) DK1620636T3 (en)
ES (1) ES2346884T3 (en)
HK (1) HK1090593A1 (en)
MX (1) MXPA05010578A (en)
MY (1) MY147114A (en)
NO (1) NO20055163L (en)
SG (1) SG165171A1 (en)
TW (1) TWI358848B (en)
WO (1) WO2004090298A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050229490A1 (en) * 2004-04-19 2005-10-20 Texaco Inc. Reactor and apparatus for hydrogen generation
EP1839736A1 (en) * 2006-03-31 2007-10-03 Miura Co., Ltd. Hydrogen generator and fuel cell system using the same
WO2008017787A2 (en) * 2006-08-08 2008-02-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Production and processing unit for a synthesis gas comprising a steam reformer
US20120148881A1 (en) * 2001-11-27 2012-06-14 Tony Quisenberry Method and system for automotive battery cooling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178062B2 (en) * 2007-09-27 2012-05-15 Sanyo Electric Co., Ltd. Reforming apparatus for fuel cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673624A (en) * 1984-02-08 1987-06-16 Hockaday Robert G Fuel cell
US5731101A (en) * 1996-07-22 1998-03-24 Akzo Nobel Nv Low temperature ionic liquids
US5827602A (en) * 1995-06-30 1998-10-27 Covalent Associates Incorporated Hydrophobic ionic liquids
US20020004152A1 (en) * 2000-05-31 2002-01-10 Clawson Lawrence G. Joint-cycle high-efficiency fuel cell system with power generating turbine
US20020028366A1 (en) * 2000-05-01 2002-03-07 Haltiner Karl Jacob Fuel cell waste energy recovery combustor
US20020083646A1 (en) * 2000-12-05 2002-07-04 Deshpande Vijay A. Fuel processor for producing a hydrogen rich gas
US20020090328A1 (en) * 2000-12-12 2002-07-11 Deshpande Vijay A. Nested compact fuel processor for producing hydrogen rich gas
US20020088740A1 (en) * 2000-12-13 2002-07-11 Krause Curtis L. Single chamber compact fuel processor
US20020155329A1 (en) * 2001-04-18 2002-10-24 Stevens James F. Integrated fuel processor, fuel cell stack, and tail gas oxidizer with carbon dioxide removal
US20030064010A1 (en) * 2001-06-29 2003-04-03 Plug Power Inc. Fuel processor design and method of manufacture

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254365A (en) * 1986-04-28 1987-11-06 Fuji Electric Co Ltd Fuel cell generation system
JPH08190925A (en) * 1995-01-06 1996-07-23 Mitsubishi Electric Corp Cooling system of fuel cell power generating equipment
JPH0930802A (en) * 1995-05-15 1997-02-04 Toyota Motor Corp Device for reducing concentration of carbon monoxide and device for reducing concentration of methanol and fuel-reforming device
JP4000608B2 (en) * 1996-11-07 2007-10-31 トヨタ自動車株式会社 Hydrogen production filling device and electric vehicle
JP4015225B2 (en) * 1997-04-30 2007-11-28 三菱重工業株式会社 Carbon monoxide removal equipment
JPH11185790A (en) * 1997-12-22 1999-07-09 Matsushita Electric Works Ltd Portable power supply case
US6120923A (en) * 1998-12-23 2000-09-19 International Fuel Cells, Llc Steam producing hydrocarbon fueled power plant employing a PEM fuel cell
EP1181241B1 (en) * 1999-05-03 2005-08-24 Nuvera Fuel Cells Autothermal reforming system with integrated shift beds, preferential oxidationreactor, auxiliary reactor, and system controls
US6316134B1 (en) * 1999-09-13 2001-11-13 Ballard Generation Systems, Inc. Fuel cell electric power generation system
US6383670B1 (en) * 1999-10-06 2002-05-07 Idatech, Llc System and method for controlling the operation of a fuel processing system
US6416891B1 (en) * 1999-11-22 2002-07-09 Utc Fuel Cells, Llc Operating system for a direct antifreeze cooled fuel cell power plant
JP2001185178A (en) * 1999-12-28 2001-07-06 Sanyo Electric Co Ltd Co removing unit and solid polymeric fuel cell power generation system
JP4030256B2 (en) * 2000-08-11 2008-01-09 三洋電機株式会社 Cogeneration system using fuel cells
DE10041712A1 (en) * 2000-08-25 2002-03-07 Volkswagen Ag Reforming device used for producing a hydrogen-rich gas from a mixture containing hydrocarbons comprises a high temperature shift reaction unit, a low temperature shift reaction unit and a heat exchanger contained in a converter
JP2002100389A (en) * 2000-09-25 2002-04-05 Sanyo Electric Co Ltd Fuel gas reformer and fuel cell system
JP2002175828A (en) * 2000-12-05 2002-06-21 Nissan Motor Co Ltd Fuel-reforming system for fuel cell
KR100908867B1 (en) * 2001-04-26 2009-07-22 텍사코 디벨롭먼트 코포레이션 Single Chamber Compact Fuel Processor
US6939635B2 (en) * 2001-05-31 2005-09-06 Plug Power Inc. Method and apparatus for controlling a combined heat and power fuel cell system
CN1261200C (en) * 2001-08-10 2006-06-28 德士古发展公司 Fuel processor utilizing heat pipe cooling
JP3983020B2 (en) * 2001-08-30 2007-09-26 三洋電機株式会社 Method for starting reformer in fuel cell system
US7192460B2 (en) * 2003-02-28 2007-03-20 Modine Manufacturing Company Reformate cooling system and method for use in a fuel processing subsystem

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673624A (en) * 1984-02-08 1987-06-16 Hockaday Robert G Fuel cell
US5827602A (en) * 1995-06-30 1998-10-27 Covalent Associates Incorporated Hydrophobic ionic liquids
US5731101A (en) * 1996-07-22 1998-03-24 Akzo Nobel Nv Low temperature ionic liquids
US20020028366A1 (en) * 2000-05-01 2002-03-07 Haltiner Karl Jacob Fuel cell waste energy recovery combustor
US20020004152A1 (en) * 2000-05-31 2002-01-10 Clawson Lawrence G. Joint-cycle high-efficiency fuel cell system with power generating turbine
US20020090334A1 (en) * 2000-12-05 2002-07-11 Stevens James F. Method for reducing the carbon monoxide content of a hydrogen rich gas
US20020083646A1 (en) * 2000-12-05 2002-07-04 Deshpande Vijay A. Fuel processor for producing a hydrogen rich gas
US20020090326A1 (en) * 2000-12-05 2002-07-11 Deshpande Vijay A. Reactor module for use in a compact fuel processor
US20020094310A1 (en) * 2000-12-05 2002-07-18 Krause Curtis L. Compact fuel processor for producing a hydrogen rich gas
US20020098129A1 (en) * 2000-12-05 2002-07-25 Paul Martin Apparatus and method for heating catalyst for start-up of a compact fuel processor
US20020090328A1 (en) * 2000-12-12 2002-07-11 Deshpande Vijay A. Nested compact fuel processor for producing hydrogen rich gas
US20020090327A1 (en) * 2000-12-12 2002-07-11 Deshpande Vijay A. Dual stack compact fuel processor for producing hydrogen rich gas
US20020088740A1 (en) * 2000-12-13 2002-07-11 Krause Curtis L. Single chamber compact fuel processor
US20020155329A1 (en) * 2001-04-18 2002-10-24 Stevens James F. Integrated fuel processor, fuel cell stack, and tail gas oxidizer with carbon dioxide removal
US20030064010A1 (en) * 2001-06-29 2003-04-03 Plug Power Inc. Fuel processor design and method of manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120148881A1 (en) * 2001-11-27 2012-06-14 Tony Quisenberry Method and system for automotive battery cooling
US9113577B2 (en) * 2001-11-27 2015-08-18 Thermotek, Inc. Method and system for automotive battery cooling
US20050229490A1 (en) * 2004-04-19 2005-10-20 Texaco Inc. Reactor and apparatus for hydrogen generation
EP1839736A1 (en) * 2006-03-31 2007-10-03 Miura Co., Ltd. Hydrogen generator and fuel cell system using the same
WO2008017787A2 (en) * 2006-08-08 2008-02-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Production and processing unit for a synthesis gas comprising a steam reformer
FR2904820A1 (en) * 2006-08-08 2008-02-15 Air Liquide UNIT FOR THE PRODUCTION AND TREATMENT OF A SYNTHESIS GAS COMPRISING A STEAM REFORMER
WO2008017787A3 (en) * 2006-08-08 2008-03-27 Air Liquide Production and processing unit for a synthesis gas comprising a steam reformer
US20090301309A1 (en) * 2006-08-08 2009-12-10 Patrick Pereira Production And Processing Unit For A Synthesis Gas Comprising A Steam Reformer

Also Published As

Publication number Publication date
WO2004090298A3 (en) 2004-12-09
WO2004090298A2 (en) 2004-10-21
BRPI0409085A (en) 2006-04-11
DK1620636T3 (en) 2010-08-09
CA2521372A1 (en) 2004-10-21
NO20055163D0 (en) 2005-11-03
AU2004227327A1 (en) 2004-10-21
KR20050120700A (en) 2005-12-22
CN1791460B (en) 2012-01-18
EP1620636A4 (en) 2007-06-13
NO20055163L (en) 2006-01-03
MY147114A (en) 2012-10-31
JP2006523371A (en) 2006-10-12
ES2346884T3 (en) 2010-10-21
DE602004026855D1 (en) 2010-06-10
SG165171A1 (en) 2010-10-28
US20050042486A1 (en) 2005-02-24
US20070243436A1 (en) 2007-10-18
US8119299B2 (en) 2012-02-21
ATE465807T1 (en) 2010-05-15
CA2521372C (en) 2012-11-13
CN1791460A (en) 2006-06-21
AU2010202932A1 (en) 2010-07-29
AU2010202932B2 (en) 2012-09-06
TW200509452A (en) 2005-03-01
TWI358848B (en) 2012-02-21
MXPA05010578A (en) 2005-11-23
JP2013157313A (en) 2013-08-15
AU2004227327B2 (en) 2010-07-29
HK1090593A1 (en) 2006-12-29
KR101138450B1 (en) 2012-04-26
EP1620636A2 (en) 2006-02-01
EP1620636B1 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
US7857875B2 (en) Autothermal reforming in a fuel processor utilizing non-pyrophoric shift catalyst
US8260464B2 (en) Architectural hierarchy of control for a fuel processor
AU2010202890A1 (en) Operating states for fuel processor subsystems
AU2010202932B2 (en) Coolant system for fuel processor

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXACO INC. AND TEXACO DEVELOPMENT CORPORATION, CA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DESHPANDE, VIJAY A.;WHEAT, W. SPENCER;KRAUSE, CURTIS L.;AND OTHERS;REEL/FRAME:013952/0067;SIGNING DATES FROM 20030402 TO 20030404

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED