US20030102117A1 - Heat radiation fin using a carbon fiber reinforced resin as heat radiation plates standing on a substrate - Google Patents

Heat radiation fin using a carbon fiber reinforced resin as heat radiation plates standing on a substrate Download PDF

Info

Publication number
US20030102117A1
US20030102117A1 US09/767,432 US76743201A US2003102117A1 US 20030102117 A1 US20030102117 A1 US 20030102117A1 US 76743201 A US76743201 A US 76743201A US 2003102117 A1 US2003102117 A1 US 2003102117A1
Authority
US
United States
Prior art keywords
heat radiation
substrate
heat
resistant resin
radiation fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/767,432
Inventor
Kei Murayama
Mitsutoshi Higashi
Hideaki Sakaguchi
Hiroko Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Assigned to SHINKO ELECTRIC INDUSTRIES CO., LTD. reassignment SHINKO ELECTRIC INDUSTRIES CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIGASHI, MITSUTOSHI, KOIKE, HIROKO, MURAYAMA, KEI, SAKAGUCHI, HIDEAKI
Priority to US10/043,943 priority Critical patent/US20020062946A1/en
Publication of US20030102117A1 publication Critical patent/US20030102117A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present invention generally relates to a heat radiation fin, a manufacturing method thereof and a semiconductor device and, more particularly, to a technology which can lighten a semiconductor device comprising a package structure, such as a BGA (Ball Grid Array) or a PGA (Pin Grid Array), and a heat radiation fin.
  • a semiconductor device comprising a package structure, such as a BGA (Ball Grid Array) or a PGA (Pin Grid Array), and a heat radiation fin.
  • a typical semiconductor device according to a conventional technology has a heat radiation structure to emit a heat generated from the semiconductor chip to the exterior of the package.
  • FIG. 1A to FIG. 1C show examples of semiconductor devices having this structure.
  • FIG. 1A is an illustration of a structure of a semiconductor device comprising: a plastic BGA (package) having an interconnection substrate formed of a resin (plastic) and a metal bump formed thereon as an external connection terminal; and a semiconductor chip, of not remarkably high performance and of a currently mass-produced type, mounted on the plastic BGA.
  • FIG. 1B is an illustration of a structure of a semiconductor device comprising: a plastic BGA (package) having an interconnection substrate formed of a resin (plastic) and a metal bump formed thereon as an external connection terminal; and a semiconductor chip, faster and more power-consuming than the semiconductor chip shown in FIG. 1A, mounted on the plastic BGA.
  • FIG. 1A is an illustration of a structure of a semiconductor device comprising: a plastic BGA (package) having an interconnection substrate formed of a resin (plastic) and a metal bump formed thereon as an external connection terminal; and a semiconductor chip, faster and more power-consuming than the semiconductor chip shown in FIG. 1A, mounted on the
  • FIG. 1C is an illustration of a structure of a semiconductor device comprising: a plastic BGA (package) having an interconnection substrate formed of a resin (plastic) and a metal bump formed thereon as an external connection terminal; and a semiconductor chip, of even higher performance than the semiconductor chip shown in FIG. 1B, mounted on the plastic BGA.
  • a plastic BGA package
  • an interconnection substrate formed of a resin (plastic) and a metal bump formed thereon as an external connection terminal
  • a semiconductor chip of even higher performance than the semiconductor chip shown in FIG. 1B, mounted on the plastic BGA.
  • a semiconductor chip 2 is mounted on one surface of an interconnection substrate 1 so that a surface of the semiconductor chip 2 opposite to a side where an electrode terminal of the semiconductor chip 2 is formed is bonded on the surface of the interconnection substrate 1 .
  • the electrode terminal of the semiconductor chip 2 is electrically connected to an interconnection pattern formed on the interconnection substrate 1 in a predetermined manner through a bonding wire 3 .
  • a sealing resin 4 covers and seals the semiconductor chip 2 and the bonding wire 3 .
  • a solder bump 5 which is used as an external connection terminal for the semiconductor chip 2 .
  • solder bump 6 which is used as a terminal to radiate heat generated from the semiconductor chip 2 .
  • the heat radiation terminal penetrates through the interconnection substrate 1 and is thermally connected to the semiconductor chip 2 .
  • the external connection terminal penetrates through the interconnection substrate 1 and is electrically connected to the interconnection pattern formed on the interconnection substrate 1 .
  • the interconnection pattern may be formed on both surfaces of the interconnection substrate 1 , providing a two-layer structure.
  • a two-layer structure is still not adequate for a semiconductor chip requiring a further high-speed operation to be mounted thereon.
  • an interconnection substrate 1 a is constructed to have a four-layer structure which may achieve an inhibition of a switching noise during a circuit operation in a semiconductor chip 2 a and a decrease in thermal resistance.
  • This structure also has the heat radiation terminal (solder bump 6 ) as a heat radiation structure to radiate heat generated from the semiconductor chip 2 a.
  • an interconnection substrate 1 b is constructed to have a six-layer structure.
  • a heat spreader 7 which is a highly thermally conductive metal plate, such as copper (Cu) or aluminum (Al), is bonded on the backside (the opposite surface to where an electrode terminal of a semiconductor chip 2 b is formed) of the semiconductor chip 2 b placed inside a cavity formed in a middle part of the interconnection substrate 1 b so as to further reduce the thermal resistance.
  • a heat sink 8 formed of a material such as a metal or a ceramic, is mounted on the heat spreader 7 so as to enhance a heat radiation effect.
  • heat radiation fins composing the heat sink 8 protrude in directions parallel to a surface of the interconnection substrate 1 b .
  • the electrode terminal of the semiconductor chip 2 b bonded to the heat spreader 7 is electrically connected to an interconnection pattern formed on each layer of the interconnection substrate 1 b through a bonding wire 3 a.
  • a sealing resin 4 a covers and seals the semiconductor chip 2 b and the bonding wire 3 a.
  • the above-mentioned semiconductor devices according to the conventional technology have disadvantages.
  • the heat generated from the semiconductor chip 2 or 2 a is only radiated from the underside of the package (interconnection substrate 1 or interconnection substrate 1 a ) through a limited number of the heat radiation terminals (solder bumps 6 ).
  • these structures shown in FIG. 1A and FIG. 1B are not sufficient in terms of heat radiation effect.
  • the number of the heat radiation terminals 6 may be increased, as a countermeasure.
  • the increase in number of the heat radiation terminals 6 leads to a relative decrease in number of the external connection terminals (solder bumps 5 ), which poses more serious problems on the semiconductor devices. Consequentially, the number of the heat radiation terminals 6 is limited, undermining this countermeasure.
  • this structure shown in FIG. 1C also has a disadvantage. That is, since a metal plate, such as copper (Cu) or aluminum (Al), or a material such as a ceramic is used as the heat radiation structures (heat spreader 7 and heat sink 8 ), the whole package becomes relatively heavy. Especially when considering the recently increasing needs toward lightening of the semiconductor packages, this disadvantage still has to be improved.
  • a more specific object of the present invention is to provide a heat radiation fin and a semiconductor device which fin and device can be lightened while maintaining an expected heat radiation effect, and a manufacturing method thereof.
  • a heat radiation fin comprising:
  • each of the heat radiation plates is formed of a heat-resistant resin containing carbon fibers.
  • the heat-resistant molded resin containing carbon fibers is used as the plurality of the heat radiation plates arranged upright on the substrate. Therefore, while the expected heat radiation effect is maintained, the semiconductor device can be lightened, compared to the conventional technology which uses such a material as a metal plate, such as a Cu or Al plate, as a heat radiation structure.
  • FIG. 1A is an illustration for explaining problems of a semiconductor device comprising a heat radiation structure according to a conventional technology
  • FIG. 1B is an illustration for explaining problems of another semiconductor device comprising a heat radiation structure according to the conventional technology
  • FIG. 1C is an illustration for explaining problems of still another semiconductor device comprising a heat radiation structure according to the conventional technology
  • FIG. 2 is a perspective view of a structure of a heat radiation fin according to an embodiment of the present invention.
  • FIG. 3A is a plan view of a structure of carbon fibers of a CFRP (a heat radiation plate) shown in FIG. 2;
  • FIG. 3B is a cross-sectional view of the structure taken along a line III-III in FIG. 3A;
  • FIG. 4 is a cross-sectional view showing steps of a manufacturing method of the heat radiation fin shown in FIG. 2;
  • FIG. 5 is a cross-sectional view showing steps of another manufacturing method of the heat radiation fin shown in FIG. 2;
  • FIG. 6 is a cross-sectional view of a structure of a semiconductor device comprising the heat radiation fin shown in FIG. 2;
  • FIG. 7 is a cross-sectional view of a structure of another semiconductor device comprising the heat radiation fin shown in FIG. 2.
  • FIG. 2 is a perspective view of a structure of a heat radiation fin according to an embodiment of the present invention.
  • the heat radiation fin 10 is characterized in that a plurality (five in FIG. 2) of heat radiation plates 12 in the form of a sheet are arranged to stand in an array on a substrate 11 , having a relatively good thermal conductivity, so that a surface of each of the heat radiation plates 12 faces a surface of another of the heat radiation plates 12 with an interval in between.
  • Each of the heat radiation plates 12 is formed of a heat-resistant molded resin containing carbon fibers. Such a resin reinforced with carbon fibers is referred to as a CFRP (Carbon Fiber Reinforced Plastic) hereinafter.
  • each of the heat radiation plates 12 when each of the heat radiation plates 12 is arranged to stand on the substrate 11 , a portion of each of the heat radiation plates 12 on one end is bent so that each of the heat radiation plates 12 has an L-shape. Then the shorter bent portion is bonded to the substrate 11 .
  • a semihard adhesive sheet in a B-stage i.e., a CFRP in the form of a prepreg
  • a CFRP in the form of a prepreg
  • a reinforcing material such as a PAN-based carbon fiber based on a polyacrylonitrile (PAN) or a pitch-based carbon fiber based on a pitch obtained in distilling such a material as a coal tar
  • a thermosetting resin such as an epoxy resin
  • a metal plate such as a Cu or an Al plate can be used as the substrate 11 having a relatively good thermal conductivity.
  • the same material as the heat radiation plate 12 i.e., the molded and hardened CFRP
  • the metal plate is preferred to be used as the substrate 11 .
  • the CFRP is preferred to be used.
  • the heat radiation plate 12 in the form of a sheet i.e., the molded and hardened CFRP
  • FIG. 3A and FIG. 3B show an example of this.
  • FIG. 3A is a plan view of a structure of carbon fibers of the CFRP (the heat radiation plate 12 ).
  • FIG. 3B is a cross-sectional view of the structure taken along a line III-III in FIG. 3A.
  • a reinforcing material of the CFRP (the heat radiation plate 12 ) is formed by weaving carbon fibers so that the carbon fibers extend in directions x and y, as shown in FIG. 3A and FIG. 3B.
  • the directions x and y are parallel to a surface of the heat radiation plate 12 arranged to stand on the substrate 11 .
  • a coefficient of thermal conductivity in the directions x and y is 40 to 45 W/m ⁇ K.
  • a coefficient of thermal conductivity in a direction z perpendicular to the directions x and y is merely 1 to 2 W/m ⁇ K. That is, the coefficient of thermal conductivity in the directions x and y, in which the carbon fibers extend, is relatively large. Therefore, by weaving the carbon fibers so that the carbon fibers extend in the directions x and y as shown in FIG. 3A and FIG. 3B, the heat radiation plate 12 can radiate heat effectively.
  • the carbon fibers are woven so that the carbon fibers extend in both of the directions x and y in FIG. 3A and FIG. 3B, the carbon fibers may be woven so that the carbon fibers extend in either of the directions x or y. Further, the carbon fibers may be woven so that the carbon fibers extend in an arbitrary direction in a plane x and y. However, to achieve further effective heat radiation, it is preferred that the carbon fibers be woven so that the carbon fibers extend only in directions perpendicular to a surface of the substrate 11 .
  • the heat radiation fin 10 according to the present embodiment is mounted on various types of semiconductor devices when used, as specifically explained hereinafter.
  • the heat radiation fin 10 according to the present embodiment comprises a plurality of CFRPs in the form of a sheet used as the heat radiation plate 12 to radiate heat generated from a semiconductor device (specifically, a semiconductor chip), while the expected heat radiation effect is maintained, the heat radiation fin 10 can be largely lightened, compared to the conventional technology shown in FIG. 1C which uses such a material as a metal plate, such as a Cu or Al plate, as a heat radiation structure.
  • the carbon fibers of the CFRP are woven so that the carbon fibers extend in the directions x and y (i.e., the directions parallel to a surface of the heat radiation plate 12 ) in which the coefficient of thermal conductivity is relatively large, the heat can be effectively radiated.
  • the heat radiation fin 10 comprises a plurality of the heat radiation plates 12 in the form of a sheet arranged to stand in an array on the substrate 11 so that a surface of each of the heat radiation plates 12 faces a surface of another of the heat radiation plates 12 with an interval in between
  • arrangements of the heat radiation plates 12 are not limited to this embodiment.
  • a plurality of the heat radiation plates 12 in the form of a sheet do not necessarily have to be arranged to stand in an array so that a surface of each of the heat radiation plates 12 faces a surface of another of the heat radiation plates 12 .
  • a plurality of the heat radiation plates 12 in the form of a sheet only have to be arranged to stand on the substrate 11 with an interval in between.
  • a shape of the heat radiation plate 12 is not limited to this embodiment, either.
  • each of the heat radiation plates 12 may be as narrow as possible in width so that a plurality of the heat radiation plates 12 have a form of strips or needles.
  • at least one of the heat radiation plates 12 may have an opening 12 b so as to enhance the heat radiation effect further.
  • a predetermined number of CFRPs 12 a in the form of a prepreg are prepared.
  • a thickness of each of the CFRPs 12 a in the form of a prepreg is selected to be, for example, approximately 100 ⁇ m.
  • Each of the CFRPs 12 a is formed, for example, by cutting a CFRP in predetermined length units, as shown by broken lines in FIG. 4-(A), in the course of unrolling a roll (not shown in the figure) of the CFRP rolled up beforehand in a predetermined width and carrying in the unrolled CFRP, as shown by an arrow in FIG. 4-(A).
  • a reinforcing material of the CFRP 12 a is formed by weaving carbon fibers so that the carbon fibers extend in a plurality of directions parallel to a surface of the CFRP (the directions x and y shown in FIG. 3A and FIG. 3B).
  • the CFRPs 12 a each in the form of a prepreg are arranged in an array so that a surface of each of the CFRPs 12 a faces a surface of another of the CFRPs 12 a with an interval in between. Thereafter, an end portion of each of the CFRPs 12 a is bent, as shown by arrows in FIG. 4-(B), so that each of the CFRPs 12 a has an L-shape.
  • the holding device 21 comprises a plurality of L-shaped slots (inversely L-shaped in FIG. 4), formed at predetermined intervals, in order to hold the CFRPs 12 a.
  • Each of the slots is selected to be, for example, 100 ⁇ m in width, 10 mm in depth and 20 mm in length, approximately.
  • the interval is selected from the range of, for example, 2 to 5 mm. Therefore, when a CFRP 12 a having a size of 20 mm ⁇ 15 mm is put into each of the slots of the holding device 21 , a portion (20 mm ⁇ 5 mm) of the CFRP 12 a protrudes from an upper surface of the holding device 21 . Bending this shorter portion, for example, by hand, provides the L-shaped CFRPs 12 a arranged at the predetermined intervals, as shown in FIG. 4-(B).
  • each of the CFRPs in the form of a prepreg is molded and bonded to the substrate 11 .
  • a CFRP 11 a in the form of a prepreg to form the substrate 11 is placed upon the shorter bent portions of the L-shaped CFRPs 12 a. Then, the L-shaped CFRPs 12 a and the CFRP 11 a are pressurized from above as shown by an arrow in FIG. 4-(C) by using the mold 22 , while being heated at a temperature of approximately 150° C. Thereby, the L-shaped CFRPs 12 a and the CFRP 11 a (the substrate 11 ) are molded and hardened, and each of the L-shaped CFRPs 12 a is bonded to the substrate 11 . It should be noted that the CFRP 11 a (the substrate 11 ) is selected to be, for example, 200- ⁇ m thick approximately.
  • the substrate 11 bonded to the molded and hardened CFRPs (the heat radiation plates 12 in the form of a sheet) is retrieved from the holding device 21 and the mold 22 . This finishes the manufacturing of the heat radiation fin 10 (shown in FIG. 2) according to the present embodiment.
  • a predetermined number of the CFRPs 12 a in the form of a prepreg are arranged in the holding device 21 and the end portion of each of the CFRPs 12 a is bent so that each of the CFRPs 12 a has an L-shape. Thereafter, the CFRP 11 a in the form of a prepreg to form the substrate 11 is placed upon the shorter bent portions of the L-shaped CFRPs 12 a.
  • the L-shaped CFRPs 12 a and the CFRP 11 a are molded and hardened by heating and pressurizing, and each of the L-shaped CFRPs 12 a (the heat radiation plates 12 ) is bonded to the substrate 11 , finishing the manufacturing of the heat radiation fin 10 .
  • a manufacturing method of the heat radiation fin 10 is not limited to this embodiment.
  • each of the CFRPs 12 a may be mounted on the substrate 11 (the CFRP 11 a in the form of a prepreg) and then bonded to the substrate 11 through heating and pressurizing.
  • FIG. 5 shows an example of this manufacturing method.
  • the CFRP 12 a in the form of a prepreg is molded by using an under mold 23 and an upper mold 24 having a shape corresponding to an outline (L-shape) of the heat radiation plate 12 as seen from the side. That is, the CFRP 12 a is placed on the under mold 23 and pressurized from above as shown by an arrow in FIG. 5-(B) by using the upper mold 24 , while being heated at a temperature of approximately 150° C. Thereby, the CFRP 12 a is molded and hardened in the L-shape. Thereafter, the molded and hardened CFRP 12 a (the heat radiation plate 12 ) is retrieved from the under mold 23 and the upper mold 24 .
  • each of the heat radiation plates 12 is mounted in an array on a CFRP 11 a in the form of a prepreg forming the substrate 11 so that the shorter bent portion of each of the L-shaped heat radiation plates 12 faces downward and that a surface of the longer portion of each of the heat radiation plates 12 faces a surface of the longer portion of another of the heat radiation plates 12 with an interval in between.
  • the CFRP 11 a is hardened and molded by heating and pressurizing by using devices, such as a holding device and a mold, (not shown in the figures), and each of the heat radiation plates 12 is bonded to the substrate 11 .
  • each of the heat radiation plates 12 (the CFRPs 12 a ) is mounted and bonded on the substrate 11 (the CFRP 11 a in the form of a prepreg).
  • each of the CFRPs 12 a in the form of a prepreg does not necessarily have to be molded and hardened into the L-shape.
  • each of the CFRPs 12 a may be molded and hardened in the form of a flat sheet as it original is (that is, not molded into the L-shape).
  • each of the hardened CFRPs (the heat radiation plates) in the form of a flat sheet is mounted on the substrate 11 (the CFRP 11 a in the form of a prepreg) in an array with an interval in between by thrusting an end portion of each of the heat radiation plates into the substrate 11 .
  • each of the heat radiation plates may be bonded to the substrate 11 by heating and pressurizing.
  • the heat radiation fin 10 according to the present embodiment can be preferably mounted on various types of semiconductor devices.
  • FIG. 6 and FIG. 7 show examples of this structure.
  • a semiconductor device 30 shown in FIG. 6 comprises a PGA-type package 31 having a cavity-down structure; a semiconductor chip 32 mounted on the package 31 ; and the heat radiation fin 10 mounted on the backside (i.e., the upper side in FIG. 6) of the semiconductor chip 32 .
  • the heat radiation fin 10 shown in FIG. 6 comprises seven heat radiation plates 12 formed on the substrate 11 , unlike the five plates of the heat radiation fin 10 shown in FIG. 2.
  • the package 31 comprises: a multilayer interconnection structure having a cavity formed in the middle part; a metal plate 33 formed on one surface of the multilayer interconnection structure to be used as a heat radiation plate or a reinforcing plate; and pins 34 formed in a grid on the other surface of the multilayer interconnection structure to be used as external connection terminals.
  • the pins (external connection terminals) 34 are used to mount the semiconductor device 30 on a mounting substrate such as a motherboard.
  • the semiconductor chip 32 is placed in the cavity formed in the middle part of the package 31 .
  • a back surface (an opposite surface to a surface on which an electrode terminal of the semiconductor chip 32 is formed) of the semiconductor chip 32 is bonded to the metal plate 33 .
  • the heat radiation fin 10 Further on the metal plate 33 is mounted the heat radiation fin 10 .
  • the electrode terminal of the semiconductor chip 32 is electrically connected to an interconnection pattern formed in each of interconnection layers of the package 31 through a bonding wire 35 .
  • a sealing resin 36 covers and seals the semiconductor chip 32 and the bonding wire 35 .
  • the heat radiation fin 10 may be mounted directly on the back surface.
  • a semiconductor device 40 shown in FIG. 7 comprises a BGA-type package 41 using a TAB technology; a semiconductor chip 42 mounted on the package 41 ; and the heat radiation fin 10 mounted on the backside (i.e., the upper side in FIG. 7) of the semiconductor chip 42 .
  • the heat radiation fin 10 shown in FIG. 7 comprises seven heat radiation plates 12 formed on the substrate 11 .
  • the package 41 comprises: a metal plate 43 used as a heat radiation plate or a reinforcing plate on which the heat radiation fin 10 is mounted; a fixing plate 44 supporting the entire package 41 ; an adhesive 45 a bonding a back surface (an opposite surface to a surface on which an electrode terminal 42 a is formed) of the semiconductor chip 42 to the metal plate 43 ; an adhesive 45 b bonding the fixing plate 44 to the metal plate 43 ; a TAB tape 46 (formed of a polyimide resin film and a copper (Cu) foil patterned on both surfaces thereof) used as an interconnection substrate; and an adhesive 47 bonding the TAB tape 46 to the fixing plate 44 .
  • a metal plate 43 used as a heat radiation plate or a reinforcing plate on which the heat radiation fin 10 is mounted
  • a fixing plate 44 supporting the entire package 41 ; an adhesive 45 a bonding a back surface (an opposite surface to a surface on which an electrode terminal 42 a is formed) of the semiconductor chip 42 to the metal plate 43 ; an adhesive 45
  • the heat radiation fin 10 may be mounted directly on the back surface.
  • the semiconductor chip 42 is mounted on the package 41 by flip chip bonding so that the electrode terminal 42 a thereof is electrically connected to a wiring pattern of the TAB tape 46 .
  • An underfill agent 48 fills a gap between the semiconductor chip 42 and the TAB tape 46 .
  • a solder bump (external connection terminal) 49 is electrically connected to the electrode terminal 42 a of the semiconductor chip 42 via a through hole formed at a predetermined position of the TAB tap 46 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

A heat radiation fin comprises a substrate having a high thermal conductivity and a plurality of heat radiation plates. The heat radiation plates are arranged upright on the substrate with predetermined intervals therebetween. Each of the heat radiation plates is formed of a heat-resistant resin containing carbon fibers.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention generally relates to a heat radiation fin, a manufacturing method thereof and a semiconductor device and, more particularly, to a technology which can lighten a semiconductor device comprising a package structure, such as a BGA (Ball Grid Array) or a PGA (Pin Grid Array), and a heat radiation fin. [0002]
  • 2. Description of the Related Art [0003]
  • Recently, as a semiconductor element (LSI chip) mounted on a package of a semiconductor device has been improved to present high performance, the semiconductor device is required to operate at high-speed. However, as the speed increases, a larger heat is produced during a circuit operation, causing an inconvenience of decreased reliability of the circuit operation. [0004]
  • As a countermeasure to this, a typical semiconductor device according to a conventional technology has a heat radiation structure to emit a heat generated from the semiconductor chip to the exterior of the package. FIG. 1A to FIG. 1C show examples of semiconductor devices having this structure. [0005]
  • FIG. 1A is an illustration of a structure of a semiconductor device comprising: a plastic BGA (package) having an interconnection substrate formed of a resin (plastic) and a metal bump formed thereon as an external connection terminal; and a semiconductor chip, of not remarkably high performance and of a currently mass-produced type, mounted on the plastic BGA. FIG. 1B is an illustration of a structure of a semiconductor device comprising: a plastic BGA (package) having an interconnection substrate formed of a resin (plastic) and a metal bump formed thereon as an external connection terminal; and a semiconductor chip, faster and more power-consuming than the semiconductor chip shown in FIG. 1A, mounted on the plastic BGA. FIG. 1C is an illustration of a structure of a semiconductor device comprising: a plastic BGA (package) having an interconnection substrate formed of a resin (plastic) and a metal bump formed thereon as an external connection terminal; and a semiconductor chip, of even higher performance than the semiconductor chip shown in FIG. 1B, mounted on the plastic BGA. [0006]
  • In FIG. 1A, a [0007] semiconductor chip 2 is mounted on one surface of an interconnection substrate 1 so that a surface of the semiconductor chip 2 opposite to a side where an electrode terminal of the semiconductor chip 2 is formed is bonded on the surface of the interconnection substrate 1. The electrode terminal of the semiconductor chip 2 is electrically connected to an interconnection pattern formed on the interconnection substrate 1 in a predetermined manner through a bonding wire 3. A sealing resin 4 covers and seals the semiconductor chip 2 and the bonding wire 3. On the other surface of the interconnection substrate 1 is formed a solder bump 5 which is used as an external connection terminal for the semiconductor chip 2. Also, on the other surface of the interconnection substrate 1 is formed a solder bump 6 which is used as a terminal to radiate heat generated from the semiconductor chip 2. The heat radiation terminal (solder bump 6) penetrates through the interconnection substrate 1 and is thermally connected to the semiconductor chip 2. Likewise, though not particularly shown in the figure, the external connection terminal (solder bump 5) penetrates through the interconnection substrate 1 and is electrically connected to the interconnection pattern formed on the interconnection substrate 1.
  • With respect to the semiconductor device shown in FIG. 1A, the interconnection pattern may be formed on both surfaces of the interconnection substrate [0008] 1, providing a two-layer structure. However, such a two-layer structure is still not adequate for a semiconductor chip requiring a further high-speed operation to be mounted thereon.
  • In the semiconductor device shown in FIG. 1B, to adapt to such a high-speed operation, an interconnection substrate [0009] 1 a is constructed to have a four-layer structure which may achieve an inhibition of a switching noise during a circuit operation in a semiconductor chip 2 a and a decrease in thermal resistance. This structure also has the heat radiation terminal (solder bump 6) as a heat radiation structure to radiate heat generated from the semiconductor chip 2 a.
  • In the semiconductor device shown in FIG. 1C, to adapt to even higher performance, an [0010] interconnection substrate 1 b is constructed to have a six-layer structure. A heat spreader 7, which is a highly thermally conductive metal plate, such as copper (Cu) or aluminum (Al), is bonded on the backside (the opposite surface to where an electrode terminal of a semiconductor chip 2 b is formed) of the semiconductor chip 2 b placed inside a cavity formed in a middle part of the interconnection substrate 1 b so as to further reduce the thermal resistance. Still more, a heat sink 8 formed of a material such as a metal or a ceramic, is mounted on the heat spreader 7 so as to enhance a heat radiation effect. In the semiconductor device shown in FIG. 1C, heat radiation fins composing the heat sink 8 protrude in directions parallel to a surface of the interconnection substrate 1 b. The electrode terminal of the semiconductor chip 2 b bonded to the heat spreader 7 is electrically connected to an interconnection pattern formed on each layer of the interconnection substrate 1 b through a bonding wire 3 a. A sealing resin 4 a covers and seals the semiconductor chip 2 b and the bonding wire 3 a.
  • The above-mentioned semiconductor devices according to the conventional technology have disadvantages. For example, in the structures shown in FIG. 1A and FIG. 1B, the heat generated from the [0011] semiconductor chip 2 or 2 a is only radiated from the underside of the package (interconnection substrate 1 or interconnection substrate 1 a) through a limited number of the heat radiation terminals (solder bumps 6). Thus, these structures shown in FIG. 1A and FIG. 1B are not sufficient in terms of heat radiation effect.
  • To solve this problem, the number of the [0012] heat radiation terminals 6 may be increased, as a countermeasure. However, since the package is constructed in a specified size, the increase in number of the heat radiation terminals 6 leads to a relative decrease in number of the external connection terminals (solder bumps 5), which poses more serious problems on the semiconductor devices. Consequentially, the number of the heat radiation terminals 6 is limited, undermining this countermeasure.
  • On the other hand, in the structure shown in FIG. 1C, since the heat radiation structures ([0013] heat spreader 7 and heat sink 8) are thermally connected with the semiconductor chip 2 b, the heat generated from the semiconductor chip 2 b is effectively radiated from the upper side of the package (interconnection substrate 1 b) through these heat radiation structures 7 and 8. The heat generated from the semiconductor chip 2 b is also radiated from the underside of the package (interconnection substrate 1 b) through the sealing resin 4 a and air between the sealing resin 4 a and a mounting substrate, such as a motherboard (not shown in the figure). Therefore, this structure shown in FIG. 1C is advantageous in terms of the heat radiation effect, compared to the structures shown in FIG. 1A and FIG. 1B.
  • However, this structure shown in FIG. 1C also has a disadvantage. That is, since a metal plate, such as copper (Cu) or aluminum (Al), or a material such as a ceramic is used as the heat radiation structures ([0014] heat spreader 7 and heat sink 8), the whole package becomes relatively heavy. Especially when considering the recently increasing needs toward lightening of the semiconductor packages, this disadvantage still has to be improved.
  • SUMMARY OF THE INVENTION
  • It is a general object of the present invention to provide an improved and useful heat radiation fin, a manufacturing method thereof and a semiconductor device in which the above-mentioned problems are eliminated. [0015]
  • A more specific object of the present invention is to provide a heat radiation fin and a semiconductor device which fin and device can be lightened while maintaining an expected heat radiation effect, and a manufacturing method thereof. [0016]
  • In order to achieve the above-mentioned objects, there is provided according to one aspect of the present invention a heat radiation fin comprising: [0017]
  • a substrate having a high thermal conductivity; and [0018]
  • a plurality of heat radiation plates arranged upright on the substrate with predetermined intervals therebetween, [0019]
  • wherein each of the heat radiation plates is formed of a heat-resistant resin containing carbon fibers. [0020]
  • According to the present invention, the heat-resistant molded resin containing carbon fibers is used as the plurality of the heat radiation plates arranged upright on the substrate. Therefore, while the expected heat radiation effect is maintained, the semiconductor device can be lightened, compared to the conventional technology which uses such a material as a metal plate, such as a Cu or Al plate, as a heat radiation structure. [0021]
  • Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.[0022]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is an illustration for explaining problems of a semiconductor device comprising a heat radiation structure according to a conventional technology; [0023]
  • FIG. 1B is an illustration for explaining problems of another semiconductor device comprising a heat radiation structure according to the conventional technology; [0024]
  • FIG. 1C is an illustration for explaining problems of still another semiconductor device comprising a heat radiation structure according to the conventional technology; [0025]
  • FIG. 2 is a perspective view of a structure of a heat radiation fin according to an embodiment of the present invention; [0026]
  • FIG. 3A is a plan view of a structure of carbon fibers of a CFRP (a heat radiation plate) shown in FIG. 2; [0027]
  • FIG. 3B is a cross-sectional view of the structure taken along a line III-III in FIG. 3A; [0028]
  • FIG. 4 is a cross-sectional view showing steps of a manufacturing method of the heat radiation fin shown in FIG. 2; [0029]
  • FIG. 5 is a cross-sectional view showing steps of another manufacturing method of the heat radiation fin shown in FIG. 2; [0030]
  • FIG. 6 is a cross-sectional view of a structure of a semiconductor device comprising the heat radiation fin shown in FIG. 2; and [0031]
  • FIG. 7 is a cross-sectional view of a structure of another semiconductor device comprising the heat radiation fin shown in FIG. 2.[0032]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A description will now be given, with reference to the drawings, of embodiments according to the present invention. [0033]
  • FIG. 2 is a perspective view of a structure of a heat radiation fin according to an embodiment of the present invention. [0034]
  • The [0035] heat radiation fin 10 according to the present embodiment is characterized in that a plurality (five in FIG. 2) of heat radiation plates 12 in the form of a sheet are arranged to stand in an array on a substrate 11, having a relatively good thermal conductivity, so that a surface of each of the heat radiation plates 12 faces a surface of another of the heat radiation plates 12 with an interval in between. Each of the heat radiation plates 12 is formed of a heat-resistant molded resin containing carbon fibers. Such a resin reinforced with carbon fibers is referred to as a CFRP (Carbon Fiber Reinforced Plastic) hereinafter.
  • In the present embodiment, when each of the [0036] heat radiation plates 12 is arranged to stand on the substrate 11, a portion of each of the heat radiation plates 12 on one end is bent so that each of the heat radiation plates 12 has an L-shape. Then the shorter bent portion is bonded to the substrate 11.
  • Used as the [0037] heat radiation plate 12 is an adhesive sheet hardened through heating and pressurizing processes, which processes harden a semihard adhesive sheet in a B-stage (i.e., a CFRP in the form of a prepreg) formed by impregnating a reinforcing material, such as a PAN-based carbon fiber based on a polyacrylonitrile (PAN) or a pitch-based carbon fiber based on a pitch obtained in distilling such a material as a coal tar, with a thermosetting resin such as an epoxy resin. It should be noted that FIG. 2 to FIG. 7 show the heat radiation plates 12 (the molded and hardened CFRP) as having an emphatically exaggerated thickness.
  • On the other hand, a metal plate such as a Cu or an Al plate can be used as the [0038] substrate 11 having a relatively good thermal conductivity. Alternatively, the same material as the heat radiation plate 12 (i.e., the molded and hardened CFRP) can be used as the substrate 11. As mentioned hereinafter, when the heat radiation fin 10 according to the present embodiment is expected to exert a further heat radiation effect, the metal plate is preferred to be used as the substrate 11. On the other hand, when the heat radiation fin 10 is expected to be lightened further, the CFRP is preferred to be used.
  • The [0039] heat radiation plate 12 in the form of a sheet (i.e., the molded and hardened CFRP) is devised to radiate heat effectively. FIG. 3A and FIG. 3B show an example of this.
  • FIG. 3A is a plan view of a structure of carbon fibers of the CFRP (the heat radiation plate [0040] 12). FIG. 3B is a cross-sectional view of the structure taken along a line III-III in FIG. 3A.
  • A reinforcing material of the CFRP (the heat radiation plate [0041] 12) is formed by weaving carbon fibers so that the carbon fibers extend in directions x and y, as shown in FIG. 3A and FIG. 3B. The directions x and y are parallel to a surface of the heat radiation plate 12 arranged to stand on the substrate 11. In a case of using, for example, the PAN-based carbon fiber as the carbon fiber, a coefficient of thermal conductivity in the directions x and y is 40 to 45 W/m·K. On the other hand, a coefficient of thermal conductivity in a direction z perpendicular to the directions x and y (i.e., a direction parallel to a surface of the substrate 11) is merely 1 to 2 W/m·K. That is, the coefficient of thermal conductivity in the directions x and y, in which the carbon fibers extend, is relatively large. Therefore, by weaving the carbon fibers so that the carbon fibers extend in the directions x and y as shown in FIG. 3A and FIG. 3B, the heat radiation plate 12 can radiate heat effectively.
  • It should be noted that, although the carbon fibers are woven so that the carbon fibers extend in both of the directions x and y in FIG. 3A and FIG. 3B, the carbon fibers may be woven so that the carbon fibers extend in either of the directions x or y. Further, the carbon fibers may be woven so that the carbon fibers extend in an arbitrary direction in a plane x and y. However, to achieve further effective heat radiation, it is preferred that the carbon fibers be woven so that the carbon fibers extend only in directions perpendicular to a surface of the [0042] substrate 11.
  • The [0043] heat radiation fin 10 according to the present embodiment is mounted on various types of semiconductor devices when used, as specifically explained hereinafter. When mounted and used, since the heat radiation fin 10 according to the present embodiment comprises a plurality of CFRPs in the form of a sheet used as the heat radiation plate 12 to radiate heat generated from a semiconductor device (specifically, a semiconductor chip), while the expected heat radiation effect is maintained, the heat radiation fin 10 can be largely lightened, compared to the conventional technology shown in FIG. 1C which uses such a material as a metal plate, such as a Cu or Al plate, as a heat radiation structure.
  • In addition, since the carbon fibers of the CFRP (the heat radiation plate [0044] 12) are woven so that the carbon fibers extend in the directions x and y (i.e., the directions parallel to a surface of the heat radiation plate 12) in which the coefficient of thermal conductivity is relatively large, the heat can be effectively radiated.
  • Although the [0045] heat radiation fin 10 according to the embodiment shown in FIG. 2 comprises a plurality of the heat radiation plates 12 in the form of a sheet arranged to stand in an array on the substrate 11 so that a surface of each of the heat radiation plates 12 faces a surface of another of the heat radiation plates 12 with an interval in between, arrangements of the heat radiation plates 12 are not limited to this embodiment. As apparent from the essence of the present invention, a plurality of the heat radiation plates 12 in the form of a sheet do not necessarily have to be arranged to stand in an array so that a surface of each of the heat radiation plates 12 faces a surface of another of the heat radiation plates 12. A plurality of the heat radiation plates 12 in the form of a sheet only have to be arranged to stand on the substrate 11 with an interval in between.
  • A shape of the [0046] heat radiation plate 12 is not limited to this embodiment, either. For example, each of the heat radiation plates 12 may be as narrow as possible in width so that a plurality of the heat radiation plates 12 have a form of strips or needles. Alternatively, at least one of the heat radiation plates 12 may have an opening 12 b so as to enhance the heat radiation effect further.
  • Next, a description will be given, with reference to FIG. 4, of an example of manufacturing the [0047] heat radiation fin 10 according to the present embodiment.
  • In the first step, shown in FIG. 4-(A), a predetermined number of CFRPs [0048] 12 a in the form of a prepreg, each having a rectangular shape and a predetermined size (for example, 20 mm×15 mm), are prepared. A thickness of each of the CFRPs 12 a in the form of a prepreg is selected to be, for example, approximately 100 μm.
  • Each of the CFRPs [0049] 12 a is formed, for example, by cutting a CFRP in predetermined length units, as shown by broken lines in FIG. 4-(A), in the course of unrolling a roll (not shown in the figure) of the CFRP rolled up beforehand in a predetermined width and carrying in the unrolled CFRP, as shown by an arrow in FIG. 4-(A).
  • A reinforcing material of the [0050] CFRP 12 a is formed by weaving carbon fibers so that the carbon fibers extend in a plurality of directions parallel to a surface of the CFRP (the directions x and y shown in FIG. 3A and FIG. 3B).
  • In the next step, shown in FIG. 4-(B), by using a holding [0051] device 21, the CFRPs 12 a each in the form of a prepreg are arranged in an array so that a surface of each of the CFRPs 12 a faces a surface of another of the CFRPs 12 a with an interval in between. Thereafter, an end portion of each of the CFRPs 12 a is bent, as shown by arrows in FIG. 4-(B), so that each of the CFRPs 12 a has an L-shape.
  • To perform this step, the holding [0052] device 21 comprises a plurality of L-shaped slots (inversely L-shaped in FIG. 4), formed at predetermined intervals, in order to hold the CFRPs 12 a. Each of the slots is selected to be, for example, 100 μm in width, 10 mm in depth and 20 mm in length, approximately. The interval is selected from the range of, for example, 2 to 5 mm. Therefore, when a CFRP 12 a having a size of 20 mm×15 mm is put into each of the slots of the holding device 21, a portion (20 mm×5 mm) of the CFRP 12 a protrudes from an upper surface of the holding device 21. Bending this shorter portion, for example, by hand, provides the L-shaped CFRPs 12 a arranged at the predetermined intervals, as shown in FIG. 4-(B).
  • In the final step, shown in FIG. 4-(C), by using the holding [0053] device 21 holding the L-shaped CFRPs 12 a and a mold 22 having a shape corresponding to an outline as seen from the side of the substrate 11, each of the CFRPs in the form of a prepreg is molded and bonded to the substrate 11.
  • That is, a CFRP [0054] 11 a in the form of a prepreg to form the substrate 11 is placed upon the shorter bent portions of the L-shaped CFRPs 12 a. Then, the L-shaped CFRPs 12 a and the CFRP 11 a are pressurized from above as shown by an arrow in FIG. 4-(C) by using the mold 22, while being heated at a temperature of approximately 150° C. Thereby, the L-shaped CFRPs 12 a and the CFRP 11 a (the substrate 11) are molded and hardened, and each of the L-shaped CFRPs 12 a is bonded to the substrate 11. It should be noted that the CFRP 11 a (the substrate 11) is selected to be, for example, 200-μm thick approximately.
  • Thereafter, the [0055] substrate 11 bonded to the molded and hardened CFRPs (the heat radiation plates 12 in the form of a sheet) is retrieved from the holding device 21 and the mold 22. This finishes the manufacturing of the heat radiation fin 10 (shown in FIG. 2) according to the present embodiment.
  • In the manufacturing method show in FIG. 4, a predetermined number of the CFRPs [0056] 12 a in the form of a prepreg are arranged in the holding device 21 and the end portion of each of the CFRPs 12 a is bent so that each of the CFRPs 12 a has an L-shape. Thereafter, the CFRP 11 a in the form of a prepreg to form the substrate 11 is placed upon the shorter bent portions of the L-shaped CFRPs 12 a. Then the L-shaped CFRPs 12 a and the CFRP 11 a are molded and hardened by heating and pressurizing, and each of the L-shaped CFRPs 12 a (the heat radiation plates 12) is bonded to the substrate 11, finishing the manufacturing of the heat radiation fin 10. However, a manufacturing method of the heat radiation fin 10 is not limited to this embodiment.
  • For example, after each of the CFRPs [0057] 12 a is molded and hardened to an L-shape as seen from the side, each of the CFRPs 12 a may be mounted on the substrate 11 (the CFRP 11 a in the form of a prepreg) and then bonded to the substrate 11 through heating and pressurizing. FIG. 5 shows an example of this manufacturing method.
  • In the first step, shown in FIG. 5-(A), a predetermined number of CFRPs [0058] 12 a in the form of a prepreg, each having a rectangular shape and a predetermined size, are prepared, as the step shown in FIG. 4-(A).
  • In the next step shown in FIG. 5-(B), the [0059] CFRP 12 a in the form of a prepreg is molded by using an under mold 23 and an upper mold 24 having a shape corresponding to an outline (L-shape) of the heat radiation plate 12 as seen from the side. That is, the CFRP 12 a is placed on the under mold 23 and pressurized from above as shown by an arrow in FIG. 5-(B) by using the upper mold 24, while being heated at a temperature of approximately 150° C. Thereby, the CFRP 12 a is molded and hardened in the L-shape. Thereafter, the molded and hardened CFRP 12 a (the heat radiation plate 12) is retrieved from the under mold 23 and the upper mold 24.
  • In the final step shown in FIG. 5-(C), each of the [0060] heat radiation plates 12 is mounted in an array on a CFRP 11 a in the form of a prepreg forming the substrate 11 so that the shorter bent portion of each of the L-shaped heat radiation plates 12 faces downward and that a surface of the longer portion of each of the heat radiation plates 12 faces a surface of the longer portion of another of the heat radiation plates 12 with an interval in between. Then, the CFRP 11 a is hardened and molded by heating and pressurizing by using devices, such as a holding device and a mold, (not shown in the figures), and each of the heat radiation plates 12 is bonded to the substrate 11.
  • In the manufacturing method shown in FIG. 5, after each of the CFRPs [0061] 12 a in the form of a prepreg is molded and hardened into an L-shape, each of the heat radiation plates 12 (the CFRPs 12 a) is mounted and bonded on the substrate 11 (the CFRP 11 a in the form of a prepreg). However, each of the CFRPs 12 a in the form of a prepreg does not necessarily have to be molded and hardened into the L-shape. For example, though not specifically shown in the figures, each of the CFRPs 12 a may be molded and hardened in the form of a flat sheet as it original is (that is, not molded into the L-shape). Then, each of the hardened CFRPs (the heat radiation plates) in the form of a flat sheet is mounted on the substrate 11 (the CFRP 11 a in the form of a prepreg) in an array with an interval in between by thrusting an end portion of each of the heat radiation plates into the substrate 11. Then, each of the heat radiation plates may be bonded to the substrate 11 by heating and pressurizing.
  • The [0062] heat radiation fin 10 according to the present embodiment can be preferably mounted on various types of semiconductor devices. FIG. 6 and FIG. 7 show examples of this structure.
  • A [0063] semiconductor device 30 shown in FIG. 6 comprises a PGA-type package 31 having a cavity-down structure; a semiconductor chip 32 mounted on the package 31; and the heat radiation fin 10 mounted on the backside (i.e., the upper side in FIG. 6) of the semiconductor chip 32. However, the heat radiation fin 10 shown in FIG. 6 comprises seven heat radiation plates 12 formed on the substrate 11, unlike the five plates of the heat radiation fin 10 shown in FIG. 2.
  • The [0064] package 31 comprises: a multilayer interconnection structure having a cavity formed in the middle part; a metal plate 33 formed on one surface of the multilayer interconnection structure to be used as a heat radiation plate or a reinforcing plate; and pins 34 formed in a grid on the other surface of the multilayer interconnection structure to be used as external connection terminals. The pins (external connection terminals) 34 are used to mount the semiconductor device 30 on a mounting substrate such as a motherboard.
  • The [0065] semiconductor chip 32 is placed in the cavity formed in the middle part of the package 31. A back surface (an opposite surface to a surface on which an electrode terminal of the semiconductor chip 32 is formed) of the semiconductor chip 32 is bonded to the metal plate 33. Further on the metal plate 33 is mounted the heat radiation fin 10. The electrode terminal of the semiconductor chip 32 is electrically connected to an interconnection pattern formed in each of interconnection layers of the package 31 through a bonding wire 35. A sealing resin 36 covers and seals the semiconductor chip 32 and the bonding wire 35.
  • It should be noted that, when the back surface (the opposite surface to the surface on which the electrode terminal of the [0066] semiconductor chip 32 is formed) of the semiconductor chip 32 is exposed, the heat radiation fin 10 may be mounted directly on the back surface.
  • A [0067] semiconductor device 40 shown in FIG. 7 comprises a BGA-type package 41 using a TAB technology; a semiconductor chip 42 mounted on the package 41; and the heat radiation fin 10 mounted on the backside (i.e., the upper side in FIG. 7) of the semiconductor chip 42. As with the heat radiation fin 10 shown in FIG. 6, the heat radiation fin 10 shown in FIG. 7 comprises seven heat radiation plates 12 formed on the substrate 11.
  • The [0068] package 41 comprises: a metal plate 43 used as a heat radiation plate or a reinforcing plate on which the heat radiation fin 10 is mounted; a fixing plate 44 supporting the entire package 41; an adhesive 45 a bonding a back surface (an opposite surface to a surface on which an electrode terminal 42 a is formed) of the semiconductor chip 42 to the metal plate 43; an adhesive 45 b bonding the fixing plate 44 to the metal plate 43; a TAB tape 46 (formed of a polyimide resin film and a copper (Cu) foil patterned on both surfaces thereof) used as an interconnection substrate; and an adhesive 47 bonding the TAB tape 46 to the fixing plate 44.
  • It should be noted that, when the back surface (the opposite surface to the surface on which the [0069] electrode terminal 42 a is formed) of the semiconductor chip 42 is exposed, the heat radiation fin 10 may be mounted directly on the back surface.
  • The [0070] semiconductor chip 42 is mounted on the package 41 by flip chip bonding so that the electrode terminal 42 a thereof is electrically connected to a wiring pattern of the TAB tape 46. An underfill agent 48 fills a gap between the semiconductor chip 42 and the TAB tape 46. A solder bump (external connection terminal) 49 is electrically connected to the electrode terminal 42 a of the semiconductor chip 42 via a through hole formed at a predetermined position of the TAB tap 46.
  • The present invention is not limited to the specifically disclosed embodiments, and variations and modifications may be made without departing from the scope of the present invention. [0071]
  • The present application is based on Japanese priority application No. 2000-021914 filed on Jan. 31, 2000, the entire contents of which are hereby incorporated by reference. [0072]

Claims (11)

What is claimed is:
1. A heat radiation fin comprising:
a substrate having a high thermal conductivity; and
a plurality of heat radiation plates arranged upright on said substrate with predetermined intervals therebetween,
wherein each of said heat radiation plates is formed of a heat-resistant resin containing carbon fibers.
2. The heat radiation fin as claimed in claim 1, wherein said carbon fibers are woven so that the carbon fibers extend in a plurality of directions parallel to a surface of each of said heat radiation plates.
3. The heat radiation fin as claimed in claim 1, wherein said carbon fibers are woven so that the carbon fibers extend in a plurality of directions parallel to a surface of each of said heat radiation plates and perpendicular to a surface of said substrate.
4. The heat radiation fin as claimed in claim 1, wherein said substrate is formed of a heat-resistant resin containing carbon fibers.
5. The heat radiation fin as claimed in claim 1, wherein said substrate is a metal plate formed of one of copper and aluminum.
6. The heat radiation fin as claimed in claim 1, wherein said heat radiation plates are arranged upright in an array so that surfaces of said heat radiation plates oppose each other.
7. The heat radiation fin as claimed in claim 1, wherein at least one of said heat radiation plates has an opening formed therein.
8. A manufacturing method of a heat radiation fin, the method comprising the steps of:
preparing a plurality of heat-resistant resin members each having a rectangular shape and a predetermined size in a form of a prepreg containing carbon fibers;
arranging said heat-resistant resin members with predetermined intervals therebetween and bending a portion of each of said heat-resistant resin members so that each of said heat-resistant resin members has a shorter portion and a longer portion forming an L-shape; and
placing a substrate having a high thermal conductivity on said shorter portion and bonding said shorter portion to said substrate by heating and pressurizing.
9. A manufacturing method of a heat radiation fin, the method comprising the steps of:
preparing a plurality of heat-resistant resin members each having a rectangular shape and a predetermined size in a form of a prepreg containing carbon fibers;
molding each of said heat-resistant resin members by heating and pressurizing so that each of said heat-resistant resin members has a shorter portion and a longer portion forming an L-shape; and
placing each of said heat-resistant resin members on a substrate having a high thermal conductivity with predetermined intervals therebetween so that said shorter portion faces said substrate, and bonding said shorter portion to said substrate by heating and pressurizing.
10. A manufacturing method of a heat radiation fin, the method comprising the steps of:
preparing a plurality of heat-resistant resin members each having a rectangular shape and a predetermined size in a form of a prepreg containing carbon fibers;
molding each of said heat-resistant resin members; and
placing each of said heat-resistant resin members on a substrate having a high thermal conductivity with predetermined intervals therebetween by thrusting a portion of each of said heat-resistant resin members into said substrate, and bonding each of said heat-resistant resin members to said substrate by heating and pressurizing.
11. A semiconductor device comprising:
a semiconductor element; and
a heat radiation fin provided on a side opposite to a surface of said semiconductor element on which an electrode terminal is formed,
wherein said heat radiation fin comprises:
a substrate having a high thermal conductivity; and
a plurality of heat radiation plates arranged upright on said substrate with predetermined intervals therebetween,
wherein each of said heat radiation plates is formed of a heat-resistant resin containing carbon fibers.
US09/767,432 2000-01-31 2001-01-23 Heat radiation fin using a carbon fiber reinforced resin as heat radiation plates standing on a substrate Abandoned US20030102117A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/043,943 US20020062946A1 (en) 2000-01-31 2002-01-10 Heat radiation fin using a carbon fiber reinforced resin as heat radiation plates standing on a substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000021914A JP2001217359A (en) 2000-01-31 2000-01-31 Radiator fin, manufacturing method thereof, and semiconductor device
JP2000-021914 2000-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/043,943 Division US20020062946A1 (en) 2000-01-31 2002-01-10 Heat radiation fin using a carbon fiber reinforced resin as heat radiation plates standing on a substrate

Publications (1)

Publication Number Publication Date
US20030102117A1 true US20030102117A1 (en) 2003-06-05

Family

ID=18548267

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/767,432 Abandoned US20030102117A1 (en) 2000-01-31 2001-01-23 Heat radiation fin using a carbon fiber reinforced resin as heat radiation plates standing on a substrate
US10/043,943 Abandoned US20020062946A1 (en) 2000-01-31 2002-01-10 Heat radiation fin using a carbon fiber reinforced resin as heat radiation plates standing on a substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/043,943 Abandoned US20020062946A1 (en) 2000-01-31 2002-01-10 Heat radiation fin using a carbon fiber reinforced resin as heat radiation plates standing on a substrate

Country Status (4)

Country Link
US (2) US20030102117A1 (en)
EP (1) EP1122779A3 (en)
JP (1) JP2001217359A (en)
TW (1) TW488047B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040174651A1 (en) * 2001-02-15 2004-09-09 Integral Technologies, Inc. Low cost thermal management device or heat sink manufactured from conductive loaded resin-based materials
US7431074B1 (en) * 2006-03-20 2008-10-07 Fellman Michael L Radiator structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919504B2 (en) * 2002-12-19 2005-07-19 3M Innovative Properties Company Flexible heat sink
JP5224845B2 (en) * 2008-02-18 2013-07-03 新光電気工業株式会社 Semiconductor device manufacturing method and semiconductor device
TWI377333B (en) * 2009-02-05 2012-11-21 Wistron Corp Heat dissipation device
JP5330286B2 (en) * 2010-01-29 2013-10-30 日本特殊陶業株式会社 Manufacturing method of wiring board with reinforcing material
JP5668349B2 (en) * 2010-07-22 2015-02-12 三菱樹脂株式会社 Heat dissipation member and housing
US20160091193A1 (en) * 2014-09-26 2016-03-31 GE Lighting Solutions, LLC Crystalline-graphitic-carbon -based hybrid thermal optical element for lighting apparatus
CN105742252B (en) 2014-12-09 2019-05-07 台达电子工业股份有限公司 A kind of power module and its manufacturing method
KR20220130916A (en) * 2021-03-19 2022-09-27 삼성전기주식회사 Substrate with electronic component embedded therein

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167694A (en) * 1983-03-11 1984-09-21 Matsushita Electric Ind Co Ltd Heat exchanger with fins
US5523260A (en) * 1993-08-02 1996-06-04 Motorola, Inc. Method for heatsinking a controlled collapse chip connection device
US5471367A (en) * 1994-03-15 1995-11-28 Composite Optics, Inc. Composite structure for heat transfer and radiation
US5852548A (en) * 1994-09-09 1998-12-22 Northrop Grumman Corporation Enhanced heat transfer in printed circuit boards and electronic components thereof
US5834337A (en) * 1996-03-21 1998-11-10 Bryte Technologies, Inc. Integrated circuit heat transfer element and method
JPH1056114A (en) * 1996-08-08 1998-02-24 Matsushita Electric Ind Co Ltd Semiconductor device
JP3617232B2 (en) * 1997-02-06 2005-02-02 住友電気工業株式会社 Semiconductor heat sink, method of manufacturing the same, and semiconductor package using the same
JPH1117080A (en) * 1997-06-19 1999-01-22 Sumitomo Precision Prod Co Ltd Radiator
JP3928216B2 (en) * 1997-06-24 2007-06-13 東洋紡績株式会社 Heat dissipating member and heat dissipating body using the heat dissipating member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040174651A1 (en) * 2001-02-15 2004-09-09 Integral Technologies, Inc. Low cost thermal management device or heat sink manufactured from conductive loaded resin-based materials
US7027304B2 (en) * 2001-02-15 2006-04-11 Integral Technologies, Inc. Low cost thermal management device or heat sink manufactured from conductive loaded resin-based materials
US7431074B1 (en) * 2006-03-20 2008-10-07 Fellman Michael L Radiator structure

Also Published As

Publication number Publication date
US20020062946A1 (en) 2002-05-30
EP1122779A3 (en) 2002-05-22
EP1122779A2 (en) 2001-08-08
JP2001217359A (en) 2001-08-10
EP1122779A8 (en) 2002-04-03
TW488047B (en) 2002-05-21

Similar Documents

Publication Publication Date Title
US6864120B2 (en) Semiconductor device having a carbon fiber reinforced resin as a heat radiation plate having a concave portion
US8166643B2 (en) Method of manufacturing the circuit apparatus, method of manufacturing the circuit board, and method of manufacturing the circuit device
US8362364B2 (en) Wiring board assembly and manufacturing method thereof
US7656015B2 (en) Packaging substrate having heat-dissipating structure
US5977633A (en) Semiconductor device with metal base substrate having hollows
US6900535B2 (en) BGA/LGA with built in heat slug/spreader
US20080006936A1 (en) Superfine-circuit semiconductor package structure
US20080099910A1 (en) Flip-Chip Semiconductor Package with Encapsulant Retaining Structure and Strip
US20050142691A1 (en) Mounting structure of semiconductor chip, semiconductor device and method of making the semiconductor device
US20070210423A1 (en) Embedded chip package structure
JP2007503713A (en) Electronic module and manufacturing method thereof
US7222419B2 (en) Method of fabricating a ceramic substrate with a thermal conductive plug of a multi-chip package
US20030102117A1 (en) Heat radiation fin using a carbon fiber reinforced resin as heat radiation plates standing on a substrate
US5500555A (en) Multi-layer semiconductor package substrate with thermally-conductive prepeg layer
TW202226471A (en) Packaging stacked substrates and an integrated circuit die using a lid and a stiffening structure
US6602739B1 (en) Method for making multichip module substrates by encapsulating electrical conductors and filling gaps
US7838333B2 (en) Electronic device package and method of manufacturing the same
US20040262746A1 (en) High-density chip scale package and method of manufacturing the same
US6784536B1 (en) Symmetric stack up structure for organic BGA chip carriers
US5736234A (en) Multilayer printed circuit board having latticed films on an interconnection layer
KR19980058412A (en) Multilayer Multi-chip Module Semiconductor Device and Manufacturing Method Thereof
CN113964093A (en) Packaging structure and preparation method thereof
TWI817496B (en) An integrated package with an insulating plate
US8383954B2 (en) Warpage preventing substrates
JP2776193B2 (en) Multilayer printed wiring board, manufacturing method thereof, and semiconductor device using multilayer printed wiring board

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHINKO ELECTRIC INDUSTRIES CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURAYAMA, KEI;HIGASHI, MITSUTOSHI;SAKAGUCHI, HIDEAKI;AND OTHERS;REEL/FRAME:011494/0579

Effective date: 20010117

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION