US20040169267A1 - Chip shaped electronic device and a method of producing the same - Google Patents

Chip shaped electronic device and a method of producing the same Download PDF

Info

Publication number
US20040169267A1
US20040169267A1 US10/694,802 US69480203A US2004169267A1 US 20040169267 A1 US20040169267 A1 US 20040169267A1 US 69480203 A US69480203 A US 69480203A US 2004169267 A1 US2004169267 A1 US 2004169267A1
Authority
US
United States
Prior art keywords
element body
internal electrode
electronic device
alkali metal
intensity ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/694,802
Other versions
US6813137B2 (en
Inventor
Dai Matsuoka
Hidetaka Kitamura
Tadashi Ogasawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002313772A external-priority patent/JP3735756B2/en
Priority claimed from JP2003091476A external-priority patent/JP4020816B2/en
Application filed by TDK Corp filed Critical TDK Corp
Assigned to TDK CORPORATION reassignment TDK CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KITAMURA, HIDETAKA, OGASAWARA, TADASHI, MATSUOKA, DAI
Publication of US20040169267A1 publication Critical patent/US20040169267A1/en
Application granted granted Critical
Publication of US6813137B2 publication Critical patent/US6813137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/146Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the resistive element surrounding the terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making

Definitions

  • the present invention relates to a chip shaped electronic device, such as a multilayer chip varistor, not requiring glass coating or other insulative protective layers, being tolerant of temperature changes, capable of maintaining high resistance of an element surface even in reflow soldering, being highly reliable, and can be easily produced, and a method of producing the same.
  • chip shaped electronic devices In recent years, along with electronic devices becoming more compact and furthermore highly performing, chip shaped electronic devices have become essential.
  • a chip shaped electronic device is normally arranged on a circuit substrate and subjected to heat treatment together with printed solder to form a circuit. This heat treatment is called reflow soldering processing.
  • a flux having a strong reducing power is included in the solder, and a surface of the chip device is corroded thereby to end up declining insulative resistance in some cases.
  • a multilayer varistor is not exceptional as a chip shaped electronic device, and an element surface of the multilayer chip varistor is reduced by reflow soldering to bring disadvantages of declining insulative resistance and declining reliability.
  • a glass is coated on the element surface of a multilayer chip varistor for improving reliability (for example, refer to the patent article 1).
  • micro size chip shaped electronic devices having a size of, for example, 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less have been under development.
  • Patent Article 1 Japanese Unexamined Patent Publication No. 6-96907
  • Patent Article 2 Japanese Unexamined Patent Publication No. 9-246017
  • An object of the present invention is to provide a chip shaped electronic device, such as a multilayer chip varistor, not requiring glass coating or other insulative protective layers, being tolerant of temperature changes, capable of maintaining high resistance of an element surface even in reflow soldering, being highly reliable, and can be easily produced, and a method of producing the same.
  • another object of the present invention is to provide a micro chip shaped electronic device (for example, having a size of 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less) having the above characteristics and a method of producing the same.
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
  • a chip shaped electronic device comprising:
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less;
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane (a gap between terminals) is 50 ⁇ m or more;
  • a chip shaped electronic device comprising:
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less;
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 ⁇ m or more;
  • a chip shaped electronic device comprising:
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less;
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 ⁇ m or more;
  • a chip shaped electronic device comprising:
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less;
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 ⁇ m or more;
  • a chip shaped electronic device comprising:
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less;
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 ⁇ m or more;
  • a chip shaped electronic device comprising:
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less;
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 ⁇ m or more;
  • the ion intensity ratio is 0.01 ⁇ (Li/Zn) ⁇ 500.
  • a method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, and a pair of terminal electrodes formed on an outer surface of the element body, including the steps of:
  • the alkali metal is diffused under a condition of attaining 0.001 ⁇ (A/Zn) ⁇ 500 when assuming a minimum distance from an outermost layer side of the internal electrode layers in the stacking direction to the surface of the element body is 1 at the time of diffusing the alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9 ⁇ 1) by a secondary ion mass spectrometry.
  • a method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, and a pair of terminal electrodes formed on an outer surface of the element body, including the steps of:
  • the alkali metal is diffused under a condition of attaining 0.001 ⁇ (A/Zn) ⁇ 500 when assuming a minimum distance from an outermost layer side of the internal electrode layers in the stacking direction to the surface of the element body is 1 at the time of diffusing the alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9 ⁇ 1) by a secondary ion mass spectrometry.
  • a method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, including the steps of:
  • the alkali metal is diffused under a condition of attaining 0.001 ⁇ (A/Zn) ⁇ 500 when measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of 100 ⁇ m by a secondary ion mass spectrometry.
  • a method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, including the steps of:
  • the alkali metal is diffused under a condition of attaining 0.001 ⁇ (A/Zn) ⁇ 500 when measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of 100 ⁇ m by a secondary ion mass spectrometry.
  • a method of producing a chip shaped electronic device comprising:
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less;
  • the alkali metal is diffused under a condition of attaining 0.001 ⁇ (A/Zn) ⁇ 500 when assuming a minimum distance from an outermost layer side of the internal electrode layers in the stacking direction to the surface of the element body is 1 at the time of diffusing the alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9 ⁇ 1) by a secondary ion mass spectrometry.
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less;
  • the alkali metal is diffused under a condition of attaining 0.001 ⁇ (A/Zn) ⁇ 500 when assuming a minimum distance from an outermost layer side of the internal electrode layers in the stacking direction to the surface of the element body is 1 at the time of diffusing the alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9 ⁇ 1) by a secondary ion mass spectrometry.
  • the element body is subjected to heat treatment at a temperature of 700 to 1000° C. in a state of being applied with powder of an alkali metal compound, and at least one of an application amount of the powder to the surface of the element body, a heat treatment temperature and a heat treatment time is controlled.
  • the above alkali metal (A) is at least one of Li, Na, K, Rb and Cs.
  • the chip shaped electronic device is not particularly limited, preferably, the above element body has the configuration of alternately stacking zinc oxide voltage nonlinear resistor layers and internal electrode layers, and the chip shaped electronic device is a multilayer chip varistor.
  • the present invention is, in brief, a technique for letting single or a plurality of alkali metals, such as Li, Na, K, Rb and Cs, etc., contained in a range up to a predetermined depth including a surface of an element body including zinc oxide material layers and internal electrode layers.
  • alkali metals such as Li, Na, K, Rb and Cs, etc.
  • the present inventors found that when assuming a shortest distance from an outermost side in the stacking direction of an internal electrode layer to the surface of an element body is 1 regardless of a size of the element body in a multilayer chip varistor or other chip shaped electronic devices, and measuring an ion intensity ratio (alkali metal A/zinc Zn) of a range from the surface of the element body to a depth of (0.9 ⁇ 1) and the ion intensity ratio is adjusted to be in a predetermined range, a decline of an insulation resistance value due to a flux in reflow soldering can be prevented and an insulation defective rate after the reflow soldering can be widely reduced.
  • an ion intensity ratio alkali metal A/zinc Zn
  • M1/M2 defined in the patent article 2 becomes about 1, which is out of a range of 10 ⁇ (M1/M2) ⁇ 50000 regulated in the patent article 2.
  • the present inventors found for the first time that a decline of the insulation resistance value after reflow soldering can be prevented and the insulation defective rate can be reduced by setting to the range of the present invention.
  • a distance between the internal electrode layer arranged at the outermost side among the internal electrode layers and the surface of the element body becomes less than 100 ⁇ m in some cases.
  • the above alkali metal sometimes diffuses even inside of the chip which is the inner side of the outermost side in the stacked direction of the internal electrode layers (between the internal electrodes causing the varistor characteristics) and electric characteristics may change by being affected thereby.
  • the size of the element body is a micro size, the same effect can be obtained by not applying the technique of (3) but the technique of (2).
  • a high resistance layer is formed by adhering an alkali metal supply source on the surface of the element body and diffusing an alkali metal from the element body surface to inside thereof by heat treatment, and coating of an insulative glass layer is unnecessary as being different from the related art, so that a complicated facilities and processes are unnecessary and a highly reliable chip shaped electronic device can be produced easily at a low cost.
  • FIG. 1 is a schematic sectional view of a multilayer chip varistor according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a production process of a multilayer chip varistor according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a production process of a multilayer chip varistor according to another embodiment of the present invention.
  • FIG. 4 is a schematic sectional view of a multilayer chip varistor according to an embodiment of the present invention.
  • the internal electrode layers 2 alternately expose from opposing both end surfaces in the element body 12 and are respectively connected to external terminal electrodes 3 to form a varistor circuit.
  • An outermost layer 11 is stacked outside of the internal electrode layers 2 in the stacked direction and an internal electrode layer 2 is protected.
  • the outermost layer 11 is normally composed of the same material as that of the resistor layer 1 .
  • a material of the resistor layer 1 will be explained later. It is the same for a high resistant layer 4 formed around the element body 12 .
  • a shape of the element body 12 is not particularly limited, but normally is a rectangular parallel shaped.
  • a size of the element body 12 is, for example, (more than 0.6 mm and 5.6 mm or less) ⁇ (more than 0.3 mm and 5.0 mm or less) ⁇ thickness (more than 0.3 mm and 1.9 mm or less) or so.
  • the voltage nonlinear resistor layer 1 (the outermost layer 11 , as well) is composed of a zinc oxide varistor material layer.
  • the zinc oxide varistor material layer is composed of a material including, for example, ZnO as a main component and rare-earth elements, Co, group IIIb elements (B, Al, Ga and In), Si, Cr, alkali metal elements (K, Rb and Cs) and alkali earth metal elements (Mg, Ca, Sr and Ba), etc. as subcomponents. Alternately, it may be composed of a material including ZnO as a main component and Bi, Co, Mn, Sb and Al, etc. as subcomponents.
  • the main component including ZnO works as a substance of developing excellent voltage linearity in voltage—current characteristics and a large surge tolerated dose.
  • the voltage nonlinearity means a phenomenon that a current flowing to the element increases nonlinearly when applying a gradually increasing voltage to between terminal electrodes 3 .
  • a content of ZnO as a main component in the resistor layer 1 is not particularly limited, but normally 99.8 to 69.0 wt % when assuming that the whole material composing the resistor layer 1 is 100 wt %.
  • a conductive material contained in the internal electrode layer 2 is not particularly limited, but is preferably composed of Pd or Ag—Pd alloy.
  • a thickness of the internal electrode layer 2 may be suitably determined in accordance with use, but is normally 0.5 to 5 ⁇ m or so.
  • a conductive material contained in the external terminal electrode 3 is not particularly limited, but normally Ag or Ag—Pd alloy is used. Furthermore, a film of Ni and Sn/Pd is formed by electric plating, etc. on the surface of a base layer of Ag or Ag—Pd alloy, etc. in accordance with need. A thickness of the external terminal electrode 3 may be suitably determined in accordance with the use, but is normally 10 to 50 ⁇ m or so.
  • the high resistance layer 4 is formed to cover allover the outer surface of the element body 12 .
  • This high resistance layer 4 is formed by performing heat treatment on an alkali metal compound which becomes an oxide by thermal decomposition in a state of being adhered to the surface of the element body 12 and diffusing an alkali metal from the surface of the element body 12 to inside thereof.
  • the high resistance layer 4 has a role of protecting the voltage nonlinear resistor layer 1 at the time of reflow soldering.
  • a thickness of the high resistance layer 4 is not particularly limited, but is at least 10 ⁇ m or more, which is a thickness of not reaching to the internal electrode layer 2 .
  • the thickness is too thin, effects of the present invention become small, while when it is too thick, electric characteristics of the voltage nonlinear resistor layer 1 may be affected thereby.
  • the high resistance layer 4 when measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface (the surface of the element body 12 ) to a depth of 100 ⁇ m by a secondary ion mass spectrometry, it becomes 0.001 ⁇ (A/Zn) ⁇ 500.
  • the ion intensity ratio can be obtained by the secondary ion mass spectrometry (SIMS).
  • SIMS is a method of highly sensitively measuring an ion density distribution in the depth direction from the surface layer in a micron order.
  • a high energy ion beam severe keV to 20 kev
  • atoms constituting a sample are discharged as neutrons and ions due to a sputter phenomenon.
  • a method of analyzing elements and compounds on the sample surface by dividing secondarily discharged ions to a ratio of a mass and charges by a mass spectrometer in this way is the SIMS.
  • An alkali metal dispersed in the high resistance layer 4 is, while not particularly limited, preferably at least one of Li, Na, K, Rb and Cs, and more preferably, Li.
  • the ion intensity ratio of Li and Zn, (Li/Zn), is preferably 0.001 ⁇ (Li/Zn) ⁇ 500, more preferably 0.01 ⁇ (Li/Zn) ⁇ 500.
  • the alkali metal is Na
  • the ion intensity ratio of Na and Zn, (Na/Zn) is preferably 0.001 ⁇ (Na/Zn) ⁇ 100.
  • the alkali metal is K
  • the ion intensity ratio of K and Zn, (K/Zn) is preferably 0.001 ⁇ (K/Zn) ⁇ 100.
  • the alkali metal is Rb
  • the ion intensity ratio of Rb and Zn, (Rb/Zn) is preferably 0.01 ⁇ (Rb/Zn) ⁇ 100.
  • the alkali metal is Cs
  • the ion intensity ratio of Cs and Zn, (Cs/Zn) is preferably 0.1 ⁇ (Cs/Zn) ⁇ 100.
  • the thus obtained chip element is applied with an alkali metal compound on its surface by a sealed rotary pot (process “d”).
  • the alkali metal compound is not particularly limited, but is a compound capable of dispersing an alkali metal into the element body 12 from the surface by heat treatment, and oxides, hydroxides, chlorides, nitrates, borates, carbonates, and oxalates, etc. of alkali metals are used.
  • oxides, hydroxides, chlorides, nitrates, borates, carbonates, and oxalates, etc. of alkali metals are used.
  • the chip element adhered with the alkali metal compound is subjected to heat treatment at a predetermined temperature for a predetermined time in an electric furnace (process “e”).
  • a predetermined temperature for a predetermined time in an electric furnace process “e”.
  • an alkali metal in the alkali metal compound is dispersed into the chip element from its surface, and an element body 12 being formed a high resistance layer 4 is obtained.
  • the above ion intensity ratio and a thickness of the high resistance layer 4 can be controlled by the temperature and time of the heat treatment at this time.
  • a preferable heat treatment temperature is 700 to 1000° C., and a heat treatment atmosphere is in the air.
  • the heat treatment time is preferably 10 minutes to 4 hours.
  • terminal electrodes are applied and printed on the both end portions of the element after the heat treatment, and Ag base electrodes are formed (process “f”).
  • Ag is selected as the base electrode material, but any material can be used as far as it is easily printed on the element body 12 , easily bonded with materials composing the internal electrode layers 2 and easily plated in a follow-on plating process.
  • a Ni plating film and/or a Sn/Pb plating film are formed on the surface of the base electrodes by electric plating (process “g”), so that a multilayer chip varistor 10 is obtained.
  • the means to diffusing an alkali metal from the surface of the element body 12 is not limited to the above means and, for example, a means below can be applied. Namely, a method of performing heat treatment on the element body 12 before being formed the terminal electrodes 3 in a state of being buried in an alkali supply source, a method of performing heat treatment after uniformly applying with a spray, etc. a liquid alkali supply source to the surface of the element body 12 , and a method of performing heat treatment after uniformly applying an air including alkali metal supply source powder to the surface of the element body 12 , may be mentioned.
  • an alkali metal diffuses more or less to the exposed end surfaces of the internal electrode layers 2 exposing at the both end portions of the element body 12 , but conductivity of the internal electrode layers 2 is not affected thereby.
  • a pair of external terminal electrodes 3 a are formed on the outer surface of an element body 12 a having the configuration of alternately stacking voltage nonlinear resistor layers 1 a and internal electrode layers 2 a .
  • a distance of the opposing end portions on the same plane (a gap between terminals; corresponding to the reference number 5 in FIG. 4) of the pair of external terminal electrodes 3 a is 50 ⁇ m or more, and the configuration other than that is the same as that in the first embodiment.
  • the outside of the internal electrode layers 2 a in the stacking direction is stacked with an outermost layer 11 a and the internal electrode layer 2 a is protected.
  • the outermost layer 11 a is composed of the same material as that of the resistor layer 1 a.
  • a shape of the element body 12 a is not particularly limited and is normally a rectangular parallelepiped.
  • the present embodiment is designated to an element body 12 a having a micro size, such as (0.6 mm or less, preferably 0.4 mm or less) ⁇ (0.3 mm or less, preferably 0.2 mm) ⁇ (a thickness of 0.3 mm or less, preferably 0.2 mm or less).
  • the thickness of the outermost layer 11 a is normally made to be less than 100 ⁇ m, preferably 90 ⁇ m or less in the present invention. Note that the thickness of the outermost layer 11 a exceeds 100 ⁇ m in some cases depending on an interlayer thickness of the resistor layer 1 a sandwiched by a pair of internal electrode layers 2 a.
  • the resistor layer 1 a (outermost layer 11 a , as well), the internal electrode layer 2 a and the external terminal electrode 3 a are configured in the same way as the resistor layer 1 , the internal electrode layer 2 and the external terminal electrode 3 in the first embodiment. Also, the same is applied to a high resistor layer 4 a formed around the element body 12 a.
  • the alkali metal dispersed in the high resistance layer 4 is preferably at least one of Li, Na, K, Rb and Cs, further preferably Li.
  • the ion intensity ratio of Li and Zn, (Li/Zn), is preferably 0.001 ⁇ (Li/Zn) ⁇ 500, more preferably 0.01 ⁇ (Li/Zn) ⁇ 500.
  • the alkali metal is Na
  • the ion intensity ratio of Na and Zn, (Na/Zn) is preferably 0.001 ⁇ (Na/Zn) ⁇ 100, more preferably, 0.01 ⁇ (Na/Zn) ⁇ 100.
  • the alkali metal is K
  • the ion intensity ratio of K and Zn, (K/Zn) is preferably 0.001 ⁇ (K/Zn) ⁇ 100, more preferably 0.01 ⁇ (K/Zn) ⁇ 100.
  • the alkali metal is Rb
  • the ion intensity ratio of Rb and Zn, (Rb/Zn) is preferably 0.001 ⁇ (Rb/Zn) ⁇ 100, more preferably 0.01 ⁇ (Rb/Zn) ⁇ 100.
  • the alkali metal is Cs
  • the ion intensity ratio of Cs and Zn, (Cs/Zn) is preferably 0.001 ⁇ (Cs/Zn) ⁇ 100, more preferably 0.1 ⁇ (Cs/Zn) ⁇ 100.
  • a method of producing the multilayer chip varistor 10 a may be the same as that in the case of producing the varistor 10 in the first embodiment.
  • a chip element to be an element body 12 having a 1608 shape was formed by following the processes “a” to “c” shown in FIG. 2 and a normal method.
  • a nonlinear resistor layer 1 and the outermost layer 1 a of the chip element were composed of a zinc oxide material, specifically composed of what obtained by adding by the ratio of 0.5 mol % of Pr, 1.5 mol % of Co, 0.005 mol % of Al, 0.05 mol % of K, 0.1 mol % of Cr, 0.1 mol % of Ca and 0.02 mol % of Si to ZnO of 99.9% purity (99.725 mol %).
  • an amount of Li 2 CO 3 was in a range of 0.001 ⁇ g to 10 mg per one element chip. By increasing or decreasing the amount, the later explained samples having different ion intensity ratios can be obtained.
  • the chip element applied with the Li 2 CO 3 powder was subjected to heat treatment at a temperature of 700 to 1000° C. for 10 minutes to 4 hours in the air to diffuse Li from the surface of the chip element, and a high resistance layer 4 was formed near the surface.
  • heat treatment temperature and the heat processing time By changing the heat treatment temperature and the heat processing time, the later explained samples having different ion intensity ratios can be obtained.
  • an Ag base electrode was formed by a normal method, and a Ni plating film and a Sn/Pb plating film were formed on the surface of the base electrode by electric plating to form terminal electrode 3 , consequently, a multilayer chip varistor 10 was obtained.
  • the ion intensity ratio of Li/Zn was obtained by taking an average of values up to the depth of 100 ⁇ m by the secondary ion mass spectrometry (SIMS). Also, the insulation resistance value was measured at an application voltage of 3V and obtained from 100 average values, and the insulation defective rate was calculated by presuming elements not reaching 1 M ⁇ were defective. Note that all elements before the reflow soldering had an insulation resistance of 100 m ⁇ or more. TABLE 1 After Reflow Soldering Insulation Ion Intensity Resistance Ratio Value Sample No.
  • elements having the ion intensity ratio of 0.0001 or less had a small average insulation resistance value of 1 M ⁇ after reflow and high insulation defective rates after reflow (sample 1 ).
  • elements having an ion intensity ratio of 0.001 or more and 500 or less had an average insulation resistance value of larger than 4.8 M ⁇ and the defective rate was all “0” (samples 2 to 8 ).
  • elements of 0.01 or more and 500 or less had an average insulation resistance value of larger than 12 M ⁇ , which was more preferable.
  • samples having an ion intensity ratio of 1000 or more could not be produced (sample 9 ).
  • Chip elements to be an element body 12 having a 0603 shape were formed by following the processes “a” to “c” shown in FIG. 2 and a normal method.
  • An amount of Li 2 CO 3 was in a range of 0.01 ⁇ g to 10 mg per one chip element.
  • a gap between terminals 5 was changed to 5 different kinds (20 ⁇ m, 50 ⁇ m, 100 ⁇ m, 300 ⁇ m and 500 ⁇ m) for producing.
  • multilayer chip varistor samples were obtained in the same way as in the first embodiment.
  • the ion intensity ratio of Li/Zn was obtained by taking an average of values from the surface of the element body 12 to the depth of (0.9 ⁇ 1) when assuming that the minimum distance from the outermost side of the internal electrode layers 2 in the stacking direction to the surface of the element body 12 is 1.
  • the insulation resistance value and the insulation defective rate were obtained in the same way as in the first embodiment and evaluated in the same way. TABLE 6 After Reflow Soldering Gap Insulation Between Ion Intensity Resistance Terminals Ratio Value Defective Sample No.
  • samples having the ion intensity ratio of 1000 or more could not be produced (samples 10 a , 20 a , 30 a , 40 a and 50 a ). Also, in samples 2 a to 9 a , 12 a to 19 a , 22 a to 29 a , 32 a to 39 a and 42 a to 49 a , it was confirmed by other experiment that the varistor characteristics (voltage nonlinearity) did not change before and after Li dispersion processing.
  • samples having the ion intensity ratio of 500 or more could not be produced (samples 59 a , 60 a , 69 a , 70 a , 79 a , 80 a , 89 a , 90 a , 99 a and 100 a ). Also, in samples 52 a to 58 a , 62 a to 68 a , 72 a to 78 a , 82 a to 88 a and 92 a to 98 a , it was confirmed by other experiment that the varistor characteristics (voltage nonlinearity) did not change.
  • samples having the ion intensity ratio of 500 or more could not be produced (samples 159 a , 160 a , 169 a , 170 a , 179 a , 180 a , 189 a , 190 a , 199 a and 200 a ). Also, in samples 152 a to 158 a , 162 a to 168 a , 172 a to 178 a , 182 a to 188 a and 192 a to 198 a , it was confirmed by other experiment that the varistor characteristics (voltage nonlinearity) did not change before and after the Rb dispersion processing.
  • samples having the ion intensity ratio of 500 or more could not be produced (samples 209 a , 210 a , 219 a , 220 a , 229 a , 230 a , 239 a , 240 a , 249 a and 250 a ). Also, in samples 202 a to 208 a , 212 a to 218 a , 222 a to 228 a , 232 a to 238 a and 242 a to 248 a , it was confirmed by other experiment that the varistor characteristics (voltage nonlinearity) did not change before and after the Cs diffusion processing.
  • a chip shaped electronic device such as a multilayer chip varistor, not requiring glass coating or other insulative protective layers, being tolerant of temperature changes, capable of maintaining high resistance of an element surface even in reflow soldering, being highly reliable, and capable of being easily produced, and a method of producing the same.
  • a chip shaped electronic device of a micro size (for example, the size is 0.6 mm or less ⁇ 0.3 mm or less ⁇ a thickness of 0.3 mm or less) having the above characteristics, and a method of producing the same can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermistors And Varistors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Ceramic Capacitors (AREA)

Abstract

A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of Li and Zn, (Li/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry (SIMS), 0.001≦(Li/Zn)≦500. According to the invention, it is possible to provide a chip shaped electronic device, such as a multilayer chip varistor, not requiring glass coating or other insulative protective layer, being tolerant of temperature changes, capable of maintaining high resistance of an element surface even by reflow soldering, being highly reliable, and capable of being easily produced, and a method of producing the same.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a chip shaped electronic device, such as a multilayer chip varistor, not requiring glass coating or other insulative protective layers, being tolerant of temperature changes, capable of maintaining high resistance of an element surface even in reflow soldering, being highly reliable, and can be easily produced, and a method of producing the same. [0002]
  • 2. Description of the Related Art [0003]
  • In recent years, along with electronic devices becoming more compact and furthermore highly performing, chip shaped electronic devices have become essential. A chip shaped electronic device is normally arranged on a circuit substrate and subjected to heat treatment together with printed solder to form a circuit. This heat treatment is called reflow soldering processing. At this time, a flux having a strong reducing power is included in the solder, and a surface of the chip device is corroded thereby to end up declining insulative resistance in some cases. [0004]
  • A multilayer varistor is not exceptional as a chip shaped electronic device, and an element surface of the multilayer chip varistor is reduced by reflow soldering to bring disadvantages of declining insulative resistance and declining reliability. [0005]
  • To solve the disadvantages, a glass is coated on the element surface of a multilayer chip varistor for improving reliability (for example, refer to the patent article 1). [0006]
  • However, to cover the element surface by uniformly coating a glass takes much trouble. Also, since thermal expansion coefficients of a ceramic material and a glass material are different, the boundary is liable to be damaged by a temperature cycle, etc. Therefore, cracks may arise in a glass layer, and insulation of ceramic composing the element may be damaged. [0007]
  • Note that a method of diffusing Li or Na on the element surface to make the surface highly resistant has been proposed (refer to the patent article 2). In the invention described in this patent article, the ratio of SIMS ion intensity M1 of Li or Na on the element surface and SIMS ion intensity M2 of Li or Na of a portion at a depth of 10 μm from the surface is made to be 10<(M1/M2)≦50000. [0008]
  • In this method, however, it was found that although imperfect appearance at the time of electric plating could be improved, it was not sufficient for reducing from a flux in the reflow soldering. Namely, since a reducing power of an activated flux at the time of reflow soldering was much larger than that of electric soldering, a thickness of 10 μm or so of a range dispersed with Li or Na was not sufficient for reflow soldering. [0009]
  • Note that further compact electronic devices are demanded recently, and micro size chip shaped electronic devices having a size of, for example, 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less have been under development. [0010]
  • Patent Article 1: Japanese Unexamined Patent Publication No. 6-96907 [0011]
  • Patent Article 2: Japanese Unexamined Patent Publication No. 9-246017 [0012]
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a chip shaped electronic device, such as a multilayer chip varistor, not requiring glass coating or other insulative protective layers, being tolerant of temperature changes, capable of maintaining high resistance of an element surface even in reflow soldering, being highly reliable, and can be easily produced, and a method of producing the same. [0013]
  • Also, another object of the present invention is to provide a micro chip shaped electronic device (for example, having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less) having the above characteristics and a method of producing the same. [0014]
  • Chip Shaped Electronic Device [0015]
  • To attain the above objects, according to a first aspect of the present invention, there is provided [0016]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0017]
  • when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of an alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry (SIMS), 0.001<(A/Zn)<500. [0018]
  • In the first aspect, configurations of respective aspects described below are preferably applied. [0019]
  • According to the second aspect, there is provided [0020]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0021]
  • when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of Li and Zn, (Li/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001≦(Li/Zn)≦500. [0022]
  • According to the third aspect, there is provided [0023]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0024]
  • when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of Na and Zn, (Na/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001≦(Na/Zn)≦100. [0025]
  • According to a fourth aspect, there is provided [0026]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0027]
  • when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of K and Zn, (K/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001≦(K/Zn)≦100. [0028]
  • According to a fifth aspect, there is provided [0029]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0030]
  • when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of Rb and Zn, (Rb/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001<(Rb/Zn)<100. [0031]
  • According to a sixth aspect, there is provided [0032]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0033]
  • when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of Cs and Zn, (Cs/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001≦(Cs/Zn)≦100. [0034]
  • In the first aspect, configurations of respective aspects described below are preferably applied. [0035]
  • According to a seventh aspect, there is provided [0036]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0037]
  • when measuring an ion intensity ratio of Li and Zn, (Li/Zn), in a range from the surface of the element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.001<(Li/Zn)<500. [0038]
  • According to an eighth aspect, there is provided [0039]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0040]
  • when measuring an ion intensity ratio of Na and Zn, (Na/Zn), in a range from the surface of the element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.001<(Na/Zn)<100. [0041]
  • According to a ninth aspect, there is provided [0042]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0043]
  • when measuring an ion intensity ratio of K and Zn, (K/Zn), in a range from the surface of the element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.001≦(K/Zn)≦100. [0044]
  • According to a tenth aspect, there is provided [0045]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0046]
  • when measuring an ion intensity ratio of Rb and Zn, (Rb/Zn), in a range from the surface of the element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.01≦(Rb/Zn)≦100. [0047]
  • According to an eleventh aspect, there is provided [0048]
  • a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0049]
  • when measuring an ion intensity ratio of Cs and Zn, (Cs/Zn), in a range from the surface of the element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.1≦(Cs/Zn)≦100. [0050]
  • Also, there is provided a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein [0051]
  • when measuring an ion intensity ratio of an alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.001≦(A/Zn)≦500. [0052]
  • In the first aspect, configurations of respective aspects described below are preferably applied. [0053]
  • According to a twelfth aspect, there is provided [0054]
  • a chip shaped electronic device comprising: [0055]
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and [0056]
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane (a gap between terminals) is 50 μm or more; [0057]
  • wherein when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of Li and Zn, (Li/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry (SIMS), it is 0.001<(Li/Zn)<500. [0058]
  • According to a thirteenth aspect, there is provided [0059]
  • a chip shaped electronic device comprising: [0060]
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and [0061]
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more; [0062]
  • wherein when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of Na and Zn, (Na/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001<(Na/Zn)<100. [0063]
  • According to a fourteenth aspect, there is provided a chip shaped electronic device comprising: [0064]
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and [0065]
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more; [0066]
  • wherein when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of K and Zn, (K/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001≦(K/Zn)≦100. [0067]
  • According to a fifteenth aspect, there is provided a chip shaped electronic device comprising: [0068]
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and [0069]
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more; [0070]
  • wherein when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of Rb and Zn, (Rb/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001≦(Rb/Zn)≦100. [0071]
  • According to a sixteenth aspect, there is provided [0072]
  • a chip shaped electronic device comprising: [0073]
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and [0074]
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more; [0075]
  • wherein when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of Cs and Zn, (Cs/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001<(Cs/Zn)<100. [0076]
  • According to a seventeenth aspect, there is provided [0077]
  • a chip shaped electronic device comprising: [0078]
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and [0079]
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more; [0080]
  • wherein when assuming a minimum distance from an outermost side of the internal electrode layer in the stacking direction to a surface of the element body is 1 and measuring an ion intensity ratio of an alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001≦(A/Zn)≦500. [0081]
  • In the seventh and twelfth aspects, preferably, the ion intensity ratio is 0.01≦(Li/Zn)≦500. [0082]
  • A Method of Producing Chip Shaped Electronic Device [0083]
  • To attain the above aspects, according to a first aspect of the present invention, there is provided [0084]
  • a method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, and a pair of terminal electrodes formed on an outer surface of the element body, including the steps of: [0085]
  • forming the element body; [0086]
  • diffusing an alkali metal (A) from a surface of the element body to inside the element body; and [0087]
  • after that, forming on the outer surface of the element body the pair of terminal electrodes connected to the internal electrode layers; [0088]
  • wherein the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when assuming a minimum distance from an outermost layer side of the internal electrode layers in the stacking direction to the surface of the element body is 1 at the time of diffusing the alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry. [0089]
  • In the first aspect, configurations of respective aspects described below are preferably applied. [0090]
  • According to a second aspect, there is provided [0091]
  • a method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, and a pair of terminal electrodes formed on an outer surface of the element body, including the steps of: [0092]
  • forming the element body; [0093]
  • forming on the outer surface of the element body terminal electrodes connected to the internal electrode layers; and [0094]
  • after that, diffusing an alkali metal (A) from a surface of the element body to inside the element body; [0095]
  • wherein the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when assuming a minimum distance from an outermost layer side of the internal electrode layers in the stacking direction to the surface of the element body is 1 at the time of diffusing the alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry. [0096]
  • According to a third aspect, there is provided [0097]
  • a method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, including the steps of: [0098]
  • forming the element body; [0099]
  • diffusing an alkali metal (A) from a surface of the element body to inside the element body; and [0100]
  • after that, forming on the outer surface of the element body terminal electrodes connected to the internal electrode layers; and [0101]
  • wherein the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of 100 μm by a secondary ion mass spectrometry. [0102]
  • According to a fourth aspect, there is provided [0103]
  • a method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, including the steps of: [0104]
  • forming the element body; [0105]
  • forming on the outer surface of the element body terminal electrodes connected to the internal electrode layers; and [0106]
  • after that, diffusing an alkali metal (A) from a surface of the element body to inside the element body; [0107]
  • wherein the alkali metal is diffused under a condition of attaining 0.001<(A/Zn)<500 when measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of 100 μm by a secondary ion mass spectrometry. [0108]
  • According to a fifth aspect, there is provided [0109]
  • a method of producing a chip shaped electronic device comprising: [0110]
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and [0111]
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more; including the steps of: [0112]
  • forming the element body; [0113]
  • diffusing an alkali metal (A) from a surface of the element body to inside the element body; and [0114]
  • after that, forming on the outer surface of the element body the pair of terminal electrodes connected to the internal electrode layers; [0115]
  • wherein the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when assuming a minimum distance from an outermost layer side of the internal electrode layers in the stacking direction to the surface of the element body is 1 at the time of diffusing the alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry. [0116]
  • According to a sixth aspect, there is provided [0117]
  • a method of producing a chip shaped electronic device comprising: [0118]
  • an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and [0119]
  • a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more; including the steps of: [0120]
  • forming the element body; [0121]
  • forming on the outer surface of the element body the pair of terminal electrodes connected to the internal electrode layers; and [0122]
  • after that, diffusing an alkali metal (A) from a surface of the element body to inside the element body; [0123]
  • wherein the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when assuming a minimum distance from an outermost layer side of the internal electrode layers in the stacking direction to the surface of the element body is 1 at the time of diffusing the alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body to a depth of (0.9×1) by a secondary ion mass spectrometry. [0124]
  • Preferably, at the time of diffusing the alkali metal, the element body is subjected to heat treatment at a temperature of 700 to 1000° C. in a state of being applied with powder of an alkali metal compound, and at least one of an application amount of the powder to the surface of the element body, a heat treatment temperature and a heat treatment time is controlled. [0125]
  • Common Items [0126]
  • Preferably, the above alkali metal (A) is at least one of Li, Na, K, Rb and Cs. [0127]
  • In the present invention, while the chip shaped electronic device is not particularly limited, preferably, the above element body has the configuration of alternately stacking zinc oxide voltage nonlinear resistor layers and internal electrode layers, and the chip shaped electronic device is a multilayer chip varistor. [0128]
  • Operation of the Present Invention [0129]
  • (1) The present invention is, in brief, a technique for letting single or a plurality of alkali metals, such as Li, Na, K, Rb and Cs, etc., contained in a range up to a predetermined depth including a surface of an element body including zinc oxide material layers and internal electrode layers. [0130]
  • (2) The present inventors found that when assuming a shortest distance from an outermost side in the stacking direction of an internal electrode layer to the surface of an element body is 1 regardless of a size of the element body in a multilayer chip varistor or other chip shaped electronic devices, and measuring an ion intensity ratio (alkali metal A/zinc Zn) of a range from the surface of the element body to a depth of (0.9×1) and the ion intensity ratio is adjusted to be in a predetermined range, a decline of an insulation resistance value due to a flux in reflow soldering can be prevented and an insulation defective rate after the reflow soldering can be widely reduced. [0131]
  • The state of the range from the surface of the element body (any size) wherein an alkali metal is dispersed up to the depth of (0.9×1) is not always clear, but it is considered that an alkali metal is dissolved in zinc oxide grains contained in the zinc oxide material layer positioned outside of the element body. In the present invention, by setting the ion intensity ratio to be in a predetermined range, a range from the surface of the element body to the depth (0.9×1) becomes a high resistance layer and prevents a current from leaking on the element surface due to a reducing action of a flux by the reflow soldering. Accordingly, a decline of an insulation resistance value after the reflow soldering can be prevented and the insulation defective rate can be reduced. [0132]
  • (3) The present inventors found that the same effects as above can be obtained by adjusting the ion intensity ratio (alkali metal A/zinc Zn) of a range from the surface of the element body to a depth of 100 μm when the size of the element body is not a micro size of, for example, more than 0.6 mm×more than 0.3 mm×a thickness of more than 0.3 mm. [0133]
  • Note that in a chip shaped electronic device of the present invention, M1/M2 defined in the [0134] patent article 2 becomes about 1, which is out of a range of 10≦(M1/M2)≦50000 regulated in the patent article 2. However, the present inventors found for the first time that a decline of the insulation resistance value after reflow soldering can be prevented and the insulation defective rate can be reduced by setting to the range of the present invention.
  • (4) The present inventors also found the fact that it is preferable to apply the technique described in (2) above, not the technique in (3) particularly when the size of the element body is a micro size of, for example, 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less. When applying the technique in the above (3) as it was to a chip wherein a size of the element body was a micro size, it was found that disadvantages below arose. Generally, a multilayer chip varistor as an example of chip shaped electronic devices causes varistor characteristics between two internal electrode layers adjacent to each other in the stacked direction in the element body. In the case of the above micro size chip, a distance between the internal electrode layer arranged at the outermost side among the internal electrode layers and the surface of the element body becomes less than 100 μm in some cases. In this case, when an insulation layer is formed to a range of a depth of 100 μm including the surface of the chip varistor element as proposed above, the above alkali metal sometimes diffuses even inside of the chip which is the inner side of the outermost side in the stacked direction of the internal electrode layers (between the internal electrodes causing the varistor characteristics) and electric characteristics may change by being affected thereby. Thus, when the size of the element body is a micro size, the same effect can be obtained by not applying the technique of (3) but the technique of (2). [0135]
  • Also, since a material having different thermal expansion coefficient, such as in the glass coating, is not used, it is tolerant of heat cycles. Also, insulation between terminals can be surely secured in a micro size chip having a narrower gap between terminals (corresponding to the [0136] reference number 5 in FIG. 4) not by glass coating or other insulation methods (not only that glass coating is hard to apply in a micro size chip shaped electronic device but, when it is applied, chip becomes roundish with the glass and affects when being mounted). Therefore, the electronic device can maintain the high reliability.
  • (5) Also, in the present invention, a high resistance layer is formed by adhering an alkali metal supply source on the surface of the element body and diffusing an alkali metal from the element body surface to inside thereof by heat treatment, and coating of an insulative glass layer is unnecessary as being different from the related art, so that a complicated facilities and processes are unnecessary and a highly reliable chip shaped electronic device can be produced easily at a low cost.[0137]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects and features of the present invention will become clearer from the following description of the preferred embodiments given with reference to the attached drawings, in which: [0138]
  • FIG. 1 is a schematic sectional view of a multilayer chip varistor according to an embodiment of the present invention; [0139]
  • FIG. 2 is a flowchart of a production process of a multilayer chip varistor according to an embodiment of the present invention; [0140]
  • FIG. 3 is a flowchart of a production process of a multilayer chip varistor according to another embodiment of the present invention; and [0141]
  • FIG. 4 is a schematic sectional view of a multilayer chip varistor according to an embodiment of the present invention.[0142]
  • The reference numbers are: [0143]
  • [0144] 1, 1 a . . . voltage nonlinear resistor layer
  • [0145] 2, 2 a . . . internal electrode layer
  • [0146] 3, 3 a . . . terminal electrode
  • [0147] 4, 4 a . . . high resistance layer
  • [0148] 5 . . . gap between terminals
  • [0149] 10, 10 a . . . multilayer chip varistor
  • [0150] 12, 12 a . . . element body
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Below, embodiments of the present invention will be explained based on the drawings. [0151]
  • First Embodiment [0152]
  • As shown in FIG. 1, a [0153] multilayer chip varistor 10 as an example of a chip shaped electronic device according to the present embodiment comprises an element body 12 having the configuration of alternately stacking voltage nonlinear resistor layers 1 and internal electrode layers 2. The internal electrode layers 2 alternately expose from opposing both end surfaces in the element body 12 and are respectively connected to external terminal electrodes 3 to form a varistor circuit.
  • An [0154] outermost layer 11 is stacked outside of the internal electrode layers 2 in the stacked direction and an internal electrode layer 2 is protected. The outermost layer 11 is normally composed of the same material as that of the resistor layer 1. A material of the resistor layer 1 will be explained later. It is the same for a high resistant layer 4 formed around the element body 12.
  • A shape of the [0155] element body 12 is not particularly limited, but normally is a rectangular parallel shaped. In the present embodiment, a size of the element body 12 is, for example, (more than 0.6 mm and 5.6 mm or less)×(more than 0.3 mm and 5.0 mm or less)×thickness (more than 0.3 mm and 1.9 mm or less) or so.
  • The voltage nonlinear resistor layer [0156] 1 (the outermost layer 11, as well) is composed of a zinc oxide varistor material layer. The zinc oxide varistor material layer is composed of a material including, for example, ZnO as a main component and rare-earth elements, Co, group IIIb elements (B, Al, Ga and In), Si, Cr, alkali metal elements (K, Rb and Cs) and alkali earth metal elements (Mg, Ca, Sr and Ba), etc. as subcomponents. Alternately, it may be composed of a material including ZnO as a main component and Bi, Co, Mn, Sb and Al, etc. as subcomponents.
  • The main component including ZnO works as a substance of developing excellent voltage linearity in voltage—current characteristics and a large surge tolerated dose. Note that the voltage nonlinearity means a phenomenon that a current flowing to the element increases nonlinearly when applying a gradually increasing voltage to between [0157] terminal electrodes 3.
  • A content of ZnO as a main component in the [0158] resistor layer 1 is not particularly limited, but normally 99.8 to 69.0 wt % when assuming that the whole material composing the resistor layer 1 is 100 wt %.
  • A conductive material contained in the [0159] internal electrode layer 2 is not particularly limited, but is preferably composed of Pd or Ag—Pd alloy. A thickness of the internal electrode layer 2 may be suitably determined in accordance with use, but is normally 0.5 to 5 μm or so.
  • A conductive material contained in the external [0160] terminal electrode 3 is not particularly limited, but normally Ag or Ag—Pd alloy is used. Furthermore, a film of Ni and Sn/Pd is formed by electric plating, etc. on the surface of a base layer of Ag or Ag—Pd alloy, etc. in accordance with need. A thickness of the external terminal electrode 3 may be suitably determined in accordance with the use, but is normally 10 to 50 μm or so.
  • The [0161] high resistance layer 4 is formed to cover allover the outer surface of the element body 12. This high resistance layer 4 is formed by performing heat treatment on an alkali metal compound which becomes an oxide by thermal decomposition in a state of being adhered to the surface of the element body 12 and diffusing an alkali metal from the surface of the element body 12 to inside thereof.
  • Note that a boundary of the [0162] high resistance layer 4 and the outermost layer 11 of the element body 12 is not always clear, and a region in which the alkali metal is diffused in the outermost layer 11 becomes the high resistance layer 4. The high resistance layer 4 has a role of protecting the voltage nonlinear resistor layer 1 at the time of reflow soldering.
  • A thickness of the [0163] high resistance layer 4 is not particularly limited, but is at least 10 μm or more, which is a thickness of not reaching to the internal electrode layer 2. When the thickness is too thin, effects of the present invention become small, while when it is too thick, electric characteristics of the voltage nonlinear resistor layer 1 may be affected thereby.
  • In the [0164] high resistance layer 4, when measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface (the surface of the element body 12) to a depth of 100 μm by a secondary ion mass spectrometry, it becomes 0.001≦(A/Zn)≦500.
  • Note that the ion intensity ratio can be obtained by the secondary ion mass spectrometry (SIMS). The SIMS is a method of highly sensitively measuring an ion density distribution in the depth direction from the surface layer in a micron order. When a high energy ion beam (several keV to 20 kev) is irradiated to a solid surface, atoms constituting a sample are discharged as neutrons and ions due to a sputter phenomenon. A method of analyzing elements and compounds on the sample surface by dividing secondarily discharged ions to a ratio of a mass and charges by a mass spectrometer in this way is the SIMS. [0165]
  • An alkali metal dispersed in the [0166] high resistance layer 4 is, while not particularly limited, preferably at least one of Li, Na, K, Rb and Cs, and more preferably, Li.
  • When the alkali metal is Li, the ion intensity ratio of Li and Zn, (Li/Zn), is preferably 0.001≦(Li/Zn)≦500, more preferably 0.01≦(Li/Zn)≦500. [0167]
  • When the alkali metal is Na, the ion intensity ratio of Na and Zn, (Na/Zn), is preferably 0.001≦(Na/Zn)≦100. [0168]
  • When the alkali metal is K, the ion intensity ratio of K and Zn, (K/Zn), is preferably 0.001≦(K/Zn)≦100. [0169]
  • When the alkali metal is Rb, the ion intensity ratio of Rb and Zn, (Rb/Zn), is preferably 0.01≦(Rb/Zn)≦100. [0170]
  • When the alkali metal is Cs, the ion intensity ratio of Cs and Zn, (Cs/Zn), is preferably 0.1≦(Cs/Zn)≦100. [0171]
  • When the ion intensity ratio is too small, an insulation resistance value after reflow soldering tends to be too low, while when the ion intensity ratio is too large, electric characteristics of the voltage [0172] nonlinear resistor layer 1 may be adversely affected and an increase of the insulation resistance value after reflow soldering tends to decline.
  • Next, a production process of a [0173] multilayer chip varistor 10 according to the present invention will be explained based on FIG. 2.
  • First, by using a printing method or a sheet method, etc., voltage nonlinear resistor layers [0174] 1 (varistor layers) and internal electrode layers 2 are alternately stacked so that every other internal electrode layers 2 are exposed to both end portions alternately, and an outermost layers 11 are stacked at both ends in the stacking direction, so that a stacked body is formed (process “a” in FIG. 2).
  • Next, the stacked body is cut to obtain a green chip (step “b”). [0175]
  • Next, binder removal processing is performed in accordance with need and the green chip is fired, so that a chip element to be a [0176] chip body 12 is obtained (process “c”).
  • The thus obtained chip element is applied with an alkali metal compound on its surface by a sealed rotary pot (process “d”). The alkali metal compound is not particularly limited, but is a compound capable of dispersing an alkali metal into the [0177] element body 12 from the surface by heat treatment, and oxides, hydroxides, chlorides, nitrates, borates, carbonates, and oxalates, etc. of alkali metals are used. By controlling an adding amount of the alkali metal compound, the above ion intensity ratio can be controlled.
  • Next, the chip element adhered with the alkali metal compound is subjected to heat treatment at a predetermined temperature for a predetermined time in an electric furnace (process “e”). As a result, an alkali metal in the alkali metal compound is dispersed into the chip element from its surface, and an [0178] element body 12 being formed a high resistance layer 4 is obtained. The above ion intensity ratio and a thickness of the high resistance layer 4 can be controlled by the temperature and time of the heat treatment at this time. A preferable heat treatment temperature is 700 to 1000° C., and a heat treatment atmosphere is in the air. Also, the heat treatment time is preferably 10 minutes to 4 hours.
  • Next, terminal electrodes are applied and printed on the both end portions of the element after the heat treatment, and Ag base electrodes are formed (process “f”). Here, Ag is selected as the base electrode material, but any material can be used as far as it is easily printed on the [0179] element body 12, easily bonded with materials composing the internal electrode layers 2 and easily plated in a follow-on plating process.
  • Finally, a Ni plating film and/or a Sn/Pb plating film are formed on the surface of the base electrodes by electric plating (process “g”), so that a [0180] multilayer chip varistor 10 is obtained.
  • Note that the means to diffusing an alkali metal from the surface of the [0181] element body 12 is not limited to the above means and, for example, a means below can be applied. Namely, a method of performing heat treatment on the element body 12 before being formed the terminal electrodes 3 in a state of being buried in an alkali supply source, a method of performing heat treatment after uniformly applying with a spray, etc. a liquid alkali supply source to the surface of the element body 12, and a method of performing heat treatment after uniformly applying an air including alkali metal supply source powder to the surface of the element body 12, may be mentioned.
  • In these methods, an alkali metal diffuses more or less to the exposed end surfaces of the [0182] internal electrode layers 2 exposing at the both end portions of the element body 12, but conductivity of the internal electrode layers 2 is not affected thereby.
  • Note that to surely prevent the diffusion of the alkali metal to the exposed end surfaces of the [0183] internal electrode layers 2, for example as shown in FIG. 3, formation of the high resistance layer (processes “d” and “e”) may come after formation of terminal electrodes (process “f”). In this case, the high resistance layer 4 shown in FIG. 1 is not formed inside of the terminal electrodes 3. Accordingly, an alkali metal does not diffuse from the exposed end surfaces of the internal electrode layers 2. Also, when adhering an alkali metal to the surface and printing after applying and drying the terminal electrodes, diffusion of the alkali metal to the element body can be performed at the same time as the printing, so that the process can be simplified.
  • Second Embodiment [0184]
  • As shown in FIG. 4, in a [0185] multilayer chip varistor 10 a as an example of a chip shaped electronic device according to the present embodiment, a pair of external terminal electrodes 3 a are formed on the outer surface of an element body 12 a having the configuration of alternately stacking voltage nonlinear resistor layers 1 a and internal electrode layers 2 a. In the present embodiment, a distance of the opposing end portions on the same plane (a gap between terminals; corresponding to the reference number 5 in FIG. 4) of the pair of external terminal electrodes 3 a is 50 μm or more, and the configuration other than that is the same as that in the first embodiment.
  • The outside of the [0186] internal electrode layers 2 a in the stacking direction is stacked with an outermost layer 11 a and the internal electrode layer 2 a is protected. The outermost layer 11 a is composed of the same material as that of the resistor layer 1 a.
  • A shape of the [0187] element body 12 a is not particularly limited and is normally a rectangular parallelepiped. The present embodiment is designated to an element body 12 a having a micro size, such as (0.6 mm or less, preferably 0.4 mm or less)×(0.3 mm or less, preferably 0.2 mm)×(a thickness of 0.3 mm or less, preferably 0.2 mm or less). Due to the micro size, the thickness of the outermost layer 11 a is normally made to be less than 100 μm, preferably 90 μm or less in the present invention. Note that the thickness of the outermost layer 11 a exceeds 100 μm in some cases depending on an interlayer thickness of the resistor layer 1 a sandwiched by a pair of internal electrode layers 2 a.
  • The [0188] resistor layer 1 a (outermost layer 11 a, as well), the internal electrode layer 2 a and the external terminal electrode 3 a are configured in the same way as the resistor layer 1, the internal electrode layer 2 and the external terminal electrode 3 in the first embodiment. Also, the same is applied to a high resistor layer 4 a formed around the element body 12 a.
  • Note that in the present embodiment, in the [0189] high resistance layer 4, when assuming that the minimum distance from the outermost side of the internal electrode layers 2 in the stacking direction to the surface of the element body 12 is 1 and measuring the ion intensity ratio of an alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of the element body 12 to a depth of (0.9×1) by the SIMS, it becomes 0.001≦(A/Zn)≦500.
  • The alkali metal dispersed in the [0190] high resistance layer 4 is preferably at least one of Li, Na, K, Rb and Cs, further preferably Li.
  • When the alkali metal is Li, the ion intensity ratio of Li and Zn, (Li/Zn), is preferably 0.001≦(Li/Zn)≦500, more preferably 0.01≦(Li/Zn)≦500. [0191]
  • When the alkali metal is Na, the ion intensity ratio of Na and Zn, (Na/Zn), is preferably 0.001≦(Na/Zn)≦100, more preferably, 0.01≦(Na/Zn)≦100. [0192]
  • When the alkali metal is K, the ion intensity ratio of K and Zn, (K/Zn), is preferably 0.001≦(K/Zn)≦100, more preferably 0.01≦(K/Zn)≦100. [0193]
  • When the alkali metal is Rb, the ion intensity ratio of Rb and Zn, (Rb/Zn), is preferably 0.001≦(Rb/Zn)≦100, more preferably 0.01≦(Rb/Zn)≦100. [0194]
  • When the alkali metal is Cs, the ion intensity ratio of Cs and Zn, (Cs/Zn), is preferably 0.001≦(Cs/Zn)≦100, more preferably 0.1≦(Cs/Zn)≦100. [0195]
  • When the ion intensity ratio is too small, an insulation resistance value after reflow soldering tends to be too low, while when the ion intensity ratio is too large, electric characteristics of the voltage [0196] nonlinear resistor layer 1 may be adversely affected and an increase of the insulation resistance value after reflow soldering tends to decline.
  • A method of producing the [0197] multilayer chip varistor 10 a may be the same as that in the case of producing the varistor 10 in the first embodiment.
  • Other Embodiments [0198]
  • Note that the present invention is not limited to the above embodiments and a variety of modifications can be made within the scope of the present invention. [0199]
  • EXAMPLES
  • Below, the present invention will be explained based on further detailed examples, but the present invention is not limited to these examples. [0200]
  • Example 1
  • A chip element to be an [0201] element body 12 having a 1608 shape (outer dimensions: 1.6 mm×0.8 mm×0.8 mm) was formed by following the processes “a” to “c” shown in FIG. 2 and a normal method. Note that a nonlinear resistor layer 1 and the outermost layer 1 a of the chip element were composed of a zinc oxide material, specifically composed of what obtained by adding by the ratio of 0.5 mol % of Pr, 1.5 mol % of Co, 0.005 mol % of Al, 0.05 mol % of K, 0.1 mol % of Cr, 0.1 mol % of Ca and 0.02 mol % of Si to ZnO of 99.9% purity (99.725 mol %).
  • Thus obtained chip element was applied with Li[0202] 2CO3 powder on its surface by a sealed rotary pot. An average particle diameter of the Li2CO3 powder was 3 μm.
  • Note that an amount of Li[0203] 2CO3 was in a range of 0.001 μg to 10 mg per one element chip. By increasing or decreasing the amount, the later explained samples having different ion intensity ratios can be obtained.
  • The chip element applied with the Li[0204] 2CO3 powder was subjected to heat treatment at a temperature of 700 to 1000° C. for 10 minutes to 4 hours in the air to diffuse Li from the surface of the chip element, and a high resistance layer 4 was formed near the surface. By changing the heat treatment temperature and the heat processing time, the later explained samples having different ion intensity ratios can be obtained.
  • After that, an Ag base electrode was formed by a normal method, and a Ni plating film and a Sn/Pb plating film were formed on the surface of the base electrode by electric plating to form [0205] terminal electrode 3, consequently, a multilayer chip varistor 10 was obtained.
  • The thus obtained plurality of multilayer chip varistor samples were measured the ion intensity ratio of Li and Zn, (Li/Zn), by a secondary ion mass spectrometry in a range from the surface of the element body to 100 μm. Also, insulation resistance value before and after reflow soldering were measured and an insulation defective rate was obtained. The results are listed in Table 1. [0206]
  • Note that the reflow soldering was performed by printing cream solder containing a flux on a substrate and mounting the element, then, letting it through a reflow furnace having the peak temperature of 230° C. [0207]
  • The ion intensity ratio of Li/Zn was obtained by taking an average of values up to the depth of 100 μm by the secondary ion mass spectrometry (SIMS). Also, the insulation resistance value was measured at an application voltage of 3V and obtained from 100 average values, and the insulation defective rate was calculated by presuming elements not reaching 1 MΩ were defective. Note that all elements before the reflow soldering had an insulation resistance of 100 mΩ or more. [0208]
    TABLE 1
    After Reflow Soldering
    Insulation
    Ion Intensity Resistance
    Ratio Value
    Sample No. (Li/Zn) Defective Rate %
    *1 0.0001 0.9 87 
    2 0.001 4.8 0
    3 0.01 12 0
    4 0.1 31 0
    5 1 95 0
    6 10 120 0
    7 100 88 0
    8 500 64 0
    *9 1000 unable to produce samples
  • As shown in Table 1, elements having the ion intensity ratio of 0.0001 or less had a small average insulation resistance value of 1 MΩ after reflow and high insulation defective rates after reflow (sample [0209] 1). On the other hand, elements having an ion intensity ratio of 0.001 or more and 500 or less had an average insulation resistance value of larger than 4.8 MΩ and the defective rate was all “0” (samples 2 to 8). Particularly, it was confirmed that elements of 0.01 or more and 500 or less had an average insulation resistance value of larger than 12 MΩ, which was more preferable. Note that samples having an ion intensity ratio of 1000 or more could not be produced (sample 9).
  • Also, it was confirmed by other experiment that varistor characteristics (voltage nonlinearity) were not changed before and after Li diffusion processing in the [0210] samples 1 to 8.
  • Example 2
  • Other than using Na[0211] 2CO3 instead of Li2CO3, elements were produced under the same conditions as those in the example 1. The results are listed in Table 2.
    TABLE 2
    After Reflow Soldering
    Insulation
    Ion Intensity Resistance
    Ratio Value
    Sample No. (Na/Zn) Defective Rate %
    *10 0.0001 0.6 100 
    11 0.001 3.6 5
    12 0.01 10 0
    13 0.1 25 0
    14 1 76 0
    15 10 105 0
    16 100 95 0
    *17 500 unable to produce samples
  • As shown in Table 2, elements having an ion intensity ratio of 0.0001 or less had a low insulation resistance value of 1 MΩ or less after reflow, and an insulation defective rate after reflow was also high (sample [0212] 10). On the other hand, elements having an ion intensity ratio of 0.001 or more and 100 or less had an average insulation resistance value of larger than 3.6 MΩ and the defective rate was 5% or less (samples 11 to 16). Particularly, it was confirmed that the elements of 0.01 or more and 100 or less had an average insulation resistance value of larger than 10 MΩ, which was more preferable. Note that samples having an ion intensity ratio of 500 or more could not be produced (sample 17).
  • Also, it was confirmed by other experiment that varistor characteristics (voltage nonlinearity) were not changed before and after Na diffusion processing in the [0213] samples 10 to 16.
  • Example 3
  • Other than using K[0214] 2CO3 instead of Li2CO3, elements were produced under the same conditions as those in the example 1. The results were listed in Table 3.
    TABLE 3
    After Reflow Soldering
    Insulation
    Ion Intensity Resistance
    Ratio Value
    Sample No. (K/Zn) Defective Rate %
    *18 0.0001 0.7 100 
    19 0.001 11 0
    20 0.01 21 0
    21 0.1 36 0
    22 1 150 0
    23 10 250 0
    24 100 230 0
    *25 500 unable to produce samples
  • As shown in Table 3, elements having an ion intensity ratio of 0.0001 or less had a low insulation resistance value of 1 MΩ or less after reflow, and an insulation defective rate after reflow was also high (sample [0215] 18). On the other hand, elements having an ion intensity ratio of 0.001 or more and 100 or less had an average insulation resistance value of larger than 11 MΩ and the defective rate after reflow was 0% (samples 19 to 24). Particularly, it was confirmed that the elements of 0.01 or more and 100 or less had an average insulation resistance value of larger than 21 MΩ, which was more preferable. Note that samples having an ion intensity ratio of 500 or more could not be produced (sample 25).
  • Also, it was confirmed by other experiment that varistor characteristics (voltage nonlinearity) were not changed before and after K diffusion processing in the samples 18 to 24. [0216]
  • Example 4
  • Other than using Rb[0217] 2CO3 instead of Li2CO3, elements were produced under the same conditions as those in the example 1. The results were listed in Table 4.
    TABLE 4
    After Reflow Soldering
    Insulation
    Ion Intensity Resistance
    Ratio Value
    Sample No. (Rb/Zn) Defective Rate %
    *26 0.0001 0.6 100
    *27 0.001 0.7 65
    28 0.01 3.5 3
    29 0.1 12 0
    30 1 43 0
    31 10 85 0
    32 100 66 0
    *33 500 unable to produce samples
  • As shown in Table 4, elements having an ion intensity ratio of 0.001 or less had a low insulation resistance value of 1 MΩ or less after reflow, and an insulation defective rate after reflow was also high (samples 26 and 27). On the other hand, elements having an ion intensity ratio of 0.01 or more and 100 or less had an average insulation resistance value of larger than 3.5 MΩ and a defective rate after reflow was 3% or less (samples 28 to 32). Particularly, it was confirmed that the elements of 0.1 or more and 100 or less had an average insulation resistance value of larger than 12 M, which was more preferable. Note that samples having an ion intensity ratio of 500 or more could not be produced (sample [0218] 33).
  • Also, it was confirmed by other experiment that varistor characteristics (voltage nonlinearity) were not changed before and after Rb diffusion processing in the samples 26 to 32. [0219]
  • Example 5
  • Other than using Cs[0220] 2CO3 instead of Li2CO3, elements were produced under the same conditions as those in the example 1. The results were listed in Table 5.
    TABLE 5
    After Reflow Soldering
    Insulation
    Ion Intensity Resistance
    Ratio Value
    Sample No. (Cs/Zn) Defective Rate %
    *34 0.0001 0.6 100
    *35 0.001 0.7 90
    *36 0.01 2.1 45
    37 0.1 10 0
    38 1 30 0
    39 10 78 0
    40 100 36 0
    *41 500 unable to produce samples
  • As shown in Table 5, elements having an ion intensity ratio of 0.01 or less had a low insulation resistance value of 2.1 MΩ or less after reflow, and an insulation defective rate after reflow was also high (samples 34 to 36). On the other hand, elements having an ion intensity ratio of 0.1 or more and 100 or less had an average insulation resistance value of larger than 10 MΩ and a defective rate after reflow was 0% (samples 37 to 40). Particularly, it was confirmed that the elements of 1 or more and 100 or less had an average insulation resistance value of larger than 30 MΩ, which was more preferable. Note that samples having an ion intensity ratio of 500 or more could not be produced (sample [0221] 41).
  • Also, it was confirmed by other experiment that varistor characteristics (voltage nonlinearity) were not changed before and after Cs diffusion processing in the samples 34 to 40. [0222]
  • Comparative Example 1
  • Other than omitting a process of applying Li[0223] 2CO3 to perform heat treatment, elements were produced under the same conditions as those in the example 1.
  • Thus obtained elements had an insulation resistance of 100 MΩ or more before reflow but becomes 0.6 MΩ after reflow, and the insulation defective rate after reflow was 100%. [0224]
  • Example 6
  • Chip elements to be an [0225] element body 12 having a 0603 shape (outer dimensions: 0.6 mm×0.3 mm×0.3 mm) were formed by following the processes “a” to “c” shown in FIG. 2 and a normal method. An amount of Li2CO3 was in a range of 0.01 μg to 10 mg per one chip element. A gap between terminals 5 was changed to 5 different kinds (20 μm, 50 μm, 100 μm, 300 μm and 500 μm) for producing. Other than that, multilayer chip varistor samples were obtained in the same way as in the first embodiment.
  • The obtained plurality of multilayer chip varistor samples were measured the ion intensity ratio of Li and Zn, (Li/Zn), in a range from the surface of the element body to a depth of (0.9×1) by the secondary ion mass spectrometry. Also, insulation resistance values before and after reflow soldering were measured and insulation defective rates were obtained. The results are listed in Table 6. [0226]
  • The ion intensity ratio of Li/Zn was obtained by taking an average of values from the surface of the [0227] element body 12 to the depth of (0.9×1) when assuming that the minimum distance from the outermost side of the internal electrode layers 2 in the stacking direction to the surface of the element body 12 is 1. The insulation resistance value and the insulation defective rate were obtained in the same way as in the first embodiment and evaluated in the same way.
    TABLE 6
    After Reflow Soldering
    Gap Insulation
    Between Ion Intensity Resistance
    Terminals Ratio Value Defective
    Sample No. μm (Li/Zn) Rate %
    *1a 20 —(Untreated) 0.02 100
    *2a 0.0001 0.1 100
    *3a 0.001 0.12 100
    *4a 0.01 0.1 100
    *5a 0.1 0.13 100
    *6a 1 0.09 100
    *7a 10 0.36 98
    *8a 100 0.26 100
    *9a 500 0.07 100
    *10a 1000 unable to produce
    samples
    *11a 50 —(Untreated) 0.09 100
    *12a 0.0001 0.53 90
    13a 0.001 3.8 0
    14a 0.01 11 0
    15a 0.1 21 0
    16a 1 44 0
    17a 10 100 0
    18a 100 31 0
    19a 500 16 0
    *20a 1000 unable to produce
    samples
    *21a 100 —(Untreated) 0.11 100
    *22a 0.0001 0.77 87
    23a 0.001 4.3 0
    24a 0.01 27 0
    25a 0.1 67 0
    26a 1 120 0
    27a 10 210 0
    28a 100 110 0
    29a 500 38 0
    *30a 1000 unable to produce
    samples
    *31a 300 —(Untreated) 0.1 100
    *32a 0.0001 0.81 82
    33a 0.001 4.2 0
    34a 0.01 15 0
    35a 0.1 58 0
    36a 1 160 0
    37a 10 250 0
    38a 100 180 0
    39a 500 53 0
    *40a 1000 unable to produce
    samples
    *41a 500 —(Untreated) 0.12 100
    *42a 0.0001 0.9 65
    43a 0.001 4.5 0
    44a 0.01 21 0
    45a 0.1 55 0
    46a 1 98 0
    47a 10 260 0
    48a 100 210 0
    49a 500 78 0
    *50a 1000 unable to produce
    samples
  • As shown in Table 6, elements before Li processing had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate was high as 100% after reflow ([0228] samples 1 a, 11 a, 21 a, 31 a and 41 a).
  • Elements having a gap between terminals of 20 μm had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 98% or more ([0229] samples 2 a to 9 a). It was considered that the reason why the insulation defective rate was not improved was that only several ZnO crystal grain boundaries contributing to making resistance between gaps high existed, and that a chance of generating a path of declining the resistance increased.
  • Elements having the ion intensity ratio of 0.0001 or less had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 65% or more even when subjected to Li processing ([0230] samples 12 a, 22 a, 32 a and 42 a).
  • Elements having a gap between terminals of 50 μm or more and the ion intensity rate of 0.001 or more and 500 or less had an average insulation resistance value of 3.8 MΩ or more, and there was no element exhibiting less than 1 MΩ, moreover, the defective rate was all “0” (samples [0231] 13 a to 19 a, 23 a to 29 a, 33 a to 39 a and 43 a to 49 a). Particularly, it was confirmed that elements of 0.01 or more and 500 or less had an average insulation resistance value of 10 MΩ or more, which was more preferable.
  • In the present embodiment, it was confirmed that electric characteristics of the varistor samples were not affected by the resistance getting high due to Li diffusion. As a result, high reliability can be secured. [0232]
  • Note that samples having the ion intensity ratio of 1000 or more could not be produced ([0233] samples 10 a, 20 a, 30 a, 40 a and 50 a). Also, in samples 2 a to 9 a, 12 a to 19 a, 22 a to 29 a, 32 a to 39 a and 42 a to 49 a, it was confirmed by other experiment that the varistor characteristics (voltage nonlinearity) did not change before and after Li dispersion processing.
  • Example 7
  • Other than using Na[0234] 2CO3 instead of Li2CO3, elements were produced in the same way as in the Example 6. the results are listed in Table 7.
    TABLE 7
    After Reflow Soldering
    Gap Insulation
    Between Ion Intensity Resistance
    Terminals Ratio Value Defective
    Sample No. μm (Na/Zn) Rate %
    *51a 20 —(Untreated) 0.02 100
    *52a 0.0001 0.1 100
    *53a 0.001 0.09 100
    *54a 0.01 0.12 100
    *55a 0.1 0.11 100
    *56a 1 0.15 100
    *57a 10 0.21 100
    *58a 100 0.2 100
    *59a 500 unable to produce
    samples
    *60a 1000 unable to produce
    samples
    *61a 50 —(Untreated) 0.09 100
    *62a 0.0001 0.29 100
    63a 0.001 3.3 4
    64a 0.01 9 0
    65a 0.1 18 0
    66a 1 36 0
    67a 10 75 0
    68a 100 33 0
    *69a 500 unable to produce
    samples
    *70a 1000 unable to produce
    samples
    *71a 100 —(Untreated) 0.11 100
    *72a 0.0001 0.36 100
    73a 0.001 5.1 0
    74a 0.01 13 0
    75a 0.1 29 0
    76a 1 45 0
    77a 10 170 0
    78a 100 74 0
    *79a 500 unable to produce
    samples
    *80a 1000 unable to produce
    samples
    *81a 300 —(Untreated) 0.1 100
    *82a 0.0001 0.38 100
    83a 0.001 5 0
    84a 0.01 12 0
    85a 0.1 29 0
    86a 1 56 0
    87a 10 190 0
    88a 100 70 0
    *89a 500 unable to produce
    samples
    *90a 1000 unable to produce
    samples
    *91a 500 —(Untreated) 0.12 100
    *92a 0.0001 0.26 100
    93a 0.001 5.2 0
    94a 0.01 16 0
    95a 0.1 31 0
    96a 1 46 0
    97a 10 160 0
    98a 100 72 0
    *99a 500 unable to produce
    samples
    *100a 1000 unable to produce
    samples
  • As shown in Table 7, elements before Na processing had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% (samples [0235] 51 a, 61 a, 71 a, 81 a and 91 a).
  • Elements wherein a gap between terminals was 20 μm had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% even when subjected to Na processing (samples [0236] 52 a to 58 a). It was considered that the reason why the insulation defective rate was not improved was the same as that in the above example 6.
  • Elements having the ion intensity ratio of 0.0001 or less had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% (samples [0237] 62 a, 72 a, 82 a and 92 a).
  • Elements having a gap between terminals of 50 μm and the ion intensity ratio of 0.001 or more and 100 or less had an average insulation resistance value of 3.3 MΩ or more, and there was no element exhibiting less than 1 MΩ, moreover, the defective rate was 4% or less (samples [0238] 63 a to 68 a, 73 a to 78 a, 83 a to 88 a and 93 a to 98 a). Particularly, it was confirmed that elements of 0.01 or more and 100 or less had an average insulation resistance value of 10 MΩ or more, which was more preferable.
  • In the present embodiment, it was confirmed that electric characteristics of the varistor samples were not affected by the resistance getting high due to Na diffusion. As a result, high reliability can be secured. [0239]
  • Note that samples having the ion intensity ratio of 500 or more could not be produced (samples [0240] 59 a, 60 a, 69 a, 70 a, 79 a, 80 a, 89 a, 90 a, 99 a and 100 a). Also, in samples 52 a to 58 a, 62 a to 68 a, 72 a to 78 a, 82 a to 88 a and 92 a to 98 a, it was confirmed by other experiment that the varistor characteristics (voltage nonlinearity) did not change.
  • Example 8
  • Other than using K[0241] 2CO3 instead of Li2CO3, elements were produced in the same way as that in the Example 6. The results are listed in Table 8.
    TABLE 8
    After Reflow Soldering
    Gap Insulation
    Between Ion Intensity Resistance
    Terminals Ratio Value Defective
    Sample No. μm (K/Zn) Rate %
    *101a 20 —(Untreated) 0.02 100
    *102a 0.0001 0.08 100
    *103a 0.001 0.13 100
    *104a 0.01 0.2 100
    *105a 0.1 0.14 100
    *106a 1 0.13 100
    *107a 10 0.16 100
    *108a 100 0.018 100
    *109a 500 unable to produce
    samples
    *110a 1000 unable to produce
    samples
    *111a 50 —(Untreated) 0.09 100
    *112a 0.0001 0.11 100
    113a 0.001 4.1 2
    114a 0.01 8.5 0
    115a 0.1 12 0
    116a 1 26 0
    117a 10 49 0
    118a 100 36 0
    *119a 500 unable to produce
    samples
    *120a 1000 unable to produce
    samples
    *121a 100 —(Untreated) 0.11 100
    *122a 0.0001 0.2 100
    123a 0.001 5.6 0
    124a 0.01 11 0
    125a 0.1 23 0
    126a 1 33 0
    127a 10 62 0
    128a 100 40 0
    *129a 500 unable to produce
    samples
    *130a 1000 unable to produce
    samples
    *131a 300 —(Untreated) 0.1 100
    *132a 0.0001 0.26 100
    133a 0.001 6.5 0
    134a 0.01 12 0
    135a 0.1 21 0
    136a 1 31 0
    137a 10 59 0
    138a 100 40 0
    *139a 500 unable to produce
    samples
    *140a 1000 unable to produce
    samples
    *141a 500 —(Untreated) 0.12 100
    *142a 0.0001 0.25 100
    143a 0.001 6.8 0
    144a 0.01 15 0
    145a 0.1 26 0
    146a 1 35 0
    147a 10 61 0
    148a 100 45 0
    *149a 500 unable to produce
    samples
    *150a 1000 unable to produce
    samples
  • As shown in Table 8, elements before K processing had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% (samples [0242] 101 a, 111 a, 121 a, 131 a and 141 a).
  • Elements wherein a gap between terminals was 20 μm had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% (samples [0243] 102 a to 108 a). It was considered that the reason why the insulation defective rate was not improved was the same as that in the above example 6.
  • Elements having the ion intensity ratio of 0.0001 or less had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% (samples [0244] 112 a, 122 a, 132 a and 142 a).
  • Elements having a gap between terminals of 50 μm or more and the ion intensity ratio of 0.001 or more and 100 or less had an average insulation resistance value of 4.1 MΩ or more, and there was no element exhibiting less than 1 M, moreover, the defective rate was 2% or less (samples [0245] 113 a to 118 a, 123 a to 128 a, 133 a to 138 a and 143 a to 148 a). Particularly, it was confirmed that elements of 0.01 or more and 100 or less had an average insulation resistance value of 8.5 MΩ or more, which was more preferable.
  • In the present embodiment, it was confirmed that electric characteristics of the varistor samples were not affected by the resistance getting high due to K diffusion. As a result, high reliability can be secured. Note that samples having the ion intensity ratio of 500 or more could not be produced (samples [0246] 109 a, 110 a, 119 a, 120 a, 129 a, 130 a, 139 a, 140 a, 149 a and 150 a). Also, in samples 102 a to 108 a, 112 a to 118 a, 122 a to 128 a, 132 a to 138 a and 142 a to 148 a, it was confirmed by other experiment that the varistor characteristics (voltage nonlinearity) did not change before and after K diffusion processing.
  • Example 9
  • Other than using Rb[0247] 2CO3 instead of Li2CO3, elements were produced in the same way as in the Example 6. The results are listed in Table 9.
    TABLE 9
    After Reflow Soldering
    Gap Insulation
    Between Ion Intensity Resistance
    Terminals Ratio Value Defective
    Sample No. μm (Rb/Zn) Rate %
    *151a 20 —(Untreated) 0.02 100
    *152a 0.0001 0.06 100
    *153a 0.001 0.09 100
    *154a 0.01 0.1 100
    *155a 0.1 0.11 100
    *156a 1 0.1 100
    *157a 10 0.14 100
    *158a 100 0.15 100
    *159a 500 unable to produce
    samples
    *160a 1000 unable to produce
    samples
    *161a 50 —(Untreated) 0.09 100
    *162a 0.0001 0.1 100
    163a 0.001 0.8 85
    164a 0.01 4.5 3
    165a 0.1 10 0
    166a 1 23 0
    167a 10 42 0
    168a 100 37 0
    *169a 500 unable to produce
    samples
    *170a 1000 unable to produce
    samples
    *171a 100 —(Untreated) 0.11 100
    *172a 0.0001 0.2 100
    173a 0.001 1.1 38
    174a 0.01 6.9 0
    175a 0.1 17 0
    176a 1 26 0
    177a 10 52 0
    178a 100 40 0
    *179a 500 unable to produce
    samples
    *180a 1000 unable to produce
    samples
    *181a 300 —(Untreated) 0.1 100
    *182a 0.0001 0.21 100
    183a 0.001 1.2 26
    184a 0.01 8.3 0
    185a 0.1 22 0
    186a 1 35 0
    187a 10 49 0
    188a 100 46 0
    *189a 500 unable to produce
    samples
    *190a 1000 unable to produce
    samples
    *191a 500 —(Untreated) 0.12 100
    *192a 0.0001 0.26 100
    193a 0.001 1.2 22
    194a 0.01 8.1 0
    195a 0.1 23 0
    196a 1 36 0
    197a 10 50 0
    198a 100 50 0
    *199a 500 unable to produce
    samples
    *200a 1000 unable to produce
    samples
  • As shown in Table 9, elements before Rb processing had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% (samples [0248] 151 a, 161 a, 171 a, 181 a and 191 a).
  • Elements wherein a gap between terminals was 20 μm had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% even when subjected to Rb processing (samples [0249] 152 a to 158 a). It was considered that the reason why the insulation defective rate was not improved was the same as in the above example 6.
  • Elements having the ion intensity ratio of 0.0001 or less had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% even when subjected to Rb processing (samples [0250] 162 a, 172 a, 182 a and 192 a).
  • Elements having a gap between terminals of 50 μm or more and the ion intensity ratio of 0.001 or more and 100 or less had an average insulation resistance value of 1.1 MΩ or more excepting a sample [0251] 163 a, and there was no element exhibiting less than 1 MΩ, moreover, the defective rate was 38% or less (samples 164 a to 168 a, 173 a to 178 a, 183 a to 188 a and 193 a to 198 a). Particularly, it was confirmed that elements of 0.01 or more and 100 or less had an average insulation resistance value of 4.5 MΩ or more, which was more preferable.
  • In the present embodiment, it was confirmed that electric characteristics of the varistor samples were not affected by the resistance getting high due to Rb diffusion. As a result, high reliability can be secured. [0252]
  • Note that samples having the ion intensity ratio of 500 or more could not be produced (samples [0253] 159 a, 160 a, 169 a, 170 a, 179 a, 180 a, 189 a, 190 a, 199 a and 200 a). Also, in samples 152 a to 158 a, 162 a to 168 a, 172 a to 178 a, 182 a to 188 a and 192 a to 198 a, it was confirmed by other experiment that the varistor characteristics (voltage nonlinearity) did not change before and after the Rb dispersion processing.
  • Example 10
  • Other than using Cs[0254] 2CO3 instead of Li2CO3, elements were produced in the same way as in the Example 6. The results are listed in Table 10.
    TABLE 10
    After Reflow Soldering
    Gap Insulation
    Between Ion Intensity Resistance
    Terminals Ratio Value Defective
    Sample No. μm (Cs/Zn) Rate %
    *201a 20 —(Untreated) 0.02 100
    *202a 0.0001 0.05 100
    *203a 0.001 0.08 100
    *204a 0.01 0.06 100
    *205a 0.1 0.1 100
    *206a 1 0.13 100
    *207a 10 0.15 100
    *208a 100 0.13 100
    *209a 500 unable to produce
    samples
    *210a 1000 unable to produce
    samples
    *211a 50 —(Untreated) 0.09 100
    *212a 0.0001 0.11 100
    213a 0.001 0.65 94
    214a 0.01 1.2 45
    215a 0.1 7.2 0
    216a 1 15 0
    217a 10 26 0
    218a 100 23 0
    *219a 500 unable to produce
    samples
    *220a 1000 unable to produce
    samples
    *221a 100 —(Untreated) 0.11 100
    *222a 0.0001 0.12 100
    223a 0.001 0.88 68
    224a 0.01 1.4 30
    225a 0.1 8.6 0
    226a 1 19 0
    227a 10 30 0
    228a 100 28 0
    *229a 500 unable to produce
    samples
    *230a 1000 unable to produce
    samples
    *231a 300 —(Untreated) 0.1 100
    *232a 0.0001 0.12 100
    233a 0.001 1.1 48
    234a 0.01 1.7 26
    235a 0.1 10 0
    236a 1 21 0
    237a 10 35 0
    238a 100 26 0
    *239a 500 unable to produce
    samples
    *240a 1000 unable to produce
    samples
    *241a 500 —(Untreated) 0.12 100
    *242a 0.0001 0.13 100
    243a 0.001 1.5 34
    244a 0.01 2 16
    245a 0.1 13 0
    246a 1 21 0
    247a 10 31 0
    248a 100 22 0
    *249a 500 unable to produce
    samples
    *250a 1000 unable to produce
    samples
  • As shown in Table 10, elements before Cs processing had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% (samples [0255] 201 a, 211 a, 221 a, 231 a and 241 a).
  • Elements wherein a gap between terminals was 20 μm had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% even when subjected to Cs processing (samples [0256] 202 a to 208 a). It was considered that the reason why the insulation defective rate was not improved was the same as in the above example 6.
  • Elements having the ion intensity ratio of 0.0001 or less had a small average insulation resistance value of less than 1 MΩ after reflow, and the insulation defective rate after reflow was high as 100% even when subjected to Cs processing (samples [0257] 212 a, 222 a, 232 a and 242 a).
  • Elements having a gap between terminals of 50 μm or more and the ion intensity ratio of 0.001 or more and 100 or less had an average insulation resistance value of 1.1 MΩ or more excepting samples [0258] 213 a and 223 a, and there was no element exhibiting less than 1 MΩ, moreover, the defective rate was 48% or less (samples 214 a to 218 a, 224 a to 228 a, 233 a to 238 a and 243 a to 248 a). Particularly, it was confirmed that elements of 0.1 or more and 100 or less had an average insulation resistance value of 7.2 MΩ or more, which was more preferable.
  • In the present embodiment, it was confirmed that electric characteristics of the varistor samples were not affected by the resistance getting high due to Cs diffusion. As a result, high reliability can be secured. [0259]
  • Note that samples having the ion intensity ratio of 500 or more could not be produced (samples [0260] 209 a, 210 a, 219 a, 220 a, 229 a, 230 a, 239 a, 240 a, 249 a and 250 a). Also, in samples 202 a to 208 a, 212 a to 218 a, 222 a to 228 a, 232 a to 238 a and 242 a to 248 a, it was confirmed by other experiment that the varistor characteristics (voltage nonlinearity) did not change before and after the Cs diffusion processing.
  • Comparative Example 2
  • Other than omitting a process of applying Li[0261] 2CO3 to perform heat treatment, elements wherein a gap between terminals was 500 μm were produced under the same conditions as those in the example 6.
  • Thus obtained element had an insulation resistance of 100 MΩ or more before reflow but becomes 0.1 MΩ after reflow, and the insulation defective rate after reflow was 100%. [0262]
  • INDUSTRIALLY APPLICABILITY
  • As explained above, according to the present invention, it is possible to provide a chip shaped electronic device, such as a multilayer chip varistor, not requiring glass coating or other insulative protective layers, being tolerant of temperature changes, capable of maintaining high resistance of an element surface even in reflow soldering, being highly reliable, and capable of being easily produced, and a method of producing the same. [0263]
  • Also according to the present invention, a chip shaped electronic device of a micro size (for example, the size is 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less) having the above characteristics, and a method of producing the same can be provided. [0264]

Claims (29)

What is claimed is:
1. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of an alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001<(A/Zn)<500.
2. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of Li and Zn, (Li/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001≦(Li/Zn)≦500.
3. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of Na and Zn, (Na/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001≦(Na/Zn)≦100.
4. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of K and Zn, (K/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001≦(K/Zn)≦100.
5. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of Rb and Zn, (Rb/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001≦(Rb/Zn)≦100.
6. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of Cs and Zn, (Cs/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, 0.001≦(Cs/Zn)≦100.
7. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when measuring an ion intensity ratio of an alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of said element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.001≦(A/Zn)≦500.
8. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when measuring an ion intensity ratio of Li and Zn, (Li/Zn), in a range from the surface of said element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.001≦(Li/Zn)≦500.
9. The chip shaped electronic device as set forth in claim 8, wherein said ion intensity ratio is 0.01≦(Li/Zn)≦500.
10. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when measuring an ion intensity ratio of Na and Zn, (Na/Zn), in a range from the surface of said element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.001≦(Na/Zn)≦100.
11. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when measuring an ion intensity ratio of K and Zn, (K/Zn), in a range from the surface of said element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.001≦(K/Zn)≦100.
12. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when measuring an ion intensity ratio of Rb and Zn, (Rb/Zn), in a range from the surface of said element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.01≦(Rb/Zn)≦100.
13. A chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, wherein
when measuring an ion intensity ratio of Cs and Zn, (Cs/Zn), in a range from the surface of said element body to a depth of 100 μm by a secondary ion mass spectrometry, it is 0.1≦(Cs/Zn)≦100.
14. A chip shaped electronic device comprising:
an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and
a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane (a gap between terminals) is 50 μm or more;
wherein when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of Li and Zn, (Li/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry (SIMS), it is 0.001≦(Li/Zn)≦500.
15. The chip shaped electronic device as set forth in claim 14, wherein said ion intensity ratio is 0.01≦(Li/Zn)≦500.
16. A chip shaped electronic device comprising:
an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and
a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more;
wherein when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of Na and Zn, (Na/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001<(Na/Zn)<100.
17. A chip shaped electronic device comprising:
an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and
a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more;
wherein when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of K and Zn, (K/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001≦(K/Zn)≦100.
18. A chip shaped electronic device comprising:
an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and
a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more;
wherein when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of Rb and Zn, (Rb/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001<(Rb/Zn)<100.
19. A chip shaped electronic device comprising:
an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and
a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more;
wherein when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of Cs and Zn, (Cs/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001≦(Cs/Zn)≦100.
20. A chip shaped electronic device comprising:
an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and
a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more;
wherein when assuming a minimum distance from an outermost side of said internal electrode layer in the stacking direction to a surface of said element body is 1 and measuring an ion intensity ratio of an alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry, it is 0.001≦(A/Zn)≦500.
21. The chip shaped electronic device as set forth in any one of claims 1 to 20, wherein said element body has the configuration of alternately stacking zinc oxide voltage nonlinear resistor layers and internal electrode layers, and said chip shaped electronic device is a multilayer type chip varistor.
22. A method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, and a pair of terminal electrodes formed on an outer surface of the element body, including the steps of:
forming said element body;
diffusing an alkali metal (A) from a surface of said element body to inside the element body; and
after that, forming on the outer surface of said element body said pair of terminal electrodes connected to said internal electrode layers;
wherein:
the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when assuming a minimum distance from an outermost layer side of said internal electrode layers in the stacking direction to the surface of said element body is 1 at the time of diffusing said alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry.
23. A method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, and a pair of terminal electrodes formed on an outer surface of the element body, including the steps of:
forming said element body;
forming on the outer surface of said element body terminal electrodes connected to said internal electrode layers; and
after that, diffusing an alkali metal (A) from a surface of said element body to inside the element body;
wherein:
the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when assuming a minimum distance from an outermost layer side of said internal electrode layers in the stacking direction to the surface of said element body is 1 at the time of diffusing said alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry.
24. A method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, including the steps of:
forming said element body;
diffusing an alkali metal (A) from a surface of said element body to inside the element body; and
after that, forming on the outer surface of said element body terminal electrodes connected to said internal electrode layers; and
wherein:
the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of said element body to a depth of 100 μm by a secondary ion mass spectrometry.
25. A method of producing a chip shaped electronic device comprising an element body including zinc oxide material layers and internal electrode layers, including the steps of:
forming said element body;
forming on the outer surface of said element body terminal electrodes connected to said internal electrode layers; and
after that, diffusing an alkali metal (A) from a surface of said element body to inside the element body;
wherein:
the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of said element body to a depth of 100 μm by a secondary ion mass spectrometry.
26. A method of producing a chip shaped electronic device comprising:
an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and
a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more; including the steps of:
forming said element body;
diffusing an alkali metal (A) from a surface of said element body to inside the element body; and
after that, forming on the outer surface of said element body said pair of terminal electrodes connected to said internal electrode layers;
wherein:
the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when assuming a minimum distance from an outermost layer side of said internal electrode layers in the stacking direction to the surface of said element body is 1 at the time of diffusing said alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry.
27. A method of producing a chip shaped electronic device comprising:
an element body including zinc oxide material layers and internal electrode layers and having a size of 0.6 mm or less×0.3 mm or less×a thickness of 0.3 mm or less; and
a pair of terminal electrodes formed on an outer surface of the element body, wherein a distance between facing end portions on the same plane is 50 μm or more; including the steps of:
forming said element body;
forming on the outer surface of said element body said pair of terminal electrodes connected to said internal electrode layers; and
after that, diffusing an alkali metal (A) from a surface of said element body to inside the element body;
wherein:
the alkali metal is diffused under a condition of attaining 0.001≦(A/Zn)≦500 when assuming a minimum distance from an outermost layer side of said internal electrode layers in the stacking direction to the surface of said element body is 1 at the time of diffusing said alkali metal and measuring an ion intensity ratio of the alkali metal (A) and zinc (Zn), (A/Zn), in a range from the surface of said element body to a depth of (0.9×1) by a secondary ion mass spectrometry.
28. The chip shaped electronic device as set forth in any one of claims 22 to 27, wherein said alkali metal is at least one of Li, Na, K, Rb and Cs.
29. The chip shaped electronic device as set forth in any one of claims 22 to 27, wherein at the time of diffusing said alkali metal, said element body is subjected to heat treatment at a temperature of 700 to 1000° C. in a state of being applied with powder of an alkali metal compound, and at least one of an application amount of said powder to the surface of said element body, a heat treatment temperature and a heat treatment time is controlled.
US10/694,802 2002-10-29 2003-10-29 Chip shaped electronic device and a method of producing the same Expired - Lifetime US6813137B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002-313772 2002-10-29
JP2002313772A JP3735756B2 (en) 2002-10-29 2002-10-29 Chip-shaped electronic component and manufacturing method thereof
JP2003-91476 2003-03-28
JP2003091476A JP4020816B2 (en) 2003-03-28 2003-03-28 Chip-shaped electronic component and manufacturing method thereof
JP2003-091476 2003-03-28

Publications (2)

Publication Number Publication Date
US20040169267A1 true US20040169267A1 (en) 2004-09-02
US6813137B2 US6813137B2 (en) 2004-11-02

Family

ID=32301818

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/694,802 Expired - Lifetime US6813137B2 (en) 2002-10-29 2003-10-29 Chip shaped electronic device and a method of producing the same

Country Status (5)

Country Link
US (1) US6813137B2 (en)
KR (1) KR100564930B1 (en)
CN (1) CN1329930C (en)
DE (1) DE10350343B4 (en)
TW (1) TWI240933B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160027561A1 (en) * 2014-07-28 2016-01-28 Murata Manufacturing Co., Ltd. Ceramic electronic component
US20160276089A1 (en) * 2015-03-19 2016-09-22 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing electronic component
CN110285999A (en) * 2019-07-08 2019-09-27 肯维捷斯(武汉)科技有限公司 A kind of solidliquid mixture sampler and its sampling method
US10706995B1 (en) * 2018-12-12 2020-07-07 Tdk Corporation Chip varistor
US11901100B2 (en) 2020-08-26 2024-02-13 Tdk Electronics Ag Multilayer varistor and method for manufacturing a multilayer varistor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037588A1 (en) * 2004-08-03 2006-02-23 Epcos Ag Electrical component and method for producing an electrical component
JP4276231B2 (en) * 2005-12-14 2009-06-10 Tdk株式会社 Varistor element
JP4492578B2 (en) * 2006-03-31 2010-06-30 Tdk株式会社 Varistor body and varistor
US7683753B2 (en) * 2007-03-30 2010-03-23 Tdk Corporation Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
JP4683052B2 (en) * 2008-01-28 2011-05-11 Tdk株式会社 Ceramic element
US8045314B2 (en) * 2009-08-01 2011-10-25 The Travis Business Group, Inc. Method of atmospheric discharge energy conversion, storage and distribution
JP5803375B2 (en) * 2011-07-21 2015-11-04 Tdk株式会社 Multilayer chip varistor and method of manufacturing multilayer chip varistor
CN106782956B (en) * 2016-09-29 2019-01-22 立昌先进科技股份有限公司 A kind of method preparing multilayer chip varistors and varistor as made from it
KR102556495B1 (en) * 2018-03-05 2023-07-17 교세라 에이브이엑스 컴포넌츠 코포레이션 Cascade varistors with increased energy handling capacity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0074177A3 (en) * 1981-08-24 1983-08-31 General Electric Company Metal oxide varistor with controllable breakdown voltage and capacitance
JP2757305B2 (en) * 1988-01-27 1998-05-25 株式会社村田製作所 Chip varistor
JP3735151B2 (en) * 1996-03-07 2006-01-18 Tdk株式会社 Multilayer chip varistor and manufacturing method thereof
JP2000269003A (en) 1999-03-17 2000-09-29 Marcon Electronics Co Ltd Ceramic varistor and its manufacture
JP2001023805A (en) 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Manufacture of varistor
JP3555563B2 (en) * 1999-08-27 2004-08-18 株式会社村田製作所 Manufacturing method of multilayer chip varistor and multilayer chip varistor
JP3579692B2 (en) 1999-12-07 2004-10-20 トモエ繊維株式会社 Elastic thin socks

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160027561A1 (en) * 2014-07-28 2016-01-28 Murata Manufacturing Co., Ltd. Ceramic electronic component
US9959975B2 (en) * 2014-07-28 2018-05-01 Murata Manufacturing Co., Ltd. Ceramic electronic component
US20160276089A1 (en) * 2015-03-19 2016-09-22 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing electronic component
US10875095B2 (en) * 2015-03-19 2020-12-29 Murata Manufacturing Co., Ltd. Electronic component comprising magnetic metal powder
US11817244B2 (en) 2015-03-19 2023-11-14 Murata Manufacturing Co., Ltd. Method for manufacturing electronic component
US10706995B1 (en) * 2018-12-12 2020-07-07 Tdk Corporation Chip varistor
CN110285999A (en) * 2019-07-08 2019-09-27 肯维捷斯(武汉)科技有限公司 A kind of solidliquid mixture sampler and its sampling method
US11901100B2 (en) 2020-08-26 2024-02-13 Tdk Electronics Ag Multilayer varistor and method for manufacturing a multilayer varistor

Also Published As

Publication number Publication date
KR20040038782A (en) 2004-05-08
KR100564930B1 (en) 2006-03-30
DE10350343B4 (en) 2016-10-06
US6813137B2 (en) 2004-11-02
TW200411682A (en) 2004-07-01
CN1329930C (en) 2007-08-01
DE10350343A1 (en) 2004-06-03
CN1503278A (en) 2004-06-09
TWI240933B (en) 2005-10-01

Similar Documents

Publication Publication Date Title
US6813137B2 (en) Chip shaped electronic device and a method of producing the same
US5075665A (en) Laminated varistor
US5963416A (en) Electronic device with outer electrodes and a circuit module having the electronic device
CN1303621C (en) Chip type electronic parts
JP3735151B2 (en) Multilayer chip varistor and manufacturing method thereof
US5994995A (en) Laminated chip varistor and production method thereof
US4903166A (en) Electrostrictive actuators
JPH03173402A (en) Chip varistor
JP4492579B2 (en) Varistor body and varistor
JP4082696B2 (en) Multilayer electronic component and manufacturing method thereof
JP2005123141A (en) Conductive paste and piezoelectric ceramic electronic component
JPH06215908A (en) Chip type thermistor and its manufacturing method
JP4492578B2 (en) Varistor body and varistor
JP4020816B2 (en) Chip-shaped electronic component and manufacturing method thereof
US20010001551A1 (en) Ceramic thermistor chips
JPH0547513A (en) Manufacture of laminated type varistor
CN104813418A (en) Positive characteristic thermistor and method for manufacturing same
TWI270089B (en) Method for manufacturing varistor with phosphate insulation layer
JPH0682540B2 (en) Thick film resistance element and electron tube incorporating the same
SU989439A1 (en) Method of producing ion selective electrode having hard contact
JPH02220407A (en) Laminated varistor
JPH0787149B2 (en) Multilayer chip impedance element
JPS636803A (en) Manufacture of thick film resistance element
JPH08316003A (en) Square type chip resistor and its manufacture
JP2008091428A (en) Varistor

Legal Events

Date Code Title Description
AS Assignment

Owner name: TDK CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUOKA, DAI;KITAMURA, HIDETAKA;OGASAWARA, TADASHI;REEL/FRAME:014660/0347;SIGNING DATES FROM 20030924 TO 20030925

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12