US20030221578A1 - Detonator with onboard electronics mechanically connected to ignition element - Google Patents

Detonator with onboard electronics mechanically connected to ignition element Download PDF

Info

Publication number
US20030221578A1
US20030221578A1 US10/158,677 US15867702A US2003221578A1 US 20030221578 A1 US20030221578 A1 US 20030221578A1 US 15867702 A US15867702 A US 15867702A US 2003221578 A1 US2003221578 A1 US 2003221578A1
Authority
US
United States
Prior art keywords
ignition
electronics
detonator
ignition element
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/158,677
Inventor
David Forman
Abrar Tirmizi
Bruce Kwiatkowski
Thomas Cook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Special Devices Inc
Original Assignee
Special Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Special Devices Inc filed Critical Special Devices Inc
Priority to US10/158,677 priority Critical patent/US20030221578A1/en
Assigned to SPECIAL DEVICES, INC. reassignment SPECIAL DEVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AVETISIAN, VAHAN, CARROLL, PATRICK J., COOK, THOMAS A., RENZ, ROBERT, RENZ, ROBERT N., BERG, PAUL, KWIATKOWSKI, BRUCE J., EDWARDS, TIMOTHY, AVETISIAN, VAHAN, TIRMIZI, ABRAR A., VAWTER, GLORIA, WALSH, JOHN J., FORMAN, DAVID M., OLDHAM, JOHN H., ROSU, MARIUS
Priority to AU2003228015A priority patent/AU2003228015A1/en
Priority to EP03725483A priority patent/EP1509742A1/en
Priority to PCT/IB2003/001968 priority patent/WO2003100343A1/en
Publication of US20030221578A1 publication Critical patent/US20030221578A1/en
Priority to ZA200409577A priority patent/ZA200409577B/en
Assigned to WELLS FARGO FOOTHILL, INC. reassignment WELLS FARGO FOOTHILL, INC. AMENDMENT TO COLLATERAL ASSIGNMENT Assignors: SPECIAL DEVICES, INCORPORATED
Assigned to SPECIAL DEVICES, INCORPORATED reassignment SPECIAL DEVICES, INCORPORATED NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO FOOTHILL, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/121Initiators with incorporated integrated circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/103Mounting initiator heads in initiators; Sealing-plugs

Definitions

  • the present invention relates to pyrotechnic detonators, and more particularly, to a detonator having onboard electronics and an ignition element that are mechanically connected to each other.
  • timed detonation can be accomplished by detonators that use pyrotechnic delays, sequential-type blasting machines, and electronically programmable detonators.
  • detonators that have onboard electronics, i.e., electronics contained within the detonator itself, for processing an ignition signal from, e.g., a blasting machine, are described in U.S. Pat. Nos.
  • Such detonators involve soldered connections between the ignition element of the detonator to the onboard electronics, which presents at least the risk of damaging or detonating the ignition element. It is believed that hitherto this problem has not been addressed through the provision of a means to mechanically connect the ignition element to the onboard electronics in a detonator.
  • FIG. 1 is a top sectional view of an embodiment of the present invention.
  • FIG. 2 is a partial top sectional view of the ignition element and connection portion of the embodiment shown in FIG. 1.
  • FIG. 3 is side view corresponding to FIG. 2.
  • FIGS. 1 - 3 a detonator utilizing an embodiment of the present invention is shown.
  • an ignition subassembly 8 is placed inside of a shell 40 that may contain a primary charge 36 and a base charge 38 loaded into its closed end.
  • a detonator shell is typically a metal cylinder 6 to 8 mm. in diameter and from 60-100 mm. in length).
  • Subassembly 8 can then be secured in place in the shell 40 , such as by placing an elastomeric plug or the like (see elastomeric plug 46 and crimp 47 in FIGS. 5 and 6) in the open end of the shell and crimping the shell 40 to the plug, or other suitable method.
  • Subassembly 8 may have a body portion formed of an encapsulation 31 and is preferably formed to snugly fit within the shell 40 , preferably with features such as ridges or other protuberances formed to dampen vibrations to which the detonator may be subjected, generally in accordance with the teachings of U.S. Pat. No. 6,079,332. Some relevant teachings regarding encapsulation are also set forth in U.S. Pat. Nos. 6,079,332 and 4,869,170.
  • a header-based, or automotive airbag initiator-style, ignition element 28 is shown in the embodiment depicted in the Figures, but a detonator according to the present invention may include any kind of suitable ignition element (e.g., matchhead-type).
  • suitable ignition element e.g., matchhead-type.
  • U.S. Pat. Nos. 6,274,252, 5,709,724, 5,639,986, 5,602,359, 5,596,163, 5,404,263, 5,140,906, and 3,971,320 are also hereby incorporated by reference herein for their disclosure concerning the construction of ignition elements based on a glass-to-metal sealed header feedthrough, including the types of pins commonly used.
  • ignition element 28 includes a header assembly with a sealed electrical feedthrough, comprising an eyelet 10 (preferably stainless steel), insulator glass 14 (preferably a glass such as a sodasilicate, e.g., 9010, that is chosen to form a compression seal with the eyelet and center pin, or less preferably a matched seal), a center pin 18 (preferably iron/nickel alloy), a ground pin 20 , and an igniter wire 12 (preferably a low energy igniter wire with a diameter of 10 to 20 microns).
  • eyelet 10 preferably stainless steel
  • insulator glass 14 preferably a glass such as a sodasilicate, e.g., 9010, that is chosen to form a compression seal with the eyelet and center pin, or less preferably a matched seal
  • a center pin 18 preferably iron/nickel alloy
  • ground pin 20 preferably an igniter wire 12 (preferably a low energy igniter wire with a diameter of 10 to 20 microns).
  • the ignition element 28 further preferably includes a charge can 26 that is preferably metallic and hermetically sealed to the eyelet at circumferential through-weld 16 , with an ignition charge 30 contained between the can 26 and upper surface of the header, in tight contact with igniter wire 12 .
  • An insulator cup 27 may preferably be attached around the can 26 so that, except for female connectors 52 that protrude from the input end of the subassembly, the entire outer surface of ignition subassembly 8 consists of insulating material, thus providing electrical isolation and vibration and environmental protection to the components within until such time as the subassembly is placed in the detonator shell.
  • circuit board 24 and electronic components 25 are provided within ignition subassembly 8 , to provide a means of triggering ignition of the ignition element based on the processing of an electrical ignition signal from a blasting machine or the like that supplies power and commands to the detonator.
  • Such electronic components are well-known and preferably include means for imparting a programmable period of delay to the ignition, means for ESD and RF protection, et cetera. (Another preferred alternative is the use of an application-specific integrated circuit).
  • Circuit board 24 and electronic components 25 are preferably encapsulated together in encapsulation 31 , and connected to female connectors 52 and to plug and crimp connectors 50 at contacts 22 through soldering or other suitable connection.
  • Suitable plug and crimp connectors 50 that may be purchased off the shelf are suitable for use in an embodiment of the present invention like that depicted.
  • pins 18 and 20 of ignition subassembly 28 are inserted within the openings of connectors 50 , and a crimping tool is used to securely crimp the connectors 50 to pins 18 and 20 .
  • Virtually any contact pin (of appropriate size) designed for use with a header is suitable for use with connectors 50 .
  • ignition subassembly 8 can be completed by the provision of encapsulation 31 around the circuit board, electronics, plug and crimp connectors, pins, and bottom of the ignition subassemblies.
  • IDC Insulation Displacement Connection

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Air Bags (AREA)

Abstract

A detonator with onboard electronics and an ignition element that are mechanically connected together.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to pyrotechnic detonators, and more particularly, to a detonator having onboard electronics and an ignition element that are mechanically connected to each other. [0001]
  • The efficient use of explosives in mining operations and the demolition of structures often requires that many charges be placed in a predetermined pattern and detonated in a timed sequence. In general, timed detonation can be accomplished by detonators that use pyrotechnic delays, sequential-type blasting machines, and electronically programmable detonators. Some examples of detonators that have onboard electronics, i.e., electronics contained within the detonator itself, for processing an ignition signal from, e.g., a blasting machine, are described in U.S. Pat. Nos. 6,173,651, 6,085,659, 6,079,332, 5,602,360, 5,460,093, 4,869,170, 4,819,560, 4,730,558, and 4,712,477, the disclosures of which are hereby incorporated by reference herein. [0002]
  • Such detonators involve soldered connections between the ignition element of the detonator to the onboard electronics, which presents at least the risk of damaging or detonating the ignition element. It is believed that hitherto this problem has not been addressed through the provision of a means to mechanically connect the ignition element to the onboard electronics in a detonator. [0003]
  • SUMMARY OF THE INVENTION
  • It is an objective of the present invention to provide a means to mechanically connect the ignition element in a detonator to onboard electronics, thus eliminating the risk of making a soldered or similar connection in immediate proximity to the ignition element of the detonator.[0004]
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a top sectional view of an embodiment of the present invention. [0005]
  • FIG. 2 is a partial top sectional view of the ignition element and connection portion of the embodiment shown in FIG. 1. [0006]
  • FIG. 3 is side view corresponding to FIG. 2. [0007]
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT1
  • Referring to FIGS. [0008] 1-3, a detonator utilizing an embodiment of the present invention is shown. Referring to FIG. 1, an ignition subassembly 8 is placed inside of a shell 40 that may contain a primary charge 36 and a base charge 38 loaded into its closed end. (A detonator shell is typically a metal cylinder 6 to 8 mm. in diameter and from 60-100 mm. in length). Subassembly 8 can then be secured in place in the shell 40, such as by placing an elastomeric plug or the like (see elastomeric plug 46 and crimp 47 in FIGS. 5 and 6) in the open end of the shell and crimping the shell 40 to the plug, or other suitable method. Subassembly 8 may have a body portion formed of an encapsulation 31 and is preferably formed to snugly fit within the shell 40, preferably with features such as ridges or other protuberances formed to dampen vibrations to which the detonator may be subjected, generally in accordance with the teachings of U.S. Pat. No. 6,079,332. Some relevant teachings regarding encapsulation are also set forth in U.S. Pat. Nos. 6,079,332 and 4,869,170.
  • A header-based, or automotive airbag initiator-style, [0009] ignition element 28 is shown in the embodiment depicted in the Figures, but a detonator according to the present invention may include any kind of suitable ignition element (e.g., matchhead-type). U.S. Pat. Nos. 6,274,252, 5,709,724, 5,639,986, 5,602,359, 5,596,163, 5,404,263, 5,140,906, and 3,971,320 are also hereby incorporated by reference herein for their disclosure concerning the construction of ignition elements based on a glass-to-metal sealed header feedthrough, including the types of pins commonly used.
  • As shown in FIG. 2, [0010] ignition element 28 includes a header assembly with a sealed electrical feedthrough, comprising an eyelet 10 (preferably stainless steel), insulator glass 14 (preferably a glass such as a sodasilicate, e.g., 9010, that is chosen to form a compression seal with the eyelet and center pin, or less preferably a matched seal), a center pin 18 (preferably iron/nickel alloy), a ground pin 20, and an igniter wire 12 (preferably a low energy igniter wire with a diameter of 10 to 20 microns). The ignition element 28 further preferably includes a charge can 26 that is preferably metallic and hermetically sealed to the eyelet at circumferential through-weld 16, with an ignition charge 30 contained between the can 26 and upper surface of the header, in tight contact with igniter wire 12. An insulator cup 27 may preferably be attached around the can 26 so that, except for female connectors 52 that protrude from the input end of the subassembly, the entire outer surface of ignition subassembly 8 consists of insulating material, thus providing electrical isolation and vibration and environmental protection to the components within until such time as the subassembly is placed in the detonator shell.
  • Turning again to FIG. 1, it can be seen that a [0011] circuit board 24 and electronic components 25 are provided within ignition subassembly 8, to provide a means of triggering ignition of the ignition element based on the processing of an electrical ignition signal from a blasting machine or the like that supplies power and commands to the detonator. Such electronic components are well-known and preferably include means for imparting a programmable period of delay to the ignition, means for ESD and RF protection, et cetera. (Another preferred alternative is the use of an application-specific integrated circuit). Circuit board 24 and electronic components 25 are preferably encapsulated together in encapsulation 31, and connected to female connectors 52 and to plug and crimp connectors 50 at contacts 22 through soldering or other suitable connection.
  • Suitable plug and [0012] crimp connectors 50 that may be purchased off the shelf are suitable for use in an embodiment of the present invention like that depicted. Thus, after the plug and crimp connectors 50 are attached to the circuit board 24 (or other electronics), pins 18 and 20 of ignition subassembly 28 are inserted within the openings of connectors 50, and a crimping tool is used to securely crimp the connectors 50 to pins 18 and 20. Virtually any contact pin (of appropriate size) designed for use with a header is suitable for use with connectors 50. After the plug and crimp connection has been made, ignition subassembly 8 can be completed by the provision of encapsulation 31 around the circuit board, electronics, plug and crimp connectors, pins, and bottom of the ignition subassemblies.
  • Alternately to a plug and crimp connection, a standard off-the-shelf “Insulation Displacement Connection” (IDC) can be made, with or without insulation sheathing on the pins. IDCs may be soldered during circuit board assembly in conventional fashion. The [0013] pins 18 and 20 of ignition subassembly 28 can then be inserted into an IDC and secured.
  • It should be noted that although the Figures depict embodiments including electronic components that receive, process, and deliver an ignition signal, such an ignition signal may alternately be received, processed, and delivered by a number of other well-known non-electronic or partly-electronic means, such as through the use of a shock tube to deliver an ignition signal to a piezoelectric device, column fuse delays, et cetera. It is noted that this detailed description of certain embodiments herein does not imply that such alternate embodiments are not within the scope of the invention. [0014]
  • A preferred embodiment of a detonator having an ignition element and onboard electronics that are mechanically connected together, and many of its attendant advantages, has thus been disclosed. It will be apparent, however, that various changes may be made in the form, construction, and arrangement of the parts without departing from the spirit and scope of the invention, the form hereinbefore described being merely a preferred or exemplary embodiment thereof. Therefore, the invention is not to be restricted or limited except in accordance with the following claims. [0015]

Claims (20)

What is claimed is:
1. An ignition subassembly for use in a detonator, comprising an ignition element and electronics for processing an ignition signal, said electronics being mechanically connected to said ignition element.
2. The ignition subassembly of claim 1, wherein the mechanical connection between said ignition element and said electronics includes a plug and crimp connection.
3. The ignition subassembly of claim 1, wherein the mechanical connection between said ignition element and said electronics includes an insulation displacement connection.
4. The ignition subassembly of claim 1, wherein said electronics include a circuit board having two ends, one of the ends of said circuit board being mechanically connected to said ignition element.
5. The ignition subassembly of claim 1, wherein said ignition element includes a glass-to-metal header having a sealed feedthrough.
6. The ignition subassembly of claim 2, further comprising two plug and crimp connectors, wherein said ignition element includes two electrode pins that mate with said plug and crimp connectors.
7. A detonator comprising:
a) an ignition element;
b) electronics for processing an ignition signal; and,
c) a mechanical connector assembly between said ignition element and said electronics, said connector mechanically connecting said ignition element to said electronics.
8. The detonator of claim 7, wherein said mechanical connector assembly includes a plug and crimp connector.
9. The detonator of claim 7, wherein said mechanical connector assembly includes an insulation displacement connector.
10. The detonator of claim 7, wherein said ignition element includes a glass-to-metal header having a sealed feedthrough.
11. The detonator of claim 7, wherein said electronics comprise a circuit board that includes electronic components for processing an ignition signal.
12. The detonator of claim 11, wherein said mechanical connector assembly is soldered to said circuit board at one or more through-board contacts.
13. A method of making an ignition subassembly for use in a detonator, comprising the following steps:
a) providing an ignition element suitable for initiating the detonator;
b) providing electronics for processing an ignition signal that is intended to trigger said ignition element;
c) providing a mechanical connector assembly comprising a male portion and a female portion;
d) incorporating or attaching said male portion of said connector assembly to one of said ignition element or said electronics;
e) incorporating or attaching said female portion of said connector assembly to the other of said ignition element and said electronics; and,
f) mechanically connecting together said male and female portions of said connector assembly.
14. The method of claim 13, wherein step c) includes the step of providing at least one plug and crimp connector.
15. The method of claim 13, wherein step c) includes the step of providing at least one insulation displacement connector.
16. The method of claim 13, wherein step a) includes the step of providing a glass-to-metal header having a sealed feedthrough, and wherein step d) includes the step of providing said header with a ground pin protruding away from said header, and the step of sealing a center pin in said header so as to form said sealed feedthrough and so as to protrude away from said header.
17. The method of claim 16, wherein step e) includes the step of attaching two plug and crimp connectors to said electronics, and wherein step f) comprises the step of pushing said pins into said plug and crimp connectors and crimping said plug and crimp connectors to said pins.
18. The method of claim 13, wherein step b) comprises the step of providing a circuit board including electronic components for processing an ignition signal.
19. The method of claim 18, wherein step e) comprises the step of soldering two plug and crimp connectors to said circuit board at through-board contacts.
20. The method of claim 17, further comprising the step of substantially encapsulating said electronics, plug and crimp connectors, and pins.
US10/158,677 2002-05-29 2002-05-29 Detonator with onboard electronics mechanically connected to ignition element Abandoned US20030221578A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/158,677 US20030221578A1 (en) 2002-05-29 2002-05-29 Detonator with onboard electronics mechanically connected to ignition element
AU2003228015A AU2003228015A1 (en) 2002-05-29 2003-05-22 Detonator with onboard electronics mechanically connected to ignition element
EP03725483A EP1509742A1 (en) 2002-05-29 2003-05-22 Detonator with onboard electronics mechanically connected to ignition element
PCT/IB2003/001968 WO2003100343A1 (en) 2002-05-29 2003-05-22 Detonator with onboard electronics mechanically connected to ignition element
ZA200409577A ZA200409577B (en) 2002-05-29 2004-11-26 Detonator with onboard electronics Mechanically connected to ignition element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/158,677 US20030221578A1 (en) 2002-05-29 2002-05-29 Detonator with onboard electronics mechanically connected to ignition element

Publications (1)

Publication Number Publication Date
US20030221578A1 true US20030221578A1 (en) 2003-12-04

Family

ID=29582732

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/158,677 Abandoned US20030221578A1 (en) 2002-05-29 2002-05-29 Detonator with onboard electronics mechanically connected to ignition element

Country Status (5)

Country Link
US (1) US20030221578A1 (en)
EP (1) EP1509742A1 (en)
AU (1) AU2003228015A1 (en)
WO (1) WO2003100343A1 (en)
ZA (1) ZA200409577B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946466B1 (en) * 2009-12-07 2011-05-24 Continental Industries, Inc. Alternative ignition source system for an exothermic reaction mold device
US20110132967A1 (en) * 2009-12-07 2011-06-09 Continental Industries, Inc. Ignition Source System for an Exothermic Reaction Mold Device
US8468944B2 (en) 2008-10-24 2013-06-25 Battelle Memorial Institute Electronic detonator system
US20150260496A1 (en) * 2010-06-18 2015-09-17 Battelle Memorial Institute Non-energetics based detonator
WO2017210650A1 (en) * 2016-06-03 2017-12-07 Hubbell Incorporated Tools for use in confined spaces
US10758997B2 (en) * 2017-11-14 2020-09-01 Sichuan Sunlight Intelligent Electric Equipment Co., Ltd. . . Exothermic welding apparatus and exothermic welding method
US20210188207A1 (en) * 2019-12-19 2021-06-24 Schott Ag Metal-fixing material feedthrough, method for the production thereof and uses thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965033A (en) * 1956-10-19 1960-12-20 Hercules Powder Co Ltd Blasting cap assembly
US3971320A (en) * 1974-04-05 1976-07-27 Ici United States Inc. Electric initiator
US4730558A (en) * 1984-11-02 1988-03-15 Dynamit Novel Aktiengesellschaft Electronic delayed-action explosive detonator
US5140906A (en) * 1991-11-05 1992-08-25 Ici Americas, Inc. Airbag igniter having double glass seal
US5345872A (en) * 1993-05-28 1994-09-13 Nippon Koki Co., Ltd. Igniter
US5616045A (en) * 1995-07-14 1997-04-01 Augat Inc. Squib connector for automotive air bag assembly
US6191949B1 (en) * 1997-07-22 2001-02-20 Autoliv Asp, Inc. Application specific integrated circuit package and initiator employing same
US6227115B1 (en) * 1996-03-19 2001-05-08 Siemens Aktiengesellschaft Ignition device for tripping a passenger restraint device in a motor vehicle
US20020001162A1 (en) * 2000-03-28 2002-01-03 Hirschmann Austria Gmbh Ignition device for a safety system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9017665U1 (en) * 1990-11-22 1991-08-08 Bayern-Chemie Gesellschaft Fuer Flugchemische Antriebe Mbh, 8261 Aschau, De
WO1997021067A1 (en) * 1995-12-06 1997-06-12 Orica Trading Pty Ltd Electronic explosives initiating device
DE19962590B4 (en) * 1999-01-08 2013-01-10 Orica Explosives Technology Pty. Ltd. Control module for tripping units for the initiation of pyrotechnic elements

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965033A (en) * 1956-10-19 1960-12-20 Hercules Powder Co Ltd Blasting cap assembly
US3971320A (en) * 1974-04-05 1976-07-27 Ici United States Inc. Electric initiator
US4730558A (en) * 1984-11-02 1988-03-15 Dynamit Novel Aktiengesellschaft Electronic delayed-action explosive detonator
US5140906A (en) * 1991-11-05 1992-08-25 Ici Americas, Inc. Airbag igniter having double glass seal
US5345872A (en) * 1993-05-28 1994-09-13 Nippon Koki Co., Ltd. Igniter
US5616045A (en) * 1995-07-14 1997-04-01 Augat Inc. Squib connector for automotive air bag assembly
US6227115B1 (en) * 1996-03-19 2001-05-08 Siemens Aktiengesellschaft Ignition device for tripping a passenger restraint device in a motor vehicle
US6191949B1 (en) * 1997-07-22 2001-02-20 Autoliv Asp, Inc. Application specific integrated circuit package and initiator employing same
US20020001162A1 (en) * 2000-03-28 2002-01-03 Hirschmann Austria Gmbh Ignition device for a safety system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8468944B2 (en) 2008-10-24 2013-06-25 Battelle Memorial Institute Electronic detonator system
US8746144B2 (en) 2008-10-24 2014-06-10 Battelle Memorial Institute Electronic detonator system
US7946466B1 (en) * 2009-12-07 2011-05-24 Continental Industries, Inc. Alternative ignition source system for an exothermic reaction mold device
US20110132967A1 (en) * 2009-12-07 2011-06-09 Continental Industries, Inc. Ignition Source System for an Exothermic Reaction Mold Device
US20110132966A1 (en) * 2009-12-07 2011-06-09 Continental Industries, Inc. Alternative ignition source system for an exothermic reaction mold device
US7975900B2 (en) * 2009-12-07 2011-07-12 Continental Industries, Inc. Ignition source system for an exothermic reaction mold device
US20150260496A1 (en) * 2010-06-18 2015-09-17 Battelle Memorial Institute Non-energetics based detonator
US9347755B2 (en) * 2010-06-18 2016-05-24 Battelle Memorial Institute Non-energetics based detonator
WO2017210650A1 (en) * 2016-06-03 2017-12-07 Hubbell Incorporated Tools for use in confined spaces
US10583522B2 (en) 2016-06-03 2020-03-10 Hubbell Incorporated Tools for use in confined spaces
US10758997B2 (en) * 2017-11-14 2020-09-01 Sichuan Sunlight Intelligent Electric Equipment Co., Ltd. . . Exothermic welding apparatus and exothermic welding method
US20210188207A1 (en) * 2019-12-19 2021-06-24 Schott Ag Metal-fixing material feedthrough, method for the production thereof and uses thereof
US11945392B2 (en) * 2019-12-19 2024-04-02 Schott Ag Metal-fixing material feedthrough, method for the production thereof and uses thereof

Also Published As

Publication number Publication date
EP1509742A1 (en) 2005-03-02
AU2003228015A1 (en) 2003-12-12
WO2003100343A1 (en) 2003-12-04
ZA200409577B (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US7571679B2 (en) Energetic material initiation device having integrated low-energy exploding foil initiator header
US4621578A (en) Pyrotechnic initiator using a coaxial connector
US8485097B1 (en) Energetic material initiation device
US8100043B1 (en) Detonator cartridge and methods of use
DE102007031690B4 (en) Metal / fixing material socket for igniters of airbags or the like passenger protection devices and ignition device with such a base
JP5144526B2 (en) Glass / metal feedthrough, manufacturing method thereof, and electrical ignition starting device including the same
WO1994010528A1 (en) Air bag initiator
US6578487B2 (en) Pyrotechnic initiator with a narrowed sleeve retaining a pyrotechnic charge and methods of making same
US10871354B2 (en) Vibration resistant initiator assembly having exploding foil initiator
US20030221578A1 (en) Detonator with onboard electronics mechanically connected to ignition element
EP1402226B1 (en) Pyrotechnic initiator with on-board control circuitry
US20030221575A1 (en) Detonator utilizing features of automotive airbag initiators
US20030192446A1 (en) Header with overlying eyelet
US4616565A (en) Modular detonator device
US3541961A (en) Method and apparatus for preventing premature ignition of electro-explosive devices
US20030221576A1 (en) Detonator with an ignition element having a transistor-type sealed feedthrough
US20030221577A1 (en) Standalone ignition subassembly for detonators
US4951570A (en) Electrically activated detonator with pyrotechnic device receiving terminals and method of making
US6650528B2 (en) Ignition device for a safety system
CN214095778U (en) Plug-in type digital electronic detonator
KR20030066115A (en) Explosive bolt
JP4444717B2 (en) Ignition device
USH1178H (en) Electric coupling
AU2021313307A1 (en) Conductor for use with a detonator and detonator assembly
EP0756693A1 (en) Semiconductor device packages

Legal Events

Date Code Title Description
AS Assignment

Owner name: SPECIAL DEVICES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERG, PAUL;AVETISIAN, VAHAN;RENZ, ROBERT;AND OTHERS;REEL/FRAME:014464/0748;SIGNING DATES FROM 20030218 TO 20030311

AS Assignment

Owner name: WELLS FARGO FOOTHILL, INC., CALIFORNIA

Free format text: AMENDMENT TO COLLATERAL ASSIGNMENT;ASSIGNOR:SPECIAL DEVICES, INCORPORATED;REEL/FRAME:017537/0174

Effective date: 20051222

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SPECIAL DEVICES, INCORPORATED, CALIFORNIA

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:WELLS FARGO FOOTHILL, INC.;REEL/FRAME:023519/0617

Effective date: 20091110