US20040087712A1 - Method and colorant for the coloring of rubber - Google Patents

Method and colorant for the coloring of rubber Download PDF

Info

Publication number
US20040087712A1
US20040087712A1 US10/624,387 US62438703A US2004087712A1 US 20040087712 A1 US20040087712 A1 US 20040087712A1 US 62438703 A US62438703 A US 62438703A US 2004087712 A1 US2004087712 A1 US 2004087712A1
Authority
US
United States
Prior art keywords
rubber
latex
group
colorant
based colorant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/624,387
Inventor
Hariharan Rajaraman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/624,387 priority Critical patent/US20040087712A1/en
Publication of US20040087712A1 publication Critical patent/US20040087712A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • This invention relates to a method used in the coloring of rubber. This invention further relates to a colorant used to color rubber and colorized rubber.
  • Crumb rubber commonly manufactured from recycled tires, is used in road paving, horse tracks, floor mats, bedding for farm animals, shingles for roofing and sports turf surfaces (such as football fields, tracks, etc.) to add resilience to the surfaces and to absorb impact better than asphalt or turf. Crumb rubber is also gaining popularity as playground cover for areas where children climb or face dangers from falling. Its superior ability to cushion impacts makes it a very desirable ground surface for high-impact activities.
  • the present, invention provides a method for coloring a rubber substrate with a latex-based colorant comprising the steps of providing a latex-based colorant that includes an elastomeric latex-based binder and a pigment system and mixing the latex-based colorant with the rubber substrate.
  • the latex-based colorant further comprises a surfactant system, a thickener, a defoamer, and an antioxidant.
  • the present invention further provides a colored rubber and a latex-based colorant for coloring rubber.
  • the present invention pertains to a colored rubber substrate, a method of coloring a rubber substrate, and a latex-based colorant for such a coloring method.
  • the steps involved in the method include, providing the colorant, and applying the colorant to the rubber substrate.
  • the method may further comprise the step of vulcanizing the rubber.
  • the elastomeric latex preferably has a solids content in the range of 25-75 percent, and it is more preferred to have an elastomeric latex with a solids content in the range of 45-65 percent.
  • Examples of synthetic elastomeric latex are styrene butadiene rubber, nitrile rubber, butyl rubber, polychloroprene rubber, and ethylene-propylene rubber. It is preferred to use an elastomeric latex comprising a mixture of natural rubber and styrene butadiene rubber.
  • organic pigment dispersions examples include phthalocyanine blues and greens, DNA orange, Diarylide yellows, Naphthol red, Lithol Rubine red, Toluidine red, Red Lake C, Carbazole violet, Barium Lithol red, Rhodamine Red, Methyl violet, and Quinacridone Magenta.
  • Organic pigment dispersions that are water-based are preferred because they are compatible with the elastomeric latex-based binders.
  • the surfactant system is preferably a blend of non-ionic and ionic surfactants.
  • non-ionic surfactants are condensation products of fatty alcohols with ethylene oxide, polyethylene glycol esters or chain fatty acids, or sobitan esters.
  • Ionic surfactants can be either anionic or certain cationic compounds. Suitable anionic surfactants are, for example, sodium alkyl sulfate, sodium salt of polymeric polycarboxylic acid, sodium polymethacrylate, and sodium alkyl sulfate.
  • An antioxidant is optionally added to protect the latex film from degradation due to heat and ultraviolet light.
  • Suitable antioxidants are, for example, N-N′ Di(2-octyl)-p-phenylene diamine, diphenyl-p-phenylendediamine, octylated diphenulamine, dioctylated diphenylamine, styrenated phenol, or hindered phenol.
  • the preferred antioxidant is a water based dispersion of octylated diphenylamine, commonly designated under the trade names Agerite Stalite and C-560 dispersion, commercially available from R.T. Vanderbilt Company.
  • the latex-based colorant is applied to a rubber substrate to be colored, such as, for example, crumb rubber, natural rubber, ethylene-propylene rubber, butyl rubber, nitrile rubber, styrene-butadiene rubber, or polychloroprene rubber for example.
  • the colorant and the rubber to be colored are thoroughly mixed in, for example, a paint shaker, drum tumbler, ribbon or paddle type blender, or a double cone blender. Good results have been obtained by mixing with a standard a paint shaker for at least 1.5 minutes.
  • Blue colored crumb rubber was produced by mixing 200 grams of crumb rubber and 4 grams of latex-based colorant and 0.15 grams of vulanizing agent in a paint shaker for 2 minutes.
  • the latex-based colorant had the following formulation and was made by mixing on a Cowles type mixer at a blade tip speed of 150 feet per minute for 10 minutes.
  • Latex-Based Colorant MATERIAL Percentage by Weight Water 40.20% BYK022 polysiloxane defoamer 0.40% Triton CF 10 alkyl aryl ether surfactant 0.40% Tamol 731A anionic dispersant 2.00% Tioxide TR-92 rutile titanium dioxide (opacifer) 30.00% Alper DB15C-888 Phthalo Blue dispersion 10.00% (organic pigment dispersion) Dynatex GTZ natural rubber latex 62% solid 7.50% DL 313 NA modified SBR latex 48% solid 7.50% Min-U-Gel 400 thickener 2.00%
  • Vulcanizing Agents MATERIAL Percentage by Weight Water 62.50% 50% sulfur dispersion 6.25% 60% zinc dispersion 18.75% Butyl Zimate Slurry 6.25% C-560 dispersion 6.25%
  • the resulting product was aged at room temperature for a period of between 7 and 14 days, and was examined for color, colorfastness in water, and colorfastness to mild friction and contact.
  • the crumb rubber was observed to have a bright blue color and no carbon black showed through the blue.
  • Colorfastness in water is tested by immersing the crumb rubber in water at room temperature for a period of 21 days and then the water is subsequently checked for discoloration due to bleeding of pigment from the crumb rubber.
  • Colorfastness to mild friction is tested by rubbing the crumb rubber with the tester's hands and the hands are subsequently checked for discoloration due to bleeding of pigment from the crumb rubber.
  • the adhesion of colorants to the crumb rubber was very good as no significant bleeding of the pigment occurred.
  • a green latex-based colorant was made, as in Example 1, by replacing the Phthalo blue dispersion in the latex-based colorant with a Phthalo Green dispersion DG007-448, from Alper dispersions.
  • a green colored crumb rubber was produced by mixing 200 grams of crumb rubber, 4 grams of green latex-based colorant and 0.15 grams of vulcanizing agents, as in Example 1, in a paint shaker for two minutes. The crumb rubber thus produced was bright green in color and had the required colorfast properties.
  • a violet latex-based colorant was produced, as in Example 1 using the following formulation:
  • Latex-Based Colorant MATERIAL Percentage by Weight Water 35.20% BYK022 polysiloxane defoamer 0.40% Triton CF 10 alkyl aryl ether surfactant 0.40% Tamol 731A anionic dispersant 2.00% Tioxide TR-92 rutile titanium dioxide 30.00% Creanova Carbazole violet dispersion 877-8895 15.00% Dynatex GTZ natural rubber latex 62% solid 7.50% DL 313 NA modified SBR latex 48% solid 7.50% Min-U-Gel 400 thickener 2.00%
  • crumb rubber can be colored to obtain different hues such as yellow, orange, red, and an infinite number of other shades by using suitable organic pigment dispersions, or mixtures thereof, to obtain the desired hues.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a method for coloring a rubber substrate with a latex-based colorant comprising the steps of providing a latex-based colorant that includes an elastomeric latex-based binder and a pigment system and mixing the latex-based colorant with the rubber substrate. Optionally, the latex-based colorant further comprises a surfactant system, a thickener, a defoamer, and an antioxidant. The present invention further provides a colored rubber and a latex-based colorant for coloring rubber.

Description

    FIELD OF THE INVENTION
  • This invention relates to a method used in the coloring of rubber. This invention further relates to a colorant used to color rubber and colorized rubber. [0001]
  • BACKGROUND OF THE INVENTION
  • Crumb rubber, commonly manufactured from recycled tires, is used in road paving, horse tracks, floor mats, bedding for farm animals, shingles for roofing and sports turf surfaces (such as football fields, tracks, etc.) to add resilience to the surfaces and to absorb impact better than asphalt or turf. Crumb rubber is also gaining popularity as playground cover for areas where children climb or face dangers from falling. Its superior ability to cushion impacts makes it a very desirable ground surface for high-impact activities. [0002]
  • The use of crumb rubber has been limited due to the lack of aesthetic appeal in that most tires are black. Some methods of coloring crumb rubber have been developed, such as wetting and drying material or painting over the black, but these methods are not efficient, practical or durable. Painting over the rubber consumes a large amount of paint and commonly results in a non-durable product as the paint is rubbed off when in consistent contact with another object. Spraying the crumb rubber and allowing it to air dry also creates a wide variety of problems. The spray method produces a product with poor color uniformity and incomplete coverage. Sprayed on paints tend to demonstrate poor adhesion of the colorants to the rubber. In addition, the spray method wastes an excessive amount of paint and create problems with waste disposal when a solvent-based paint is used. Traditional methods also lack the ability to achieve vibrant colors due to the carbon black that is present in the rubber. The carbon black darkens or dirties the colorant thereby producing a color that lacks vibrancy. It would be desirable to have a method of coloring rubber which will produce a durable, vibrant product. [0003]
  • SUMMARY OF THE INVENTION
  • The present, invention provides a method for coloring a rubber substrate with a latex-based colorant comprising the steps of providing a latex-based colorant that includes an elastomeric latex-based binder and a pigment system and mixing the latex-based colorant with the rubber substrate. Optionally, the latex-based colorant further comprises a surfactant system, a thickener, a defoamer, and an antioxidant. The present invention further provides a colored rubber and a latex-based colorant for coloring rubber. [0004]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention pertains to a colored rubber substrate, a method of coloring a rubber substrate, and a latex-based colorant for such a coloring method. The steps involved in the method include, providing the colorant, and applying the colorant to the rubber substrate. The method may further comprise the step of vulcanizing the rubber. [0005]
  • The latex-based colorant comprises a latex-based binder and a pigment system. The latex-based colorant preferably comprises 5-50 percent by weight elastomeric latex-based binder, 10-70 percent by weight the pigment system and 0-85 percent by weight water. It is more preferred for the latex-based colorant to comprise 10-20 percent by weight elastomeric latex-based binder, 30-55 percent by weight the pigment system, and 25-60 percent by weight water. The latex-based binder comprises an elastomeric latex, either natural or synthetic, that forms lattices, or colloidal dispersions of polymeric material, in a water-based system. When lattices are applied on a substrate, a uniform coating of the rubber results after the water evaporates. The elastomeric latex preferably has a solids content in the range of 25-75 percent, and it is more preferred to have an elastomeric latex with a solids content in the range of 45-65 percent. Examples of synthetic elastomeric latex are styrene butadiene rubber, nitrile rubber, butyl rubber, polychloroprene rubber, and ethylene-propylene rubber. It is preferred to use an elastomeric latex comprising a mixture of natural rubber and styrene butadiene rubber. [0006]
  • In addition, the latex-based colorant includes a pigment system. The pigment system comprises an opacifer and an organic pigment dispersion, preferably between a 3:1 and 2:1 ratio, respectively. Examples of suitable opacifers are zinc oxide, zinc sulfate, and barium sulfate. The preferred opacifer has a refractive index greater than 2. Such an opacifer would include titanium oxide, and more preferably a rutile grade of titanium dioxide. The opacifer provides the opacity to cover up the carbon black on the rubber and the color is achieved by using a suitable organic pigment dispersion. Use of a latex-based colorant permits application of a wide variety of colors to the rubber substrate. Examples of suitable organic pigment dispersions are phthalocyanine blues and greens, DNA orange, Diarylide yellows, Naphthol red, Lithol Rubine red, Toluidine red, Red Lake C, Carbazole violet, Barium Lithol red, Rhodamine Red, Methyl violet, and Quinacridone Magenta. Organic pigment dispersions that are water-based are preferred because they are compatible with the elastomeric latex-based binders. [0007]
  • Optionally, the colorant further comprises a defoamer, a surfactant system, a thickener, and an antioxidant. Any conventional defoamer that minimizes the formation of foam and bubbles during the manufacture of water-based dispersions may be employed. It is preferred to use a mixture of hydrophobic solids and polysiloxanes in polyglycol as the defoamer. One suitable example is BYK022, manufactured by BYK-Chemie USA. [0008]
  • The surfactant system is preferably a blend of non-ionic and ionic surfactants. Examples of non-ionic surfactants are condensation products of fatty alcohols with ethylene oxide, polyethylene glycol esters or chain fatty acids, or sobitan esters. Ionic surfactants can be either anionic or certain cationic compounds. Suitable anionic surfactants are, for example, sodium alkyl sulfate, sodium salt of polymeric polycarboxylic acid, sodium polymethacrylate, and sodium alkyl sulfate. Suitable cationic surfactants are, for example, salts of primary, secondary, or tertiary amines and quartenary salts such as cetylpyridinium bromide, hexa-decyl-ethyl morpholinium chloride and diethyl didodecyl ammonium chloride. The preferred surfactant system is a blend of sodium salt of polymeric polycarboxylic acid and a non-ionic surfactant based on modified alkylaryl polyther, preferably with an 80:20 blend, respectively. [0009]
  • The thickener is desired to provide an increased shelf-life and to impart a viscosity between 75 and 95 KU for the latex-based colorant. A thickener with a viscosity between 75 and 100 KU, as measured by a Stormer Viscometer, is preferred, and more preferably is between 80 and 90 KU. Suitable thickeners are gums, starches, cellulose polymers, minerals, or alginates. The preferred thickener is a hydrated aluminum magnesium silicate, commonly designated as Attagel, commercially available from Engelhard Corporation, or Min-U-Get, commercially available from Floridin Industries. [0010]
  • An antioxidant is optionally added to protect the latex film from degradation due to heat and ultraviolet light. Suitable antioxidants are, for example, N-N′ Di(2-octyl)-p-phenylene diamine, diphenyl-p-phenylendediamine, octylated diphenulamine, dioctylated diphenylamine, styrenated phenol, or hindered phenol. The preferred antioxidant is a water based dispersion of octylated diphenylamine, commonly designated under the trade names Agerite Stalite and C-560 dispersion, commercially available from R.T. Vanderbilt Company. [0011]
  • The latex-based colorant is prepared by placing the components into a mixer, preferably a Cowles type mixer, and thoroughly mixing. The mixing wets the pigments with the surfactants and ensures that all the ingredients are uniformly incorporated. [0012]
  • The latex-based colorant is applied to a rubber substrate to be colored, such as, for example, crumb rubber, natural rubber, ethylene-propylene rubber, butyl rubber, nitrile rubber, styrene-butadiene rubber, or polychloroprene rubber for example. The colorant and the rubber to be colored are thoroughly mixed in, for example, a paint shaker, drum tumbler, ribbon or paddle type blender, or a double cone blender. Good results have been obtained by mixing with a standard a paint shaker for at least 1.5 minutes. [0013]
  • Optionally, the rubber is vulcanized during the mixing process to reduce tackiness, increase tensile strength, decrease solubility in solvents, increase elasticity, and decrease temperature sensitivity. To accomplish the vulcanization of the rubber, a vulcanizing agent, a cure activator, and accelerator are added before mixing. The vulcanizing agent is typically a colloidal sulfur, preferably as a water based dispersion. The cure activator, which increases the rate of vulcanization and improves tensile strength, is typically a zinc oxide, preferably as a water based dispersion. Examples of the accelerator are thiuram, dithiocarbonate, xanthate, mercapto thiazole, mercapto sulfonamide, thiourea, and guanidine. Dithiocarbonate in a water based dispersion is the preferred accelerator. The following are examples employing this method of coloring crumb rubber.[0014]
  • EXAMPLE 1
  • Blue colored crumb rubber was produced by mixing 200 grams of crumb rubber and 4 grams of latex-based colorant and 0.15 grams of vulanizing agent in a paint shaker for 2 minutes. The latex-based colorant had the following formulation and was made by mixing on a Cowles type mixer at a blade tip speed of 150 feet per minute for 10 minutes. [0015]
  • Latex-Based Colorant: [0016]
    MATERIAL Percentage by Weight
    Water 40.20%
    BYK022 polysiloxane defoamer  0.40%
    Triton CF 10 alkyl aryl ether surfactant  0.40%
    Tamol 731A anionic dispersant  2.00%
    Tioxide TR-92 rutile titanium dioxide (opacifer) 30.00%
    Alper DB15C-888 Phthalo Blue dispersion 10.00%
    (organic pigment dispersion)
    Dynatex GTZ natural rubber latex 62% solid  7.50%
    DL 313 NA modified SBR latex 48% solid  7.50%
    Min-U-Gel 400 thickener  2.00%
  • Vulcanizing Agents: [0017]
    MATERIAL Percentage by Weight
    Water 62.50%
    50% sulfur dispersion  6.25%
    60% zinc dispersion 18.75%
    Butyl Zimate Slurry  6.25%
    C-560 dispersion  6.25%
  • The resulting product was aged at room temperature for a period of between 7 and 14 days, and was examined for color, colorfastness in water, and colorfastness to mild friction and contact. The crumb rubber was observed to have a bright blue color and no carbon black showed through the blue. Colorfastness in water is tested by immersing the crumb rubber in water at room temperature for a period of 21 days and then the water is subsequently checked for discoloration due to bleeding of pigment from the crumb rubber. Colorfastness to mild friction is tested by rubbing the crumb rubber with the tester's hands and the hands are subsequently checked for discoloration due to bleeding of pigment from the crumb rubber. The adhesion of colorants to the crumb rubber was very good as no significant bleeding of the pigment occurred. [0018]
  • EXAMPLE 2
  • A green latex-based colorant was made, as in Example 1, by replacing the Phthalo blue dispersion in the latex-based colorant with a Phthalo Green dispersion DG007-448, from Alper dispersions. A green colored crumb rubber was produced by mixing 200 grams of crumb rubber, 4 grams of green latex-based colorant and 0.15 grams of vulcanizing agents, as in Example 1, in a paint shaker for two minutes. The crumb rubber thus produced was bright green in color and had the required colorfast properties. [0019]
  • EXAMPLE 3
  • A violet latex-based colorant was produced, as in Example 1 using the following formulation: [0020]
  • Latex-Based Colorant: [0021]
    MATERIAL Percentage by Weight
    Water 35.20%
    BYK022 polysiloxane defoamer  0.40%
    Triton CF 10 alkyl aryl ether surfactant  0.40%
    Tamol 731A anionic dispersant  2.00%
    Tioxide TR-92 rutile titanium dioxide 30.00%
    Creanova Carbazole violet dispersion 877-8895 15.00%
    Dynatex GTZ natural rubber latex 62% solid  7.50%
    DL 313 NA modified SBR latex 48% solid  7.50%
    Min-U-Gel 400 thickener  2.00%
  • Two hundred grams of crumb rubber was mixed with 6 grams of the latex-based colorant and 0.15 grams of the vulcanizing agents, as in Example 1. The colorized crumb rubber produced was a bright violet with good colorfast properties. [0022]
  • Using similar methods to those employed in examples 1-3, crumb rubber can be colored to obtain different hues such as yellow, orange, red, and an infinite number of other shades by using suitable organic pigment dispersions, or mixtures thereof, to obtain the desired hues. [0023]
  • Although illustrative embodiments of the present invention have been described herein, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the present invention. [0024]

Claims (25)

What is claimed:
1. A method of coloring a rubber substrate, comprising the steps of:
providing a latex-based colorant comprising 5-50 percent by weight latex-based binder, 10-70 percent by weight a pigment system comprising an organic pigment dispersion and opacifer, and 0-85 percent by weight water; and
mixing said latex-based colorant with said rubber substrate.
2. The method of claim 1 wherein said latex-based colorant comprises 10-20 percent by weight latex-based binder, 30-55 percent by weight said pigment, and 25-60 percent by weight water.
3. The method of claim 1 further comprising the step of vulcanizing the rubber during the mixing of said colorant and said rubber substrate.
4. The method of claim 3 wherein said rubber is vulcanized with a vulcanization agent, a cure activator, and an accelerator.
5. The method of claim 4 wherein said vulcanization agent is a water based dispersion of sulfur, said cure activator is a water based dispersion of zinc oxide, and said accelerator is selected from the group consisting of thiuram, dithiocarbonate, xanthate, mercapto thiazole, mercapto sulfonamide, thiourea, and guanidine.
6. The method of claim 1 wherein said rubber is black.
7. The method of claim 1 wherein said latex binder comprises an elastomeric latex selected from the group consisting of natural rubber, synthetic rubber, or a mixture thereof, wherein said elastomeric latex forms lattices, or colloidal dispersions of polymeric material, in a water-based system and has a solids content between 25-75%.
8. The method of claim 7 wherein said synthetic rubber is selected from the group consisting of styrene butadiene rubber, nitrile rubber, butyl rubber, polychloroprene rubber, and ethylene-propylene rubber.
9. The method of claim 1 wherein said water based colorant further comprises a surfactant system, a defoamer, an antioxidant, and a thickener.
10. The method of claim 11 wherein said surfactant system is selected from the group consisting of non-ionic, anionic, and cationic surfactants, and mixtures thereof; said defoamer comprises a mixture of hydrophobic solids and polysiloxanes; said antioxidant is selected from the group consisting of is N-N′ Di(2-octyl)-p-phenylene diamine, diphenyl-p-phenylendedeiamine, octylated diphenulamine; dioctylated diphenylamine, styrenated phenol, hindered phenol, and mixtures thereof; and said thickener is selected from the group consisting of a gum, starch, cellulose polymer, mineral, alginate, and mixtures thereof.
11. The method of claim 1 wherein said pigment system comprises titanium oxide and an organic pigment dispersion.
12. The method of claim 11 wherein said pigment system comprises titanium dioxide and a water dispersion of an organic pigment between a 3:1 and 2:1 ratio, respectively.
13. The method of claim 1 wherein said rubber substrate is selected from the group consisting of crumb rubber, natural rubber, styrene butadiene rubber, nitrile rubber, butyl rubber, polychloroprene rubber, and ethylene-propylene rubber.
14. The method of claim 1 wherein said rubber substrate is crumb rubber.
15. A latex-based colorant for coloring a rubber substrate comprising a latex binder and a pigment system.
16. The latex-based colorant of claim 15 wherein said latex binder comprises an elastomeric latex selected from the group consisting of natural rubber, synthetic rubber, or a mixture thereof, wherein said elastomeric latex forms lattices, or colloidal dispersions of polymeric material, in a water-based system and has a solids content between 25-75%.
17. The latex-based colorant of claim 16 wherein said synthetic rubber is selected from the group consisting of styrene butadiene rubber, nitrile rubber, butyl rubber, polychloroprene rubber, and ethylene-propylene rubber.
18. The latex-based colorant of claim 16 wherein said water-based colorant further comprises a surfactant system, a defoamer, an antioxidant, and a thickener.
19. The latex-based colorant of claim 18 wherein said surfactant system surfactant system is selected from the group consisting of non-ionic, anionic, and cationic surfactants, and mixtures thereof; said defoamer is a mixture of hydrophobic solids and polysiloxanes; said antioxidant is selected from the group consisting of is N-N′ Di(2-octyl)-p-phenylene, diamine, diphenyl-p-phenylendedeamine, octylated diphenulamine, dioctylated diphenylamine, styrenated phenol, hindered phenol, and mixtures thereof; and said thickener is selected from the group consisting of a gum, starch, cellulose polymer, mineral, alginate, and mixtures thereof.
20. The latex-based colorant of claim 16 wherein said pigment comprises titanium oxide and an organic pigment dispersion.
21 Colored rubber comprising a rubber substrate and a colored latex coating in contact with said rubber substrate.
22. The colored rubber of claim 21 wherein said colored latex coating comprises a pigment system and latex binder.
23. The colored rubber of claim 22 wherein said pigment system comprises an opacifer and an organic pigment dispersion.
24. The colored rubber of claim 21 wherein said rubber substrate is selected from the group consisting of natural rubber, crumb rubber, styrene butadiene rubber, nitrile rubber, butyl rubber, polychloroprene rubber, and ethylene-propylene rubber.
25. The colored rubber of claim 21 wherein said rubber substrate is crumb rubber.
US10/624,387 2000-02-14 2003-07-22 Method and colorant for the coloring of rubber Abandoned US20040087712A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/624,387 US20040087712A1 (en) 2000-02-14 2003-07-22 Method and colorant for the coloring of rubber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/503,696 US6500896B1 (en) 2000-02-14 2000-02-14 Method and colorant for the coloring of rubber
US10/195,933 US20020193501A1 (en) 2000-02-14 2002-07-17 Method and colorant for the coloring of rubber
US10/624,387 US20040087712A1 (en) 2000-02-14 2003-07-22 Method and colorant for the coloring of rubber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/195,933 Continuation US20020193501A1 (en) 2000-02-14 2002-07-17 Method and colorant for the coloring of rubber

Publications (1)

Publication Number Publication Date
US20040087712A1 true US20040087712A1 (en) 2004-05-06

Family

ID=24003131

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/503,696 Expired - Fee Related US6500896B1 (en) 2000-02-14 2000-02-14 Method and colorant for the coloring of rubber
US10/195,933 Abandoned US20020193501A1 (en) 2000-02-14 2002-07-17 Method and colorant for the coloring of rubber
US10/624,387 Abandoned US20040087712A1 (en) 2000-02-14 2003-07-22 Method and colorant for the coloring of rubber

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/503,696 Expired - Fee Related US6500896B1 (en) 2000-02-14 2000-02-14 Method and colorant for the coloring of rubber
US10/195,933 Abandoned US20020193501A1 (en) 2000-02-14 2002-07-17 Method and colorant for the coloring of rubber

Country Status (2)

Country Link
US (3) US6500896B1 (en)
CA (1) CA2327408A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009569A1 (en) * 2005-09-08 2008-01-10 The Goodyear Tire & Rubber Company Pneumatic Tire Containing Zinc Phthalocyanine Compound
US20110028943A1 (en) * 2008-01-04 2011-02-03 Kenneth Glenn Lawson Synthetic polyisoprene foley catheter
US20110178507A1 (en) * 2008-06-30 2011-07-21 C. R. Bard, Inc. Polyurethane/polyisoprene blend catheter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500896B1 (en) * 2000-02-14 2002-12-31 Chromascape, Inc. Method and colorant for the coloring of rubber
GB0308487D0 (en) * 2003-04-14 2003-05-21 Ciba Spec Chem Water Treat Ltd Paper coating compositions
GB2406530B (en) * 2003-10-02 2006-07-26 Dunweedin Ltd Improvements in and relating to colouring methods
US7300511B2 (en) * 2005-07-01 2007-11-27 Sun Chemical Corporation Low viscosity, highly pigmented oil based dispersions exhibiting a low relative interfacial tension drop
US8268436B2 (en) * 2007-12-15 2012-09-18 The Goodyear Tire & Rubber Company Tire with indicia containing composite magnetic nanoparticles
US20110086228A1 (en) * 2009-10-08 2011-04-14 Becker Underwood, Inc. Green-Colored Environmentally Inert Coated Materials, Barrier Compositions and Related Methods

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776876A (en) * 1972-02-15 1973-12-04 Ruscoe W Co Spreadable covering material
US4112176A (en) * 1974-07-08 1978-09-05 U.S. Rubber Reclaiming Co., Inc. Ground rubber elastomeric composite useful in surfacings and the like, and methods
US4420340A (en) * 1982-01-28 1983-12-13 Elkem Metals Company Color retention pigment for paint compositions using latex vehicles
US4668728A (en) * 1984-06-13 1987-05-26 The Goodyear Tire & Rubber Company Coating material for use on sulfur vulcanized rubber
US4987192A (en) * 1989-05-19 1991-01-22 Oberster Arthur E Colored tire stocks having improved abrasion resistance, color and color stability
US5105577A (en) * 1991-04-19 1992-04-21 Hedges Gary W Artificial mulch chips
US5330804A (en) * 1991-03-27 1994-07-19 Earth Trends, Inc. Synthetic wood mulch
US5389116A (en) * 1992-07-13 1995-02-14 Byrd; David A. Ground cover and soil supplement
US5396731A (en) * 1990-03-07 1995-03-14 Byrne; Steven E. Mulch pads and methods
US5571588A (en) * 1989-06-06 1996-11-05 Tarkett Inc. Durable inlaid floor coverings having a uniform, unpatterned decorative appearance
US5585150A (en) * 1994-09-08 1996-12-17 Mulch Developement Company Mulch product and process for its preparation
US5714263A (en) * 1994-03-18 1998-02-03 King Associates Inc. Fall zone covering for playground
US5910514A (en) * 1997-10-01 1999-06-08 Greenberg; Lee M. Synthetic mulch
US6500896B1 (en) * 2000-02-14 2002-12-31 Chromascape, Inc. Method and colorant for the coloring of rubber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420346A (en) * 1980-11-28 1983-12-13 Belkin German S Method of preparing contacts and electrodes of electric vacuum apparatuses

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776876A (en) * 1972-02-15 1973-12-04 Ruscoe W Co Spreadable covering material
US4112176A (en) * 1974-07-08 1978-09-05 U.S. Rubber Reclaiming Co., Inc. Ground rubber elastomeric composite useful in surfacings and the like, and methods
US4420340A (en) * 1982-01-28 1983-12-13 Elkem Metals Company Color retention pigment for paint compositions using latex vehicles
US4668728A (en) * 1984-06-13 1987-05-26 The Goodyear Tire & Rubber Company Coating material for use on sulfur vulcanized rubber
US4987192A (en) * 1989-05-19 1991-01-22 Oberster Arthur E Colored tire stocks having improved abrasion resistance, color and color stability
US5571588A (en) * 1989-06-06 1996-11-05 Tarkett Inc. Durable inlaid floor coverings having a uniform, unpatterned decorative appearance
US5396731A (en) * 1990-03-07 1995-03-14 Byrne; Steven E. Mulch pads and methods
US5330804A (en) * 1991-03-27 1994-07-19 Earth Trends, Inc. Synthetic wood mulch
US5105577A (en) * 1991-04-19 1992-04-21 Hedges Gary W Artificial mulch chips
US5389116A (en) * 1992-07-13 1995-02-14 Byrd; David A. Ground cover and soil supplement
US5714263A (en) * 1994-03-18 1998-02-03 King Associates Inc. Fall zone covering for playground
US5585150A (en) * 1994-09-08 1996-12-17 Mulch Developement Company Mulch product and process for its preparation
US5910514A (en) * 1997-10-01 1999-06-08 Greenberg; Lee M. Synthetic mulch
US6500896B1 (en) * 2000-02-14 2002-12-31 Chromascape, Inc. Method and colorant for the coloring of rubber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009569A1 (en) * 2005-09-08 2008-01-10 The Goodyear Tire & Rubber Company Pneumatic Tire Containing Zinc Phthalocyanine Compound
US20110028943A1 (en) * 2008-01-04 2011-02-03 Kenneth Glenn Lawson Synthetic polyisoprene foley catheter
US8633268B2 (en) 2008-01-04 2014-01-21 C.R. Bard, Inc. Synthetic polyisoprene foley catheter
US20110178507A1 (en) * 2008-06-30 2011-07-21 C. R. Bard, Inc. Polyurethane/polyisoprene blend catheter
US8795573B2 (en) 2008-06-30 2014-08-05 C.R. Bard, Inc. Polyurethane/polyisoprene blend catheter

Also Published As

Publication number Publication date
US20020193501A1 (en) 2002-12-19
CA2327408A1 (en) 2001-08-14
US6500896B1 (en) 2002-12-31

Similar Documents

Publication Publication Date Title
US6500896B1 (en) Method and colorant for the coloring of rubber
CA2606751C (en) Modified asphalt binder material using crosslinked crumb rubber and methods of manufacturing the modified asphalt binder
US20080038470A1 (en) Surface coating compositions
US4137204A (en) Cationic method for emulsifying asphalt-rubber paving material and a stable thixotropic emulsion of said material
CN101412602A (en) Stone-intimating construction coating and preparation thereof
CN108219654A (en) Polyurethane non-skid coating
CN109517437A (en) Water-base gravure ink and preparation method thereof
CN107141773A (en) A kind of environment-friendly polyurethane plastic cement race track and preparation method thereof
GB1572997A (en) Traffic paint method and composition
EP2509781B1 (en) Method of producing coloured portions on a tyre and tyre obtained said method
CN101864229A (en) Method for preparing hot-melt quick-drying colorful pavement antiskid paint
EP1492744B1 (en) Method for colouring fertilisers
CN101671506A (en) Waterless printing ink and preparation method thereof
CN109280320A (en) Normal-temperature colored pitch of response type and its preparation method and application
MXPA01001650A (en) Method and colorant for the coloring of rubber
CN115008807A (en) Preparation method of fadeless color matching rubber ball
CN106221530A (en) A kind of water alcohol acid enamel paint and preparation method thereof
CN111039596A (en) Water-based colored anti-skid paving material and preparation method and application thereof
CN109913035A (en) A kind of spraying powder free printing ink composition
CN109233594A (en) A kind of Environment-friendlyexterior exterior wall paint and preparation method thereof containing conch meal
CN106065209A (en) A kind of solvent-free paint marking of super abrasive
CN114045099B (en) Environment-friendly two-component marking paint and preparation method, use method and application thereof
CN112898944A (en) 1:1 two-component quick-drying silicone sealant and preparation method thereof
CN113265187A (en) Quick-melting environment-friendly hot-melt marking paint and preparation method thereof
US7175703B2 (en) Liquid composition additive to reduce curing time of surface coatings

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION