US20020192695A1 - PIBs as modifiers of the p53 pathway and methods of use - Google Patents

PIBs as modifiers of the p53 pathway and methods of use Download PDF

Info

Publication number
US20020192695A1
US20020192695A1 US10/161,510 US16151002A US2002192695A1 US 20020192695 A1 US20020192695 A1 US 20020192695A1 US 16151002 A US16151002 A US 16151002A US 2002192695 A1 US2002192695 A1 US 2002192695A1
Authority
US
United States
Prior art keywords
pib
assay
agent
candidate
assay system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/161,510
Inventor
Lori Friedman
Gregory Plowman
Marcia Belvin
Helen Francis-Lang
Danxi Li
Roel Funke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exelixis Inc
Original Assignee
Lori Friedman
Plowman Gregory D.
Marcia Belvin
Helen Francis-Lang
Danxi Li
Funke Roel P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lori Friedman, Plowman Gregory D., Marcia Belvin, Helen Francis-Lang, Danxi Li, Funke Roel P. filed Critical Lori Friedman
Priority to US10/161,510 priority Critical patent/US20020192695A1/en
Publication of US20020192695A1 publication Critical patent/US20020192695A1/en
Assigned to EXELIXIS, INC. reassignment EXELIXIS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUNKE, ROEL P., BELVIN, MARCIA, FRANCIS-LANG, HELEN, LI, DANXI, FRIEDMAN, LORI, PLOWMAN, GREGORY D.
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/42Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving phosphatase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • G01N33/5017Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity for testing neoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57449Specifically defined cancers of ovaries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/5748Immunoassay; Biospecific binding assay; Materials therefor for cancer involving oncogenic proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57496Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving intracellular compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4739Cyclin; Prad 1
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/62Insulins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/82Translation products from oncogenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/988Lyases (4.), e.g. aldolases, heparinase, enolases, fumarase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2510/00Detection of programmed cell death, i.e. apoptosis

Definitions

  • the p53 gene is mutated in over 50 different types of human cancers, including familial and spontaneous cancers, and is believed to be the most commonly mutated gene in human cancer (Zambetti and Levine, FASEB (1993) 7:855-865; Hollstein, et al., Nucleic Acids Res. (1994) 22:3551-3555). Greater than 90% of mutations in the p53 gene are missense mutations that alter a single amino acid that inactivates p53 function.
  • the human p53 protein normally functions as a central integrator of signals including DNA damage, hypoxia, nucleotide deprivation, and oncogene activation (Prives, Cell (1998) 95:5-8). In response to these signals, p53 protein levels are greatly increased with the result that the accumulated p53 activates cell cycle arrest or apoptosis depending on the nature and strength of these signals. Indeed, multiple lines of experimental evidence have pointed to a key role for p53 as a tumor suppressor (Levine, Cell (1997) 88:323-331). For example, homozygous p53 “knockout” mice are developmentally normal but exhibit nearly 100% incidence of neoplasia in the first year of life (Donehower et al., Nature (1992) 356:215-221).
  • the inositol polyphosphate 5-phosphatases are a family of enzymes that terminate the signals generated by the phosphoinositide kinases and phospholipase C. Given the diverse signaling functions of both the polyphosphoinositides and Ins P3, it is predicted that the 5-phosphatases play a critical role in the regulation of many cellular events, in particular membrane trafficking and cell growth (Mitchell, C. et al. (1996) Biochem Soc Trans. 24:994-1000).
  • Phosphatidylinositol bisphosphate 5-phosphatase A may play a role in polyphosphate catabolism (Mochizuki, Y. and Takenawa, T. (1999) J. Biol. Chem. 274: 36790-36795).
  • PIB5PA is expressed in brain, heart, kidney, stomach, small intestine, and lung as well as a variety of human, rat, and mouse cell lines.
  • PIB5PA is classified as a type II 5-phosphatase because of its hydrolyzed phosphate at the D-5 position of PtdIns P2, Ins P3, and Ins P4 (Mochizuki, Y. and Takenawa, T.
  • PIB5PA localizes in the cytoplasm and at ruffling membranes. It is believed that PIB5PA does not participate in the reorganization of the actin cytoskeleton but may be involved in modulation of the function of inositol and phosphatidylinositol polyphosphate-binding proteins that are present at membrane ruffles. PIB5PA is expressed in human lymphoblastic leukemia and myeloid leukemia cells (Mochizuki, Y. and Takenawa, T. (1999)supra).
  • Skeletal muscle and kidney-enriched inositol phosphatase is an inositol polyphosphate 5-phosphatase that may negatively regulate the actin cytoskeleton by hydrolyzing PtdIns 4,5-bisphosphate. It contains two highly conserved catalytic motifs for 5-phosphatase and is ubiquitously expressed with highest expression levels found in skeletal muscle, heart, and kidney. SKIP is a simple 5-phosphatase with no other motifs.
  • SKIP 5-phosphatase show activities toward inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, phosphatidylinositol (PtdIns) 4,5-bisphosphate, and PtdIns 3,4, 5-trisphosphate but has 6-fold more substrate specificity for PtdIns 4,5-bisphosphate than for inositol 1,4, 5-trisphosphate (Ijuin T, et al. (2000) J Biol Chem 275:10870-10875). SKIP is expressed in cytosol and the loss of actin stress fibers occurs where the SKIP protein is concentrated.
  • a genetic screen can be carried out in an invertebrate model organism having underexpression (e.g. knockout) or overexpression of a gene (referred to as a “genetic entry point”) that yields a visible phenotype. Additional genes are mutated in a random or targeted manner.
  • the gene When a gene mutation changes the original phenotype caused by the mutation in the genetic entry point, the gene is identified as a “modifier” involved in the same or overlapping pathway as the genetic entry point.
  • the genetic entry point is an ortholog of a human gene implicated in a disease pathway, such as p53, modifier genes can be identified that may be attractive candidate targets for novel therapeutics.
  • PIB phosphatidylinositol biphosphate
  • PIB-specific modulating agents may be evaluated by any convenient in vitro or in vivo assay for molecular interaction with a PIB polypeptide or nucleic acid.
  • candidate p53 modulating agents are tested with an assay system comprising a PIB polypeptide or nucleic acid.
  • Candidate agents that produce a change in the activity of the assay system relative to controls are identified as candidate p53 modulating agents.
  • the assay system may be cell-based or cell-free.
  • PIB-modulating agents include PIB related proteins (e.g.
  • PIB-specific antibodies PIB-specific antisense oligomers and other nucleic acid modulators
  • chemical agents that specifically bind PIB or compete with PIB binding target.
  • a small molecule modulator is identified using a phosphatase assay.
  • the screening assay system is selected from a binding assay, an apoptosis assay, a cell proliferation assay, an angiogenesis assay, and a hypoxic induction assay.
  • candidate p53 pathway modulating agents are further tested using a second assay system that detects changes in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation changes produced by the originally identified candidate agent or an agent derived from the original agent.
  • the second assay system may use cultured cells or non-human animals.
  • the secondary assay system uses non-human animals, including animals predetermined to have a disease or disorder implicating the p53 pathway, such as an angiogenic, apoptotic, or cell proliferation disorder (e.g. cancer).
  • the invention further provides methods for modulating the p53 pathway in a mammalian cell by contacting the mammalian cell with an agent that specifically binds a PIB polypeptide or nucleic acid.
  • the agent may be a small molecule modulator, a nucleic acid modulator, or an antibody and may be administered to a mammalian animal predetermined to have a pathology associated the p53 pathway.
  • PIB phosphatidylinositol biphosphate
  • PIB-modulating agents that act by inhibiting or enhancing PIB expression, directly or indirectly, for example, by affecting a PIB function such as enzymatic (e.g., catalytic) or binding activity, can be identified using methods provided herein.
  • PIB modulating agents are useful in diagnosis, therapy and pharmaceutical development.
  • Genbank referenced by Genbank identifier (GI) number
  • Genbank identifier GI#s 4156153 (SEQ ID NO:1), 18593949 (SEQ ID NO:2), 13652963 (SEQ ID NO:4), 7209854 (SEQ ID NO:5), and 7209856 (SEQ ID NO:6) for nucleic acid
  • GI#s 4314432 SEQ ID NO:10), 11426729 (SEQ ID NO:11), 7706565 (SEQ ID NO:12), 7209857 (SEQ ID NO:13), and 13279338 (SEQ ID NO:14) for polypeptides.
  • nucleic acids of SEQ ID NOs:3, 7, 8, and 9 can also be used in the invention.
  • PIBs are phosphatase proteins with catalytic domains.
  • the term “PIB polypeptide” refers to a full-length PIB protein or a functionally active fragment or derivative thereof.
  • a “functionally active” PIB fragment or derivative exhibits one or more functional activities associated with a full-length, wild-type PIB protein, such as antigenic or immunogenic activity, enzymatic activity, ability to bind natural cellular substrates, etc.
  • PIB proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science (1998) Coligan et al., eds., John Wiley & Sons, Inc., Somerset, N.J.) and as further discussed below.
  • functionally active fragments also include those fragments that comprise one or more structural domains of a PIB, such as a catalytic domain or a binding domain. Protein domains can be identified using the PFAM program (Bateman A., et al., Nucleic Acids Res, 1999, 27:260-2; http://pfam.wustl.edu).
  • Inositol polyphosphate phosphatase family, catalytic (IPPC) domain of PIB from GI# 4314432 is located at approximately amino acid residues 433-512 and 545-786 (PFAM00783).
  • IPPC domain of PIB from GI# 13279338 is located at approximately amino acid residues 12-326.
  • preferred fragments are functionally active, domain-containing fragments comprising at least 25 contiguous amino acids, preferably at least 50, more preferably 75, and most preferably at least 100 contiguous amino acids of any one of SEQ ID NOs:10, 11, 12, 13, or 14 (a PIB).
  • the fragment comprises the entire catalytic (functionally active) domain.
  • PIB nucleic acid refers to a DNA or RNA molecule that encodes a PIB polypeptide.
  • the PIB polypeptide or nucleic acid or fragment thereof is from a human, but can also be an ortholog, or derivative thereof with at least 70% sequence identity, preferably at least 80%, more preferably 85%, still more preferably 90%, and most preferably at least 95% sequence identity with PIB.
  • orthologs in different species retain the same function, due to presence of one or more protein motifs and/or 3-dimensional structures. Orthologs are generally identified by sequence homology analysis, such as BLAST analysis, usually using protein bait sequences.
  • Sequences are assigned as a potential ortholog if the best hit sequence from the forward BLAST result retrieves the original query sequence in the reverse BLAST (Huynen MA and Bork P, Proc Natl Acad Sci (1998) 95:5849-5856; Huynen MA et al., Genome Research (2000) 10:1204-1210).
  • Programs for multiple sequence alignment such as CLUSTAL (Thompson JD et al, 1994, Nucleic Acids Res 22:4673-4680) may be used to highlight conserved regions and/or residues of orthologous proteins and to generate phylogenetic trees.
  • orthologous sequences from two species generally appear closest on the tree with respect to all other sequences from these two species.
  • Structural threading or other analysis of protein folding e.g., using software by ProCeryon, Biosciences, Salzburg, Austria
  • a gene duplication event follows speciation, a single gene in one species, such as Drosophila, may correspond to multiple genes (paralogs) in another, such as human.
  • the term “orthologs” encompasses paralogs.
  • percent (%) sequence identity with respect to a subject sequence, or a specified portion of a subject sequence, is defined as the percentage of nucleotides or amino acids in the candidate derivative sequence identical with the nucleotides or amino acids in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul et al., J. Mol. Biol. (1997) 215:403-410; http://blast.wustl.edu/blast/README.html) with all the search parameters set to default values.
  • the HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched.
  • a % identity value is determined by the number of matching identical nucleotides or amino acids divided by the sequence length for which the percent identity is being reported. “Percent (%) amino acid sequence similarity” is determined by doing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation.
  • a conservative amino acid substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected.
  • Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine; interchangeable basic amino acids are arginine, lysine and histidine; interchangeable acidic amino acids are aspartic acid and glutamic acid; and interchangeable small amino acids are alanine, serine, threonine, cysteine and glycine.
  • nucleic acid sequences are provided by the local homology algorithm of Smith and Waterman (Smith and Waterman, 1981, Advances in Applied Mathematics 2:482-489; database: European Bioinformatics Institute http://www.ebi.ac.uk/MPsrch/; Smith and Waterman, 1981 , J. of Molec.Biol., 147:195-197; Nicholas et al., 1998, “A tutorial on Searching Sequence Databases and Sequence Scoring Methods” (www.psc.edu) and references cited therein.; W. R. Pearson, 1991, Genomics 11:635-650).
  • This algorithm can be applied to amino acid sequences by using the scoring matrix developed by Dayhoff (Dayhoff: Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA), and normalized by Gribskov (Gribskov 1986 Nucl. Acids Res. 14(6):6745-6763).
  • the Smith-Waterman algorithm may be employed where default parameters are used for scoring (for example, gap open penalty of 12, gap extension penalty of two). From the data generated, the “Match” value reflects “sequence identity.”
  • Derivative nucleic acid molecules of the subject nucleic acid molecules include sequences that hybridize to the nucleic acid sequence of any of SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, or 9.
  • the stringency of hybridization can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. Conditions routinely used are set out in readily available procedure texts (e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)).
  • a nucleic acid molecule of the invention is capable of hybridizing to a nucleic acid molecule containing the nucleotide sequence of anyone of SEQ ID NOs:1, 2, ,3 ,4 ,5 , 6,7 8, or 9 under stringent hybridization conditions that comprise: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65° C. in a solution comprising 6 ⁇ single strength citrate (SSC) (1 ⁇ SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5 ⁇ Denhardt's solution, 0.05% sodium pyrophosphate and 100 ⁇ g/ml herring sperm DNA; hybridization for 18-20 hours at 65° C.
  • SSC single strength citrate
  • moderately stringent hybridization conditions comprise: pretreatment of filters containing nucleic acid for 6 h at 40° C. in a solution containing 35% formamide, 5 ⁇ SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 ⁇ g/ml denatured salmon sperm DNA; hybridization for 18-20h at 40° C.
  • low stringency conditions can be used that comprise: incubation for 8 hours to overnight at 37° C. in a solution comprising 20% formamide, 5 ⁇ SSC, 50 mM sodium phosphate (pH 7.6), 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1 ⁇ SSC at about 37° C. for 1 hour.
  • PIB nucleic acids and polypeptides useful for identifying and testing agents that modulate PIB function and for other applications related to the involvement of PIB in the p53 pathway.
  • PIB nucleic acids and derivatives and orthologs thereof may be obtained using any available method. For instance, techniques for isolating cDNA or genomic DNA sequences of interest by screening DNA libraries or by using polymerase chain reaction (PCR) are well known in the art.
  • PCR polymerase chain reaction
  • the particular use for the protein will dictate the particulars of expression, production, and purification methods. For instance, production of proteins for use in screening for modulating agents may require methods that preserve specific biological activities of these proteins, whereas production of proteins for antibody generation may require structural integrity of particular epitopes.
  • Proteins to be purified for screening or antibody production may require the addition of specific tags (e.g., generation of fusion proteins).
  • Overexpression of a PIB protein for assays used to assess PIB function, such as involvement in cell cycle regulation or hypoxic response, may require expression in eukaryotic cell lines capable of these cellular activities.
  • recombinant PIB is expressed in a cell line known to have defective p53 function (e.g., Higgins S J and Hames B D (eds.) Protein Expression: A Practical Approach, Oxford University Press Inc., New York 1999; Stanbury P F et al., Principles of Fermentation Technology, 2 nd edition, Elsevier Science, New York, 1995; Doonan S (ed.) Protein Purification Protocols, Humana Press, New Jersey, 1996; Coligan J E et al, Current Protocols in Protein Science (eds.), 1999, John Wiley & Sons, New York).
  • recombinant PIB is expressed in a cell line known to have defective p53 function (e.g.
  • SAOS-2 osteoblasts H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, Va.).
  • ATCC American Type Culture Collection
  • the recombinant cells are used in cell-based screening assay systems of the invention, as described further below.
  • the nucleotide sequence encoding a PIB polypeptide can be inserted into any appropriate expression vector.
  • the necessary transcriptional and translational signals can derive from the native PIB gene and/or its flanking regions or can be heterologous.
  • a variety of host-vector expression systems may be utilized, such as mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, plasmid, or cosmid DNA.
  • a host cell strain that modulates the expression of, modifies, and/or specifically processes the gene product may be used.
  • the expression vector can comprise a promoter operably linked to a PIB gene nucleic acid, one or more origins of replication, and, one or more selectable markers (e.g. thymidine kinase activity, resistance to antibiotics, etc.).
  • selectable markers e.g. thymidine kinase activity, resistance to antibiotics, etc.
  • recombinant expression vectors can be identified by assaying for the expression of the PIB gene product based on the physical or functional properties of the PIB protein in in vitro assay systems (e.g. immunoassays).
  • the PIB protein, fragment, or derivative may be optionally expressed as a fusion, or chimeric protein product (i.e. it is joined via a peptide bond to a heterologous protein sequence of a different protein), for example to facilitate purification or detection.
  • a chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other using standard methods and expressing the chimeric product.
  • a chimeric product may also be made by protein synthetic techniques, e.g. by use of a peptide synthesizer (Hunkapiller et al., Nature
  • the gene product can be isolated and purified using standard methods (e.g. ion exchange, affinity, and gel exclusion chromatography; centrifugation; differential solubility; electrophoresis, cite purification reference).
  • native PIB proteins can be purified from natural sources, by standard methods (e.g. immunoaffinity purification).
  • a protein Once a protein is obtained, it may be quantified and its activity measured by appropriate methods, such as immunoassay, bioassay, or other measurements of physical properties, such as crystallography.
  • the methods of this invention may also use cells that have been engineered for altered expression (mis-expression) of PIB or other genes associated with the p53 pathway.
  • mis-expression encompasses ectopic expression, over-expression, under-expression, and non-expression (e.g. by gene knock-out or blocking expression that would otherwise normally occur).
  • Animal models that have been genetically modified to alter PIB expression may be used in in vivo assays to test for activity of a candidate p53 modulating agent, or to further assess the role of PIB in a p53 pathway process such as apoptosis or cell proliferation.
  • the altered PIB expression results in a detectable phenotype, such as decreased or increased levels of cell proliferation, angiogenesis, or apoptosis compared to control animals having normal PIB expression.
  • the genetically modified animal may additionally have altered p53 expression (e.g. p53 knockout).
  • Preferred genetically modified animals are mammals such as primates, rodents (preferably mice), cows, horses, goats, sheep, pigs, dogs and cats.
  • Preferred non-mammalian species include zebrafish, C. elegans , and Drosophila.
  • Preferred genetically modified animals are transgenic animals having a heterologous nucleic acid sequence present as an extrachromosomal element in a portion of its cells, i.e. mosaic animals (see, for example, techniques described by Jakobovits, 1994, Curr. Biol. 4:761-763.) or stably integrated into its germ line DNA (i.e., in the genomic sequence of most or all of its cells).
  • Heterologous nucleic acid is introduced into the germ line of such transgenic animals by genetic manipulation of, for example, embryos or embryonic stem cells of the host animal.
  • transgenic mice see Brinster et al., Proc. Nat. Acad. Sci. USA 82: 4438-4442 (1985), U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al., and Hogan, B., Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1986); for particle bombardment see U.S. Pat.
  • Clones of the nonhuman transgenic animals can be produced according to available methods (see Wilmut, I. et al. (1997) Nature 385:810-813; and PCT International Publication Nos. WO 97/07668 and WO 97/07669).
  • the transgenic animal is a “knock-out” animal having a heterozygous or homozygous alteration in the sequence of an endogenous PIB gene that results in a decrease of PIB function, preferably such that PIB expression is undetectable or insignificant.
  • Knock-out animals are typically generated by homologous recombination with a vector comprising a transgene having at least a portion of the gene to be knocked out. Typically a deletion, addition or substitution has been introduced into the transgene to functionally disrupt it.
  • the transgene can be a human gene (e.g., from a human genomic clone) but more preferably is an ortholog of the human gene derived from the transgenic host species.
  • a mouse PIB gene is used to construct a homologous recombination vector suitable for altering an endogenous PIB gene in the mouse genome.
  • homologous recombination vector suitable for altering an endogenous PIB gene in the mouse genome.
  • Detailed methodologies for homologous recombination in mice are available (see Capecchi, Science (1989) 244:1288-1292; Joyner et al., Nature (1989) 338:153-156). Procedures for the production of non-rodent transgenic mammals and other animals are also available (Houdebine and Chourrout, supra; Pursel et al., Science (1989) 244:1281-1288; Simms et al., Bio/Technology (1988) 6:179-183).
  • knock-out animals such as mice harboring a knockout of a specific gene, may be used to produce antibodies against the human counterpart of the gene that has been knocked out (Claesson M H et al., (1994) Scan J Immunol 40:257-264; Declerck P J et al., (1995) J Biol Chem. 270:8397-400).
  • the transgenic animal is a “knock-in” animal having an alteration in its genome that results in altered expression (e.g., increased (including ectopic) or decreased expression) of the PIB gene, e.g., by introduction of additional copies of PIB, or by operatively inserting a regulatory sequence that provides for altered expression of an endogenous copy of the PIB gene.
  • a regulatory sequence include inducible, tissue-specific, and constitutive promoters and enhancer elements.
  • the knock-in can be homozygous or heterozygous.
  • Transgenic nonhuman animals can also be produced that contain selected systems allowing for regulated expression of the transgene.
  • a system that may be produced is the cre/loxP recombinase system of bacteriophage P1 (Lakso et al., PNAS (1992) 89:6232-6236; U.S. Pat. No. 4,959,317). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required.
  • Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
  • a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355; U.S. Pat. No. 5,654,182).
  • both Cre-LoxP and Flp-Frt are used in the same system to regulate expression of the transgene, and for sequential deletion of vector sequences in the same cell (Sun X et al (2000) Nat Genet 25:83-6).
  • the genetically modified animals can be used in genetic studies to further elucidate the p53 pathway, as animal models of disease and disorders implicating defective p53 function, and for in vivo testing of candidate therapeutic agents, such as those identified in screens described below.
  • the candidate therapeutic agents are administered to a genetically modified animal having altered PIB function and phenotypic changes are compared with appropriate control animals such as genetically modified animals that receive placebo treatment, and/or animals with unaltered PIB expression that receive candidate therapeutic agent.
  • animal models having defective p53 function can be used in the methods of the present invention.
  • a p53 knockout mouse can be used to assess, in vivo, the activity of a candidate p53 modulating agent identified in one of the in vitro assays described below.
  • p53 knockout mice are described in the literature (Jacks et al., Nature 2001;410:1111-1116, 1043-1044; Donehower et al., supra).
  • the candidate p53 modulating agent when administered to a model system with cells defective in p53 function, produces a detectable phenotypic change in the model system indicating that the p53 function is restored, i.e., the cells exhibit normal cell cycle progression.
  • the invention provides methods to identify agents that interact with and/or modulate the function of PIB and/or the p53 pathway. Such agents are useful in a variety of diagnostic and therapeutic applications associated with the p53 pathway, as well as in further analysis of the PIB protein and its contribution to the p53 pathway. Accordingly, the invention also provides methods for modulating the p53 pathway comprising the step of specifically modulating PIB activity by administering a PIB-interacting or -modulating agent.
  • PIB-modulating agents inhibit or enhance PIB activity or otherwise affect normal PIB function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity.
  • the candidate p53 pathway-modulating agent specifically modulates the function of the PIB.
  • the phrases “specific modulating agent”, “specifically modulates”, etc., are used herein to refer to modulating agents that directly bind to the PIB polypeptide or nucleic acid, and preferably inhibit, enhance, or otherwise alter, the function of the PIB.
  • the term also encompasses modulating agents that alter the interaction of the PIB with a binding partner or substrate (e.g. by binding to a binding partner of a PIB, or to a protein/binding partner complex, and inhibiting function).
  • Preferred PIB-modulating agents include small molecule compounds; PIB-interacting proteins, including antibodies and other biotherapeutics; and nucleic acid modulators such as antisense and RNA inhibitors.
  • the modulating agents may be formulated in pharmaceutical compositions, for example, as compositions that may comprise other active ingredients, as in combination therapy, and/or suitable carriers or excipients. Techniques for formulation and administration of the compounds may be found in “Remington's Pharmaceutical Sciences” Mack Publishing Co., Easton, Pa., 19 th edition.
  • Small molecules are often preferred to modulate function of proteins with enzymatic function, and/or containing protein interaction domains.
  • Chemical agents referred to in the art as “small molecule” compounds are typically organic, non-peptide molecules, having a molecular weight less than 10,000, preferably less than 5,000, more preferably less than 1,000, and most preferably less than 500.
  • This class of modulators includes chemically synthesized molecules, for instance, compounds from combinatorial chemical libraries. Synthetic compounds may be rationally designed or identified based on known or inferred properties of the PIB protein or may be identified by screening compound libraries.
  • modulators of this class are natural products, particularly secondary metabolites from organisms such as plants or fungi, which can also be identified by screening compound libraries for PIB-modulating activity.
  • Methods for generating and obtaining compounds are well known in the art (Schreiber S L, Science (2000) 151: 1964-1969; Radmann J and Gunther J, Science
  • Small molecule modulators identified from screening assays can be used as lead compounds from which candidate clinical compounds may be designed, optimized, and synthesized. Such clinical compounds may have utility in treating pathologies associated with the p53 pathway.
  • the activity of candidate small molecule modulating agents may be improved several-fold through iterative secondary functional validation, as further described below, structure determination, and candidate modulator modification and testing.
  • candidate clinical compounds are generated with specific regard to clinical and pharmacological properties.
  • the reagents may be derivatized and re-screened using in vitro and in vivo assays to optimize activity and minimize toxicity for pharmaceutical development.
  • PIB-interacting proteins are useful in a variety of diagnostic and therapeutic applications related to the p53 pathway and related disorders, as well as in validation assays for other PIB-modulating agents.
  • PIB-interacting proteins affect normal PIB function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity.
  • PIB-interacting proteins are useful in detecting and providing information about the function of PIB proteins, as is relevant to p53 related disorders, such as cancer (e.g., for diagnostic means).
  • An PIB-interacting protein may be endogenous, i.e. one that naturally interacts genetically or biochemically with a PIB, such as a member of the PIB pathway that modulates PIB expression, localization, and/or activity.
  • PIB-modulators include dominant negative forms of PIB-interacting proteins and of PIB proteins themselves.
  • Yeast two-hybrid and variant screens offer preferred methods for identifying endogenous PIB-interacting proteins (Finley, R. L. et al. (1996) in DNA Cloning-Expression Systems: A Practical Approach, eds. Glover D. & Hames B. D (Oxford University Press, Oxford, England), pp.
  • Mass spectrometry is an alternative preferred method for the elucidation of protein complexes (reviewed in, e.g., Pandley A and Mann M, Nature (2000) 405:837-846; Yates J R 3 rd , Trends Genet (2000) 16:5-8).
  • An PIB-interacting protein may be an exogenous protein, such as a PIB-specific antibody or a T-cell antigen receptor (see, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory; Harlow and Lane (1999) Using antibodies: a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).
  • PIB antibodies are further discussed below.
  • a PIB-interacting protein specifically binds a PIB protein.
  • a PIB-modulating agent binds a PIB substrate, binding partner, or cofactor.
  • the protein modulator is a PIB specific antibody agonist or antagonist.
  • the antibodies have therapeutic and diagnostic utilities, and can be used in screening assays to identify PIB modulators.
  • the antibodies can also be used in dissecting the portions of the PIB pathway responsible for various cellular responses and in the general processing and maturation of the PIB.
  • Antibodies that specifically bind PIB polypeptides can be generated using known methods.
  • the antibody is specific to a mammalian ortholog of PIB polypeptide, and more preferably, to human PIB.
  • Antibodies may be polyclonal, monoclonal (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab′).sub.2 fragments, fragments produced by a FAb expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.
  • Epitopes of PIB which are particularly antigenic can be selected, for example, by routine screening of PIB polypeptides for antigenicity or by applying a theoretical method for selecting antigenic regions of a protein (Hopp and Wood (1981), Proc. Nati. Acad. Sci. U.S.A. 78:3824-28; Hopp and Wood, (1983) Mol. Immunol. 20:483-89; Sutcliffe et al., (1983)Science 219:660-66) to the amino acid sequence shown in any of SEQ ID NOs:10, 11, 12, 13, or 14.
  • Monoclonal antibodies with affinities of 10 8 M ⁇ 1 preferably 10 9 M ⁇ 1 to 10 10 M ⁇ 1 , or stronger can be made by standard procedures as described (Harlow and Lane, supra; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; and U.S. Pat. Nos. 4,381,292; 4,451,570; and 4,618,577).
  • Antibodies may be generated against crude cell extracts of PIB or substantially purified fragments thereof. If PIB fragments are used, they preferably comprise at least 10, and more preferably, at least 20 contiguous amino acids of a PIB protein.
  • PIB-specific antigens and/or immunogens are coupled to carrier proteins that stimulate the immune response.
  • the subject polypeptides are covalently coupled to the keyhole limpet hemocyanin (KLH) carrier, and the conjugate is emulsified in Freund's complete adjuvant, which enhances the immune response.
  • KLH keyhole limpet hemocyanin
  • An appropriate immune system such as a laboratory rabbit or mouse is immunized according to conventional protocols.
  • PIB-specific antibodies is assayed by an appropriate assay such as a solid phase enzyme-linked immunosorbant assay (ELISA) using immobilized corresponding PIB polypeptides.
  • an appropriate assay such as a solid phase enzyme-linked immunosorbant assay (ELISA) using immobilized corresponding PIB polypeptides.
  • ELISA enzyme-linked immunosorbant assay
  • Other assays such as radioimmunoassays or fluorescent assays might also be used.
  • Chimeric antibodies specific to PIB polypeptides can be made that contain different portions from different animal species.
  • a human immunoglobulin constant region may be linked to a variable region of a murine mAb, such that the antibody derives its biological activity from the human antibody, and its binding specificity from the murine fragment.
  • Chimeric antibodies are produced by splicing together genes that encode the appropriate regions from each species (Morrison et al., Proc. Natl. Acad. Sci. (1984) 81:6851-6855; Neuberger et al., Nature (1984) 312:604-608; Takeda et al., Nature (1985) 31:452-454).
  • Humanized antibodies which are a form of chimeric antibodies, can be generated by grafting complementary-determining regions (CDRs) (Carlos, T. M., J. M. Harlan. 1994. Blood 84:2068-2101) of mouse antibodies into a background of human framework regions and constant regions by recombinant DNA technology (Riechmann L M, et al., 1988 Nature 323: 323-327). Humanized antibodies contain ⁇ 10% murine sequences and ⁇ 90% human sequences, and thus further reduce or eliminate immunogenicity, while retaining the antibody specificities (Co MS, and Queen C. 1991 Nature 351: 501-501; Morrison SL. 1992 Ann. Rev. Immun. 10:239-265). Humanized antibodies and methods of their production are well-known in the art (U.S. Pat. Nos. 5,530,101, 5,585,089, 5,693,762, and 6,180,370).
  • PIB-specific single chain antibodies which are recombinant, single chain polypeptides formed by linking the heavy and light chain fragments of the Fv regions via an amino acid bridge, can be produced by methods known in the art (U.S. Pat. No. 4,946,778; Bird, Science (1988) 242:423-426; Huston et al., Proc. Natl. Acad. Sci. USA (1988)85:5879-5883; and Ward et al., Nature (1989) 334:544-546).
  • T-cell antigen receptors are included within the scope of antibody modulators (Harlow and Lane, 1988, supra).
  • polypeptides and antibodies of the present invention may be used with or without modification. Frequently, antibodies will be labeled by joining, either covalently or non-covalently, a substance that provides for a detectable signal, or that is toxic to cells that express the targeted protein (Menard S, et al., Int J. Biol Markers (1989) 4:131-134).
  • labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, fluorescent emitting lanthanide metals, chemiluminescent moieties, bioluminescent moieties, magnetic particles, and the like (U.S. Pat. Nos.
  • the antibodies of the subject invention are typically administered parenterally, when possible at the target site, or intravenously.
  • the therapeutically effective dose and dosage regimen is determined by clinical studies.
  • the amount of antibody administered is in the range of about 0.1 mg/kg—to about 10 mg/kg of patient weight.
  • the antibodies are formulated in a unit dosage injectable form (e.g., solution, suspension, emulsion) in association with a pharmaceutically acceptable vehicle.
  • a pharmaceutically acceptable vehicle are inherently nontoxic and non-therapeutic. Examples are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin.
  • Nonaqueous vehicles such as fixed oils, ethyl oleate, or liposome carriers may also be used.
  • the vehicle may contain minor amounts of additives, such as buffers and preservatives, which enhance isotonicity and chemical stability or otherwise enhance therapeutic potential.
  • the antibodies' concentrations in such vehicles are typically in the range of about 1 mg/ml to about 10 mg/ml. Immunotherapeutic methods are further described in the literature (U.S. Pat. No. 5,859,206; WO0073469).
  • PIB-modulating agents comprise nucleic acid molecules, such as antisense oligomers or double stranded RNA (dsRNA), which generally inhibit PIB activity.
  • Preferred nucleic acid modulators interfere with the function of the PIB nucleic acid such as DNA replication, transcription, translocation of the PIB RNA to the site of protein translation, translation of protein from the PIB RNA, splicing of the PIB RNA to yield one or more mRNA species, or catalytic activity which may be engaged in or facilitated by the PIB RNA.
  • the antisense oligomer is an oligonucleotide that is sufficiently complementary to a PIB mRNA to bind to and prevent translation, preferably by binding to the 5′ untranslated region.
  • PIB-specific antisense oligonucleotides preferably range from at least 6 to about 200 nucleotides. In some embodiments the oligonucleotide is preferably at least 10, 15, or 20 nucleotides in length. In other embodiments, the oligonucleotide is preferably less than 50, 40, or 30 nucleotides in length.
  • the oligonucleotide can be DNA or RNA or a chimeric mixture or derivatives or modified versions thereof, single-stranded or double-stranded.
  • the oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone.
  • the oligonucleotide may include other appending groups such as peptides, agents that facilitate transport across the cell membrane, hybridization-triggered cleavage agents, and intercalating agents.
  • the antisense oligomer is a phosphothioate morpholino oligomer (PMO).
  • PMOs are assembled from four different morpholino subunits, each of which contain one of four genetic bases (A, C, G, or T) linked to a six-membered morpholine ring. Polymers of these subunits are joined by non-ionic phosphodiamidate intersubunit linkages. Details of how to make and use PMOs and other antisense oligomers are well known in the art (e.g. see WO99/18193; Probst JC, Antisense Oligodeoxynucleotide and Ribozyme Design, Methods.
  • RNAi is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene.
  • dsRNA double-stranded RNA
  • Methods relating to the use of RNAi to silence genes in C. elegans , Drosophila, plants, and humans are known in the art (Fire A, et al., 1998 Nature 391:806-811; Fire, A. Trends Genet. 15, 358-363 (1999); Sharp, P. A. RNA interference 2001. Genes Dev. 15, 485-490 (2001); Hammond, S.
  • Nucleic acid modulators are commonly used as research reagents, diagnostics, and therapeutics.
  • antisense oligonucleotides which are able to inhibit gene expression with extraordinar specificity, are often used to elucidate the function of particular genes (see, for example, U.S. Pat. No. 6,165,790).
  • Nucleic acid modulators are also used, for example, to distinguish between functions of various members of a biological pathway.
  • antisense oligomers have been employed as therapeutic moieties in the treatment of disease states in animals and man and have been demonstrated in numerous clinical trials to be safe and effective (Milligan J F, et al, Current Concepts in Antisense Drug Design, J Med Chem.
  • a PIB-specific nucleic acid modulator is used in an assay to further elucidate the role of the PIB in the p53 pathway, and/or its relationship to other members of the pathway.
  • a PIB-specific antisense oligomer is used as a therapeutic agent for treatment of p53-related disease states.
  • the invention provides assay systems and screening methods for identifying specific modulators of PIB activity.
  • an “assay system” encompasses all the components required for performing and analyzing results of an assay that detects and/or measures a particular event.
  • primary assays are used to identify or confirm a modulator's specific biochemical or molecular effect with respect to the PIB nucleic acid or protein.
  • secondary assays further assess the activity of a PIB modulating agent identified by a primary assay and may confirm that the modulating agent affects PIB in a manner relevant to the p53 pathway. In some cases, PIB modulators will be directly tested in a secondary assay.
  • the screening method comprises contacting a suitable assay system comprising a PIB polypeptide with a candidate agent under conditions whereby, but for the presence of the agent, the system provides a reference activity (e.g. phosphatase activity), which is based on the particular molecular event the screening method detects.
  • a reference activity e.g. phosphatase activity
  • the type of modulator tested generally determines the type of primary assay.
  • screening assays are used to identify candidate modulators. Screening assays may be cell-based or may use a cell-free system that recreates or retains the relevant biochemical reaction of the target protein (reviewed in Sittampalam G S et al., Curr Opin Chem Biol (1997) 1:384-91 and accompanying references).
  • the term “cell-based” refers to assays using live cells, dead cells, or a particular cellular fraction, such as a membrane, endoplasmic reticulum, or mitochondrial fraction.
  • cell free encompasses assays using substantially purified protein (either endogenous or recombinantly produced), partially purified or crude cellular extracts.
  • Screening assays may detect a variety of molecular events, including protein-DNA interactions, protein-protein interactions (e.g., receptor-ligand binding), transcriptional activity (e.g., using a reporter gene), enzymatic activity (e.g., via a property of the substrate), activity of second messengers, immunogenicty and changes in cellular morphology or other cellular characteristics.
  • Appropriate screening assays may use a wide range of detection methods including fluorescent, radioactive, colorimetric, spectrophotometric, and amperometric methods, to provide a read-out for the particular molecular event detected.
  • Cell-based screening assays usually require systems for recombinant expression of PIB and any auxiliary proteins demanded by the particular assay. Appropriate methods for generating recombinant proteins produce sufficient quantities of proteins that retain their relevant biological activities and are of sufficient purity to optimize activity and assure assay reproducibility. Yeast two-hybrid and variant screens, and mass spectrometry provide preferred methods for determining protein-protein interactions and elucidation of protein complexes. In certain applications, when PIB-interacting proteins are used in screens to identify small molecule modulators, the binding specificity of the interacting protein to the PIB protein may be assayed by various known methods such as substrate processing (e.g.
  • binding equilibrium constants usually at least about 10 7 M ⁇ 1 , preferably at least about 10 8 M ⁇ 1 , more preferably at least about 10 9 M ⁇ 1
  • immunogenicity e.g. ability to elicit PIB specific antibody in a heterologous host such as a mouse, rat, goat or rabbit.
  • binding may be assayed by, respectively, substrate and ligand processing.
  • the screening assay may measure a candidate agent's ability to specifically bind to or modulate activity of a PIB polypeptide, a fusion protein thereof, or to cells or membranes bearing the polypeptide or fusion protein.
  • the PIB polypeptide can be full length or a fragment thereof that retains functional PIB activity.
  • the PIB polypeptide may be fused to another polypeptide, such as a peptide tag for detection or anchoring, or to another tag.
  • the PIB polypeptide is preferably human PIB, or is an ortholog or derivative thereof as described above.
  • the screening assay detects candidate agent-based modulation of PIB interaction with a binding target, such as an endogenous or exogenous protein or other substrate that has PIB -specific binding activity, and can be used to assess normal PIB gene function.
  • a binding target such as an endogenous or exogenous protein or other substrate that has PIB -specific binding activity
  • screening assays are high throughput or ultra high throughput and thus provide automated, cost-effective means of screening compound libraries for lead compounds (Fernandes P B, Curr Opin Chem Biol (1998) 2:597-603; Sundberg S A, Curr Opin Biotechnol 2000, 11:47-53).
  • screening assays uses fluorescence technologies, including fluorescence polarization, time-resolved fluorescence, and fluorescence resonance energy transfer.
  • a variety of suitable assay systems may be used to identify candidate PIB and p53 pathway modulators (e.g. U.S. Pat. Nos. 5,550,019 and 6,133,437 (apoptosis assays); U.S. Pat. No. 6,020,135 (p53 modulation), U.S. Pat. No. 6,114,132 (phosphatase and protease assays), among others). Specific preferred assays are described in more detail below.
  • Phosphatase assays Protein phosophatases catalyze the removal of a gamma phosphate from a serine, threonine or tyrosine residue in a protein substrate. Since phosphatases act in opposition to kinases, appropriate assays measure the same parameters as kinase assays. In one example, the dephosphorylation of a fluorescently labeled peptide substrate allows trypsin cleavage of the substrate, which in turn renders the cleaved substrate significantly more fluorescent (Nishikata M et al., Biochem J
  • fluorescence polarization a solution-based, homogeneous technique requiring no immobilization or separation of reaction components
  • HTS high throughput screening
  • Apoptosis assays may be performed by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling (TUNEL) assay.
  • TUNEL terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling
  • the TUNEL assay is used to measure nuclear DNA fragmentation characteristic of apoptosis (Lazebnik et al., 1994, Nature 371, 346), by following the incorporation of fluorescein-dUTP (Yonehara et al., 1989, J. Exp. Med. 169, 1747).
  • Apoptosis may further be assayed by acridine orange staining of tissue culture cells (Lucas, R., et al., 1998, Blood 15:4730-41).
  • An apoptosis assay system may comprise a cell that expresses a PIB, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells).
  • a test agent can be added to the apoptosis assay system and changes in induction of apoptosis relative to controls where no test agent is added, identify candidate p53 modulating agents.
  • an apoptosis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using a cell-free assay system.
  • An apoptosis assay may also be used to test whether PIB function plays a direct role in apoptosis.
  • an apoptosis assay may be performed on cells that over- or under-express PIB relative to wild type cells. Differences in apoptotic response compared to wild type cells suggests that the PIB plays a direct role in the apoptotic response.
  • Apoptosis assays are described further in U.S. Pat. No. 6,133,437.
  • Cell proliferation and cell cycle assays may be assayed via bromodeoxyuridine (BRDU) incorporation.
  • BRDU bromodeoxyuridine
  • This assay identifies a cell population undergoing DNA synthesis by incorporation of BRDU into newly-synthesized DNA. Newly-synthesized DNA may then be detected using an anti-BRDU antibody (Hoshino et al., 1986, Int. J. Cancer 38, 369; Campana et al., 1988, J. Immunol. Meth. 107, 79), or by other means.
  • Cell Proliferation may also be examined using [ 3 H]-thymidine incorporation (Chen, J., 1996, Oncogene 13:1395-403; Jeoung, J., 1995, J. Biol. Chem. 270:18367-73).
  • This assay allows for quantitative characterization of S-phase DNA syntheses.
  • cells synthesizing DNA will incorporate [ 3 H]-thymidine into newly synthesized DNA.
  • Incorporation can then be measured by standard techniques such as by counting of radioisotope in a scintillation counter (e.g., Beckman LS 3800 Liquid Scintillation Counter).
  • Cell proliferation may also be assayed by colony formation in soft agar (Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). For example, cells transformed with PIB are seeded in soft agar plates, and colonies are measured and counted after two weeks incubation.
  • Involvement of a gene in the cell cycle may be assayed by flow cytometry (Gray J W et al. (1986) Int J Radiat Biol Relat Stud Phys Chem Med 49:237-55). Cells transfected with a PIB may be stained with propidium iodide and evaluated in a flow cytometer (available from Becton Dickinson).
  • a cell proliferation or cell cycle assay system may comprise a cell that expresses a PIB, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells).
  • a test agent can be added to the assay system and changes in cell proliferation or cell cycle relative to controls where no test agent is added, identify candidate p53 modulating agents.
  • the cell proliferation or cell cycle assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system such as a cell-free phosphatase assay system.
  • a cell proliferation assay may also be used to test whether PIB function plays a direct role in cell proliferation or cell cycle.
  • a cell proliferation or cell cycle assay may be performed on cells that over- or under-express PIB relative to wild type cells. Differences in proliferation or cell cycle compared to wild type cells suggests that the PIB plays a direct role in cell proliferation or cell cycle.
  • Angiogenesis may be assayed using various human endothelial cell systems, such as umbilical vein, coronary artery, or dermal cells. Suitable assays include Alamar Blue based assays (available from Biosource International) to measure proliferation; migration assays using fluorescent molecules, such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors; and tubule formation assays based on the formation of tubular structures by endothelial cells on Matrigel® (Becton Dickinson).
  • Alamar Blue based assays available from Biosource International
  • migration assays using fluorescent molecules such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors
  • tubule formation assays based on the formation of tubular structures by endothelial cells on Ma
  • an angiogenesis assay system may comprise a cell that expresses a PIB, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells).
  • a test agent can be added to the angiogenesis assay system and changes in angiogenesis relative to controls where no test agent is added, identify candidate p53 modulating agents.
  • the angiogenesis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system.
  • An angiogenesis assay may also be used to test whether PIB function plays a direct role in cell proliferation. For example, an angiogenesis assay may be performed on cells that over- or under-express PIB relative to wild type cells. Differences in angiogenesis compared to wild type cells suggests that the PIB plays a direct role in angiogenesis.
  • hypoxia inducible factor-1 The alpha subunit of the transcription factor, hypoxia inducible factor-1 (HIF-1), is upregulated in tumor cells following exposure to hypoxia in vitro. Under hypoxic conditions, HIF-1 stimulates the expression of genes known to be important in tumour cell survival, such as those encoding glyolytic enzymes and VEGF. Induction of such genes by hypoxic conditions may be assayed by growing cells transfected with PIB in hypoxic conditions (such as with 0.1% O2, 5% CO2, and balance N2, generated in a Napco 7001 incubator (Precision Scientific)) and normoxic conditions, followed by assessment of gene activity or expression by Taqman®.
  • hypoxia inducible factor-1 HIF-1
  • a hypoxic induction assay system may comprise a cell that expresses a PIB, and that optionally has a mutated p53 (e.g. p53 is over-expressed or under-expressed relative to wild-type cells).
  • a test agent can be added to the hypoxic induction assay system and changes in hypoxic response relative to controls where no test agent is added, identify candidate p53 modulating agents.
  • the hypoxic induction assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system.
  • a hypoxic induction assay may also be used to test whether PIB function plays a direct role in the hypoxic response.
  • hypoxic induction assay may be performed on cells that over- or under-express PIB relative to wild type cells. Differences in hypoxic response compared to wild type cells suggests that the PIB plays a direct role in hypoxic induction.
  • Cell adhesion assays measure adhesion of cells to purified adhesion proteins, or adhesion of cells to each other, in presence or absence of candidate modulating agents.
  • Cell-protein adhesion assays measure the ability of agents to modulate the adhesion of cells to purified proteins. For example, recombinant proteins are produced, diluted to 2.5g/mL in PBS, and used to coat the wells of a microtiter plate. The wells used for negative control are not coated. Coated wells are then washed, blocked with 1% BSA, and washed again. Compounds are diluted to 2 ⁇ final test concentration and added to the blocked, coated wells.
  • Cell-cell adhesion assays measure the ability of agents to modulate binding of cell adhesion proteins with their native ligands. These assays use cells that naturally or recombinantly express the adhesion protein of choice.
  • cells expressing the cell adhesion protein are plated in wells of a multiwell plate.
  • Cells expressing the ligand are labeled with a membrane-permeable fluorescent dye, such as BCECF, and allowed to adhere to the monolayers in the presence of candidate agents. Unbound cells are washed off, and bound cells are detected using a fluorescence plate reader.
  • High-throughput cell adhesion assays have also been described.
  • small molecule ligands and peptides are bound to the surface of microscope slides using a microarray spotter, intact cells are then contacted with the slides, and unbound cells are washed off.
  • this assay not only the binding specificity of the peptides and modulators against cell lines are determined, but also the functional cell signaling of attached cells using immunofluorescence techniques in situ on the microchip is measured (Falsey J R et al., Bioconjug Chem. 2001 May-Jun;12(3):346-53).
  • ELISA enzyme-linked immunosorbant assay
  • primary assays may test the ability of the nucleic acid modulator to inhibit or enhance PIB gene expression, preferably mRNA expression.
  • expression analysis comprises comparing PIB expression in like populations of cells (e.g., two pools of cells that endogenously or recombinantly express PIB) in the presence and absence of the nucleic acid modulator. Methods for analyzing mRNA and protein expression are well known in the art.
  • Protein expression may also be monitored. Proteins are most commonly detected with specific antibodies or antisera directed against either the PIB protein or specific peptides. A variety of means including Western blotting, ELISA, or in situ detection, are available (Harlow E and Lane D, 1988 and 1999, supra).
  • Secondary assays may be used to further assess the activity of PIB-modulating agent identified by any of the above methods to confirm that the modulating agent affects PIB in a manner relevant to the p53 pathway.
  • PIB-modulating agents encompass candidate clinical compounds or other agents derived from previously identified modulating agent. Secondary assays can also be used to test the activity of a modulating agent on a particular genetic or biochemical pathway or to test the specificity of the modulating agent's interaction with PIB.
  • Secondary assays generally compare like populations of cells or animals (e.g., two pools of cells or animals that endogenously or recombinantly express PIB) in the presence and absence of the candidate modulator. In general, such assays test whether treatment of cells or animals with a candidate PIB-modulating agent results in changes in the p53 pathway in comparison to untreated (or mock- or placebo-treated) cells or animals. Certain assays use “sensitized genetic backgrounds”, which, as used herein, describe cells or animals engineered for altered expression of genes in the p53 or interacting pathways.
  • Cell based assays may use a variety of mammalian cell lines known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, Va.).
  • Cell based assays may detect endogenous p53 pathway activity or may rely on recombinant expression of p53 pathway components. Any of the aforementioned assays may be used in this cell-based format.
  • Candidate modulators are typically added to the cell media but may also be injected into cells or delivered by any other efficacious means.
  • Models for defective p53 pathway typically use genetically modified animals that have been engineered to mis-express (e.g., over-express or lack expression in) genes involved in the p53 pathway.
  • Assays generally require systemic delivery of the candidate modulators, such as by oral administration, injection, etc.
  • p53 pathway activity is assessed by monitoring neovascularization and angiogenesis.
  • Animal models with defective and normal p53 are used to test the candidate modulator's affect on PIB in Matrigel® assays.
  • Matrigel® is an extract of basement membrane proteins, and is composed primarily of laminin, collagen IV, and heparin sulfate proteoglycan. It is provided as a sterile liquid at 4° C., but rapidly forms a solid gel at 37 C. Liquid Matrigel® is mixed with various angiogenic agents, such as bFGF and VEGF, or with human tumor cells which over-express the PIB.
  • mice Female athymic nude mice (Taconic, Germantown, N.Y.) to support an intense vascular response.
  • Mice with Matrigel® pellets may be dosed via oral (PO), intraperitoneal (IP), or intravenous (IV) routes with the candidate modulator. Mice are euthanized 5-12 days post-injection, and the Matrigel® pellet is harvested for hemoglobin analysis (Sigma plasma hemoglobin kit). Hemoglobin content of the gel is found to correlate the degree of neovascularization in the gel.
  • the effect of the candidate modulator on PIB is assessed via tumorigenicity assays.
  • xenograft human tumors are implanted SC into female athymic mice, 6-7 week old, as single cell suspensions either from a pre-existing tumor or from in vitro culture.
  • the tumors which express the PIB endogenously are injected in the flank, 1 ⁇ 10 5 to 1 ⁇ 10 7 cells per mouse in a volume of 100 ⁇ L using a 27gauge needle. Mice are then ear tagged and tumors are measured twice weekly.
  • Candidate modulator treatment is initiated on the day the mean tumor weight reaches 100 mg.
  • Candidate modulator is delivered IV, SC, IP, or PO by bolus administration.
  • dosing can be performed multiple times per day.
  • the tumor weight is assessed by measuring perpendicular diameters with a caliper and calculated by multiplying the measurements of diameters in two dimensions.
  • the excised tumors maybe utilized for biomarker identification or further analyses.
  • immunohistochemistry staining xenograft tumors are fixed in 4% paraformaldehyde, 0.1M phosphate, pH 7.2, for 6 hours at 4° C., immersed in 30% sucrose in PBS, and rapidly frozen in isopentane cooled with liquid nitrogen.
  • Specific PIB-modulating agents are useful in a variety of diagnostic and therapeutic applications where disease or disease prognosis is related to defects in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation disorders.
  • the invention also provides methods for modulating the p53 pathway in a cell, preferably a cell pre-determined to have defective p53 function, comprising the step of administering an agent to the cell that specifically modulates PIB activity.
  • the modulating agent produces a detectable phenotypic change in the cell indicating that the p53 function is restored, i.e., for example, the cell undergoes normal proliferation or progression through the cell cycle.
  • PIB is implicated in p53 pathway provides for a variety of methods that can be employed for the diagnostic and prognostic evaluation of diseases and disorders involving defects in the p53 pathway and for the identification of subjects having a predisposition to such diseases and disorders.
  • Various expression analysis methods can be used to diagnose whether PIB expression occurs in a particular sample, including Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR, and microarray analysis.
  • Tissues having a disease or disorder implicating defective p53 signaling that express a PIB are identified as amenable to treatment with a PIB modulating agent.
  • the p53 defective tissue overexpresses a PIB relative to normal tissue.
  • a Northern blot analysis of mRNA from tumor and normal cell lines, or from tumor and matching normal tissue samples from the same patient, using full or partial PIB cDNA sequences as probes can determine whether particular tumors express or overexpress PIB.
  • the TaqMan® is used for quantitative RT-PCR analysis of PIB expression in cell lines, normal tissues and tumor samples (PE Applied Biosystems).
  • reagents such as the PIB oligonucleotides, and antibodies directed against a PIB, as described above for: (1) the detection of the presence of PIB gene mutations, or the detection of either over- or under-expression of PIB mRNA relative to the non-disorder state; (2) the detection of either an over- or an under-abundance of PIB gene product relative to the non-disorder state; and (3) the detection of perturbations or abnormalities in the signal transduction pathway mediated by PIB.
  • the invention is drawn to a method for diagnosing a disease in a patient, the method comprising: a) obtaining a biological sample from the patient; b) contacting the sample with a probe for PIB expression; c) comparing results from step (b) with a control; and d) determining whether step (c) indicates a likelihood of disease.
  • the disease is cancer, most preferably a cancer as shown in TABLE 1.
  • the probe may be either DNA or protein, including an antibody.
  • the Drosophila p53 gene was overexpressed specifically in the wing using the vestigial margin quadrant enhancer.
  • Increasing quantities of Drosophila p53 (titrated using different strength transgenic inserts in 1 or 2 copies) caused deterioration of normal wing morphology from mild to strong, with phenotypes including disruption of pattern and polarity of wing hairs, shortening and thickening of wing veins, progressive crumpling of the wing and appearance of dark “death” inclusions in wing blade.
  • BLAST analysis (Altschul et al., supra) was employed to identify Targets from Drosophila modifiers. For example, representative sequences from PIB, GI# 4314432 (SEQ ID NO:10), and GI#13279338 (SEQ ID NO:14) share 34% and 37% amino acid identity, respectively, with the Drosophila. CG6805.
  • TM-HMM Error L. L. Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markov model for predicting transmembrane helices in protein sequences.
  • TM-HMM Error L. L. Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markov model for predicting transmembrane helices in protein sequences.
  • clust Remm M, and Sonnhammer E. Classification of transmembrane protein families in the Caenorhabditis elegans genome and identification of human orthologs. Genome Res.
  • Inositol polyphosphate phosphatase family, catalytic (IPPC) domain of PIB from GI# 4314432 (SEQ ID NO:10) is located at approximately amino acid residues 433-512 and 545-786 (PFAM00783).
  • IPPC domain of PIB from GI# 13279338 (SEQ ID NO:14) is located at approximately amino acid residues 12-326.
  • Endonuclease/Exonuclease/phosphatase family (PFAM 03372) of representative PIB sequences of GI# 4314432 (SEQ ID NO:10) and GI# 13279338 (SEQ ID NO:14) are located at approximately amino acid residues 437 to 778, and 16-318, respectively.
  • Fluorescently-labeled PIB peptide/substrate are added to each well of a 96-well microtiter plate, along with a test agent in a test buffer (10 mM HEPES, 10 mM NaCl, 6 mM magnesium chloride, pH 7.6). Changes in fluorescence polarization, determined by using a Fluorolite FPM-2 Fluorescence Polarization Microtiter System (Dynatech Laboratories, Inc), relative to control values indicates the test compound is a candidate modifier of PIB activity.
  • 33 P-labeled PIB peptide is added in an assay buffer (100 mM KCI, 20 mM HEPES pH 7.6, 1 mM MgCl 2 , 1% glycerol, 0.5% NP-40, 50 mM beta-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors) along with a test agent to the wells of a Neutralite-avidin coated assay plate and incubated at 25° C. for 1 hour. Biotinylated substrate is then added to each well and incubated for 1 hour. Reactions are stopped by washing with PBS, and counted in a scintillation counter. Test agents that cause a difference in activity relative to control without test agent are identified as candidate p53 modulating agents.
  • assay buffer 100 mM KCI, 20 mM HEPES pH 7.6, 1 mM MgCl 2 , 1% glycerol, 0.5% NP-40, 50 mM beta-mercapto
  • proteins bound to the beads are solubilized by boiling in SDS sample buffer, fractionated by SDS-polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane and blotted with the indicated antibodies.
  • the reactive bands are visualized with horseradish peroxidase coupled to the appropriate secondary antibodies and the enhanced chemiluminescence (ECL) Western blotting detection system (Amersham Pharmacia Biotech).
  • TaqMan analysis was used to assess expression levels of the disclosed genes in various samples.
  • primer pairs were designed to span introns to eliminate genomic contamination
  • each primer pair produced only one product.
  • Taqman reactions were carried out following manufacturer's protocols, in 25 ⁇ l total volume for 96-well plates and 10 ⁇ l total volume for 384-well plates, using 300 nM primer and 250 nM probe, and approximately 25 ng of cDNA.
  • the standard curve for result analysis was prepared using a universal pool of human cDNA samples, which is a mixture of cDNAs from a wide variety of tissues so that the chance that a target will be present in appreciable amounts is good.
  • the raw data were normalized using 18S rRNA (universally expressed in all tissues and cells).
  • tumor tissue samples were compared with matched normal tissues from the same patient.
  • a gene was considered overexpressed in a tumor when the level of expression of the gene was 2 fold or higher in the tumor compared with its matched normal sample.
  • a universal pool of cDNA samples was used instead.
  • a gene was considered overexpressed in a tumor sample when the difference of expression levels between a tumor sample and the average of all normal samples from the same tissue type was greater than 2 times the standard deviation of all normal samples (i.e., Tumor—average(all normal samples)>2 ⁇ STDEV(all normal samples)).
  • Results are shown in Table 1. Data presented in bold indicate that greater than 50% of tested tumor samples of the tissue type indicated in row 1 exhibited over expression of the gene listed in column 1, relative to normal samples. Underlined data indicates that between 25% to 49% of tested tumor samples exhibited over expression.
  • a modulator identified by an assay described herein can be further validated for therapeutic effect by administration to a tumor in which the gene is overexpressed. A decrease in tumor growth confirms therapeutic utility of the modulator.
  • the likelihood that the patient will respond to treatment can be diagnosed by obtaining a tumor sample from the patient, and assaying for expression of the gene targeted by the modulator.
  • the expression data for the gene(s) can also be used as a diagnostic marker for disease progression.
  • the assay can be performed by expression analysis as described above, by antibody directed to the gene target, or by any other available detection method.

Abstract

Human PIB genes are identified as modulators of the p53 pathway, and thus are therapeutic targets for disorders associated with defective p53 function. Methods for identifying modulators of p53, comprising screening for agents that modulate the activity of PIB are provided.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. provisional patent applications No. 60/296,076 filed Jun. 5, 2001, No. 60/328,605 filed Oct. 10, 2001, and No. 60/357,253 filed Feb. 15, 2002. The contents of the prior applications are hereby incorporated in their entirety.[0001]
  • BACKGROUND OF THE INVENTION
  • The p53 gene is mutated in over 50 different types of human cancers, including familial and spontaneous cancers, and is believed to be the most commonly mutated gene in human cancer (Zambetti and Levine, FASEB (1993) 7:855-865; Hollstein, et al., Nucleic Acids Res. (1994) 22:3551-3555). Greater than 90% of mutations in the p53 gene are missense mutations that alter a single amino acid that inactivates p53 function. Aberrant forms of human p53 are associated with poor prognosis, more aggressive tumors, metastasis, and short survival rates (Mitsudomi et al., Clin Cancer Res 2000 Oct; 6(10):4055-63; Koshland, Science (1993) 262:1953). [0002]
  • The human p53 protein normally functions as a central integrator of signals including DNA damage, hypoxia, nucleotide deprivation, and oncogene activation (Prives, Cell (1998) 95:5-8). In response to these signals, p53 protein levels are greatly increased with the result that the accumulated p53 activates cell cycle arrest or apoptosis depending on the nature and strength of these signals. Indeed, multiple lines of experimental evidence have pointed to a key role for p53 as a tumor suppressor (Levine, Cell (1997) 88:323-331). For example, homozygous p53 “knockout” mice are developmentally normal but exhibit nearly 100% incidence of neoplasia in the first year of life (Donehower et al., Nature (1992) 356:215-221). [0003]
  • The biochemical mechanisms and pathways through which p53 functions in normal and cancerous cells are not fully understood, but one clearly important aspect of p53 function is its activity as a gene-specific transcriptional activator. Among the genes with known p53-response elements are several with well-characterized roles in either regulation of the cell cycle or apoptosis, including GADD45, p21/Waf1/Cip1, cyclin G, Bax, IGF-BP3, and MDM2 (Levine, Cell (1997) 88:323-331). [0004]
  • The inositol polyphosphate 5-phosphatases are a family of enzymes that terminate the signals generated by the phosphoinositide kinases and phospholipase C. Given the diverse signaling functions of both the polyphosphoinositides and Ins P3, it is predicted that the 5-phosphatases play a critical role in the regulation of many cellular events, in particular membrane trafficking and cell growth (Mitchell, C. et al. (1996) Biochem Soc Trans. 24:994-1000). [0005]
  • Phosphatidylinositol bisphosphate 5-phosphatase A (PIB5PA) may play a role in polyphosphate catabolism (Mochizuki, Y. and Takenawa, T. (1999) J. Biol. Chem. 274: 36790-36795). PIB5PA is expressed in brain, heart, kidney, stomach, small intestine, and lung as well as a variety of human, rat, and mouse cell lines. PIB5PA is classified as a type II 5-phosphatase because of its hydrolyzed phosphate at the D-5 position of PtdIns P2, Ins P3, and Ins P4 (Mochizuki, Y. and Takenawa, T. (1999) supra). PIB5PA localizes in the cytoplasm and at ruffling membranes. It is believed that PIB5PA does not participate in the reorganization of the actin cytoskeleton but may be involved in modulation of the function of inositol and phosphatidylinositol polyphosphate-binding proteins that are present at membrane ruffles. PIB5PA is expressed in human lymphoblastic leukemia and myeloid leukemia cells (Mochizuki, Y. and Takenawa, T. (1999)supra). [0006]
  • Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) is an inositol polyphosphate 5-phosphatase that may negatively regulate the actin cytoskeleton by hydrolyzing PtdIns 4,5-bisphosphate. It contains two highly conserved catalytic motifs for 5-phosphatase and is ubiquitously expressed with highest expression levels found in skeletal muscle, heart, and kidney. SKIP is a simple 5-phosphatase with no other motifs. Expression studies indicate that SKIP 5-phosphatase show activities toward inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, phosphatidylinositol (PtdIns) 4,5-bisphosphate, and PtdIns 3,4, 5-trisphosphate but has 6-fold more substrate specificity for PtdIns 4,5-bisphosphate than for inositol 1,4, 5-trisphosphate (Ijuin T, et al. (2000) J Biol Chem 275:10870-10875). SKIP is expressed in cytosol and the loss of actin stress fibers occurs where the SKIP protein is concentrated. [0007]
  • The ability to manipulate the genomes of model organisms such as Drosophila provides a powerful means to analyze biochemical processes that, due to significant evolutionary conservation, has direct relevance to more complex vertebrate organisms. Due to a high level of gene and pathway conservation, the strong similarity of cellular processes, and the functional conservation of genes between these model organisms and mammals, identification of the involvement of novel genes in particular pathways and their functions in such model organisms can directly contribute to the understanding of the correlative pathways and methods of modulating them in mammals (see, for example, Mechler B M et al., 1985 EMBO J 4:1551-1557; Gateff E. 1982 Adv. Cancer Res. 37: 33-74; Watson K L., et al., 1994 J Cell Sci. 18: 19-33; Miklos G L, and Rubin G M. 1996 Cell 86:521-529; Wassarman D A, et al., 1995 Curr Opin Gen Dev 5: 44-50; and Booth D R. 1999 Cancer Metastasis Rev. 18: 261-284). For example, a genetic screen can be carried out in an invertebrate model organism having underexpression (e.g. knockout) or overexpression of a gene (referred to as a “genetic entry point”) that yields a visible phenotype. Additional genes are mutated in a random or targeted manner. When a gene mutation changes the original phenotype caused by the mutation in the genetic entry point, the gene is identified as a “modifier” involved in the same or overlapping pathway as the genetic entry point. When the genetic entry point is an ortholog of a human gene implicated in a disease pathway, such as p53, modifier genes can be identified that may be attractive candidate targets for novel therapeutics. [0008]
  • All references cited herein, including sequence information in referenced Genbank identifier numbers and website references, are incorporated herein in their entireties. [0009]
  • SUMMARY OF THE INVENTION
  • We have discovered genes that modify the p53 pathway in Drosophila, and identified their human orthologs, hereinafter referred to as phosphatidylinositol biphosphate (PIB). The invention provides methods for utilizing these p53 modifier genes and polypeptides to identify candidate therapeutic agents that can be used in the treatment of disorders associated with defective p53 function. Preferred PIB-modulating agents specifically bind to PIB polypeptides and restore p53 function. Other preferred PIB-modulating agents are nucleic acid modulators such as antisense oligomers and RNAi that repress PIB gene expression or product activity by, for example, binding to and inhibiting the respective nucleic acid (i.e. DNA or mRNA). [0010]
  • PIB-specific modulating agents may be evaluated by any convenient in vitro or in vivo assay for molecular interaction with a PIB polypeptide or nucleic acid. In one embodiment, candidate p53 modulating agents are tested with an assay system comprising a PIB polypeptide or nucleic acid. Candidate agents that produce a change in the activity of the assay system relative to controls are identified as candidate p53 modulating agents. The assay system may be cell-based or cell-free. PIB-modulating agents include PIB related proteins (e.g. dominant negative mutants, and biotherapeutics); PIB-specific antibodies; PIB-specific antisense oligomers and other nucleic acid modulators; and chemical agents that specifically bind PIB or compete with PIB binding target. In one specific embodiment, a small molecule modulator is identified using a phosphatase assay. In specific embodiments, the screening assay system is selected from a binding assay, an apoptosis assay, a cell proliferation assay, an angiogenesis assay, and a hypoxic induction assay. [0011]
  • In another embodiment, candidate p53 pathway modulating agents are further tested using a second assay system that detects changes in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation changes produced by the originally identified candidate agent or an agent derived from the original agent. The second assay system may use cultured cells or non-human animals. In specific embodiments, the secondary assay system uses non-human animals, including animals predetermined to have a disease or disorder implicating the p53 pathway, such as an angiogenic, apoptotic, or cell proliferation disorder (e.g. cancer). [0012]
  • The invention further provides methods for modulating the p53 pathway in a mammalian cell by contacting the mammalian cell with an agent that specifically binds a PIB polypeptide or nucleic acid. The agent may be a small molecule modulator, a nucleic acid modulator, or an antibody and may be administered to a mammalian animal predetermined to have a pathology associated the p53 pathway. [0013]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Genetic screens were designed to identify modifiers of the p53 pathway in Drosophila in which p53 was overexpressed in the wing (Ollmann M, et al., Cell 2000 101: 91-101). The CG6805 gene was identified as a modifier of the p53 pathway. Accordingly, vertebrate orthologs of these modifiers, and preferably the human orthologs, phosphatidylinositol biphosphate (PIB) genes (i.e., nucleic acids and polypeptides) are attractive drug targets for the treatment of pathologies associated with a defective p53 signaling pathway, such as cancer. [0014]
  • In vitro and in vivo methods of assessing PIB function are provided herein. Modulation of the PIB or their respective binding partners is useful for understanding the association of the p53 pathway and its members in normal and disease conditions and for developing diagnostics and therapeutic modalities for p53 related pathologies. PIB-modulating agents that act by inhibiting or enhancing PIB expression, directly or indirectly, for example, by affecting a PIB function such as enzymatic (e.g., catalytic) or binding activity, can be identified using methods provided herein. PIB modulating agents are useful in diagnosis, therapy and pharmaceutical development. [0015]
  • Nucleic Acids and Polypeptides of the Invention [0016]
  • Sequences related to PIB nucleic acids and polypeptides that can be used in the invention are disclosed in Genbank (referenced by Genbank identifier (GI) number) as GI#s 4156153 (SEQ ID NO:1), 18593949 (SEQ ID NO:2), 13652963 (SEQ ID NO:4), 7209854 (SEQ ID NO:5), and 7209856 (SEQ ID NO:6) for nucleic acid, and GI#s 4314432 (SEQ ID NO:10), 11426729 (SEQ ID NO:11), 7706565 (SEQ ID NO:12), 7209857 (SEQ ID NO:13), and 13279338 (SEQ ID NO:14) for polypeptides. Additionally, nucleic acids of SEQ ID NOs:3, 7, 8, and 9 can also be used in the invention. [0017]
  • PIBs are phosphatase proteins with catalytic domains. The term “PIB polypeptide” refers to a full-length PIB protein or a functionally active fragment or derivative thereof. A “functionally active” PIB fragment or derivative exhibits one or more functional activities associated with a full-length, wild-type PIB protein, such as antigenic or immunogenic activity, enzymatic activity, ability to bind natural cellular substrates, etc. The functional activity of PIB proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science (1998) Coligan et al., eds., John Wiley & Sons, Inc., Somerset, N.J.) and as further discussed below. For purposes herein, functionally active fragments also include those fragments that comprise one or more structural domains of a PIB, such as a catalytic domain or a binding domain. Protein domains can be identified using the PFAM program (Bateman A., et al., Nucleic Acids Res, 1999, 27:260-2; http://pfam.wustl.edu). For example, the Inositol polyphosphate phosphatase family, catalytic (IPPC) domain of PIB from GI# 4314432 (SEQ ID NO:10) is located at approximately amino acid residues 433-512 and 545-786 (PFAM00783). Likewise, the IPPC domain of PIB from GI# 13279338 (SEQ ID NO:14) is located at approximately amino acid residues 12-326. Methods for obtaining PIB polypeptides are also further described below. In some embodiments, preferred fragments are functionally active, domain-containing fragments comprising at least 25 contiguous amino acids, preferably at least 50, more preferably 75, and most preferably at least 100 contiguous amino acids of any one of SEQ ID NOs:10, 11, 12, 13, or 14 (a PIB). In further preferred embodiments, the fragment comprises the entire catalytic (functionally active) domain. [0018]
  • The term “PIB nucleic acid” refers to a DNA or RNA molecule that encodes a PIB polypeptide. Preferably, the PIB polypeptide or nucleic acid or fragment thereof is from a human, but can also be an ortholog, or derivative thereof with at least 70% sequence identity, preferably at least 80%, more preferably 85%, still more preferably 90%, and most preferably at least 95% sequence identity with PIB. Normally, orthologs in different species retain the same function, due to presence of one or more protein motifs and/or 3-dimensional structures. Orthologs are generally identified by sequence homology analysis, such as BLAST analysis, usually using protein bait sequences. Sequences are assigned as a potential ortholog if the best hit sequence from the forward BLAST result retrieves the original query sequence in the reverse BLAST (Huynen MA and Bork P, Proc Natl Acad Sci (1998) 95:5849-5856; Huynen MA et al., Genome Research (2000) 10:1204-1210). Programs for multiple sequence alignment, such as CLUSTAL (Thompson JD et al, 1994, Nucleic Acids Res 22:4673-4680) may be used to highlight conserved regions and/or residues of orthologous proteins and to generate phylogenetic trees. In a phylogenetic tree representing multiple homologous sequences from diverse species (e.g., retrieved through BLAST analysis), orthologous sequences from two species generally appear closest on the tree with respect to all other sequences from these two species. Structural threading or other analysis of protein folding (e.g., using software by ProCeryon, Biosciences, Salzburg, Austria) may also identify potential orthologs. In evolution, when a gene duplication event follows speciation, a single gene in one species, such as Drosophila, may correspond to multiple genes (paralogs) in another, such as human. As used herein, the term “orthologs” encompasses paralogs. As used herein, “percent (%) sequence identity” with respect to a subject sequence, or a specified portion of a subject sequence, is defined as the percentage of nucleotides or amino acids in the candidate derivative sequence identical with the nucleotides or amino acids in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul et al., J. Mol. Biol. (1997) 215:403-410; http://blast.wustl.edu/blast/README.html) with all the search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched. A % identity value is determined by the number of matching identical nucleotides or amino acids divided by the sequence length for which the percent identity is being reported. “Percent (%) amino acid sequence similarity” is determined by doing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation. [0019]
  • A conservative amino acid substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine; interchangeable basic amino acids are arginine, lysine and histidine; interchangeable acidic amino acids are aspartic acid and glutamic acid; and interchangeable small amino acids are alanine, serine, threonine, cysteine and glycine. [0020]
  • Alternatively, an alignment for nucleic acid sequences is provided by the local homology algorithm of Smith and Waterman (Smith and Waterman, 1981, Advances in Applied Mathematics 2:482-489; database: European Bioinformatics Institute http://www.ebi.ac.uk/MPsrch/; Smith and Waterman, 1981[0021] , J. of Molec.Biol., 147:195-197; Nicholas et al., 1998, “A Tutorial on Searching Sequence Databases and Sequence Scoring Methods” (www.psc.edu) and references cited therein.; W. R. Pearson, 1991, Genomics 11:635-650). This algorithm can be applied to amino acid sequences by using the scoring matrix developed by Dayhoff (Dayhoff: Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA), and normalized by Gribskov (Gribskov 1986 Nucl. Acids Res. 14(6):6745-6763). The Smith-Waterman algorithm may be employed where default parameters are used for scoring (for example, gap open penalty of 12, gap extension penalty of two). From the data generated, the “Match” value reflects “sequence identity.”
  • Derivative nucleic acid molecules of the subject nucleic acid molecules include sequences that hybridize to the nucleic acid sequence of any of SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, or 9. The stringency of hybridization can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. Conditions routinely used are set out in readily available procedure texts (e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). In some embodiments, a nucleic acid molecule of the invention is capable of hybridizing to a nucleic acid molecule containing the nucleotide sequence of anyone of SEQ ID NOs:1, 2, ,3 ,4 ,5 , 6,7 8, or 9 under stringent hybridization conditions that comprise: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65° C. in a solution comprising 6× single strength citrate (SSC) (1× SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5× Denhardt's solution, 0.05% sodium pyrophosphate and 100 μg/ml herring sperm DNA; hybridization for 18-20 hours at 65° C. in a solution containing 6× SSC, 1× Denhardt's solution, 100 μg/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65° C. for 1 h in a solution containing 0.2× SSC and 0.1% SDS (sodium dodecyl sulfate). [0022]
  • In other embodiments, moderately stringent hybridization conditions are used that comprise: pretreatment of filters containing nucleic acid for 6 h at 40° C. in a solution containing 35% formamide, 5× SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 μg/ml denatured salmon sperm DNA; hybridization for 18-20h at 40° C. in a solution containing 35% formamide, 5× SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 μg/ml salmon sperm DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55° C. in a solution containing 2× SSC and 0.1% SDS. [0023]
  • Alternatively, low stringency conditions can be used that comprise: incubation for 8 hours to overnight at 37° C. in a solution comprising 20% formamide, 5× SSC, 50 mM sodium phosphate (pH 7.6), 5× Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1× SSC at about 37° C. for 1 hour. [0024]
  • Isolation, Production, Expression, and Mis-Expression of PIB Nucleic Acids and Polypeptides [0025]
  • PIB nucleic acids and polypeptides, useful for identifying and testing agents that modulate PIB function and for other applications related to the involvement of PIB in the p53 pathway. PIB nucleic acids and derivatives and orthologs thereof may be obtained using any available method. For instance, techniques for isolating cDNA or genomic DNA sequences of interest by screening DNA libraries or by using polymerase chain reaction (PCR) are well known in the art. In general, the particular use for the protein will dictate the particulars of expression, production, and purification methods. For instance, production of proteins for use in screening for modulating agents may require methods that preserve specific biological activities of these proteins, whereas production of proteins for antibody generation may require structural integrity of particular epitopes. Expression of proteins to be purified for screening or antibody production may require the addition of specific tags (e.g., generation of fusion proteins). Overexpression of a PIB protein for assays used to assess PIB function, such as involvement in cell cycle regulation or hypoxic response, may require expression in eukaryotic cell lines capable of these cellular activities. Techniques for the expression, production, and purification of proteins are well known in the art; any suitable means therefore may be used (e.g., Higgins S J and Hames B D (eds.) Protein Expression: A Practical Approach, Oxford University Press Inc., New York 1999; Stanbury P F et al., Principles of Fermentation Technology, 2[0026] nd edition, Elsevier Science, New York, 1995; Doonan S (ed.) Protein Purification Protocols, Humana Press, New Jersey, 1996; Coligan J E et al, Current Protocols in Protein Science (eds.), 1999, John Wiley & Sons, New York). In particular embodiments, recombinant PIB is expressed in a cell line known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, Va.). The recombinant cells are used in cell-based screening assay systems of the invention, as described further below.
  • The nucleotide sequence encoding a PIB polypeptide can be inserted into any appropriate expression vector. The necessary transcriptional and translational signals, including promoter/enhancer element, can derive from the native PIB gene and/or its flanking regions or can be heterologous. A variety of host-vector expression systems may be utilized, such as mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, plasmid, or cosmid DNA. A host cell strain that modulates the expression of, modifies, and/or specifically processes the gene product may be used. [0027]
  • To detect expression of the PIB gene product, the expression vector can comprise a promoter operably linked to a PIB gene nucleic acid, one or more origins of replication, and, one or more selectable markers (e.g. thymidine kinase activity, resistance to antibiotics, etc.). Alternatively, recombinant expression vectors can be identified by assaying for the expression of the PIB gene product based on the physical or functional properties of the PIB protein in in vitro assay systems (e.g. immunoassays). [0028]
  • The PIB protein, fragment, or derivative may be optionally expressed as a fusion, or chimeric protein product (i.e. it is joined via a peptide bond to a heterologous protein sequence of a different protein), for example to facilitate purification or detection. A chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other using standard methods and expressing the chimeric product. A chimeric product may also be made by protein synthetic techniques, e.g. by use of a peptide synthesizer (Hunkapiller et al., Nature [0029]
  • 310:105-111). [0030]
  • Once a recombinant cell that expresses the PIB gene sequence is identified, the gene product can be isolated and purified using standard methods (e.g. ion exchange, affinity, and gel exclusion chromatography; centrifugation; differential solubility; electrophoresis, cite purification reference). Alternatively, native PIB proteins can be purified from natural sources, by standard methods (e.g. immunoaffinity purification). Once a protein is obtained, it may be quantified and its activity measured by appropriate methods, such as immunoassay, bioassay, or other measurements of physical properties, such as crystallography. [0031]
  • The methods of this invention may also use cells that have been engineered for altered expression (mis-expression) of PIB or other genes associated with the p53 pathway. As used herein, mis-expression encompasses ectopic expression, over-expression, under-expression, and non-expression (e.g. by gene knock-out or blocking expression that would otherwise normally occur). [0032]
  • Genetically Modified Animals [0033]
  • Animal models that have been genetically modified to alter PIB expression may be used in in vivo assays to test for activity of a candidate p53 modulating agent, or to further assess the role of PIB in a p53 pathway process such as apoptosis or cell proliferation. Preferably, the altered PIB expression results in a detectable phenotype, such as decreased or increased levels of cell proliferation, angiogenesis, or apoptosis compared to control animals having normal PIB expression. The genetically modified animal may additionally have altered p53 expression (e.g. p53 knockout). Preferred genetically modified animals are mammals such as primates, rodents (preferably mice), cows, horses, goats, sheep, pigs, dogs and cats. Preferred non-mammalian species include zebrafish, [0034] C. elegans, and Drosophila. Preferred genetically modified animals are transgenic animals having a heterologous nucleic acid sequence present as an extrachromosomal element in a portion of its cells, i.e. mosaic animals (see, for example, techniques described by Jakobovits, 1994, Curr. Biol. 4:761-763.) or stably integrated into its germ line DNA (i.e., in the genomic sequence of most or all of its cells). Heterologous nucleic acid is introduced into the germ line of such transgenic animals by genetic manipulation of, for example, embryos or embryonic stem cells of the host animal.
  • Methods of making transgenic animals are well-known in the art (for transgenic mice see Brinster et al., Proc. Nat. Acad. Sci. USA 82: 4438-4442 (1985), U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al., and Hogan, B., Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1986); for particle bombardment see U.S. Pat. No., 4,945,050, by Sandford et al.; for transgenic Drosophila see Rubin and Spradling, Science (1982) 218:348-53 and U.S. Pat. No. 4,670,388; for transgenic insects see Berghammer A. J. et al., A Universal Marker for Transgenic Insects (1999) Nature 402:370-371; for transgenic Zebrafish see Lin S., Transgenic Zebrafish, Methods Mol Biol. (2000);136:375-3830); for microinjection procedures for fish, amphibian eggs and birds see Houdebine and Chourrout, Experientia (1991) 47:897-905; for transgenic rats see Hammer et al., Cell (1990) 63:1099-1112; and for culturing of embryonic stem (ES) cells and the subsequent production of transgenic animals by the introduction of DNA into ES cells using methods such as electroporation, calcium phosphate/DNA precipitation and direct injection see, e.g., Teratocarcinomas and Embryonic Stem Cells, A Practical Approach, E. J. Robertson, ed., IRL Press (1987)). Clones of the nonhuman transgenic animals can be produced according to available methods (see Wilmut, I. et al. (1997) Nature 385:810-813; and PCT International Publication Nos. WO 97/07668 and WO 97/07669). [0035]
  • In one embodiment, the transgenic animal is a “knock-out” animal having a heterozygous or homozygous alteration in the sequence of an endogenous PIB gene that results in a decrease of PIB function, preferably such that PIB expression is undetectable or insignificant. Knock-out animals are typically generated by homologous recombination with a vector comprising a transgene having at least a portion of the gene to be knocked out. Typically a deletion, addition or substitution has been introduced into the transgene to functionally disrupt it. The transgene can be a human gene (e.g., from a human genomic clone) but more preferably is an ortholog of the human gene derived from the transgenic host species. For example, a mouse PIB gene is used to construct a homologous recombination vector suitable for altering an endogenous PIB gene in the mouse genome. Detailed methodologies for homologous recombination in mice are available (see Capecchi, Science (1989) 244:1288-1292; Joyner et al., Nature (1989) 338:153-156). Procedures for the production of non-rodent transgenic mammals and other animals are also available (Houdebine and Chourrout, supra; Pursel et al., Science (1989) 244:1281-1288; Simms et al., Bio/Technology (1988) 6:179-183). In a preferred embodiment, knock-out animals, such as mice harboring a knockout of a specific gene, may be used to produce antibodies against the human counterpart of the gene that has been knocked out (Claesson M H et al., (1994) Scan J Immunol 40:257-264; Declerck P J et al., (1995) J Biol Chem. 270:8397-400). [0036]
  • In another embodiment, the transgenic animal is a “knock-in” animal having an alteration in its genome that results in altered expression (e.g., increased (including ectopic) or decreased expression) of the PIB gene, e.g., by introduction of additional copies of PIB, or by operatively inserting a regulatory sequence that provides for altered expression of an endogenous copy of the PIB gene. Such regulatory sequences include inducible, tissue-specific, and constitutive promoters and enhancer elements. The knock-in can be homozygous or heterozygous. [0037]
  • Transgenic nonhuman animals can also be produced that contain selected systems allowing for regulated expression of the transgene. One example of such a system that may be produced is the cre/loxP recombinase system of bacteriophage P1 (Lakso et al., PNAS (1992) 89:6232-6236; U.S. Pat. No. 4,959,317). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase. Another example of a recombinase system is the FLP recombinase system of [0038] Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355; U.S. Pat. No. 5,654,182). In a preferred embodiment, both Cre-LoxP and Flp-Frt are used in the same system to regulate expression of the transgene, and for sequential deletion of vector sequences in the same cell (Sun X et al (2000) Nat Genet 25:83-6).
  • The genetically modified animals can be used in genetic studies to further elucidate the p53 pathway, as animal models of disease and disorders implicating defective p53 function, and for in vivo testing of candidate therapeutic agents, such as those identified in screens described below. The candidate therapeutic agents are administered to a genetically modified animal having altered PIB function and phenotypic changes are compared with appropriate control animals such as genetically modified animals that receive placebo treatment, and/or animals with unaltered PIB expression that receive candidate therapeutic agent. [0039]
  • In addition to the above-described genetically modified animals having altered PIB function, animal models having defective p53 function (and otherwise normal PIB function), can be used in the methods of the present invention. For example, a p53 knockout mouse can be used to assess, in vivo, the activity of a candidate p53 modulating agent identified in one of the in vitro assays described below. p53 knockout mice are described in the literature (Jacks et al., Nature 2001;410:1111-1116, 1043-1044; Donehower et al., supra). Preferably, the candidate p53 modulating agent when administered to a model system with cells defective in p53 function, produces a detectable phenotypic change in the model system indicating that the p53 function is restored, i.e., the cells exhibit normal cell cycle progression. [0040]
  • Modulating Agents [0041]
  • The invention provides methods to identify agents that interact with and/or modulate the function of PIB and/or the p53 pathway. Such agents are useful in a variety of diagnostic and therapeutic applications associated with the p53 pathway, as well as in further analysis of the PIB protein and its contribution to the p53 pathway. Accordingly, the invention also provides methods for modulating the p53 pathway comprising the step of specifically modulating PIB activity by administering a PIB-interacting or -modulating agent. [0042]
  • In a preferred embodiment, PIB-modulating agents inhibit or enhance PIB activity or otherwise affect normal PIB function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In a further preferred embodiment, the candidate p53 pathway-modulating agent specifically modulates the function of the PIB. The phrases “specific modulating agent”, “specifically modulates”, etc., are used herein to refer to modulating agents that directly bind to the PIB polypeptide or nucleic acid, and preferably inhibit, enhance, or otherwise alter, the function of the PIB. The term also encompasses modulating agents that alter the interaction of the PIB with a binding partner or substrate (e.g. by binding to a binding partner of a PIB, or to a protein/binding partner complex, and inhibiting function). [0043]
  • Preferred PIB-modulating agents include small molecule compounds; PIB-interacting proteins, including antibodies and other biotherapeutics; and nucleic acid modulators such as antisense and RNA inhibitors. The modulating agents may be formulated in pharmaceutical compositions, for example, as compositions that may comprise other active ingredients, as in combination therapy, and/or suitable carriers or excipients. Techniques for formulation and administration of the compounds may be found in “Remington's Pharmaceutical Sciences” Mack Publishing Co., Easton, Pa., 19[0044] th edition.
  • Small Molecule Modulators [0045]
  • Small molecules, are often preferred to modulate function of proteins with enzymatic function, and/or containing protein interaction domains. Chemical agents, referred to in the art as “small molecule” compounds are typically organic, non-peptide molecules, having a molecular weight less than 10,000, preferably less than 5,000, more preferably less than 1,000, and most preferably less than 500. This class of modulators includes chemically synthesized molecules, for instance, compounds from combinatorial chemical libraries. Synthetic compounds may be rationally designed or identified based on known or inferred properties of the PIB protein or may be identified by screening compound libraries. Alternative appropriate modulators of this class are natural products, particularly secondary metabolites from organisms such as plants or fungi, which can also be identified by screening compound libraries for PIB-modulating activity. Methods for generating and obtaining compounds are well known in the art (Schreiber S L, Science (2000) 151: 1964-1969; Radmann J and Gunther J, Science [0046]
  • 151:1947-1948). [0047]
  • Small molecule modulators identified from screening assays, as described below, can be used as lead compounds from which candidate clinical compounds may be designed, optimized, and synthesized. Such clinical compounds may have utility in treating pathologies associated with the p53 pathway. The activity of candidate small molecule modulating agents may be improved several-fold through iterative secondary functional validation, as further described below, structure determination, and candidate modulator modification and testing. Additionally, candidate clinical compounds are generated with specific regard to clinical and pharmacological properties. For example, the reagents may be derivatized and re-screened using in vitro and in vivo assays to optimize activity and minimize toxicity for pharmaceutical development. [0048]
  • Protein Modulators [0049]
  • Specific PIB-interacting proteins are useful in a variety of diagnostic and therapeutic applications related to the p53 pathway and related disorders, as well as in validation assays for other PIB-modulating agents. In a preferred embodiment, PIB-interacting proteins affect normal PIB function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In another embodiment, PIB-interacting proteins are useful in detecting and providing information about the function of PIB proteins, as is relevant to p53 related disorders, such as cancer (e.g., for diagnostic means). [0050]
  • An PIB-interacting protein may be endogenous, i.e. one that naturally interacts genetically or biochemically with a PIB, such as a member of the PIB pathway that modulates PIB expression, localization, and/or activity. PIB-modulators include dominant negative forms of PIB-interacting proteins and of PIB proteins themselves. Yeast two-hybrid and variant screens offer preferred methods for identifying endogenous PIB-interacting proteins (Finley, R. L. et al. (1996) in DNA Cloning-Expression Systems: A Practical Approach, eds. Glover D. & Hames B. D (Oxford University Press, Oxford, England), pp. 169-203; Fashema S F et al., Gene (2000) 250: 1-14; Drees B L Curr Opin Chem Biol (1999) 3:64-70; Vidal M and Legrain P Nucleic Acids Res (1999) 27:919-29; and U.S. Pat. No. 5,928,868). Mass spectrometry is an alternative preferred method for the elucidation of protein complexes (reviewed in, e.g., Pandley A and Mann M, Nature (2000) 405:837-846; Yates J R 3[0051] rd, Trends Genet (2000) 16:5-8).
  • An PIB-interacting protein may be an exogenous protein, such as a PIB-specific antibody or a T-cell antigen receptor (see, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory; Harlow and Lane (1999) Using antibodies: a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press). PIB antibodies are further discussed below. [0052]
  • In preferred embodiments, a PIB-interacting protein specifically binds a PIB protein. In alternative preferred embodiments, a PIB-modulating agent binds a PIB substrate, binding partner, or cofactor. [0053]
  • Antibodies [0054]
  • In another embodiment, the protein modulator is a PIB specific antibody agonist or antagonist. [0055]
  • The antibodies have therapeutic and diagnostic utilities, and can be used in screening assays to identify PIB modulators. The antibodies can also be used in dissecting the portions of the PIB pathway responsible for various cellular responses and in the general processing and maturation of the PIB. [0056]
  • Antibodies that specifically bind PIB polypeptides can be generated using known methods. Preferably the antibody is specific to a mammalian ortholog of PIB polypeptide, and more preferably, to human PIB. Antibodies may be polyclonal, monoclonal (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab′).sub.2 fragments, fragments produced by a FAb expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. Epitopes of PIB which are particularly antigenic can be selected, for example, by routine screening of PIB polypeptides for antigenicity or by applying a theoretical method for selecting antigenic regions of a protein (Hopp and Wood (1981), Proc. Nati. Acad. Sci. U.S.A. 78:3824-28; Hopp and Wood, (1983) Mol. Immunol. 20:483-89; Sutcliffe et al., (1983)Science 219:660-66) to the amino acid sequence shown in any of SEQ ID NOs:10, 11, 12, 13, or 14. Monoclonal antibodies with affinities of 10[0057] 8 M−1 preferably 109 M−1 to 1010 M−1, or stronger can be made by standard procedures as described (Harlow and Lane, supra; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; and U.S. Pat. Nos. 4,381,292; 4,451,570; and 4,618,577). Antibodies may be generated against crude cell extracts of PIB or substantially purified fragments thereof. If PIB fragments are used, they preferably comprise at least 10, and more preferably, at least 20 contiguous amino acids of a PIB protein. In a particular embodiment, PIB-specific antigens and/or immunogens are coupled to carrier proteins that stimulate the immune response. For example, the subject polypeptides are covalently coupled to the keyhole limpet hemocyanin (KLH) carrier, and the conjugate is emulsified in Freund's complete adjuvant, which enhances the immune response. An appropriate immune system such as a laboratory rabbit or mouse is immunized according to conventional protocols.
  • The presence of PIB-specific antibodies is assayed by an appropriate assay such as a solid phase enzyme-linked immunosorbant assay (ELISA) using immobilized corresponding PIB polypeptides. Other assays, such as radioimmunoassays or fluorescent assays might also be used. [0058]
  • Chimeric antibodies specific to PIB polypeptides can be made that contain different portions from different animal species. For instance, a human immunoglobulin constant region may be linked to a variable region of a murine mAb, such that the antibody derives its biological activity from the human antibody, and its binding specificity from the murine fragment. Chimeric antibodies are produced by splicing together genes that encode the appropriate regions from each species (Morrison et al., Proc. Natl. Acad. Sci. (1984) 81:6851-6855; Neuberger et al., Nature (1984) 312:604-608; Takeda et al., Nature (1985) 31:452-454). Humanized antibodies, which are a form of chimeric antibodies, can be generated by grafting complementary-determining regions (CDRs) (Carlos, T. M., J. M. Harlan. 1994. Blood 84:2068-2101) of mouse antibodies into a background of human framework regions and constant regions by recombinant DNA technology (Riechmann L M, et al., 1988 Nature 323: 323-327). Humanized antibodies contain ˜10% murine sequences and ˜90% human sequences, and thus further reduce or eliminate immunogenicity, while retaining the antibody specificities (Co MS, and Queen C. 1991 Nature 351: 501-501; Morrison SL. 1992 Ann. Rev. Immun. 10:239-265). Humanized antibodies and methods of their production are well-known in the art (U.S. Pat. Nos. 5,530,101, 5,585,089, 5,693,762, and 6,180,370). [0059]
  • PIB-specific single chain antibodies which are recombinant, single chain polypeptides formed by linking the heavy and light chain fragments of the Fv regions via an amino acid bridge, can be produced by methods known in the art (U.S. Pat. No. 4,946,778; Bird, Science (1988) 242:423-426; Huston et al., Proc. Natl. Acad. Sci. USA (1988)85:5879-5883; and Ward et al., Nature (1989) 334:544-546). [0060]
  • Other suitable techniques for antibody production involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors (Huse et al., Science (1989) 246:1275-1281). As used herein, T-cell antigen receptors are included within the scope of antibody modulators (Harlow and Lane, 1988, supra). [0061]
  • The polypeptides and antibodies of the present invention may be used with or without modification. Frequently, antibodies will be labeled by joining, either covalently or non-covalently, a substance that provides for a detectable signal, or that is toxic to cells that express the targeted protein (Menard S, et al., Int J. Biol Markers (1989) 4:131-134). A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, fluorescent emitting lanthanide metals, chemiluminescent moieties, bioluminescent moieties, magnetic particles, and the like (U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241). Also, recombinant immunoglobulins may be produced (U.S. Pat. No. 4,816,567). Antibodies to cytoplasmic polypeptides may be delivered and reach their targets by conjugation with membrane-penetrating toxin proteins (U.S. Pat. No. 6,086,900). [0062]
  • When used therapeutically in a patient, the antibodies of the subject invention are typically administered parenterally, when possible at the target site, or intravenously. The therapeutically effective dose and dosage regimen is determined by clinical studies. Typically, the amount of antibody administered is in the range of about 0.1 mg/kg—to about 10 mg/kg of patient weight. For parenteral administration, the antibodies are formulated in a unit dosage injectable form (e.g., solution, suspension, emulsion) in association with a pharmaceutically acceptable vehicle. Such vehicles are inherently nontoxic and non-therapeutic. Examples are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Nonaqueous vehicles such as fixed oils, ethyl oleate, or liposome carriers may also be used. The vehicle may contain minor amounts of additives, such as buffers and preservatives, which enhance isotonicity and chemical stability or otherwise enhance therapeutic potential. The antibodies' concentrations in such vehicles are typically in the range of about 1 mg/ml to about 10 mg/ml. Immunotherapeutic methods are further described in the literature (U.S. Pat. No. 5,859,206; WO0073469). [0063]
  • Nucleic Acid Modulators [0064]
  • Other preferred PIB-modulating agents comprise nucleic acid molecules, such as antisense oligomers or double stranded RNA (dsRNA), which generally inhibit PIB activity. Preferred nucleic acid modulators interfere with the function of the PIB nucleic acid such as DNA replication, transcription, translocation of the PIB RNA to the site of protein translation, translation of protein from the PIB RNA, splicing of the PIB RNA to yield one or more mRNA species, or catalytic activity which may be engaged in or facilitated by the PIB RNA. [0065]
  • In one embodiment, the antisense oligomer is an oligonucleotide that is sufficiently complementary to a PIB mRNA to bind to and prevent translation, preferably by binding to the 5′ untranslated region. PIB-specific antisense oligonucleotides, preferably range from at least 6 to about 200 nucleotides. In some embodiments the oligonucleotide is preferably at least 10, 15, or 20 nucleotides in length. In other embodiments, the oligonucleotide is preferably less than 50, 40, or 30 nucleotides in length. The oligonucleotide can be DNA or RNA or a chimeric mixture or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone. The oligonucleotide may include other appending groups such as peptides, agents that facilitate transport across the cell membrane, hybridization-triggered cleavage agents, and intercalating agents. [0066]
  • In another embodiment, the antisense oligomer is a phosphothioate morpholino oligomer (PMO). PMOs are assembled from four different morpholino subunits, each of which contain one of four genetic bases (A, C, G, or T) linked to a six-membered morpholine ring. Polymers of these subunits are joined by non-ionic phosphodiamidate intersubunit linkages. Details of how to make and use PMOs and other antisense oligomers are well known in the art (e.g. see WO99/18193; Probst JC, Antisense Oligodeoxynucleotide and Ribozyme Design, Methods. (2000) 22(3):271-281; Summerton J, and Weller D. 1997 Antisense Nucleic Acid Drug Dev. :7:187-95; U.S. Pat. No. 5,235,033; and U.S. Pat. No. 5,378,841). [0067]
  • Alternative preferred PIB nucleic acid modulators are double-stranded RNA species mediating RNA interference (RNAi). RNAi is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. Methods relating to the use of RNAi to silence genes in [0068] C. elegans, Drosophila, plants, and humans are known in the art (Fire A, et al., 1998 Nature 391:806-811; Fire, A. Trends Genet. 15, 358-363 (1999); Sharp, P. A. RNA interference 2001. Genes Dev. 15, 485-490 (2001); Hammond, S. M., et al., Nature Rev. Genet. 2, 110-1119 (2001); Tuschl, T. Chem. Biochem. 2, 239-245 (2001); Hamilton, A. et al., Science 286, 950-952 (1999); Hammond, S. M., et al., Nature 404, 293-296 (2000); Zamore, P. D., et al., Cell 101, 25-33 (2000); Bernstein, E., et al., Nature 409, 363-366 (2001); Elbashir, S. M., et al., Genes Dev. 15, 188-200 (2001); WO0129058; WO9932619; Elbashir S M, et al., 2001 Nature 411:494-498).
  • Nucleic acid modulators are commonly used as research reagents, diagnostics, and therapeutics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used to elucidate the function of particular genes (see, for example, U.S. Pat. No. 6,165,790). Nucleic acid modulators are also used, for example, to distinguish between functions of various members of a biological pathway. For example, antisense oligomers have been employed as therapeutic moieties in the treatment of disease states in animals and man and have been demonstrated in numerous clinical trials to be safe and effective (Milligan J F, et al, Current Concepts in Antisense Drug Design, J Med Chem. (1993) 36:1923-1937; Tonkinson J L et al., Antisense Oligodeoxynucleotides as Clinical Therapeutic Agents, Cancer Invest. (1996) 14:54-65). Accordingly, in one aspect of the invention, a PIB-specific nucleic acid modulator is used in an assay to further elucidate the role of the PIB in the p53 pathway, and/or its relationship to other members of the pathway. In another aspect of the invention, a PIB-specific antisense oligomer is used as a therapeutic agent for treatment of p53-related disease states. [0069]
  • Assay Systems [0070]
  • The invention provides assay systems and screening methods for identifying specific modulators of PIB activity. As used herein, an “assay system” encompasses all the components required for performing and analyzing results of an assay that detects and/or measures a particular event. In general, primary assays are used to identify or confirm a modulator's specific biochemical or molecular effect with respect to the PIB nucleic acid or protein. In general, secondary assays further assess the activity of a PIB modulating agent identified by a primary assay and may confirm that the modulating agent affects PIB in a manner relevant to the p53 pathway. In some cases, PIB modulators will be directly tested in a secondary assay. [0071]
  • In a preferred embodiment, the screening method comprises contacting a suitable assay system comprising a PIB polypeptide with a candidate agent under conditions whereby, but for the presence of the agent, the system provides a reference activity (e.g. phosphatase activity), which is based on the particular molecular event the screening method detects. A statistically significant difference between the agent-biased activity and the reference activity indicates that the candidate agent modulates PIB activity, and hence the p53 pathway. [0072]
  • Primary Assays [0073]
  • The type of modulator tested generally determines the type of primary assay. [0074]
  • Primary Assays for Small Molecule Modulators [0075]
  • For small molecule modulators, screening assays are used to identify candidate modulators. Screening assays may be cell-based or may use a cell-free system that recreates or retains the relevant biochemical reaction of the target protein (reviewed in Sittampalam G S et al., Curr Opin Chem Biol (1997) 1:384-91 and accompanying references). As used herein the term “cell-based” refers to assays using live cells, dead cells, or a particular cellular fraction, such as a membrane, endoplasmic reticulum, or mitochondrial fraction. The term “cell free” encompasses assays using substantially purified protein (either endogenous or recombinantly produced), partially purified or crude cellular extracts. Screening assays may detect a variety of molecular events, including protein-DNA interactions, protein-protein interactions (e.g., receptor-ligand binding), transcriptional activity (e.g., using a reporter gene), enzymatic activity (e.g., via a property of the substrate), activity of second messengers, immunogenicty and changes in cellular morphology or other cellular characteristics. Appropriate screening assays may use a wide range of detection methods including fluorescent, radioactive, colorimetric, spectrophotometric, and amperometric methods, to provide a read-out for the particular molecular event detected. [0076]
  • Cell-based screening assays usually require systems for recombinant expression of PIB and any auxiliary proteins demanded by the particular assay. Appropriate methods for generating recombinant proteins produce sufficient quantities of proteins that retain their relevant biological activities and are of sufficient purity to optimize activity and assure assay reproducibility. Yeast two-hybrid and variant screens, and mass spectrometry provide preferred methods for determining protein-protein interactions and elucidation of protein complexes. In certain applications, when PIB-interacting proteins are used in screens to identify small molecule modulators, the binding specificity of the interacting protein to the PIB protein may be assayed by various known methods such as substrate processing (e.g. ability of the candidate PIB-specific binding agents to function as negative effectors in PIB-expressing cells), binding equilibrium constants (usually at least about 10[0077] 7 M−1, preferably at least about 108 M−1, more preferably at least about 109 M−1), and immunogenicity (e.g. ability to elicit PIB specific antibody in a heterologous host such as a mouse, rat, goat or rabbit). For enzymes and receptors, binding may be assayed by, respectively, substrate and ligand processing.
  • The screening assay may measure a candidate agent's ability to specifically bind to or modulate activity of a PIB polypeptide, a fusion protein thereof, or to cells or membranes bearing the polypeptide or fusion protein. The PIB polypeptide can be full length or a fragment thereof that retains functional PIB activity. The PIB polypeptide may be fused to another polypeptide, such as a peptide tag for detection or anchoring, or to another tag. The PIB polypeptide is preferably human PIB, or is an ortholog or derivative thereof as described above. In a preferred embodiment, the screening assay detects candidate agent-based modulation of PIB interaction with a binding target, such as an endogenous or exogenous protein or other substrate that has PIB -specific binding activity, and can be used to assess normal PIB gene function. [0078]
  • Suitable assay formats that may be adapted to screen for PIB modulators are known in the art. Preferred screening assays are high throughput or ultra high throughput and thus provide automated, cost-effective means of screening compound libraries for lead compounds (Fernandes P B, Curr Opin Chem Biol (1998) 2:597-603; Sundberg S A, Curr Opin Biotechnol 2000, 11:47-53). In one preferred embodiment, screening assays uses fluorescence technologies, including fluorescence polarization, time-resolved fluorescence, and fluorescence resonance energy transfer. These systems offer means to monitor protein-protein or DNA-protein interactions in which the intensity of the signal emitted from dye-labeled molecules depends upon their interactions with partner molecules (e.g., Selvin PR, Nat Struct Biol (2000) 7:730-4; Fernandes P B, supra; Hertzberg R P and Pope A J, Curr Opin Chem Biol (2000) 4:445-451). [0079]
  • A variety of suitable assay systems may be used to identify candidate PIB and p53 pathway modulators (e.g. U.S. Pat. Nos. 5,550,019 and 6,133,437 (apoptosis assays); U.S. Pat. No. 6,020,135 (p53 modulation), U.S. Pat. No. 6,114,132 (phosphatase and protease assays), among others). Specific preferred assays are described in more detail below. [0080]
  • Phosphatase assays. Protein phosophatases catalyze the removal of a gamma phosphate from a serine, threonine or tyrosine residue in a protein substrate. Since phosphatases act in opposition to kinases, appropriate assays measure the same parameters as kinase assays. In one example, the dephosphorylation of a fluorescently labeled peptide substrate allows trypsin cleavage of the substrate, which in turn renders the cleaved substrate significantly more fluorescent (Nishikata M et al., Biochem J [0081]
  • 343:35-391). In another example, fluorescence polarization (FP), a solution-based, homogeneous technique requiring no immobilization or separation of reaction components, is used to develop high throughput screening (HTS) assays for protein phosphatases. This assay uses direct binding of the phosphatase with the target, and increasing concentrations of target-phosphatase increase the rate of dephosphorylation, leading to a change in polarization (Parker G J et al., (2000) J Biomol Screen 5:77-88). [0082]
  • Apoptosis assays. Assays for apoptosis may be performed by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling (TUNEL) assay. The TUNEL assay is used to measure nuclear DNA fragmentation characteristic of apoptosis (Lazebnik et al., 1994, Nature 371, 346), by following the incorporation of fluorescein-dUTP (Yonehara et al., 1989, J. Exp. Med. 169, 1747). Apoptosis may further be assayed by acridine orange staining of tissue culture cells (Lucas, R., et al., 1998, Blood 15:4730-41). An apoptosis assay system may comprise a cell that expresses a PIB, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the apoptosis assay system and changes in induction of apoptosis relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, an apoptosis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using a cell-free assay system. An apoptosis assay may also be used to test whether PIB function plays a direct role in apoptosis. For example, an apoptosis assay may be performed on cells that over- or under-express PIB relative to wild type cells. Differences in apoptotic response compared to wild type cells suggests that the PIB plays a direct role in the apoptotic response. Apoptosis assays are described further in U.S. Pat. No. 6,133,437. [0083]
  • Cell proliferation and cell cycle assays. Cell proliferation may be assayed via bromodeoxyuridine (BRDU) incorporation. This assay identifies a cell population undergoing DNA synthesis by incorporation of BRDU into newly-synthesized DNA. Newly-synthesized DNA may then be detected using an anti-BRDU antibody (Hoshino et al., 1986, Int. J. Cancer 38, 369; Campana et al., 1988, J. Immunol. Meth. 107, 79), or by other means. [0084]
  • Cell Proliferation may also be examined using [[0085] 3H]-thymidine incorporation (Chen, J., 1996, Oncogene 13:1395-403; Jeoung, J., 1995, J. Biol. Chem. 270:18367-73). This assay allows for quantitative characterization of S-phase DNA syntheses. In this assay, cells synthesizing DNA will incorporate [3H]-thymidine into newly synthesized DNA. Incorporation can then be measured by standard techniques such as by counting of radioisotope in a scintillation counter (e.g., Beckman LS 3800 Liquid Scintillation Counter).
  • Cell proliferation may also be assayed by colony formation in soft agar (Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). For example, cells transformed with PIB are seeded in soft agar plates, and colonies are measured and counted after two weeks incubation. [0086]
  • Involvement of a gene in the cell cycle may be assayed by flow cytometry (Gray J W et al. (1986) Int J Radiat Biol Relat Stud Phys Chem Med 49:237-55). Cells transfected with a PIB may be stained with propidium iodide and evaluated in a flow cytometer (available from Becton Dickinson). [0087]
  • Accordingly, a cell proliferation or cell cycle assay system may comprise a cell that expresses a PIB, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the assay system and changes in cell proliferation or cell cycle relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the cell proliferation or cell cycle assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system such as a cell-free phosphatase assay system. A cell proliferation assay may also be used to test whether PIB function plays a direct role in cell proliferation or cell cycle. For example, a cell proliferation or cell cycle assay may be performed on cells that over- or under-express PIB relative to wild type cells. Differences in proliferation or cell cycle compared to wild type cells suggests that the PIB plays a direct role in cell proliferation or cell cycle. [0088]
  • Angiogenesis. Angiogenesis may be assayed using various human endothelial cell systems, such as umbilical vein, coronary artery, or dermal cells. Suitable assays include Alamar Blue based assays (available from Biosource International) to measure proliferation; migration assays using fluorescent molecules, such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors; and tubule formation assays based on the formation of tubular structures by endothelial cells on Matrigel® (Becton Dickinson). Accordingly, an angiogenesis assay system may comprise a cell that expresses a PIB, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the angiogenesis assay system and changes in angiogenesis relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the angiogenesis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. An angiogenesis assay may also be used to test whether PIB function plays a direct role in cell proliferation. For example, an angiogenesis assay may be performed on cells that over- or under-express PIB relative to wild type cells. Differences in angiogenesis compared to wild type cells suggests that the PIB plays a direct role in angiogenesis. [0089]
  • Hypoxic induction. The alpha subunit of the transcription factor, hypoxia inducible factor-1 (HIF-1), is upregulated in tumor cells following exposure to hypoxia in vitro. Under hypoxic conditions, HIF-1 stimulates the expression of genes known to be important in tumour cell survival, such as those encoding glyolytic enzymes and VEGF. Induction of such genes by hypoxic conditions may be assayed by growing cells transfected with PIB in hypoxic conditions (such as with 0.1% O2, 5% CO2, and balance N2, generated in a Napco 7001 incubator (Precision Scientific)) and normoxic conditions, followed by assessment of gene activity or expression by Taqman®. For example, a hypoxic induction assay system may comprise a cell that expresses a PIB, and that optionally has a mutated p53 (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the hypoxic induction assay system and changes in hypoxic response relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the hypoxic induction assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. A hypoxic induction assay may also be used to test whether PIB function plays a direct role in the hypoxic response. For example, a hypoxic induction assay may be performed on cells that over- or under-express PIB relative to wild type cells. Differences in hypoxic response compared to wild type cells suggests that the PIB plays a direct role in hypoxic induction. [0090]
  • Cell adhesion. Cell adhesion assays measure adhesion of cells to purified adhesion proteins, or adhesion of cells to each other, in presence or absence of candidate modulating agents. Cell-protein adhesion assays measure the ability of agents to modulate the adhesion of cells to purified proteins. For example, recombinant proteins are produced, diluted to 2.5g/mL in PBS, and used to coat the wells of a microtiter plate. The wells used for negative control are not coated. Coated wells are then washed, blocked with 1% BSA, and washed again. Compounds are diluted to 2× final test concentration and added to the blocked, coated wells. Cells are then added to the wells, and the unbound cells are washed off. Retained cells are labeled directly on the plate by adding a membrane-permeable fluorescent dye, such as calcein-AM, and the signal is quantified in a fluorescent microplate reader. [0091]
  • Cell-cell adhesion assays measure the ability of agents to modulate binding of cell adhesion proteins with their native ligands. These assays use cells that naturally or recombinantly express the adhesion protein of choice. In an exemplary assay, cells expressing the cell adhesion protein are plated in wells of a multiwell plate. Cells expressing the ligand are labeled with a membrane-permeable fluorescent dye, such as BCECF, and allowed to adhere to the monolayers in the presence of candidate agents. Unbound cells are washed off, and bound cells are detected using a fluorescence plate reader. [0092]
  • High-throughput cell adhesion assays have also been described. In one such assay, small molecule ligands and peptides are bound to the surface of microscope slides using a microarray spotter, intact cells are then contacted with the slides, and unbound cells are washed off. In this assay, not only the binding specificity of the peptides and modulators against cell lines are determined, but also the functional cell signaling of attached cells using immunofluorescence techniques in situ on the microchip is measured (Falsey J R et al., Bioconjug Chem. 2001 May-Jun;12(3):346-53). [0093]
  • Primary Assays for Antibody Modulators [0094]
  • For antibody modulators, appropriate primary assays test is a binding assay that tests the antibody's affinity to and specificity for the PIB protein. Methods for testing antibody affinity and specificity are well known in the art (Harlow and Lane, 1988, 1999, supra). The enzyme-linked immunosorbant assay (ELISA) is a preferred method for detecting PIB-specific antibodies; others include FACS assays, radioimmunoassays, and fluorescent assays. [0095]
  • Primary Assays for Nucleic Acid Modulators [0096]
  • For nucleic acid modulators, primary assays may test the ability of the nucleic acid modulator to inhibit or enhance PIB gene expression, preferably mRNA expression. In general, expression analysis comprises comparing PIB expression in like populations of cells (e.g., two pools of cells that endogenously or recombinantly express PIB) in the presence and absence of the nucleic acid modulator. Methods for analyzing mRNA and protein expression are well known in the art. For instance, Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR (e.g., using the TaqMan®, PE Applied Biosystems), or microarray analysis may be used to confirm that PIB mRNA expression is reduced in cells treated with the nucleic acid modulator (e.g., Current Protocols in Molecular Biology (1994) Ausubel F M et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman W M et al., Biotechniques (1999) 26:112-125; Kallioniemi O P, Ann Med 2001, 33:142-147; Blohm D H and Guiseppi-Elie, A Curr Opin Biotechnol 2001, 12:41-47). Protein expression may also be monitored. Proteins are most commonly detected with specific antibodies or antisera directed against either the PIB protein or specific peptides. A variety of means including Western blotting, ELISA, or in situ detection, are available (Harlow E and Lane D, 1988 and 1999, supra). [0097]
  • Secondary Assays [0098]
  • Secondary assays may be used to further assess the activity of PIB-modulating agent identified by any of the above methods to confirm that the modulating agent affects PIB in a manner relevant to the p53 pathway. As used herein, PIB-modulating agents encompass candidate clinical compounds or other agents derived from previously identified modulating agent. Secondary assays can also be used to test the activity of a modulating agent on a particular genetic or biochemical pathway or to test the specificity of the modulating agent's interaction with PIB. [0099]
  • Secondary assays generally compare like populations of cells or animals (e.g., two pools of cells or animals that endogenously or recombinantly express PIB) in the presence and absence of the candidate modulator. In general, such assays test whether treatment of cells or animals with a candidate PIB-modulating agent results in changes in the p53 pathway in comparison to untreated (or mock- or placebo-treated) cells or animals. Certain assays use “sensitized genetic backgrounds”, which, as used herein, describe cells or animals engineered for altered expression of genes in the p53 or interacting pathways. [0100]
  • Cell-Based Assays [0101]
  • Cell based assays may use a variety of mammalian cell lines known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, Va.). Cell based assays may detect endogenous p53 pathway activity or may rely on recombinant expression of p53 pathway components. Any of the aforementioned assays may be used in this cell-based format. Candidate modulators are typically added to the cell media but may also be injected into cells or delivered by any other efficacious means. [0102]
  • Animal Assays [0103]
  • A variety of non-human animal models of normal or defective p53 pathway may be used to test candidate PIB modulators. Models for defective p53 pathway typically use genetically modified animals that have been engineered to mis-express (e.g., over-express or lack expression in) genes involved in the p53 pathway. Assays generally require systemic delivery of the candidate modulators, such as by oral administration, injection, etc. [0104]
  • In a preferred embodiment, p53 pathway activity is assessed by monitoring neovascularization and angiogenesis. Animal models with defective and normal p53 are used to test the candidate modulator's affect on PIB in Matrigel® assays. Matrigel® is an extract of basement membrane proteins, and is composed primarily of laminin, collagen IV, and heparin sulfate proteoglycan. It is provided as a sterile liquid at 4° C., but rapidly forms a solid gel at 37 C. Liquid Matrigel® is mixed with various angiogenic agents, such as bFGF and VEGF, or with human tumor cells which over-express the PIB. The mixture is then injected subcutaneously(SC) into female athymic nude mice (Taconic, Germantown, N.Y.) to support an intense vascular response. Mice with Matrigel® pellets may be dosed via oral (PO), intraperitoneal (IP), or intravenous (IV) routes with the candidate modulator. Mice are euthanized 5-12 days post-injection, and the Matrigel® pellet is harvested for hemoglobin analysis (Sigma plasma hemoglobin kit). Hemoglobin content of the gel is found to correlate the degree of neovascularization in the gel. [0105]
  • In another preferred embodiment, the effect of the candidate modulator on PIB is assessed via tumorigenicity assays. In one example, xenograft human tumors are implanted SC into female athymic mice, 6-7 week old, as single cell suspensions either from a pre-existing tumor or from in vitro culture. The tumors which express the PIB endogenously are injected in the flank, 1×10[0106] 5 to 1×107 cells per mouse in a volume of 100 μL using a 27gauge needle. Mice are then ear tagged and tumors are measured twice weekly. Candidate modulator treatment is initiated on the day the mean tumor weight reaches 100 mg. Candidate modulator is delivered IV, SC, IP, or PO by bolus administration. Depending upon the pharmacokinetics of each unique candidate modulator, dosing can be performed multiple times per day. The tumor weight is assessed by measuring perpendicular diameters with a caliper and calculated by multiplying the measurements of diameters in two dimensions. At the end of the experiment, the excised tumors maybe utilized for biomarker identification or further analyses. For immunohistochemistry staining, xenograft tumors are fixed in 4% paraformaldehyde, 0.1M phosphate, pH 7.2, for 6 hours at 4° C., immersed in 30% sucrose in PBS, and rapidly frozen in isopentane cooled with liquid nitrogen.
  • Diagnostic and Therapeutic Uses [0107]
  • Specific PIB-modulating agents are useful in a variety of diagnostic and therapeutic applications where disease or disease prognosis is related to defects in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation disorders. Accordingly, the invention also provides methods for modulating the p53 pathway in a cell, preferably a cell pre-determined to have defective p53 function, comprising the step of administering an agent to the cell that specifically modulates PIB activity. Preferably, the modulating agent produces a detectable phenotypic change in the cell indicating that the p53 function is restored, i.e., for example, the cell undergoes normal proliferation or progression through the cell cycle. [0108]
  • The discovery that PIB is implicated in p53 pathway provides for a variety of methods that can be employed for the diagnostic and prognostic evaluation of diseases and disorders involving defects in the p53 pathway and for the identification of subjects having a predisposition to such diseases and disorders. [0109]
  • Various expression analysis methods can be used to diagnose whether PIB expression occurs in a particular sample, including Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR, and microarray analysis. (e.g., Current Protocols in Molecular Biology (1994) Ausubel F M et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman W M et al., Biotechniques (1999) 26:112-125; Kallioniemi O P, Ann Med 2001, 33:142-147; Blohm and Guiseppi-Elie, Curr Opin Biotechnol 2001, 12:41-47). Tissues having a disease or disorder implicating defective p53 signaling that express a PIB, are identified as amenable to treatment with a PIB modulating agent. In a preferred application, the p53 defective tissue overexpresses a PIB relative to normal tissue. For example, a Northern blot analysis of mRNA from tumor and normal cell lines, or from tumor and matching normal tissue samples from the same patient, using full or partial PIB cDNA sequences as probes, can determine whether particular tumors express or overexpress PIB. Alternatively, the TaqMan® is used for quantitative RT-PCR analysis of PIB expression in cell lines, normal tissues and tumor samples (PE Applied Biosystems). [0110]
  • Various other diagnostic methods may be performed, for example, utilizing reagents such as the PIB oligonucleotides, and antibodies directed against a PIB, as described above for: (1) the detection of the presence of PIB gene mutations, or the detection of either over- or under-expression of PIB mRNA relative to the non-disorder state; (2) the detection of either an over- or an under-abundance of PIB gene product relative to the non-disorder state; and (3) the detection of perturbations or abnormalities in the signal transduction pathway mediated by PIB. [0111]
  • Thus, in a specific embodiment, the invention is drawn to a method for diagnosing a disease in a patient, the method comprising: a) obtaining a biological sample from the patient; b) contacting the sample with a probe for PIB expression; c) comparing results from step (b) with a control; and d) determining whether step (c) indicates a likelihood of disease. Preferably, the disease is cancer, most preferably a cancer as shown in TABLE 1. The probe may be either DNA or protein, including an antibody.[0112]
  • EXAMPLES
  • The following experimental section and examples are offered by way of illustration and not by way of limitation. [0113]
  • I. Drosophila p53 Screen [0114]
  • The Drosophila p53 gene was overexpressed specifically in the wing using the vestigial margin quadrant enhancer. Increasing quantities of Drosophila p53 (titrated using different strength transgenic inserts in 1 or 2 copies) caused deterioration of normal wing morphology from mild to strong, with phenotypes including disruption of pattern and polarity of wing hairs, shortening and thickening of wing veins, progressive crumpling of the wing and appearance of dark “death” inclusions in wing blade. In a screen designed to identify enhancers and suppressors of Drosophila p53, homozygous females carrying two copies of p53 were crossed to 5663 males carrying random insertions of a piggyBac transposon (Fraser M et al., Virology (1985) 145:356-361). Progeny containing insertions were compared to non-insertion-bearing sibling progeny for enhancement or suppression of the p53 phenotypes. Sequence information surrounding the piggyBac insertion site was used to identify the modifier genes. Modifiers of the wing phenotype were identified as members of the p53 pathway. CG6805 was an enhancer of the wing phenotype. Human orthologs of the modifiers, are referred to herein as PIB. [0115]
  • BLAST analysis (Altschul et al., supra) was employed to identify Targets from Drosophila modifiers. For example, representative sequences from PIB, GI# 4314432 (SEQ ID NO:10), and GI#13279338 (SEQ ID NO:14) share 34% and 37% amino acid identity, respectively, with the Drosophila. CG6805. [0116]
  • Various domains, signals, and functional subunits in proteins were analyzed using the PSORT (Nakai K., and Horton P., Trends Biochem Sci, 1999, 24:34-6; Kenta Nakai, Protein sorting signals and prediction of subcellular localization, Adv. Protein Chem. 54, 277-344 (2000)), PFAM (Bateman A., et al., Nucleic Acids Res, 1999, 27:260-2; http://pfam.wustl.edu), SMART (Ponting CP, et al., SMART: identification and annotation of domains from signaling and extracellular protein sequences. Nucleic Acids Res. 1999 Jan 1;27(1):229-32), TM-HMM (Erik L. L. Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markov model for predicting transmembrane helices in protein sequences. In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182 Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, Calif.: AAAI Press, 1998), and clust (Remm M, and Sonnhammer E. Classification of transmembrane protein families in the Caenorhabditis elegans genome and identification of human orthologs. Genome Res. 2000 Nov; 10(11): 1679-89) programs. For example, the Inositol polyphosphate phosphatase family, catalytic (IPPC) domain of PIB from GI# 4314432 (SEQ ID NO:10) is located at approximately amino acid residues 433-512 and 545-786 (PFAM00783). Likewise, the IPPC domain of PIB from GI# 13279338 (SEQ ID NO:14) is located at approximately amino acid residues 12-326. Further, the Endonuclease/Exonuclease/phosphatase family (PFAM 03372) of representative PIB sequences of GI# 4314432 (SEQ ID NO:10) and GI# 13279338 (SEQ ID NO:14) are located at approximately amino acid residues 437 to 778, and 16-318, respectively. [0117]
  • II. High-Throughput In Vitro Fluorescence Polarization Assay [0118]
  • Fluorescently-labeled PIB peptide/substrate are added to each well of a 96-well microtiter plate, along with a test agent in a test buffer (10 mM HEPES, 10 mM NaCl, 6 mM magnesium chloride, pH 7.6). Changes in fluorescence polarization, determined by using a Fluorolite FPM-2 Fluorescence Polarization Microtiter System (Dynatech Laboratories, Inc), relative to control values indicates the test compound is a candidate modifier of PIB activity. [0119]
  • III. High-Throughput In Vitro Binding Assay. [0120]
  • [0121] 33P-labeled PIB peptide is added in an assay buffer (100 mM KCI, 20 mM HEPES pH 7.6, 1 mM MgCl2, 1% glycerol, 0.5% NP-40, 50 mM beta-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors) along with a test agent to the wells of a Neutralite-avidin coated assay plate and incubated at 25° C. for 1 hour. Biotinylated substrate is then added to each well and incubated for 1 hour. Reactions are stopped by washing with PBS, and counted in a scintillation counter. Test agents that cause a difference in activity relative to control without test agent are identified as candidate p53 modulating agents.
  • IV. Immunoprecipitations and Immunoblotting [0122]
  • For coprecipitation of transfected proteins, 3×10[0123] 6 appropriate recombinant cells containing the PIB proteins are plated on 10-cm dishes and transfected on the following day with expression constructs. The total amount of DNA is kept constant in each transfection by adding empty vector. After 24 h, cells are collected, washed once with phosphate-buffered saline and lysed for 20 min on ice in 1 ml of lysis buffer containing 50 mM Hepes, pH 7.9, 250 mM NaCl, 20 mM -glycerophosphate, 1 mM sodium orthovanadate, 5 mM p-nitrophenyl phosphate, 2 mM dithiothreitol, protease inhibitors (complete, Roche Molecular Biochemicals), and 1% Nonidet P-40. Cellular debris is removed by centrifugation twice at 15,000× g for 15 min. The cell lysate is incubated with 25 μl of M2 beads (Sigma) for 2 h at 4° C. with gentle rocking.
  • After extensive washing with lysis buffer, proteins bound to the beads are solubilized by boiling in SDS sample buffer, fractionated by SDS-polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane and blotted with the indicated antibodies. The reactive bands are visualized with horseradish peroxidase coupled to the appropriate secondary antibodies and the enhanced chemiluminescence (ECL) Western blotting detection system (Amersham Pharmacia Biotech). [0124]
  • V. Expression Analysis [0125]
  • All cell lines used in the following experiments are NCI (National Cancer Institute) lines, and are available from ATCC (American Type Culture Collection, Manassas, Va. 20110-2209). Normal and tumor tissues were obtained from Impath, UC Davis, Clontech, Stratagene, and Ambion. [0126]
  • TaqMan analysis was used to assess expression levels of the disclosed genes in various samples. [0127]
  • RNA was extracted from each tissue sample using Qiagen (Valencia, Calif.) RNeasy kits, following manufacturer's protocols, to a final concentration of 50 ng/μl. [0128]
  • Single stranded cDNA was then synthesized by reverse transcribing the RNA samples using random hexamers and 500 ng of total RNA per reaction, following protocol 4304965 of Applied Biosystems (Foster City, Calif., http://www.appliedbiosystems.com/). [0129]
  • Primers for expression analysis using TaqMan assay (Applied Biosystems, Foster City, Calif.) were prepared according to the TaqMan protocols, and the following criteria: [0130]
  • a) primer pairs were designed to span introns to eliminate genomic contamination, and [0131]
  • b) each primer pair produced only one product. [0132]
  • Taqman reactions were carried out following manufacturer's protocols, in 25 μl total volume for 96-well plates and 10 μl total volume for 384-well plates, using 300 nM primer and 250 nM probe, and approximately 25 ng of cDNA. The standard curve for result analysis was prepared using a universal pool of human cDNA samples, which is a mixture of cDNAs from a wide variety of tissues so that the chance that a target will be present in appreciable amounts is good. The raw data were normalized using 18S rRNA (universally expressed in all tissues and cells). [0133]
  • For each expression analysis, tumor tissue samples were compared with matched normal tissues from the same patient. A gene was considered overexpressed in a tumor when the level of expression of the gene was 2 fold or higher in the tumor compared with its matched normal sample. In cases where normal tissue was not available, a universal pool of cDNA samples was used instead. In these cases, a gene was considered overexpressed in a tumor sample when the difference of expression levels between a tumor sample and the average of all normal samples from the same tissue type was greater than 2 times the standard deviation of all normal samples (i.e., Tumor—average(all normal samples)>2×STDEV(all normal samples)). [0134]
  • Results are shown in Table 1. Data presented in bold indicate that greater than 50% of tested tumor samples of the tissue type indicated in row 1 exhibited over expression of the gene listed in column 1, relative to normal samples. Underlined data indicates that between 25% to 49% of tested tumor samples exhibited over expression. A modulator identified by an assay described herein can be further validated for therapeutic effect by administration to a tumor in which the gene is overexpressed. A decrease in tumor growth confirms therapeutic utility of the modulator. Prior to treating a patient with the modulator, the likelihood that the patient will respond to treatment can be diagnosed by obtaining a tumor sample from the patient, and assaying for expression of the gene targeted by the modulator. The expression data for the gene(s) can also be used as a diagnostic marker for disease progression. The assay can be performed by expression analysis as described above, by antibody directed to the gene target, or by any other available detection method. [0135]
    TABLE 1
    breast . . colon . . lung . . ovary
    GI#18593949 5 11 . 4 30 . 3 13 . 3 7
    (SEQ ID NO: 2)
    SEQ ID NO: 7 0 12 . 2 30 . 0 14 . 2 7
    GI#7209856 3 12 . 4 29 . 3 14 . 3 7
    (SEQ ID NO: 6)
  • [0136]
  • 1 14 1 133893 DNA Homo sapiens 1 taacgcggat ttgcaatact taatgatcct gtaggaacac agagcctggc ggctgaagtt 60 gactgaccca gtatcttcaa tatattacct tcccagagct ggcctttggt ctacttggtc 120 tggcccacct cacaggaatt gagcaagaaa gagaacacga gagttgaata tccctgcagg 180 aaccaccagg gaacttgatc tcatgaggaa atttctctgt agcattctta aattcaatta 240 tcaagttcta gagaactgta ggaattcatc atctgccttt tctgtccctt taactccaag 300 aatttctaga ccagggtgta gtgagacacc tagaaatgtt aatcttagat atgaagacta 360 tgaatttggg tgataaataa caggcatgat cccagcagag gtctcatttc tgtgagcaca 420 tgcttattca cacagaagct ttctgccagg aaccctggca tgcctgagcc tgtctacgct 480 gctcattaga ctgctgctgg accacacgta ggcagaaatg ggacctgcat tccaagaatg 540 tctacatcac actcatagaa ggctggaatg ggaagaactc tgaataagtt tattggaact 600 tggaaacaca taaaccagct ttgaaatttt aaagtctaag tggtgtttag gttcctaggc 660 tagcccatgg agatttggcc ctcaaataca ggatcagaag aacagagaag gctgaaagga 720 ctggcttctt ttcattgggg ctgcactggt ccttttctct ggttccctct aatcttccta 780 tctacttagt agataggaat gaatcttcaa agattcatta aagatcctat tatttgccag 840 gcattcaaga tacagaaata aaactttttt ttcagtctaa agggagacac agacaagtga 900 accaacaagg caacccagtg tactgggaac tgacagaagt gtgtacatag tacctgaaga 960 cagggaatgc tggggaggat gtagacacag tacaaggaac aagtgcataa ttcatggtaa 1020 ggcagcaagg gctgggacta agggaagaag aaaagccttt gactctcagt gcccttcagc 1080 cctggcctgc ctggctcaca taccctatag ggtacctaac ccagatctgc ctaaccttcc 1140 aaagggctcc atgattttaa cgtctctttt tctccccaac tagctcccat tacctggtta 1200 aataaactgg tacgtccaca taatagatta cacagccact aaaaataatg cttccacaga 1260 gattttgctt acgtaggaat ttcaattaca tgacataatg ttaagtgaaa aaaacaggat 1320 gggctggaca cggtggctca cgcctgcaat ctcagcagtt tgggaggctg aggcaggcgg 1380 atcacgaggt caggagatcg agaccatcct ggctaacacg gtgaaacccc gtctctacta 1440 aaaatacaaa aaattagccg ggcatggtgg cgggcacctg tagtcccagc aactcgggag 1500 gctgaggcag gagaatggtg tgaacctggg aggcggagct tacagtgagc tgagatcgca 1560 ccactacact ccagcctggg tgacagagca agactctgtc taaaaaaaaa aaaaaaagaa 1620 aaagaaaaaa gcaggatgta aaattgtata caaagttgaa tatatatgtg gccaggtgcg 1680 gtgggtcata cctgcattcc tagcactttg ggaggctgag gcaggaagat tgcttgagcc 1740 caggatttgg agcagctggg agtctgacac aggagaattg cttgaacctg ggagggagag 1800 gctgcagcga gcccactgca ctccagcctg ggcgacagag cgagattctg tctcaaaaaa 1860 aaaaaaaatt gaatttattt gttatcagca ggttaaaaag ataccaaaaa aagaggtcaa 1920 aaatattaac tgtagtagtc tccggacagt ggacttatgg acaaatttct taagctttaa 1980 aaaatactta catgtacttg ccaccttttc catagtgagt actctgttaa tactcaggag 2040 aaaataggcc aagcatggtg gctcacatct gtaatcctag cactttggga ggccaagatg 2100 ggaggattgg ttgaggccag gagttcgaga ccagcctggt caacacagag agctcccatc 2160 tcaaattaca aaataaaaga tgtgaaaggt ccaatacctt cagatctcag tagagaacaa 2220 aaaggaaacc aatctgaatt aagtacattc acaactgagg tgtgaatggt ccttagaata 2280 ataatcatct cagaaatttt aacaatttta attttatgaa tttatttttt taataagtaa 2340 cacgtttaca tggctcaaaa ttcaataggt acaacaaaag gatataggct gaaaagtctc 2400 tccctatccc tggaacccaa cagccctgtt ttctaccttc aagactgctt gactatatta 2460 ttagtataaa ccctagaagt agaactgcag ggtcaaagta tttatatttg taactttgag 2520 acagtgctga atacccccag ggaagatgtg ccaatttata ttcctatgag aaatacataa 2580 gacatttgtt tccctaagtc cttgacaatg acatgtatgt tttccaaaag atgatatatg 2640 gctttttttt ttttttgaga cagtttcact cttgttgccc aggatggagt gcaatggcgt 2700 gatctcggct cactgcaacc tccacctacc gggttcaagc aattctcctg catcagcctc 2760 ctgagtagct gggattacag ctgtgcgcca ccacatccag ctagtttttt gtttgtttgt 2820 ttgtagagat ggggtttcgc catgctgccc aggctggtct tgaactcctg ggctcaagca 2880 atccacctgc ctcagccttg gcctcccaaa ttgctgagat tacaggcaat cagccaccaa 2940 gcccagagat aacacatatc tgagtgggga ttctagagcc agctgttcct actttttcac 3000 attttcgtcc actacttttt tttttttttt ttaatttgag acggaggctc gctctgtcgc 3060 ccaactgaag tgcaacggcg cgatctcggc tcaccgcaac ctctgcctcc tgggttcaag 3120 cgatcctccc atctcagcct cccaagtagc taggattaca ggcacccgcc accacaccca 3180 actaattttt ttggtatttt tcgtagaggc cgagtttcag catgttggtc aagctggtct 3240 cgaactcctg acctcaggtg atccgcccac ctcggcctcc caaagtgctg ggattacagg 3300 catgagccac cacacccagc ctcttccatt atttttaaat acaaagaatg ttttgttcat 3360 ttgttgggtt ttaagcttca attatttttg aaaaattacc atgtttcatt tttaaaaaag 3420 gacaaaatgg aggacaagaa tggtggctca ctcctgtaat cttagcactt tgggaggccg 3480 aggcaggagg atcagttaag gccaagagtt caaaactagc ctgaacaata tagtgagact 3540 ccatcaccaa aaaaatttaa aattagccag gtatggtggc gtgtgcctgt agttctagct 3600 ccttgggagg ctgaggcagg atgctcactt gagcccagga gctcaaggct gcagtgagcg 3660 atgatgacgc cactgcactc caacctagga gacagaagga gactctgttt cttaaattaa 3720 aaaaaaaaat tttttttaaa gagtgaaatg ggatttgtac taccactggc acaaactttt 3780 aagtgtcatc taagaagttg ccttttgtca taaaatgttc cttaactttt ttccttaaaa 3840 actagcacgg cacagaggaa tgtgatggct gagttcaaat ctcagctctg caacttattc 3900 tgtgatttca gacaagttat tttctttctg agcctttgtt tttctcattt gctaaaatga 3960 ggctaatatc ttcctcacaa gacagttcta agaaatagag ataaaacagt acgggactag 4020 catagtgcct ggcacatagt taagtactca tgaaatgtta atccccctcc cttttaaggt 4080 ctctgagttc actgaaggta aactgttttt gtatattcct catagacata tgcaaccagc 4140 aggtacttgg ttaatttgct gagtaaatga gtcacaactt tcctttctca atgagcatca 4200 ttccttgaat gcagagtaga tgagacatca gaactgtgta tgtttatgaa ctgagaggaa 4260 atctaaaatt agatacaatt tgacccagag aaaatcagat tttccccaag tgttaaaatt 4320 aggggacact tgttatattt cttatcacta taagtaacat agctaacact gctcagccct 4380 ctacatgaat tatctcattt aatctttatg gcctgccttt aggtaaacac tactgtatca 4440 tcattagcat cccttgggat gttaaataaa ggctcagagt agttaggtca cttgcccatg 4500 gtcacagacc tagtcagagg caaagcttcc caacccaagc caacgtcctt aacaaatggt 4560 aactcagtga tctgttcttg tgcgtcttgt caagcgcaga cccagcttcc aggttcctta 4620 ctcagcacag ggctaggtgc ctcaggagca cctgatatat acatacgtgt gtgtgtgtgt 4680 gtgtgtgtgt gtctgtgtgt gtgtgaatga gttgacagat ctgatgccca ggagcaatta 4740 gaactgtaca actcaatata gccaactaga gttgtggaaa atcagtatcc tataacagca 4800 aaacatgctg ttcagaactg gaaatgttac ataacttaga gtcaattttt ttttttttaa 4860 gtattaccca aaactcttac acaaatgaaa aaaaaattga gggatctgca accagaagta 4920 gtttcaagtt ttctcaaatt tctccctatt aaagataaca tactcacaca gaggtttggt 4980 tatccactga actattaccc actccagtga gatacctcct agggccaaca gcacagttcc 5040 tgacaggaag tagatgtttg attaaggtat gtgaatgaat gaaggggatt taatttcaat 5100 caaaccaata cagctgagga aaatagtgtt ttaaagaaaa gctcttcaga ctggacagat 5160 accagtcaag ggctgtgaat ttctagtata acaccatgaa agaaataatc tggagccaga 5220 ggacttagcc taaggctcag gtctgtcact cactatgcca gtgtccttac ctgcaaatgg 5280 ggaataattg ttccagccat ccctttgtca tgagaaaagt ttaaaaaata agggttttgc 5340 tttttttttt tttttttttt gagacggggt ctcactctgt tgctcaggct ggagtgtagt 5400 ggcaagatct tggctcactg caacctctgc ttcctgggtt caagtgattc tcctgcctca 5460 gcctcctgag tagcggggac cacaggtgtg caccatcatg actggccaat ttttgtattt 5520 ttagtagaga tggagtttca ccttgttggc caggctggtc ttgaactcct gacctcaggt 5580 gatgcgcctg cctcggcctc ccaaagtgct gggattacag gcatgagcca ccgcgcccag 5640 ccttgttgtt attttaaata agtatgaaac agtgcctagc ccctattaga caaagaaatt 5700 aatgaggaag cagtaagatt aatattctga attcatgatt gcaggtgtgc accacaatgc 5760 ctgcctaatt tatttgtatt ttcagtagag acagggtttc gccatgttgg tcaggctggt 5820 ctcgaactcc tgacctcaag tgatctgccc gcctcagcct cccaaaatgc tgggattaca 5880 ggcattagcc accacacctg gccaggtttc acttttattt tcacacagtc agtgaaatct 5940 cattaattca tattctataa aatgtcatta attcatattt tacctgaggt tgagctaaag 6000 acctctaaga tattctgaag gtagagtata aaaacaataa gtttgacaag atctaaccaa 6060 ttaagtagaa aactttttaa attttaatac ccggtatata cttgacaaaa caatgatctc 6120 acttctcctt tctttttttt gagatggagt ttcgttcttg ttgcccaggc tggagtgcaa 6180 tggcgcaatc ttggctcacc gcaacctccg cctcctaggt tcaagcgatt ctcctgcctc 6240 agcctcctga gtagctggga ttacaggcat gcaccaccac acctggctaa ttttgtattt 6300 ttagtagaga tggtgtttct ccatgttggt caggctggtc tcaaactccc gacctcaggt 6360 gatccgcttg cctcggcctc ccaaagtgct gggattacag gcacaagcca ccatgcccag 6420 cctctcactt ctttcaacag aaggtcctga ctaggaccaa ctgtgattaa agataaaacc 6480 aaaatgatac cattttgaaa agtctataat attgactttt acaaattgct cttgtgcctt 6540 gagccacctc cattgtattt gttaccagtg ctgtttggca aacacttaga gaatgccaac 6600 taccagaccc atgataaaaa taaatcaggg ctgggtgcag tagctcacgc ctgtaatccc 6660 agcactttgg gaggccaagg cgggtggatc gcctgaggtc aggagttcaa gaccagcctg 6720 gccaacatag tgaaaccctg tctctactaa aaacaccaaa aaaaaaaaaa aattagctgg 6780 tcatagtggt gggcgcctgt aatcccagct actagggagg ctgaggcggg agaatcactt 6840 gacccaagga ggcggaggtt gcagtgagcc aagatggcgc cattgcactc cagcctgggc 6900 aacaaaactc tgtctcaaaa ataaataaat aaataaataa ataaataaat aagtaaatca 6960 gagaaggtcc tggttcctgt gctcaaggag tttataacca agtcagaatg taactattaa 7020 aaaacaaaaa gcttctcaca ctaagaagtg ccttggcaga gatgatagtg ttaagaaaaa 7080 acaacaaact tccttaggct ttgcccagga tccactcctg tattcagaga cctgtccatc 7140 tttaaaaacc cccacatgcc aggcacagtg gaacatgcca gctactcagg aggctgaggc 7200 aggaggattg cttgaggaca agagtttgag accagcctgg gcagcataca aagaccttgt 7260 ctcaaaaata aataaataaa tattaaaaaa taaaaacctg gccaggcgtg gtggctcaca 7320 cctgtaatcc cagcactttg ggagtacaag gtgggtggat catctgaggt caggagttcg 7380 agaccacctt agccaacatg gtgaaaccct atctctacta aaaaatacaa attagctggg 7440 tgtggtggca catgtctgta atcccagtta cttggaaggc tgagacatgg gaatcgcttg 7500 aaccctggag gtggaggttg cagtgagctg agatcatact accgcactcc accctgggtg 7560 acagagtgag actctgtctc aataaataaa taaaataaat aaaaaataaa aaccacatct 7620 ggccagaggt ggtggctcat gcctgtaatc ccagcacttt gggaggccaa ggcgggtgga 7680 tcacaaggta aggagatcga gaccatctgg ctaacatggt gaaacctcgt ctctactaaa 7740 aatacgaaaa aaattagcca ggcctggtgg caggcaaatg tagtcccagc tactcggggg 7800 gctgaggcag gagaatggca tgaacccggg aggcggagct tgcagtgagc agagattgca 7860 ccactgcact ccagcctggg cgactgaaca agactctgtc tcaaacaaac aaacaaaaaa 7920 aaaaaacaaa aaaccacatc actgttacat cacaaggcac ttctgaggag caattaagag 7980 agcgagtatc agagtcaggt gctatagaaa ctatcacagg aattaacctg gcaactggac 8040 ccaggacaga atggccagtg agtcccctag gccatttcca cagaagcaga cacaatctgg 8100 ctcaatgaac atagaagtgc tgcttctaat ctttgcatgt ccttaggcca gctggaagac 8160 aaggatccaa cactcgggag ctttgttccc aacgaccaat gaaatgaaga gatggactcc 8220 tgtcatctac agcagatgca gagtagagaa gtacggtttg aaggctgggt gtggtggctc 8280 agccagtaat cccagcactt tggaaggtgg aggcaggcag atcacttgag cccagaagtt 8340 tgagaccagc ctgggtaaca tggcaaaacc ccatctctac aaaaaaatac aaaaattagc 8400 caagagcagt ggcgcatgcc tgtggtccca actactcaag aggcaaaggt gggaggactg 8460 cttgagtccg ggaggcagag gttgcagtga gctgagatca cgccactgca ctccagcctc 8520 ggcgacagag agaccctgtc tttaaaaaac taaaaattaa aaaaagagaa gtagggtatg 8580 ataaccaggc agcaattagg gccgcctctg agaattttaa accaggagcc acttggtcat 8640 gactttaaaa actatatttc tggcaatgat ttcttggaat gacaccaaaa gtacaggtaa 8700 caaaagaaaa agtagacaaa ttggatttca taaaaattta aaaattttgt gcataaaaag 8760 acactaccaa tagagtaaaa tggcaattca cagaatggga gaaaatattt gcaaatcata 8820 tatctgaaaa ggaattaata tcctgaatac atagataact cctaaaactt aacaacaaac 8880 aacctgattc aaaagtgggg ccaggtatgg tggctcaggc ctgtaattcc agcactttgg 8940 gaggcttagg caggcagatc acttgaggtc agaagtttga gaccaacttg ggcaacatgg 9000 tgaaaccttg tctctactaa aaatacaaaa caaattagcc aggtgtggtg gcacacgcct 9060 gtacttccag ctacgtgcga ggctgaggca agataattgc ttgaacccag gaggtggagg 9120 ttgcagagcc cagattccac cactgcactc cagcctgggc aagagagaga gagactctgt 9180 ctcaaaaaaa atttttaaag ggtggtggtg gggcgggggg gcaaaggact tgaatagaga 9240 catttcttca aagaagaaat acaaatgtcc caaaagtaca cagaagggtg ctcaacatca 9300 ctaatcatca gggaaatgca aatcaaaagc acaatgagat accatcagaa tgactactat 9360 ttttataaca ccagaaaata acaagttttg gcaaggatgt agagaaatag aacccctgtg 9420 ctctgttggt gggaatgtaa aatggtacag ctgctgtgga aaacagcaca gaggctcctc 9480 aaaaaaatta aaaactgaac taccatatga tccagcaatt ctacctctag gtatgtaccc 9540 aaataattga aagcaaggtc gcaaagaaat agctatacat caatgttcac agtagcagta 9600 ttcacaatag ctgaaacatg gaagcaatcc aagtttgcat cgacagatga atggataagc 9660 aaaatacata caacggaaaa tcattttatc ttaaaaagga agaaaaattc tcacatatgc 9720 tacaacataa atgaacctca agaacatcat gttaggtgaa gtaagtcagt caaaggaaga 9780 caaatactaa gctgggtgca gtggtgccca cacataaccc cagctacttg ggaggctgag 9840 gcagaaagtt cacttaaacc caagagtctg acaccagcca cacggttagg cctcatcttc 9900 aaaaataaaa aggacaaata ctgtatgatt ctacttatat gacgtactta gagtaaacaa 9960 aatcatagag acagaaagtg gaatagtggt tggcagtggc tagggggaag aagaaatagg 10020 gagttattgt ttaatagaca cagagtttca cttttgcaag atgaaaacag ttctggaggt 10080 agatggtggt gatgtttcta gaacatgaat gtacttaata ccactgagct gtacatttaa 10140 aaaaatggtt acgatggtaa attttatatg aatttcacta caatttaaaa aactgggccc 10200 aggtacggtg gctcatgcct ataatcccag cactctggga agccaaggca ggcggatcac 10260 ttgaggtcag gcgttcgaga ccagcctggg caaatggcaa aaccccatct ctactaaaaa 10320 tacaaaaatg agccaggtgt ggtggtgagc gcctgtaatt ccagctattt gggaggctga 10380 agcacaataa ttgcttgaac ccaggatgcg gaggttgaag tgagctgaga tgacaccact 10440 gcactcagcc tgggtgacaa cggagtgaga ctgtctcaaa aaaaaaaaaa aaaaaaaagg 10500 aaaaaacccc cctacgtttc cataaaaggt catacattgt gtgattttct tattagaatc 10560 ttattagaaa tatccagaat aggcaaattc atacagatag aaagtggatc agaggttacc 10620 aggagctggg gggaggagag aatgaggagt tattgcttca tgggtagagt ttctgtttgg 10680 tatgctgaaa aagttttaga aatagtggtg atggttatac aacattgtga atttacttaa 10740 tgccactgaa ttgtacattt aaaaataatt aaaatgggcc aggcacaatg gctcactgct 10800 gtaattccag cactttaggg ggctgaggca agaggattgc ttgagcctca gaggttgagg 10860 ctgcagtgag ttgccactac acttcagcct aggccacaga gtgagaccct atctcaaaaa 10920 aaatttaaat agataaaatt agttaaaaca gtaaatattg ttatgtacat cttaccacaa 10980 taaaaaaaat tttaagaaaa tctatgctcc ttatttaaaa atcaaaacta catttctatc 11040 ccactaagaa cacaccaagt acttattata cacattacgt ctacatagta agacttatta 11100 aataaatgaa cagttaagga aatggaaatc tatgtaggcc atcagaagta acgcttatag 11160 gccaggtgtg gtggctcacg cctgtaatcc caacactttg ggaggctgag gtgggtggat 11220 cgtctgaggt caggagttcg agaccagcct ggccagcatg gtgaaatccc gtttctacca 11280 aaaatacaaa aattagctgg gcatggtggc aggcacctat aatcccagct actcgggagg 11340 ctgaggcagg agaatcattt gaacccggga ggtggaggtt gcagtgagcc aagatcgcac 11400 cattgcactc cagcctgggc aacagagcca gactctgtct cgagaagaag aagaggaaga 11460 ggaagaggaa gaagaagaag aagaaggagg aggaggagga ggggaaggga aggggaaggg 11520 gaaggggaag aagaagaaga agaagaagaa atgcttatag aagaggctgg caaaaacatg 11580 gagacattaa aattaaagtg tgtgttttct tcagttttag atgttaataa gaaaaagcaa 11640 gatatggacc tgtgtacagt gagtgattcc aactattaaa aatgtgcccc gtagcaggaa 11700 acaagaagga aatatagcaa ctgcaacaaa ggttctctag atactagagc tagggatgac 11760 tagggtgggg agagggagat ttttctgtat ttcccaaaat gtctaaaatg agcacatcgg 11820 cagggcatgg tggctcatgc ctgtaatccc agcactttgg gaggctgagg tgggcggatc 11880 acttgaggtc aggagttcga gaccagcctg gccaagatca tgaaacccca tctctactaa 11940 aaatacaaaa attagtcggg catggtggca cttgcctgta attctagcta ctcaggaact 12000 gaggcacgag aattgcttga atctgggaga tggaggctgc agtgagtcaa cactgtgcca 12060 ctgcactcca gcctgggcaa cagagcaaga ctccatctct aaaaaaaaat aataataaaa 12120 taagcacata ctactttcac aatttacatt actgaagctt ttgtttgttt caaggtatgt 12180 gtccaagatg gtttggttat ggccaaatgc tgtagggtca agataggcct aggagcactg 12240 tagttatgta gctatgagca gctagtcctg agcattcaaa ccaccactga ctcctctact 12300 ccctgcctat aaccagacat acagcagagt ggcacccaaa atgaaggctc cctgactagt 12360 cttatcatat cttggatgac aacctcattt ctggacgcaa atagtaccct tcctttcact 12420 tgcccatggc cactccaact ccacatggcc agaagtggct gggtttgagt caagctctgc 12480 atggtcagta gcctcaaatg gaaatttact ttgtgcttta gtatgtccaa atccaactac 12540 attcagatca gggacatact ggcattgcct cagaatttgc aggtcaaatc actgagttat 12600 ttcaagagat ctgcaaactc tttgaatacc tacattcaaa attgtacacg ataacaaata 12660 actcaattac aaaatgagca aaagatctaa acagacattt ctccaaataa gatatgcaga 12720 tggccaataa gaacatcatc atcatcatca tcagccatta aggaaatgca aatcaaaacc 12780 acaatgagat atcacttcac acccactagg agagatataa tttttttagt gggcaataac 12840 aagtgttgtg gatgcggaga aactggaacc ctcataaatt ttagtgcaaa tggccaggcg 12900 cagtggctca cacctgtaat cccagcactt tgggaggctg aggcagacag atcacctgag 12960 gccgggagtt ccagaccagc ttgaccaaca tagagcaacc ctgtctctac taaaaaaaaa 13020 aaaatacaaa attagccggg cgtggtggtg catgcctgta atcctagctc ctcgggaggc 13080 tgaggtagga gaatcgcttg aacctgggag gcagatgttg cggtgagcca agattgcgcc 13140 actgcactcc agcctgggca ataagagtga aattccatct caaaaacaaa caattaaaaa 13200 aaaaataaat tttagtgcaa atgcaggccg ggtgtggtgg cacacctgta atcccagaac 13260 tttgggaggc cgaggcaggt ggatcacctg aggttgggac ttcaagacca gcctgcccaa 13320 catggtgaaa ccccactcta ctaaaaatac aaaaaacagc tgggcatggt ggcacacgcc 13380 tgtaattgca gctattcagg aggctgaggc aggagaatcg cttgaacccg ggaggggggt 13440 tgcagttagc tgagatcatg ccactgtatt ccagcctggg tgacagggtg agactccgtc 13500 tcaaaaaaaa aaaaaaaaaa aaaaagacaa tgaggaactg tcccagatat ctgatgagac 13560 cagggagact tgacaactaa atgtgatgta ggatccagga ttgggtcctg gaacagaaaa 13620 aggacacagt gggacaaata gcaaaatctg aataaagtct ctagattagc tagtaatatt 13680 gtattaatgt taaatttctt gtttggataa ttctgatata attatgtaca gttttgacat 13740 taggtgaagt tagatgacag atatacagaa agtttgtgaa ttatttttgc aagtttagta 13800 taagagtaaa attatttcaa aataaaaagg ccaggcgcag tggctcacgg ctgtaatccc 13860 agcactttgg gatgccaagg cgggtggatc acctgaggtc aggagttcag gaccagcctg 13920 gccaacacgg tgaaacccac ctctactaaa aatacaaaaa ttggccaggt gtggtggcac 13980 atgcctgtaa tcccagctac ttgggaggct ggggcaggag aatcgcttga acctgggagg 14040 cacaggttgc agtgagctga gactgtccca ccgcattcca gcctgggcaa caagagtgaa 14100 actccatcta aaaaataata ataataataa taaggggcca ggcacggtgg ctcaagcctg 14160 taatcccagc actttgggaa gctgaggtgg gtggatcact tgaggtcagg agattgagac 14220 catcctggcc aacatggtga aaccccgtct ccactaaaaa tacaaaaatt agccaggcaa 14280 ggtggcgtgc acctgtagtc ccagctactc agaaggctga ggcaggagaa ttgcttgagc 14340 ccgggaggtg gaggttacag tgagccgaga ttgcgccact gcactccagc ctggaggaca 14400 gagtgagact ccgtttcaaa taaataaata aataaataaa taaataaata aaataaaata 14460 aaaagttaaa aaacaataca tggctgggag tggtggctca tacctgtaat cctagcactt 14520 tgagaggctg aggcaggaga atcatttgag ctcggagatt tgagaccagc ctgggcaaca 14580 tagtgagacc tcatctctac aagaaaccta aaagttagct gggtgtggtg gtgtgtgccc 14640 gtagtcccaa ctactcgggt ggctgaggtg ggaagatggc ttcagcccag gaggtcaagg 14700 ctgtagtagg ctatgttcgt gccactgcac tccagcctgg gcaacagagc gagtcactgt 14760 ctcaaaaaaa aaaaatgtac acgatgcagg tcaggaattg gcaatttttt ttccataaag 14820 ggccatagag taaatacttc agactctgtg gaccatatgg tttttatggg aagtaatcaa 14880 ctccactgag tagcattaaa gcacccaaag acaatatgta aatatatatg aatataaata 14940 aatgggtgtg actgaaatga acactgaaat tttatcttcc tgtaattgtc acctatgtaa 15000 tattattctt cttttatttc ccatcattta aaaatgtaaa aagcaggcca gacgtggtgg 15060 ctcacgcctg taatcccagc accttgggag gctgaggcgg gcagatcacg aggtcaggag 15120 atcaagacca tcctggctaa cacagtgaaa ccctacctct actaaaaata caaaaaatta 15180 gccagtcatc ggggtgggcg cctgtagtcc cagctattcg ggaggctgag gcaggagaat 15240 ggcatgaacc caggaggcgg agcttgcagt gagctgagat ggagccactg cattccagcc 15300 tgggcaacag agcgagactc cgtcttaaaa aaaaaaaaaa aagaaagaaa aatgtaaaaa 15360 gcacccttag ctcacagacc atataaacaa gcagtaggtc caggtttggt tcacagccta 15420 tatatagtat gcagatcccc actctaggtc agaatttgct aacgtgtgct tcaattaaaa 15480 aaaaaaaaaa gatttgacat caagtagatt aaacaaatgg aacaagttat tatcttggct 15540 tataaggcac atttccttat tgcaggacct ctcagtggtt ttaatgtggt attacacatt 15600 gagaagctcc aagaaagaat aatggtatgt ggctttctca aacttattat tagcatcaaa 15660 tccttttttc agagccactt cttcagacca gtggcctgaa gaacatactt atgagaatgt 15720 caattcagac acttctttaa aaggaaactt ttagatcgag aagttctaaa aactccaaca 15780 aattaagatc attttaccca gtacctggat aacatctgaa taagcatttc acaacttttt 15840 tattttttaa tcttgggaaa cacaagtcga taactggcag gaagttttgg ctcaacccta 15900 acttttgtgg cggcggggga gcaagtcagc agaactgggt cataatatgg agcctctgct 15960 ccctaagaca acataaacat tcctaagcat tctagcaggt gttgaaaaag tgatttaggc 16020 agagctttgt aatgcacaaa ataaggacat aataatgttt gattagaaaa ccaaaggtat 16080 gctagaggcc aggcacagtg gcttacacct gaaatcccag cactttggga ggctgaggca 16140 ggcggatcac ttgaggtcag gagttcgaga ccagcctggc caacatggtg aaaccccatc 16200 tctactaaat actcaaaaaa aaaaaaaaaa aagctggaac ttgtcatgtg tgtgaactgg 16260 caagtcaagt ctataagagg actgttttta tatgatgcat ggaaagctag ccaacagact 16320 gcaaaaattc tctcacatct atacacatat tgctgaagag aggattcaag cagggattat 16380 gttccaggga agagaaggct ggtctgaaca acctcaaggg gtgctttcaa ctgagagtcc 16440 tcaattttgt gattcagagt tcactggctt ctcctggtca aacataaaat cttcagaggc 16500 atttccaact tgttcttaga aaaaagctac taacccatgg ggtgggaccc agtttactta 16560 ttcattcaat aaacatttaa ggtgcctcta tcagatattg ggtcattcca aagtccttga 16620 aaagaaggat ggtgcacagg acaaccagga agagattatg taaggtcaga tgcattggcc 16680 ttatttacag gagatgtagg ctaaagtgat ggaagtgtca aaagagaaga aaaaagtcac 16740 atttgccttg agagcagagt cagcaccaga aagatgcaga acaactcctt ggaatcacag 16800 actttcaagt tggaaaggac cttcatctaa tacctatata cctccctcga aaggaggcac 16860 ggaggcaatc cattcactcc atcggtggtc acctctgacg attcttccat ttaagttctt 16920 ctattaagca aaaatcttgc cttcctgtag aattcacctg ttagtcctag ttctgcctct 16980 tttagcctaa agatgaagtg gaagccctct ttgccgtaac agtattttca atttttaaaa 17040 agttaattcc cttccagtgc tctctttact gagctaacca ttccagttct ttcaaagttc 17100 ctgaactggc accagctgcc tcaaagcgaa gaatggatat ctagtgctca cagcaggaaa 17160 gcacttaaaa tcaatgagct tcaaacatta gtatatacag gaccccccta cgcataagtt 17220 cagattctaa accagaagtc tgaattgagt cccgcgctgt aaagccggca tctcagagaa 17280 ttacaaagca gatggtgtaa gaaccatatt ttgaaaaaca ctgccccgtt ttagagacga 17340 gaaaactgag gcccagcaca gggaagagat ttggcccaga acgcacaatt gtctgtcggt 17400 ggcgaagtct cgaatccagg tctcttactt tcagcccaac tctgttcacc gcgctccccg 17460 gcctctgctt ctccactcag ggcaaactcg tgaaatgcac tcccagatga tagaggcggt 17520 ctcgcacggg ggatagaatg ggaatcagtg cccatgcctc gaaaggagag cttgtgggag 17580 cccttctctt tcgcaaggcc tcagtttccc caatctgtat tcatgggacg cagaaccaca 17640 acgccagctc gtcctctttt cggggacaga cacgaccggt cttgctgtct ctgggcccct 17700 gggctcagat gttcaagccc gtgtgtcctg ggaaggcgga cccgggtctc ccgcccccgt 17760 ccctaaactt tggcgccccc gccccaaccc cagcccctca catacctgcc tccgcacagt 17820 taacgccagc ccagtcaatc agtttttcgg gtacacggcc aatactaacg ccgcgtcaat 17880 ctgttgggta agacctccga cccctcctac gcggactcca gtcacatgac gcggagccgc 17940 ccctctcgga gggacttccg gccccaaccg gaagaggtta atttccatgg ctgaagctct 18000 aaggttccgc ctgcgggcag gaagcggagg aaccttggag cttcggcagc ttttcaaaga 18060 gctttgggtt cggggctcct aaaagaaaaa aactgattcc ggccgggcgc ggtggctccc 18120 acctgtaatt ccagcagttt gggaggccgc ggcggatgga tcacttgagg tcaggagttc 18180 gagaccagcc tggccaaaat ggtgaaaccc ctctgtactc aaaatacaaa aagtagccgg 18240 tcgtggtggc gcacacctgt aatcccagct actcgggagg ctgaggcagg ataatcgctt 18300 gaacccggga ggcggaggtt gcagtgagct gagatcgcac cactgcactc tagcctgggc 18360 gtcagagtga gactccgtca aaaaaaaaaa aaaaaaagag agagagaaag aactaactca 18420 ttccggaaag taccagataa acttggaaca tcttgttaca ccagaatata aggatgatgg 18480 taataagaat catgggaatg tgtcaaagaa cacaggagct gtctttaagg agatcttact 18540 ggccaagtca gggcaatttc agaatcaaaa tatggagtga tagtaataga gtataactaa 18600 ttgaataaaa tagtaatcca tgagtcttta caaacataaa gaagtgagca tattaatggg 18660 tgaagggaaa gtcttccttt tagtagaatg ctagctaata aacatggtgg aattaggaaa 18720 tcaataatgt gtggtaaaac tagagaaacg ggatgtttac aacagcaaaa gtgtctccca 18780 taaattagct attgattaca aagggaaaat ggtgatgtta cagaggttta acctagcaga 18840 acaaacagat caaagtgatc aaagttaaca ccactagtta atgggtcaga tcaagggcct 18900 cctaataaaa tgcactgaga acacatctgt ggtatttctg tcaaaagtgc accgtacaca 18960 tctcatgagg aagtgctaga gaaccccaaa tgaaggacac tgtctacaaa ataactcatt 19020 gtcatgaaaa acagagaaaa gctgaggaac tgttccagtt taaaggagac taaagaagca 19080 tgacaacaaa atgtggtgtg tgattctaaa taggaccctg gactggggta gtggtggtgg 19140 tggaatagtt gtaatggaca atattgggac aagtaatgaa atttgaatat ggattgtgga 19200 ttagctgtta atacatattg tatcaaatca catactgata ggtgatggag cttgtgattt 19260 gcactcaagc agtcattgga gttcttgaca gccatcttca ttcattcaac aagcatttat 19320 taagtaccta cagttatccc aggaacggtt agggatcgga cctgagtagg aggtgaacat 19380 agtagataaa ggccggcgcg gtggctcacg cctataatac cagcactttg ggaggtcgag 19440 gcaggcagat cacctgaggt taggagttcg agaccagcct ggccaacatg gtgaaactca 19500 tctctactaa aaatacaaaa attagccagg cgtggtggcg ggcacctgta atcccggcta 19560 cttgggaggc tgaggctgga gaattgcctg aacccaggag acagaggtta tagtgagcca 19620 agatcgtgcc attgcactcc agcctgggcg acaagagtga aactccatct cagaaaaaaa 19680 aataaaaaat agtagatgaa ataagctcat agatgaaagt cctagtctgc cagccacctt 19740 tgcaagttcc tgtgatcaag aagtaataca agggatgttt ccagtcacac aaacctggat 19800 ttgaaaccaa gcgctaagag aaaaacagcc cctgacatcc aggagatggt ctggcactca 19860 caaatagacc ttggtgtgtt ctcttattga acataaaaac ttcacagaac atcaacatca 19920 aacaaagcca ctatgtgacc atgatggatc aagacaataa caaaaccact tgaatcatgt 19980 ctaaacccag acaaaacatg agcattgttc gaactacaaa aatggccaaa catttcccta 20040 ttctggcttg tatagagatt atagatttag cctcggtcta ctcttccctc cttctaaata 20100 atgtttatca aggtactcac tcataggcag catccaatcc agaaaacccc attttcttaa 20160 gccctcgtcc aaatcaccta atgcaagccc aaatcctatg tgtcctttgt aacactttgt 20220 tactgagatg cccctttgtt tgtttgtttg tttgtttgtt tgtttttgag acagagtatc 20280 actctatcac tcaggctgga gtgcagtggt gtgatctcgg ctcactgcag cctctgcctc 20340 ctgggttcaa gtgattcttc tgcctcagcc tcccaagtag ctgggattac aggcgcccac 20400 catcactccc ggctaatttt tgtattttta gtagggacag ggtttcacca tgttggccag 20460 gctggtctcg aactcctgac ctaaggtgtt cctcccacct tgggcttcta cagtgctggg 20520 attacagatg tgaaccacca agcccagctg ccctattgtt tctcatgatt catgtcctct 20580 cacccttacc ccataacaag tgataaactc aacttgttta accacaggtg tgttccaatt 20640 tcttccttcc tcaaaaagtt gttatgagga tactcggaac aggttcatca cagagtgagc 20700 tttctctatc aatcgatcca ttatctattt tttatttttt taaaaaaaca tggtctcagc 20760 ctgtggtcca gactggagtg cagtggcaca ccatcctaac tcactgcagg cttcaactcc 20820 tgggctcaag tgatcctccc acctcagtct cctgaataac tgtgactaca ggcacgcacc 20880 acacccagct aatatttttt atttttctgt agagacaggg tcctgctgtt gcccaagctg 20940 gtctcaaact cctggcctca agggatcctc ccagtttggt ctcccaaagt gttgggatta 21000 caggcatgag ccacctcacc caatgctttc aatatacttt taaaaattat acatatattt 21060 ttgagacagc acctcactct gtcactcaga ttggagtaca gtgatgccat cttgactcac 21120 ctcaacctcc gcctccctag ctcaagcgat tctcctgtct cagcctcctg agtatctggg 21180 attacaggtg catgccacta ccacccagct aatttttgta tttttagtag agatgggatt 21240 tcaccatgtt ggccaggctg ctctcgaact cctgacttca ggtgatttgc cctcctcagc 21300 ctcccaaagt gttgggatta caggcgtgag ccaccacgtt tccccctcag cttgcattgt 21360 ttctgggaga acctgcacca tacctttatc tatagctttc ccccaggtct taagaagcac 21420 gaagttttaa ctgtggacac gggatttggt gaagcagcaa tcacgactgt gggcacgagt 21480 agcaaggctg cagcagcaca ttgactatag aatgaaatgc atcctacagg aaggcacaat 21540 cttctttggc atctttaagg cgtttgacaa gcatgtgaat ttgatcctct gcgattgtga 21600 tgagttcaga aagatcaagc caaagaacgt gaagcaacca gagctcgaag aaaagcactt 21660 ttggggtctg gtgttgctgc atggggagaa cttggtatcc atgactgtgg aggggctacc 21720 cccaaaatat actggcattg ctcgggtacc acttgctgga gctgcaggag gccctggagt 21780 tgttagggca gctggtagag gagtatcagc tggtgtacca attccccagg ctcctggtgg 21840 attagcaggc cccgtcccag gagttggggg accatcccag caggtaatga ctccacagag 21900 aagagcatta ctggagcccc aacacagtac ccaccaggac cgggggctcc acccccacct 21960 gttggcagag cagccccacc tctaggcatt atgtttcctc cacctggtat gaaaccaccc 22020 atgggcccac caattgggct tccccttgct agagggacgc cagtaggcat gccccctcca 22080 ggaatgagac cctttccacc aggaatgcat ccaccaagac cctgggatat tgctgatcca 22140 tctcagtcac ttttccccct gcaatgcatc ttgtgaaatt gtatagtgtt tgtgagcttt 22200 ttgtcccttc tttctgcgtt aatcatagct aataataaat gcctaaagca attaaactgt 22260 gggaaaaaag atattgaagc catcagcttt cattaagata aactccctga ttatattcct 22320 ctttgctctt tttgttgggt tcataaggtg gaaaaaatgg agagagttca acttttcctt 22380 agtcggaaat gaggtcattc tcatggtatt ttctggaaag caataaccac gttcctgaaa 22440 ctttaacatt agggaaccag cactgtttat ttcttcatgt tcttgttatt aaaaacgttc 22500 ccaagaagta gcagaattgg aactaccaaa cttggaagca cttcagcttc aaaaatatat 22560 caagtaatat cttctctgct ttagcacact aaggcactta taatccctgg aagccctgtt 22620 ggtgatgttg gcatttatcc tgctggaacc cagcatagat ttaatattat ttgatgccta 22680 caacattgtg ctgaataaaa aatattcatt ccggtgggaa ataattttaa aaatataaat 22740 tttctgattt cttcctctgc ttgctcccaa gtccccctgc cccctcccct tctttgccct 22800 tactccttta ataataataa tagcagtagc taacatttat tgaatgttta taaagtgctg 22860 catactgtgc taagggcttt atgcaattta accctcaccc caggattgtg aaggaagtct 22920 tactacagat gagaggctag aggaccagag aagttaagca acatgcccaa gactacacag 22980 ctggtaagaa tcaggcccaa aattggaatc cgccctcaaa acctgctcct gttgaaatgt 23040 tgcttcacca ccctggcaca gagagtaggg tctgtgaagg gatggaagga gtgatagact 23100 ggcaaggaag gaagggcttg gggtagtggg tggggtgggt gggagtggaa gaccatgcag 23160 aggcatttag accctctcca gagggcagag ggaagggatg gagattagga acacaacaca 23220 aataggaggc ccctgtagaa cctcaggggg agccatgagt ttgggggacc aggaaggttg 23280 aagagtgggt aaattaggcc aggcgcggta gctcatcatg cctgtaatcc cagcactttg 23340 ggaggctgag gcgggcggat gacctgaggt caggagttcg agaccagctc agctaacatg 23400 gtgaaaccct gtctctacta caaatacaaa aattagctgg gcatggtggt gggtgcctgc 23460 aatcccagct acttgggagg ttgaggtagg agaatcattt gaactgggga ggcggaggtt 23520 gcagtgagcc gagatcacac cattgcactc cagccggggc gacaagagtg aaattctgtc 23580 tcaaaaaaac aaaacaaaaa caaaaacaaa aaacaaaaaa caacaaccaa agagtgggta 23640 aattataagg tgggagaagg gcatgattaa ggacctgggc cacaggtgtt tacttgccaa 23700 gtgaggagag gcaagaagtc tgggggacct tctggcccac ttgatttttt tttttttttt 23760 taacagagtc tccctctgtc acccaggctg gagtgcggtg gcacaatctt ggctcattgc 23820 aacctctgcc tcctgggttc aagcgatttt tcatgcctcg gcctcccgag tagctggaag 23880 caggcaggca ctcaccacta cacccggcta attttttgtc tttttagtag agacgggttt 23940 tcaccatgtt acccaggtgg tctcaaactc ctgagctcag gcaatccgcc tgccttggcc 24000 tcccaaagtg ctagaattat aggcatcagc caggcctatt tgatcttcta ggactcacag 24060 gtccctgctc ttctctggga ctcaatttta tgatctgttc aatgcaagga gagagagagg 24120 attccagcat cccagggagc accagctctt aaggaggtag catcactttc tcctccagtc 24180 tcctcacctg acatggggga gaaggttccc tggacctagc catttcccta cccctacccc 24240 acattagtct ctcctcatgg gtacaggagg ctgagagagg aagactgtgt ctgcagacag 24300 aagtgagaat aagccagaga aagcactccc tgattctcct aaatcccagt tcttccacag 24360 aggagtgggc aggttaggag catggcctca ttagtcccct gatctggggc aaataggcaa 24420 atctttgctg tgtgccctca gacaggccac ccacccctgg gcctcaggct cctctcattc 24480 tctgtgtatg ggtgctaggg tcacgttgaa gcctgctgct cccctgccat caagttccct 24540 gccccaggac agctcagggt ccgtctattc agtcttctac tggggcctgg cccagggctc 24600 tgcccttatg gtggccctgc tggtcagggg cagagtgaac cagcctgacc tttcagattc 24660 acgtctggta gtgatagtat tttttgttta gatacatagc caccaggtag tatctgagcc 24720 atattctgga atcttctgag agctaggtca gcaggactct attcttggga attaggccct 24780 ttccagagga ttctagtata ttcctagcaa agatgaagca tggccaaaag ttcaggaagc 24840 tggccaggca cagcggttca catctgtaat atcaacattt tgggaggccg acaagggagg 24900 attacttaag gctaagagtt caaaaccagg ctgggcaata tagcaagacc ctgtctctac 24960 aaaaaaaaat ttagctgggc atggtggcat tcatctgtag tcccagctac tgagaaggct 25020 gaggtgggaa gatggcttga gcccaggagc ttcaggatgc agtgagctat gatcacgccg 25080 ctgcacttca gcctgggtga cagagtgaga ccttttctct aaaaaaaaaa aaaaaagtct 25140 ggaaaccagg gaaagaaata ctagtgaaga gaaggacaat acaaaaaggc actgagaaat 25200 tatggaatta tgggatcctg ggtagtgtgg agagggaggg aggtggggca ctcattggac 25260 agtggagctg ccttgcacat ctgggagact gaaggaaggg cagatgtttg ctctgggcct 25320 actatgtgcc aggcattatg gggaggtcct tccttttttc tttttttctt tttttctttt 25380 ttttttttga gacggggtct tactctgtca cccaggctgg aggagggcag tggtgcgatt 25440 ttggctcact gcagtctcaa cctcctcagg ctcaggtgct cctcctacct cagcctcctg 25500 agtagctgga actgcaggca tgtgccacga tgcccagcta atttttgtat tttttgtaaa 25560 gacagggttt tgccatgttg tccaggctgg tctggaactt ctggactcaa gcaacctgcc 25620 tgccttggcc tcccagatta ctgaggtcat agatgtgagc cactgtgcct ggccgggagg 25680 tccttttctt tttttctttt ttttttgaga cagaatctca ctctgtcgcc caggctggag 25740 tgcagtggtg caatctctgc tcactacaac ctctgcctcc cgagttcaag caattctcct 25800 gtctcagcat cctgagtagt tgggattaca ggtgcgcgcc accacgccca gctaattatt 25860 ttgtattttt agtggaaacg gggtttcacc atgttggtca ggctggtctc aaactcctgg 25920 aggtcatttt ctcatacttt tctcagtgag tccttttaac agttcattga ggaaagaagt 25980 atttgtggcc actttacaga ggaggaagct gaagttcaga gaggtgagga aatgtgacca 26040 aggtcacaca acaaggaaat agagccagat tcagtgcttc caagtccaga agggtgaact 26100 agaagtaggg ctgccagata aaatacagga tatgcccaat taaatttgaa gttcacataa 26160 acatcaaatt ttaaaaaata taaatatgtc ccaaatatca cctgggacat acttacattt 26220 aaaaattatt atgctgggtg cggtggctta tgcctgtaat cccaacagtt tgggaagcca 26280 aggcaggagg atcgcttgaa gccaggaatt tgagaccagc ttgggccaca tagaccccat 26340 ctctactaaa agttttaaaa attagccagg cgtggtggtg cacgcctata gtcccagtta 26400 ctcaggaggc agaaatggga ggatcacttg agcccaggaa ttcaaggctg cagtgagcca 26460 tgattgtgcc actgcactcc agtctgggca acaaagcaag atcttgtctc aaaagaaaaa 26520 aaaattacat gttctttatc tgaaattcaa aattaacttg acttttcttt tttgctaaat 26580 ctttggtaga gggaatgcct acaccttgac ggcataaaag ggcagagcct aggactgtgg 26640 ggtctgggag agaagtgaga gtgacttcgc gaccccttct caggcctcaa ggaggaggcc 26700 caggcactag caccaagcca ccagggtcta cacaaaccag ggtctacaca gctcccggac 26760 aggtgtctag aaactttccc aggatgtagg gcaatgaaca cttaaaggga caaaggccct 26820 cagactctcc ccaaccctgt accacattta ttcaccctcc tccataccaa gaaattaccc 26880 tatcctttgt cctccatgtt cagaccaaaa acctgggaat cattcttgtt tccccaatgc 26940 tacatgtaga gctgtgctat ccgaaacagt ggtcttcggt ctcatgtggc tgagtgcttg 27000 agatggaatc caaattgaaa tgcacaataa gtgtaaataa aatacacaca ggatatcaaa 27060 aacttggtac caaaaaaggg tgtaaaatgg cttgttaata atttaaaaat agtgattaca 27120 tattgaaata atattttaca catcggatca cataaagtgt attattaatc tttttttttg 27180 agaccgggtc tcactctctc atccagactg gagtgcagtg gcaggattga tcaaagttca 27240 ttgcagcctg aagtcctgga ctcaaagtga tcctcccacc tcagccacca ggggtgcacc 27300 accaggtcca gctcacaaaa tgtcttatta aaattacttt cacctctttc ttttatgttc 27360 tcgatggcta gaaaatttca gattacattt gtggctagca ttggaattct gttgaccagt 27420 gtgggtgcag acatggtctg atttgttcat ctgtaaaata ggtttggaga ggtggagtca 27480 ttggctcata gtcatacgca gcgtccaacc ttggcatagt gggatgggaa atcaggttat 27540 tttgaaccct gagcccatgg ctacccgtca gccccctggg ctgacatttg acctcttcca 27600 gaatcatatg ccctcctgaa accacaacca gtcctcagtg gagacctaag gtatgctcgc 27660 ccatcctagt gtggggactt gggggtgggg gtgggggcgg gggcttcctg aatgggattg 27720 taacccccca ccaaattcac cttgcctgct gcctagacag agccgattta tcaagacagg 27780 ggaattggaa tggggaaaga gtaattaatg tagagccggc tgtgggggag acccgagttt 27840 tattgttact caaatcagtc ttccagagca tttggagatc agagttttta aagataattt 27900 gtaggggctt aggaagtggg gagtgctgat tggtcaggtt ggagatggaa ttataggggg 27960 tcgaagggag tttttcttgc tgtcttctgt tcctgggtgg gatggcagag ctggttgagc 28020 cacattactt gtctgggtag tgtcagctga tccatccagt gcagggtctg caaaatacct 28080 caagcactga tcttagattt tacaatactg atgttatccc caggagcaat ttggggaggt 28140 tcagactctt ggagccggag gctgcatgac cctaaactgt aatttctaat cttgtagcta 28200 atctgttagt cttgcaaaaa cagactggtc cccaccaggc aagaaaaggg tctttttgga 28260 aaagggctat taccaatttt gtttcagagt caaatgatta actgaattcc ttcccaaagt 28320 tagtttggcc tacgcccagg aatgaacaag gtcagcttaa aggttagaag caagatggag 28380 tcggtgaggt ctgatttctt tcagtgtcat gatttcctca gttataattt ttgcaaaggt 28440 ggtttcagga tggctaagcc aacatctgaa ggatgagtaa gaacaagcca ggtaaagaag 28500 ggggaaaagt gttttaggca aagggaacag catgtgcaaa ggctcttaga gagtgtgtta 28560 attgagaata tgaatgtagt tccgtgtggt tagaacagag atgtggggag taggtgaggt 28620 cagctgggct cagatcctgc agtgcccacc aggcttcagc atgagcctct ctggtcagaa 28680 gacagatgta gacagtggag agaactggct atgtttgtgt tttagaaaga ttgggcctgc 28740 taccgtttgg agaaccactg ttccaagaga taaaattgag aaccagagaa gaaaagggct 28800 tgttcagggt catatagcga atcagagcca agaaggacta ggctagcagg cacaaccgac 28860 caggaaagga gcagacagcc ttgttcagga gtctcaagga ggcactggca tggggtgtcc 28920 actagatgac agcagaggct ggaccaaact ccaggggctt cgggcaggac ccaccctgct 28980 tttccacaag ccttcctctt tccatttccc tggtctgggc atcagagggc ctctttccta 29040 acccttttct ccagacccca gagcagcaag gagagccctg ggtgtcagga ggctcagaga 29100 ctagccctag ctccatttcc cctctgccat tgacataggg caaattcaaa gattaaaaac 29160 tgcttgagaa cttgagtctt tggctgtaga aatagaagtg gcattattag tctaccagga 29220 gccacattct gtagttagat ctcctgctga gcctcttgat cctcctttaa tgctccctgt 29280 ccacccaccc tcttcattct atcttgtgag ttagactccc agagactgtc aatggcccca 29340 aggcccaggc cagccctaag agggaaggaa gggatgtgag ctaagttctc tgagttagag 29400 ccaacacaaa cagcccaggt ttaaacctca gccaaggggc cttgtgtaga acaaaatagt 29460 ggatatgtcg cagagctttg ggcaaatctg atctcctcct agggcctcca ttgtgaaatg 29520 aggtgaagag tccctgggtg tcttcacttc actcctgctg ggcagggtta ccagatatag 29580 taaacaaaaa cacaggatat gcagttaaat tagaatttca gataactaaa aaagtaattg 29640 cagccaggca cagtggctca tgcctgtaat cccagcactt tgggaggcca aggcaggcag 29700 atcacttgag gtcaggagtt caagaccagc ctggccaaca tggtgaaacc ctatctctac 29760 gaaaaataca aaaattagct gggtgtggtg gcgggagcct gtaatccaag ctactcagga 29820 ggctgaggca agacaatcgc ttaaacccag gaggtggaga ttgcagtgag ccgagattgt 29880 gccactgcac tccagcctgg gtaacagagc aaactccatc taaaaaataa aaataaaaat 29940 aaataataat aattgcaatg tttgggcata tacttacata aaaattattt atcgttttct 30000 gaaattcaaa tgtaactaga cttttttttt tttatctgac aactctagta ctgggacatg 30060 gtaggatgtc aagtggtgtt ggaacaggag gggagtgaat cttgcactca gcatcattct 30120 atcccatacc ccaaggtcct ttggggcttc attgtccagg taggtagatc tctcacagcc 30180 cattctgccc cttgtttcta ctggatttcc ctatagtttc tggcttactg tgaggcattc 30240 ccctcagtga gctccttccc caactctgat cttcactgca ctccagggaa gaaagaaaag 30300 taggcataag catcccaatc agtagagtgt ataacaggga ttcagccaaa gtaactgact 30360 tgcccaaggc tgcccaggag gggaagtgga gctaggggtt gaacccaggg tatagggaag 30420 gatctcctgg gcttcttaga accccactag caggctggag tcatctgggg acatacaagg 30480 agcccacatt ctacagcctg gtgaactgaa tatcaggtca gtcacaccac catcttgcct 30540 ggcttctgcc ctcaagtgcc ctccttaaat gaagatctca tttgtcaaag gctactgtgt 30600 gtcagtcact gaggcacttt agttacactc acattaatcc tcatggcata aatgttatta 30660 tctccgcttt accaatgagg cccaaagagg caaaaagact tggctgagat cacacagaaa 30720 gtgagaaaaa gtctaggtct caaatttggg tctgatctgg gcttattcca tcctaccata 30780 ctgccttccc tacaccaatg gtgttagata cacctggagt ttttaggtgg aagactaatc 30840 tgcaaacaat aacagttttg tttcttcctt tccaaacttg acaatttgta tttttttctt 30900 gtcttattgc attggctggg acttttagta gcattaatag taggtaccca tgatgtgttc 30960 ctgattttaa tagaatgttt ctatgttagt tacctattgc tgtgttaaaa aaaattagca 31020 tctcaaacaa acatttatta actcacagtt tctgaaggtt aggaattcaa gagtagctca 31080 gttgaatagt tctggctcag aatgcatgag gttacagtga tgacatcagc cacatttctc 31140 caaagaaaat acaggtcgag catccctaat ccaaaaatac aaaatccaaa atgctccaaa 31200 atccaaaagt ttttgagtgc taacatgatg ctcaaaagaa atgcttgttg gagcatttaa 31260 gattttgggt tttctgatta gagatgccca gctggttaag tataatgcaa atattccaaa 31320 atctgaaaaa aacccaaatc tgaacacttc tggtcccaaa catttcagat aagggatact 31380 caacatgtat ataaatggcc aataagcaca tgaaaagatg ctcaatatca ttagtcatca 31440 gggaaatgca aatcaaaatc acaatgagat accacttcac aataggacag ctataaagac 31500 agacaataac taatgttggc aaggatgtgg tgaaatcaga actttcatac actgcagtta 31560 agaatgtaaa atagtggctg ggcgcggtgg ctcacgcctg taatcccagc actttgggag 31620 gccgaggcgg gcggatcaca aggtcaggag atcgaggcca tcttggctaa cacggtgaaa 31680 ccccgtctct actaaaaata caaaaaatta gccgggcgcg gtggcgggtg cctgtagtcc 31740 cagctactcg ggaggctgag gcaggagaat ggcgtgaacc tgggaggcgg agcttgcagt 31800 gagccgagat tgcgccactg caatccggcc tgggctaaac agcgggactc cgtctcaaaa 31860 aaaaaaaaaa aaaaaaaaaa aaaagaatgt aaaatagtgc agtcactgtg ggtgcagcgc 31920 accagcatgg cacatgtata catatgtaac taacctgtac attgtgcaca tgtaccctaa 31980 aacttaaagt ataataataa taaattaaaa aaaaatagtg cagtcacttt gaaaatcagc 32040 ctggcagttc ctcaaaatgt taaatataga gttagcatat gacccagcaa tttcactcct 32100 aggtatatac ccaagagaaa taaaatcata cgtccatggc caggcgtggc agctcatgcc 32160 tgtaatccca gcactttggg aggctgaagc aggtgaatca tgaggtcagg aattcaagac 32220 cagcctggcc aatgtgatga aaccccatct ctactaaaaa tacaaaaatt agtcaggcgt 32280 ggtggcgcac gcctgtaatc ccagctactt gggaggatga agcaggagaa ttgcttgaac 32340 tcgggaggtg gaggttgcgg tgagccgaga tcatgccact gcactccagc ctgggtgaca 32400 gagcaagact gcatctcaaa aaaaaaaaaa aattaaaata gtatgtccaa aaacttgcac 32460 atgaatgttc atagtagcat tattcataat agccaaaaaa tggaagcaac ccaaacgtcc 32520 accagctgat gaatggaaaa gcaaaatgtg gtatatccat acaatggaat cttatccagt 32580 cataaaaagg aatgaagtac aaatagatgc tgctacaaca cagatgaacc ttggaaacat 32640 tatgctaaat gaaaagtgcc aatcacaaaa gaccacacat tgtacaattc tctagatatg 32700 aaatgtatag aatatgcaac tctatagcca ggcctggtgg caggcatctg tagtcccggc 32760 tacgcagaag gctgaggcag gagaatggtg tgaacccggg aggcggagct tgcagtgagc 32820 caagattgcg ccaccgcact ccagcctggg caacagagcg agacttcgtc tcaaaacaaa 32880 acaaaacaaa acaaaacaaa agaatatgca actctatgga gacataaagt agattagtgg 32940 tttatagggg atgggggaga gaggaaggca gaatgactta caggatttct ttttgggatg 33000 atgaaaatgt tctggaatta gatagtggtg acggttgcac aactatggat atactaaaaa 33060 acattgaact gtatacttta aatggatgca ttgtatggta tgtgaattgt atcttaaaag 33120 ttctgtttcc aaaaaaaaag tcagatgggg ctgtacttat ctgaaggctt gactggggct 33180 taagggtctg cttccaagtg gctcactcac aagaatgtta acagaaagcc tcagttcctc 33240 cctcaccaca tgggcatctt catagggctg cttgaatgtc ctttttgttt tttgttttgt 33300 tttgtttttc ttttgtcttg tttttgaggc agtgagatcc tgcaactctg ttgcagttgg 33360 agtgcagtgg tacaatcatg gttcactgca gctttcacct ccagagcaca agcgatcctc 33420 ccacctcagc ctcccaaata gctagaccac aggtgtgtgc cactataccc agctaattgt 33480 ttttgttttt gtttgtttgt ttgttttttg agacagggtc ttgccatgtt ggtcagcctg 33540 gtttcaaact cctggcctca agcaatcctc ctgcctcagc ctcccaaagt gttgggatta 33600 caggggtgag ctaccacacc tggtcctgct taaatgtctt tgtgacatgt cagctggctt 33660 ccacagagtg agtcatccag gaagaagagc aagaagtcag gcacaatgcc ttttatgact 33720 tagtctcaga agttacctca cttccatcac attttatttg ttagaagcaa gtcactaagt 33780 gtagctcata ctcaaggtag gggaattagg ctccaccatt tgaaaggagg agtatcaaag 33840 aatttctgca catcttctta aaccaccaca gcttctaatg ttgttctgtg acctagaatg 33900 atttctgtag tgtccctgac tccccatctc tctctgtctc ttttattcta gtttaataag 33960 ctattgaatt gaataatgtg tttcttccca tctactgaga tgtttagttt tagacacaag 34020 ttgtgtctca ttctttattc cctcatactt agggctgggt ttcattgatg gcaggtatgc 34080 taggggctga actacctgga aatgttacag gcatggtcct atagccatag atttgtactc 34140 cataacccta ggatctcctg gaagaagact gccttctggg cttcctcccc agatgccaga 34200 ctctgtctgt ctcactgggt ttcctctcct ggtctgcagt gggggctgcc ccagccaaat 34260 gggtgcgtac gttcccagat gtggcagcag tctcctaaca acctccagcc agagcaccat 34320 caggatctgc aaagcagagg ccactgtctt cctgggaagt ctgccagcca atgtctgggc 34380 acagctggga cactagggct tggccatttc tgcccaattg ggactcttct acaggcagtc 34440 tttgcaccag agctccctgt tggctggctg agactttttc agagtggcac ttcaacatga 34500 ggctcttctc aaccaaccct ccttcccctc tcttcccata gatgtcagat ctgaaacaca 34560 gtcggaaggc tttccctgcc cagtcctgct tcttccccct ttatctttca taggcatttc 34620 ctctgatgaa tctcttggac ttctaactct aggttggcag cagtttccta gaggacccag 34680 ctgacaccct ggccctggcc cttttctgtg gctgccagat cccagttccc tggggcatga 34740 gttccctctc cacccctcct gaccgctcta ttccctcttc cttcctctct ttcgcaggct 34800 gtgtccacag tctcaacctg tgcctggcac atagtagatt cagtaactac ttgtttttga 34860 atggacacag aatactctgg agctaggcac tgcccccccc attctcctgg catagagagc 34920 cacagagagg cccctgggta aggctgggag tgccagctcc atgggccaga aggaaggcac 34980 ccttcaggcg actggggaag gaaggcctga ggctaggagg ctgtgggaga gccaagagac 35040 tcccagatcc cagggaggcc ttcctcacat gccaggggaa gtcgaagctg gcttctctct 35100 ggatctgctg ggtgagcaag tcactccttt tcttgggcct tactccatac ctctatggga 35160 ctatgggatg agaagcccca ccctgcctgt ctccctaggg agaggcaggg gtagtgagct 35220 tcaggtgaag tcatgtctgg gaaaacatga atgggaaagg gcagggcaca cggggtttgg 35280 gggtttgtgt atggggaagg atggtgagag acagggatag acgatcacac agggaagaag 35340 gagaggccct gcccctcctt ctctcatgaa cccccacccc tactccccac tggcacccac 35400 tatgcaccct gcctcaccca gacaggtgga gggccagaga aaagcctcag accctcttcc 35460 gtctgcagga cccaggcctt cctgtctcgc tggtttggcc cctctgctcc agggcctctg 35520 agggacaccc tggtggaagg caggactctg agcctgtctt gtggctgact gacttgtttt 35580 tgggtggagt ctggacagaa agctcagtga caccctccct cgaggcctgg gcaagcccca 35640 gcctgatgtt ctttgagacc cagactggaa aagacctcaa agttcaactc cactgtactt 35700 ctcactgtac agtgggggaa actgagtccc agaaagggac agggacaagc ctggagtgac 35760 ccaggcaggt agtgtcctgg ccactgttcc cacagttgcc atctagcccg agctctcaga 35820 tatcacagat gctgtggccc caaaatcttg ggacttgctt tctcctgagt aaactgcttc 35880 ctggccaggg gtatcctgag gctttagtga tggtgttttg ggtgccagga actgtgctgg 35940 gaatcttacc caacatcctg tggagtgact actgtgatta tgcccatgat acagatgagg 36000 aaactaagac tcagagaagt taagatttcc aagcctaggg tctgtgtgga aacctaagct 36060 ggacctgtct gacctcgaaa gcttggctcc tcgtatccta cctcccagcc tccccaggtg 36120 atgggcaggg aagggctcag caatgtggaa aagggggcag aggtgggtgg cagttcctat 36180 gatgggagga agtctcagca tgatgatttt tcaaacatca caactcttca cagaaggact 36240 cacctttgtt cagctacatc cttgcccttg gggaccccag gtctacctcc tctgccacca 36300 ctcgctgtat tccacacccc ctttctcaac ctctggcaag aaggcgcttg gtccctggac 36360 tagccctacc ctctttccct tctcttcatt gttcccagct atgatgcttt gagccacagg 36420 cccaggctgg ttctgaagct acagagatgg acctgcccac cctgcagccc ccttccccct 36480 ctgccacaca gtgagctctc cttccccagc tctgcccctg gctttacctc actggggctc 36540 atcccctgga agagactcag atggagcctg gggcaggggg aggctggaga agcagcaggc 36600 taatgggcag atggaagaca gacaagtcac tgtcctggcc agccctgact cccatccaga 36660 tccccaagcg ctgcattccc atcctctaag ccctccccag ctggagcctg tcacctgagg 36720 ttttcccacc ctcactgagc ctcagtttct tcatctgcac tatgggtgta agcaccctgg 36780 cctcactaga tggttggaag ctgggctttg ggatccagga acaatacctg ggtatagccc 36840 cttcctgatg gagagattcc tgtctcatga ggcacacatg atgcctgctg tgtcccccca 36900 ggtggccagg gatggaggtg gccacagaca tacaccctgg gccactctct gccactctag 36960 ggaccatagt tctttcaaat ccagagcatc agccctgccc tgtgtggctc tcaaggcctg 37020 ttcccgctgc gtctccccca gttatcagac caggagggtt gctgcaaggc caggcccatg 37080 cttggagtcc taggaagcgg ggagccctgg ggctctgtcc cctgagtatg ccgagagcct 37140 ttctaagaac caggacttgg caggggagca ccccaggtgg cactcccttt cccagaagcc 37200 ttgggaactc ccagggtggt agcttcagag ccccagccct tccttcaccc agccctggca 37260 gaggcccatg gccccctgcc agcctgatgg aggtggatgt ggcagccacc gctgtggtaa 37320 gggtgagaag ggtgggttct aagggactcc tccaagctcc tgaacccttt tccttccctt 37380 caaggagatg tgaaagcccc agcctggtcc ccatcccaca gcttagggct ttggctccca 37440 tagtcccaat ctaggcaggg ctggcagcag gtgactggat ggtgctgaga aggcaggcag 37500 aatgggggcg tgggccctgg caagtgcact cctcagccaa tcagcgtcct gcccggctgg 37560 tggattcggt tacaagccca agatcacccc atactccagc ctctttcctc ctcctcccgc 37620 agctccattc attggtcccg ccgcaccggg cctgctgggc tccgcttccg ttccactgct 37680 cagctgccgc ctggtggggc caccaagggc aggcatccca ggggctttgt ctgactggac 37740 tgggccagtg cagaatgggg gttcaggcag ggctgtttgg gatgctgggc ttcctggggg 37800 tggccctggg gggctcccct gccctccgct ggtacaggac ctcctgccac ttgaccaagg 37860 ccgtccctgg caacccactg gggtacctga gcttcctggc caaggatgct cagggactgg 37920 ccctgatcca tgcccgctgg gatgcgcata ggaggctgca gtcatgtagc tgggaggatg 37980 agccggagct caccgcagcc tacggtgctc tctgtgctca tgagactgcc tggggctcct 38040 tcatccacac ccccggaccc gagctgcaga gagcactggc cactcttcag agtcagtggg 38100 aggcatgccg agcgcttgag gagagtccag caggggccag gaagaagcga gcagcagggc 38160 agagtggagt ccctggtgga gggcaccagc gagagaagag aggatggacc atgcctggca 38220 cactgtggtg tggagttgga gattctgctg ggaactcctc ggagctgggt gagccatgag 38280 gggtgtgtgg gctggggggt ccgatcgggg aagcaaggtt tcttcagccc cagcccttac 38340 tctcctaggc tgtgtgtccc tgggggagtg acttgaccat ggtgaacctc aatttcctta 38400 tctgtaaagt gggggcaatc acgaatctca tcatggggtg cttaaatgag gtcacggttg 38460 gggaaagtct tattcaaacc tgggagtcct cattaaatgc catccgaggg actgggcagg 38520 ctgggggagg atccagggtc aactgagcca aaaagccatt acccaggagg aggctttgtg 38580 ggcacggggt gcccagtgga atggatgctg agacgaaagg cctgggttca aatcccaact 38640 cagcacatac aagctgagca agtcacttcc cctctctgga cttatttcct cacctgtaaa 38700 atgaaggtga tacctccctt tcagggctgg ctgtgaacct ggatgtggga agtgccaggc 38760 atgtgggaaa tgcttagtaa agagtgctat tttttagatg gtaataaaca tagatgaatt 38820 tcttgcacta tcagtacaga tgtctgtgcg tttgtgtgca gggttggggg agggcttggc 38880 acctgagtca gagtaggttg gcatcctggc gacacctcct tgtgccagtg agaaaggttg 38940 caccctgcct gtttgccatt ccatcataca cacattcata attttggagt tttatttggg 39000 gcgtgggctt gggaactctg gaggcagact ccaattcccc tgaggaagac ctttccatgt 39060 atttatgggt gggctacctg gcatttagag ttgcccaaca gaggctgcag cttggcttct 39120 cttttccagc tttgaaactc tgagagtccc acagaaggga gagtgactgg tctgaggacc 39180 ctcatggcgt ttgtgtcagg gctggggtga gaaccaggtc tctgccctct tcctaccagg 39240 ggggcatagc tggtgcatga tgcctaggac cctgctgagt tggtgccctc tcccctcccc 39300 tccctgcagg ggtcttccag ggacctgatc tctgttgccg ggaacatgac cgctgcccac 39360 agaacatctc acccttgcag tacaactatg gcatccgaaa ctaccgattc cacaccatct 39420 cccactgtga ctgtgacacc aggttggtgg caggcagcga gggcccagag ctcagggaca 39480 gggcagagtt acccagttcc tgggtaacta gacattggga ttgcagagga tcttaaagct 39540 cagccagctt ggaccccaca gtgcaggtag gaaagctgag gccagaaaga agggatgctt 39600 ggaccccaaa ccacccagct ggtagtggca cagtgggctg tgggaggagc cagacagccc 39660 tccatgcccc agggtcctgg gtatctgttc tggggcaggt ttcagcaatg cctacagaat 39720 cagcacgact ccatctcgga catcgtgggc gtggccttct tcaacgtgct ggagatcccc 39780 tgctttgtgc tggaggagca ggaggcgtgt gtggcgtggt actggtgggg cgggtacgtg 39840 gccaccccct catgtccctt tccagacaga gagggagccc aggctccaag cctggtgagg 39900 gagagctatc tgtctgtctg tcttccaggg aatgatgtcc catcctgcat gtcctctcct 39960 gagggcccgg gatgcagacc ctccttgggt gtcccccaca acccagcggg atgggggatg 40020 ggactggcag agcattgatc tccatggaga cgaccctggg ggcttctgga agggggattc 40080 ccagtcacca atttccacca actgccacca cccaggtgta ggatgtacgg cacagtgccc 40140 ctcgctcgcc tgcagcccag gaccttctac aatgcctcct ggagctcccg ggccacctcc 40200 ccaactccca gctcccggag cccagcccct cccaagcctc gacagaagca gcaccttcgg 40260 aaggggccac cacatcagaa agggtccaag cgccccagca aagccaacac cacagccctc 40320 caggacccta tggtctctcc caggcttgat gtggccccca caggcctcca gggcccacag 40380 ggtggcctaa aacctcaggg tgagctcaga acctaacctt gggggttcct gacatgaggg 40440 ggtgtccctg cttctgttta ggggtggcca tgtgttgcct cttttcctgc accagtttcc 40500 tcctgggatt tcccaacctc tcccatgaaa tcacactgca gcacaggatt ttcataatcc 40560 acgaatttga ccacatcagg ccccactgtg cacccaccac cactcctctt tatctcagcc 40620 aatgatgtcc caacacccag aggccctcaa gccttggccc tgcagaccct acccccagtc 40680 aaaactctag tttcacaaac ttcacttggt tcctcaaaag cgccaggctc tctcctaccg 40740 tgaggccttt gcacatgctg ttcctcctct ccttgtcttc tctcccaccc tcagtttagc 40800 agcctatgcc tcctggaagc ctttcttgac taccgtcagt actctgggtg tcccccatag 40860 cagtactacc gtgtttggcg gcttgggggt agggaggcac tgccacaagg gcggcacact 40920 gagggcacaa agactcagaa ggcatgaaat ggagggaatc tgtgtgtgtg actgagcaca 40980 cgtgctggtg tttctcccgg atggcgcagg cattggtggg gcctccctgg tggattgggc 41040 tcccatcaac accacatcca cccctcaggt gcccgctggg tctgccgcag cttccgccgc 41100 cacctggacc agtgtgagca ccagattggg ccccgggaaa tcgagttcca gctgctcaac 41160 agcgcccaag agcccctctt ccactgcaac tgcacgcgcc ggtgaggccc ctttgaaccc 41220 tcgcggggtg ggctgcctgc tgccaggcat gggaaggggc ccctggctgg caaggccctg 41280 ccccggcctg agcctgcctc tgttctcagt ctggcacgct tcctgaggct ccacagccca 41340 cccgaggtta ccaacatgct ttgggagctg ctgggcacaa cctgcttcaa gctggcccct 41400 ccactggact gtgtggaagg caaaaagtaa gtgatgtcag agccaggagg gatggggggt 41460 tttctcaaag ggtgggttgc ctatacccac tttgaatgct tgggccaagg ggtaggggaa 41520 gggatccgga gacctctgag ctcctatcca tagcctcatc cctctacccc ctgctgcccc 41580 aggtccagct ctgcagttgg cctctatggg tcgcatcttg gctttgtcat ttgattccca 41640 catgaccttg gcaactggtt cacctttcca agtttccatg tctttgtctg taaaatggtc 41700 gtaggaacca aggaaacggc aggatgcaca taggtcatgc cccgcctggc acacagcaaa 41760 atgtgtactt aactcactcc taatccacaa tctcatttgg tcttgaactt ctggactcga 41820 gcgatcctcc cacctcggcc tcctaaagtg ctgggattac aggcgtgagc cactgtgctc 41880 tgctttcatc tggattccga ttctcaaagc cagctccttc ttaactttcc catttcatag 41940 atgaggctga ggcttctggc tcaggtttcc acagccagct agtggcagaa cccaggcctc 42000 caggtaccag cccggtttat tatacccttt ctccgtgaaa cccacccctc tctgccttgc 42060 tggtgactgt ggccccagcc ccctctctct ctgggcctca gcccactgtc tgcagagtaa 42120 ggtgggatcc ttgtcagccc tgatcatctg ccccactctt ctctccttac agctgttcca 42180 gagaccctag ggccatcagg gtgtcagccc ggcacttgcg gaggcttcag cagaggcgac 42240 accagctcca ggataaaggc acagatgaga ggcagccatg gccttcagag cccctgagag 42300 gccccatgtc attctacaac cagtgcctgc agctaaccca ggcagccagg agacccgaca 42360 ggcagcagaa gtcctggagc cagtgacctc agtttcagct ttcctgggca ccagcctgga 42420 ccttgcccat ggctatgcca agccttggga atctcagcct cccctccgta ggttagactg 42480 aagcatggca gaggctgttg tggacaatca agaggatgaa tggggggatc tcaaggccca 42540 aatgctggac cacatctcct gctgttctgg gtaaccttga gctatgtatg acacaactct 42600 tctatgcctg gatgtggtgt tcaggaagct cattctgatg ccctgggctt tggccttgcc 42660 agggaacttc acatacagat gagaatgggg aaagggtaac ttattgcagc agccccaggc 42720 agtaccagga ggaggtacat gtatgtccgt gttgcaaaaa taatacatgc ctcaaaaacc 42780 tgcctagggg agccctagtg cctgggtgct gtggcctgag gtagcaggtg ggaagttagg 42840 gatgtcacag aaatgtctgt gtctgaatcc aggattgggg tgggtgttgg agagggcttt 42900 cagctcccct cctcccaggg gggcctcttt ttttaacggc tgccgtgccc ttcctggccc 42960 agccctaaac ctaaattcaa atctcctcca tgcctttgcg caaaggacct ccctcttgca 43020 ctctaagcct tagtttcctc ctctaaaaaa agggggtctc taaacaggag ctacctcata 43080 gggttgttga ggattaagtg aaccaataca tatacagtgc ttagcactta ataagtattc 43140 ccccctgcga cacctagctg aactatggtt tggtgtctga tcttgagagg ttgatgtaac 43200 cttttaaagg cctcagttcg ctcacctgtg aaatgggtct aagaatagca ctgatctcac 43260 agggttgtga tgcagattaa aggagatggc atgtgtaatg tatacagctg gtgcctggta 43320 aatgtcggtt ctgtcattcc ctcacctctt cagtccctgc ctctgactac caccatccca 43380 agactactaa caagtaggaa agagccgaga gtgaggctgg agaatttaat tcctaatgga 43440 tgacctccag gattgggaca tctgccagag ctctcccatc atcccagatg ggggcctggg 43500 tggggctttg ctgattgtca cagttgaggt gccaggactg agttttgggg gaccccagtt 43560 gtccacccct ggccaggaca gagaggcagg tgcagataca gctggaggag cagcaggaga 43620 gaggcaggtg ggcttgcaaa agattgaggc agaatggtgg tcaccttggc ccatctgcct 43680 accccaccct cagggcccca ggcccccttc ctccagcccc cgatggccct ggggactagg 43740 agacaggctg ttgggcgcca gggcctcccg atcaggtccc caggagccac caccaccagg 43800 gtctacagtc tctaggcgca aggcgggcaa caggcccagg cttcgaggca cagctggtgg 43860 gaaggcccag gggccaggca acccagaggg cccctcttca ctactgcccc ggctgctgcc 43920 attactgctc ctgtcaggag ccactcggga caggcggcgg ctctggggtg aggggctacg 43980 gctggcacca cggcgttcac gggatgaggg ccgtagggca agcccaggga acctggccag 44040 tcccgggctg cggctgcggt gtcgcttgga cttgccagga ctggggctgc gggacttggg 44100 tgcaaggagc tccagtgtgc tgtcatcctc tccctctgag ctggtgcctg agctgtctgt 44160 gctgctgctg gccaactccg aggaaggcag cgagatctgg gggaaatgct ggtcactggg 44220 gcgccctgct ccccaaccca gccactgagg cctgacctcc cgaggtctgc ctctctcgtt 44280 ggcagatctt gggaggtcag gttatttgtc tgaactcaag gagcagaatg tagaggctgt 44340 ggcatttgac aaaagtcttt aggcaccccc agcccagcag tctggcctac ttacctggaa 44400 gggttcagtg atgccgatga ggatgctgtg gttgtgacta tagtagccca ggatgaagtc 44460 tccatggccc ttgggcagtg attcctcact gaatgttacc tggtaggccc aggggtataa 44520 gcctaagttg ggggtcaggg aggccacctg agagccccca aggtgagttc tgaggtccca 44580 aaggcaacaa ggacttgccc tgactctccc actcctttta agtacctggt aggtattccc 44640 atccacatct tcatgtttgg cccagacata agccacatag tccttgcaat ggcggaaacc 44700 cacctggggg atcagtgttg tggaatcagt gttgtgaccc tataatgtct gatcccagca 44760 gtctcccagt gtggcatcaa gatctggaca agccagtgac cccaccatgc tgttcagctg 44820 ctcctccagg cccctttctt ccctgagtcg ctgaccacca ctgcccctct cacccggtat 44880 aagccgatcc agtcccagga gctgcgggcg aacactgttt ccatgcggta cctcaccacc 44940 gcctgctcgg gccgcaccca ctcatctgcc acctccagcc gcaccagtgg catgtcgtcc 45000 ctgaaggcaa actgtccagg caaggcaggg gcagggggcc acatcagggg agaccctcta 45060 gtatcccaca cacttaaggc tcttgggtct tagcacaaat tgcctgagac aaagggccac 45120 tttacagact gggaaactga ggcagaacag gtctagtata aataccaagc cctgtgctgc 45180 ctcccagccc agggttcctt ctgcccacag cctccttagg gagtgagtga gaacatagct 45240 ttgaagctag caaatcctgg atttggctct ggttctgccg ttgacaggct gggtgagttc 45300 ctcagcctct ctgaatgcca gggccctcat ctgtaaactc agagactctt tttttttttt 45360 ttctttttct gagatggagt ctcgctctgt cacccaggct ggagtgcagt ggtgcaatct 45420 cggctcactg caacctccac ctcccgggtt caagtgattc tcctgtctca gcctccccag 45480 tagctgagac cacaggtacc gccatcacgc ctggctaatt tttgtatttt tagtagaggc 45540 agcgtttcac catgttggcc aggctgttct tgaactcctg acctcaaatg atccacccac 45600 ctcagcctcc caaagtgctg ggattatagg catgagccac cgtgcccggc caaactcaga 45660 gactcttatt ttactcttgg agttgttcag cagattcagt gagacaccat ttgcaaagca 45720 tcccataaat ttcccagtat accagtaagt gctcaataaa tgatttgtct ctatgctagc 45780 aaggaagacc aataaaatcc tatgatgcac tgggtatttg gggtaagctg aatattcctg 45840 agcaggcaag aagagctctg cgtgggagga tggagacctc agtccacttc caggctctac 45900 tgctaactcg ctatgttacc ccagggcagg ctctaaccat cccaaggttc agtttctcca 45960 actgagtcta agtactaagc ggttactaac tattaccttg tcatcagtcc atgaaggaaa 46020 gttataacca cgagtatcct ttccccaagg tcaacccaga cccaccaggg gcgccacctg 46080 aatgggtgga gctgctgagg tggcaggctg ccaggatatt gaccccacct ctgtccctca 46140 gggaaggact gagttgttgc caacaccaga tctttgtctg atcccctgtt tacctagttt 46200 caggtttccc tccctcagct tccgagccaa tctgttccag aagtaactgg cacattcttt 46260 ccctgttcct gtgttcctaa cagcaggggc gggcaagggt agacctttga aaatgccctc 46320 caaggccttg cagcatcaaa acccctactg agccctattc tgactgcatt gccttggcta 46380 agagacttaa gttctctgag cctcagtttc cctcaccagt aaaacagaga ggaaaactgg 46440 gacatctcag ggcctactga ggcattcaaa aggatgacat atgtaaagtg cactacacag 46500 gcctggcatg tagtaggtac tcaatgggaa tttttttttt ttttttgaga cagagtctcg 46560 ctctgtagcc caggctggag tgcagtggtg ccatctcaac tcactgcaac ctccgcctcc 46620 cgggttcaag caattcctct acctcagcct cccgagtagc taggactaca ggtgcgcacc 46680 accacaccca ggtaattttt gtatttttag tagagagagg gtttcactgt gttggccagg 46740 ctggtctcga actcctgacc tagtgatccg tctgcctcag cctcccaaag tgctgggatt 46800 acaggcgtga gccactgcac ctggttggga aatgttttta aagggacaga gtcctggagg 46860 aggtgggaag gacaggatgg ggtgtcaaaa ggagtgattt ttcaggtgag gtccctaatt 46920 gtgggttaaa tcttcatgcc caacactttt gccagaggtc atggcaggcc aagcgtgggg 46980 atatttccat tcccagctaa agatattggc caatgtccca ctgactggcc atgtgacaaa 47040 gttaccagga aaaacatttt ctggcctgct gggctccctc ttatcagatc aagagacttg 47100 aagagcccag agttgggttt cagggctgaa aagatgggat ctaccctgct ctgccactgc 47160 agagcctgtg tatggtttgg ggcatgtgcc taccccatga ggagcctcag atcccgccac 47220 agaaaaaaag ggagtgggcc aaattggtct cacaggtctg gttctgagat tctaggattt 47280 cccattttga tgtcggcaac caggaacctc aatcctaaat acaatataaa ttatagtaac 47340 tacttaagag ttcagctttg tattttttat atctttgctc tccctcccca tcactacaca 47400 ctctcataat gcttggcata tggtaagaca gttaagtact cagtaaataa cgaatgaatg 47460 aatatgaatg aatgttacat ggagtttgat tttgctggtc ttattatata tgtgaatttt 47520 tatatctttt ctttgttatt tttaagacac tagtagtgaa aatgatgatg catatgtgaa 47580 tttttttttt tttttgagac aaggtcttgc tctgttgcct gggctggagt gcagtggtac 47640 gatcacagct cacagcagac tagatcttcc aagctccagt gatcttccca cctcagcctc 47700 ataaatagct gggaatacag gtgtgcacca cctagctaaa ttttattttt atttttattt 47760 tttccctgag acacagtctt gctcatgtca cccaggctgg agtgcagtgg cacgatactg 47820 gctcactgca acctctgcct cccaggttca agtgattctt gtgcctcagc ctcccaagca 47880 actgggatta caggcatgca ccactgcgcc aggctaattt ttgtattttt agtagagatg 47940 ggtttcgcca tgttggccag gctggtctca aactcctggc ctcatgtgat ccgcccacat 48000 cagcctccca aagtgctggg attacaggcg tgagccactg cgctcggcct ttttttgatt 48060 ttttttaaag acagtgtctc actgtgttgc tcaggccggt cttaaactcc tgagctgaag 48120 tgatccttcc acctcagcct ctcaaagtgt tgagattaca ggtgtgagcc actgcgccag 48180 cctataaatg aattttaaga taaattactc taaacctttc tcagaagaca ggagttagag 48240 attagcagaa aaggcacggg ctctaaggct gggtgtggtg gctcacacct tgtaatccca 48300 gcactttggg aggccgaggt gggcagatca ccggaggtca ggagttcgag accagcctgg 48360 ccaacatggc aaaaccccat ctctactaaa tacaaaaatt agccaggcgt ggtggcgggc 48420 agctgtaatc ccagttactc aggaggctga ggcaggagaa tcacttgaac ccaggaggta 48480 gaggttgcag tgagccgaga ccacgccact gcactccagc ctgggcaaca gagtgagact 48540 gcattaaaaa aaaaaaaaaa aaaaaagggc gccgggcaca gtggctcatg cctgtaatct 48600 tagcactttg ggaggctgag gtgggtggat cacctgaggt cagcagttca agaccagcct 48660 ggccaacacg gtgaaaccct gtctctacta aaatacaaaa attagccggg catgacggcg 48720 ggtgcctgta atcccagcta cttgggaggc tgagacggga gaatcgcttg gacccaggag 48780 atggtggttg cagtgagcca agattgtgcc actgcactcc agcctggggc ggctgagcaa 48840 gactccgtct caaagaaaaa aaaaaaaaaa aaaaaagttg gccagacacg gtagctcacg 48900 cctgtaatcc cagcactttg ggaggccaag gtgggtggat caggaggtca ggagttcaag 48960 accagcctgg ccaacatggt gaaaccctgt ctccactaaa aatacaaaaa ttagcctggc 49020 gtggtggcgg gtgatgtaat cccagctact caggaggctg aggcaggaga atcacttgaa 49080 cccgggaggc ggagcttgca gtgagctaag atcgtgccac tgcactccag cctgggtgac 49140 agaatgagac tctgtctcaa aaaaaaaaaa aaaaaaaaaa agaaaaggca tgggctctga 49200 aaccagactc acttgggttc aaatcctaac tgttcctctt actagttggg tgaccctggg 49260 caggtgatgc catgtgtctg agcctcagct tcctcatctg aaaatgtaga ttgcaacccc 49320 atttccactg ttacaacaaa tggatgctgc tgagggcagg tacaaggggt tatacaaagg 49380 gtaatggtga ggggcagtgg tatgccgagt tgggcctggg gatttcatgc ggggaggatg 49440 aggccagaac tcacctgcag gaggaactgg gcagccacag gcttgtggtc gctgactgtg 49500 tattccatgt ggctgcggta gctgtgctgc gtcacctgga gtcggtggct cttccgtcct 49560 gaggggctgg gacccccacc tggagccttg accttccata ggatacggtc tgtccaagct 49620 ggcttccgtt tcttggcact gcagtgagca ggggtacccc aagtttcagg ggctggggat 49680 caagatgtaa ccctccacct tgcctcctgc ccctcttccc aaagtctccc tgttcgagaa 49740 gacctcagcc cacttcccct cagtccctcc tcggactgag ctcacctggt atcgtatttg 49800 ttggtaccca catcaaactt gaaggtggga gcgaagttga ggggcccctc ctgaaagccc 49860 ttcagaatgg gccaggtgtt cttggccatg ttgagctgtg gggggtccag gagagcagat 49920 tggacaacag cttgggctct gctgtgccca gggagggggt ggggcaggtg aggacaggga 49980 ccatagtcta aggtacaggc gtgtcctggg acatgctctg tgtgcttctg gggacaagga 50040 ccccacctgg tccttctccc agagctgatg gagctggtca ctgtcgatgg caaacttgac 50100 aaagtgcagg tcatagctct caatgcggaa gttcaggtcc ccgaaccaga acacgaggct 50160 gtttggggtg ggggatggga gagatgtggg gggcagtggg gggtgtcaac aggtccatgg 50220 aggataaggg ctcagcccag atccttccag cccatccaac ccgaggggat gtagtgagtg 50280 ggtgagtggt gccagagcct ccagcccacc aaagggcaga ggaaaagcag agggaccggt 50340 ctacaggaaa ttaggttctg accttcagca aggcggggcc cctcagcaaa gctccaccct 50400 acaagctccg cccctcccca tccaactgct ctctgctttc gtgttcctac aactagtttg 50460 ggtgggcact aaaccccata ggccctgcct ctctccataa gccccaccca aggtggtaca 50520 aaaaccccca tcactagccc cacccaagct ctatttggcc ccaccccagc ccatactcat 50580 gatccaggat gccctgtgcg cccggccctt ggaactgctg gaggctgagg atggtctgga 50640 agttgtcttt gcgctgctcc gccttgtcca tatgcgcagg caagtggcag ttcaggaagc 50700 agagcatgtg cccgaaggcc gccaggcgca cgctcacgcc acccttgtta ccctagggag 50760 gcagggtcgg atggctcatg ggcggggctt aggccaggag gtgaggcact gggagcgggg 50820 gttagagagg agatgtgggt ggaaggtggg tgggtcctac agaaatgagg aacaacgctg 50880 ggacacagtg gggagagaaa agggcggggg tatagaggaa taggatgggg tattgggtgg 50940 tgcatggggg ggctgggccg cagggtaaag ggtggaggat gggaagggga ccttgctgtg 51000 catggggcgg ggggactaat ctaaagcccc cttcatgtcc catcctcttc tgggcctgct 51060 cacaggctca cccagtagcc gcccaggcca gtgcgcgtgc agtcggtctg cacgtctcgc 51120 aggaagggca ggtggtagta cttggcgaac agcagcagga tgacaccctg catcctcacc 51180 gaactcacct gcagcgggag gccacgtggc tgggggacag aacacaactc ccccgccctc 51240 gcgcccacct tcaggtctgc tcctccaccc acccatgtca cggacccagc cacagaggcc 51300 cagcgggccc cacagtgagc cagggtacag ctggagccag gaattcagca gggtctctgg 51360 ctgtccaggg ggtgaggggt gcgttaccag cacgaagttg aagggcccta gcgcatccat 51420 gaacagctca ctccactggt ccgtgaagag ggcgtccttg agtcgcttgt tgagcatgga 51480 gttcacttcc tgcaacctgg aggggtgggg gcagggtggc catgggattg gagaggtgcc 51540 ctggaagccc ctgccatggg tggagggccc ggaaggcccg aggggctcag gagggggtcc 51600 acatgccctg ccacctcacc ctatggcgat catgtctgcg ccgtcgctgt cgtcaccacc 51660 gcccaggtgg aggagggatg tgacatcgtc tgggggcatg gcagtgccca cgttccatgt 51720 gaccacagtg atcctgaggg caggggcata tgagggtgta gtcctggcac cactccctca 51780 ccctcaagct tcctttcaca ggactccctg gggaactaaa tggaggcagg tgtgggccaa 51840 agccctaaga aggacccaca ggaggccccg aatcctgtcc ctctgccaca ctctccctgg 51900 ggagatcaac tgagaggcgg caagttcctt aggaggggat gctatcttct gagcgtcaca 51960 gagtgggccc agcaaccccc tccccaaaga ctcttcctca gagagagaag ctgaggtaga 52020 gcacaccatc caccctggaa gaatggctaa cctcagagct aagccccagc cacctttctt 52080 gggagagggc cccctcaccg gaagccgggg tcgctcttcc aggtaggctg agctgaccaa 52140 ggggaggatg acagggtgga tgtagaagag gaggtggtga ctggggctgg ggcttcttgg 52200 gcctgaaggt tggggctcag gcacctgcca ggccctgtac tctgtgtgcc aagccttggg 52260 agggccatgt caggggctgg gggaacacag ggagagcgat tcggggagtg gcttggggaa 52320 cggctgggtg atcggggtgg cttgggcaga ggtgggggca cagtctggcc tgagggggcc 52380 ccaggccgga aggtggggga cagaagtcca ggggagtgag tgccaggctc tgaaggaccc 52440 tggcccacat ccaagggcaa ggtctggggt ggccgtggca aaacaggatc ctcagggctg 52500 ctgtggaggg cctcaggccg ggctcggaag gagggggaga gccgagggtc tggggaggtt 52560 tggatgcagg gtggggagcc tgtaggacca gatgtctgag ctggaggctg gagatgcccc 52620 tcagaagcag ggagaggtct aggggctggg gcatccctct ttctagctga tgtctgtccc 52680 acagaggctg cgcctgatgc cgtggatgct ggagccaggg cctgttcctg agttggagac 52740 agaactggac tgggcaccgg ggaaggggtg gaggggagtt ctgggggctg ctcctcagaa 52800 gccagggcca ggctcaggcc agaggctgcc agtgttggct tgggtcccac ggaggcaggt 52860 ggctcctgct tctggtctct ggaggttggg gccagattgg gccccagggt gactggggga 52920 gatcttggcc ctgctgaggc aggcatcacc agccccaggg acgtcggagc cagaactgag 52980 cctgtggtcg ctgggggagg ctttggtcca gctgaggcag acatcaccag ctggcccaca 53040 gatgttgggg ccaggctgga gctgcggtgg gcagtagctg ttttctgccc ttcaggggta 53100 cacagtggag ccaggattgg tcggggagat gccagagcca gcctcggtcc ttccgaggaa 53160 gctgacatag ctgcccgtgg ccctacaggt gccagagcca accttggttc cgagggtcct 53220 agggctgcgt tcttctttgc tgggagctga aaacttgagt ccaccttgtg gaggacaagt 53280 caaagattca gagtgaccct aaccagggca ttgggcccca acttccatat agaccctggc 53340 agagttcatc tagctaagaa aggcacatct ttccaaggaa gttcttccta ctatctcact 53400 tcaatctatt ctgctgcagg tcaacttctg tcttggagga gataggacac aaaaccctaa 53460 cccctccttt aagtctgaaa cctctttcac agatggggaa actcagaccc tgactcaaat 53520 gaggcagagt gtgaacctaa acctgaggac ttgccttgcc ttcctggctg gcacccacac 53580 cctgcccatt cggggcagct tccctgggca accctcccac tgcagtccct gaagctcccc 53640 cagccacggc tactgacctg acatcccagg tctgggcaca ctggggacag cctgtttctt 53700 ttctttttct attgtcaaga tacagaccta caggtgcagc ttgttaaata cctctccctt 53760 ccttcataat gcccagaaac cctcagttcc ccaccgcccc ctaaacatcc aaatcccttg 53820 gttacagccc tctctgttct cttacccatt cccagagctc cactcaggag caagagctgg 53880 gagctgagac tggctgtgta gattcaaagc ccagctctgt gtgaccttag gcaagtacct 53940 ctctgcccag cgcctcagtt tctctgtctg taaaatgaag ggatggggtc tagggttcct 54000 ggccacatta tattctgggg aatcttcatc tcccattgtc tgcatttatg agcccaacat 54060 ttgctagaat tccatctagc cccgttgaat agtccatcct caccaagtgt gaatctagca 54120 ttcagagcaa gtccaggatt ctaagttgat cctggtgtca catctctctg tgcccaggtt 54180 gtgccctctt acatcctcca ctttctcccc tacctgaaag gacaggcaag caggtatccc 54240 atttatgtcc ggcaggtggg aggggtgggg agtcacggag tcctgtagag acctatcctc 54300 cttccccatc tattctctct gatgtcccct gtctccagaa gacaggataa agtgtccttc 54360 accaaggagg gcagaagaat gtctatactt gccccaggat ggccctaggt agggtaacag 54420 ggcgcaggga ggccctgcct ctggagacgc acttctgttt ctgtcccgta tccttctcag 54480 ttcagagtac ctaaaactcc atctccacct cccttctcaa actcagttct ttgaggtggc 54540 attttaggca ccctccttgg ctccaagtgt cacactgtgt gccggcttcc ccccaactat 54600 cacaccgcct ccagtactaa caacttagcc atcccagatg tcacagtttt agtcttcagc 54660 gacaagcccc ctcattttgc attggctcag agaggaaaag caacttggcc aaggtcacac 54720 agcaaaggtg gagcacagct gggtcctctg atacccagtc caggactctc ccaagggctc 54780 ctggagatgg ctaacttcat ctgtctccgg gcatcctgtc actgcccctc agcccccagg 54840 gtgctctctt cacctagccc ctgctcgctg agcagaggaa agtaccagcc cctcagtcag 54900 gagcaccagg gagcctgcag tgtatgtggg gggggtgtgt ggaaccaggg atcaggaaag 54960 cggggggcac tgggtctcag gggtcttacc ttggagggtg ccccagtttg ggcaacaccc 55020 tggggcatgg gcagggaacc caggccagcc cgggtccctg gcctcctgct gcccctgctg 55080 ctctggccct ccatgtctgc agcccccggc agcctggact cccttggctc cggctccagc 55140 tctaccgctc ccgggaacca gtgatgtcat cagccatttc aacctgctga gaatttaaag 55200 gcacaggctc ccacttccca gcctggaaga ggccgaagca aggtggctac cccctgggaa 55260 tccttcaaac tggctgctga ggctggaaca gccatggagt ggggagggga gagtgtaccc 55320 atctgcctgg cccaggtccc aactggcagc aggaaggagg ctgtctgtct accttcacct 55380 ttctgccgta ggcctggtca gccctttgct ccagggaggg gcattaacac acctgcctta 55440 aggtaggaca ggtggttcag aggtctgcac cctctccagg gcctcagaga caactgagtt 55500 cttgccctga tcctgtgacc ttcctggctc cctgccagct cagagcttgc cccggccccc 55560 acccttgccc cattttcagg tcttggtgcc accctctcca ctcctactgc cagtcccagg 55620 ctctattctt cccaacccag aaccagacac tcaggctcca gccactgcag tcttttccca 55680 tctcaggcct cagcaccagc ccctcctctt ctgcagacac ctagctgccc tcagatgtcc 55740 ccacagccag gcctaaccca gcccggcttc tgtcagcttt cttctctcca gtattcactg 55800 ggtgtggttt gggaggggaa cttgctcaag gtcacctggt gaactgagaa ggtctcctgt 55860 gtttcagtga gaaaacttag tgacctagga tgagcacaag cccttcgagc tatctggggg 55920 aagggaactt gggtggagaa gggcccagca gtggggtaac agactgacaa gagagttaca 55980 aacaggcctg agaattgcta cagccaggac ccagcccagg acatggtccc caacaggcct 56040 acgggagtgt ttgttgaatg aataaatgaa ttagaagagt gaatgggtga tgagggtcag 56100 attgggctgg gatggctgtg ggatctgttt ctcatggctt agagaggagt gatcccaccc 56160 actttaggca gaaagtgttc agagttgtgt gtgcagagct ccctgttaac caacatggag 56220 catctgcatg ggcctgtgca gtctcctaca tgaaggcaga tgcctcactt tcctctcctg 56280 aaggcacttc ctacctctgc ttgactgtca gtaggtctag tctgtattct caggccagca 56340 tctctgctgg aatttgcagg ggcagagact caggccatat tagagtgttg gggtagaaag 56400 gtctttggac agcgatagtg gagatggtga cagtggtgac ggggaaggcg actgtggtga 56460 tggatgtgat gatgtatgta actgtgatga tggaagtagg gggctagcag tggttgtggt 56520 gaaggtggtg gaggtgatgg tgatggcaaa ggtagaggtg atgatgatac caatactgat 56580 gatggtgttg tgtcaatgaa agaggtagtg ttggagttgg aggtgacagt cagggaggat 56640 gtgagagtag acctggtggt gatgctcagg ttaccagaaa aaggaagatt cgaactcatc 56700 ctgtcttatc ctctgtctcc tgttttacaa ataagaaaat gggagccccc gggctggggg 56760 agtactggca aagtgcgggt aatcccagca ctttgggagg ctgaggtggg cagatcacct 56820 gaggtcagga gttcgagacc agcctggtca acatggcgaa accccatctc cactaaaaat 56880 ataaaaatga gccgggtgtg gtggtacatg cctgtagtct cagcgacttg ggaggctgag 56940 acaggagaat tgtttgaacc tgggaggtgg aggtggaggt tgcaatgagc caagatcgta 57000 ccactgcact ccagcctggg tgacagagag aggccctgtc tcaaaaaaaa aaaaaaaaag 57060 aaagaaagaa aagaaaaaag aaaaagaaaa tgggagcccc caagactacc cagcttttca 57120 tgcaatccta gagggaatga tgggcagatc caggcctctg ggaccagtcc taaggctcag 57180 ccatctaggg ctgggacagg ggcatcagtg ccctttggaa gccaggcaaa tgtcatgcaa 57240 atgtgtctgc agagggctcc tctgcctcag gagggcaacc caggatttcc caccacccgc 57300 tccctgagct cagaccctgc aggggacttt gtttctggcc ctgccactga cttacttgag 57360 gaggtcactc tgattcccaa tttgtgtaag ggagattaaa acagcagaca cctcctaagt 57420 ttgctggtga agattcaaca ggataatata tatgaaatgt ttagcataga gcctgcctgg 57480 cacagcaagc tctccataaa ggtggctgct ctgtatttat catcatcatc atcaccacca 57540 ttgacttcag cctgcccatg tggtggatgc tgaaacaggc tgagggtggt tactctcctg 57600 ggaggacaag gaaggggctc tgagacccaa gcctggtctt gtcaggagaa gggggtaggg 57660 ggcggacccc agctgaaaag ggagtgagtt ggagctatat ttgagctcct ggtgtgatga 57720 ctaaggaggt tgataacagg ctctggggct cagggcggca ggctgggggc agctgtcagg 57780 gagaaccgcc cccctggaga cggctgtctc tggaggccct ttctggctcc ctccttgccc 57840 tcactcttgg tgggggaggg gggtgggcgt actgaggcag ggtccagggc tcatccagcc 57900 cactcctgga aactcagtgc tgtccttcag gctgtgtggg tcagggatag gaaggcagga 57960 tgccagtgat agatggagta tcccagttac tctccatagt aaccctgtga ggttggtaat 58020 gaggccccca ttggacagag gaagaaaccg aggcccaggg attacacagc cagtagagag 58080 aggacagagc atggagctcc tggagaggca gtggataatt cttcccgaca gaggagctga 58140 ctgttgaacc ccttctttga aggagagtcc gtgctgccaa atcgaagaag agaaacgccc 58200 tggctggaaa gcagagagaa cagcaggtac aaagcatgga tggggaagga aggttctggc 58260 tgtgaaagga tgagaaattt ggacatgtac cctcctgccc tttggttcgg agtaaacatg 58320 agcagggaag ggagagaagt ctttcctgtc tttttcctcc tcctcttcct cggttcactt 58380 tccaggggca cctgaggatg gcaacggtac cgagggtctg tcctccttcc tttctctccc 58440 tggtcaccct gacccaggcc cgccatgagg gaggtcatgc tatggctacc atctgcaaag 58500 gtgtagaggg tgatacagga tattgtggga atgtgaaaga aggggttatc tgggagggct 58560 tccctgagga ggaagtatac agggcacaaa agagcatttc ttctcccaag gcttcactcc 58620 agggtttctt gttggtaaca agcttcacat gttatgtccc cagcacttca ttctcaccct 58680 ctgaggcaga tgtcatcctc actccccatt ctgccactca ggaaatgggc tggaggagga 58740 ggagtgactt tcccaaggtc acacagctgg ggctgagctc aggcctctct cctccttctc 58800 ttcggctccc cctcctccta ggcagcccag cacccgctgt cagctgctct gaagtgagtg 58860 gctattttta ttctggtgcg aggggatctc aagcagcaga gccatgtagg ttagaggctc 58920 taggacaccc ggcctcagca gtccagggga aacttcctgc agccaccaga ccctgctaag 58980 cttgcctggg ggctctcatt tcttgcagac tgacttgctc tgggctccta tgcctccaga 59040 agcttcttta ttggagctca gaacagagca tagagccaga ttaagccctg gtcatggtcc 59100 tgatcctcca acttgaaccc gactcttggt attgactaag cctctactcc agctcttgac 59160 tgagctctga catcacctta gaatgaaccc tgactctagt cacatactga tctaagcctg 59220 aattaggctg atcccaactt gagaccttag ttctgggccc agatcaagcc cttatccttc 59280 tctaagactg agccttagtc acagactgaa ttctagcccc agcccagact aaccttttag 59340 actgactctg gcagaagagt cagactaacc ttttaaccct gactctggca gaagactgag 59400 ccctaatctt ggtcaaagac tgagtcctga gcctaatcat tgactgaact ctgaccacag 59460 actgaattct gaccctggat catgcaattc tggtcacaca ctgagcccta aacggaagac 59520 tgtgccctga atctggtcac agactgagcc ctgaacttag tcattgacag agacatgacc 59580 ctggtcacag actgagcctg gctcctggtc acagactaaa gactaagccc aatcatggac 59640 tgagccctgt atctagccct aggctacaga ctactcaact aagggctgac ctagaccctg 59700 tctgagcctg accccatcac agactaatcc ccaaccttgg ccccacttga ggaagactgc 59760 tggcctaaat tacatgctgc cacataagag gcatggatta tgggcagaga tctgtcttgg 59820 gagatcttgg gcttctcatg ctgctgatgc cacagtgttc cttcctggta ctgttatggt 59880 cacagtctcc accactggtt ccactggctg gttggtcaac cctcagcagc ccaagctgtg 59940 gcctttaggg gccacagcat ccaggctaat gcaatgagag tggtttggtg gcatctgtcc 60000 agcaaacaac cagggcccat ggggtactgg ggtttggctc tgtcagcagc aagaacgact 60060 ccgtggggcc tctggcttca gttactctga ggcccttgct ggggtagggg ttggagtaga 60120 aggaaatagt ggggtatgtc ccattatttt cgtaaataaa gtttactgtt tgtgtttagg 60180 taatccatgc ccattacaca aaacacagaa ggaaaacatt tacctataat ttcatccacc 60240 aagaaataat cgttctgact tattggtttg tttccttata gatatttttt ggtgggggcg 60300 ggggtctagg catatatatt tatatataca tgttgtatat aatatgcata tatatttata 60360 tacatgttgt atataatatg catatatatt tatatacatg tatatttaca tatacgtgtt 60420 atatatttta tatagctata tctatttttt gagatggagt ctcactctgt cgtccaggct 60480 ggagtgcagt ggcatgatct cagctcactg aaacctccac ctctggtcca agcaattctc 60540 ctgcctcagc ctcccgagta gctgggatta cagacatgca ccaccatgcc cagctaattt 60600 tgtattttta gtagagacag ggttttgcct tgttgaccag gctggtcttg aactcctgga 60660 ctcaagtgat ccacatgcct tggcctccca agtgctggga ttacaggcgt gagccaccaa 60720 gactgggcct atacatgttt tatagaattg gttggttact gtgttgctgc cacaatgtcc 60780 agcaacacag tagggttagg gttagggtta ggatcctgtt aaggttgcag cccatctcct 60840 tcttaacagg aactggaata tggtggaccc caccctcagc ttcaggaatg ggtcccagtt 60900 ggttaagcca gtaagcaatt cccatttccc caggcacatg attagatcac gaatgaacta 60960 gcaagataca aggaaatttt tgctcagggc ttttgggaaa ggaagcttat tttctctcct 61020 gaggaggctg ccaaaaaaga tgatcttcct tccattagat gtaaatgaag aggccaatgg 61080 ctctagttac tgctggcagc catctttaca ccatgtagaa aattggccta ctgataaact 61140 gacattatgg aaagcagaat ggagagacac caggctttgg tgacttcatt aactggatca 61200 aacttcacct gaagccccac ctgccattgg actttttttt tcttcttttt gaaatggagt 61260 ctcaatctgt cgcccaggct ggagtacagt ggcacgatct tggctcactg caacctccgc 61320 cacccaggtt caagcgattc tcctgcctca gcctcccgag tagctggagt tacaggtgcc 61380 caccgctgcg tttggctaat ttttgtattt ttagtagaga cggggtttcg ccatgttggc 61440 caggctggtt tcaaactcct gaccttaggt gatctgcccg cctcagcctc ccaaattgct 61500 gggattacag gcgtcagcca ctgtgcctgt cctggacttt taaaattatt tgagccaaca 61560 gagtcccttt atttatttat ttatttagag actgagtgtc gctctggcac ccaggctgga 61620 gtgcagtggc gcaatcttgg ctcactgaaa cttccacctc ccgggctcaa gcaattctct 61680 tcctcagcct cctaagtagt tgggattaca ggtgtgcacc atcatgccca gctagttttt 61740 gtgtttttag tagagagggg gtttcaccat gatggccagg ctggtctcca tctcctgacc 61800 tcaagtgatc tgcctatctc ggcctcccaa agtgctggga ttacaggcat gagccactgg 61860 gcccagcccc tttattttta ttattttttg acacagggtc ttactcacat tgcccaggct 61920 agagtgcagt ggtacgatct tggctcactg tattattttt tattttttat aggagatggg 61980 gtctcactct gtctcccagg ttagagtgca gtggcatgat catagctcac tgtagtcttg 62040 aactcctggg ctcaagcagt cctcccacct cagcctctgg ggtagctggg actacaggca 62100 ctgccatgcc tggctagatt ttaaatatct ttttttagag atgggttctc actatgttgt 62160 ccaggatagt ttggaactct tggcctcaag ttatcctcct gcctcagcct cctgagtagc 62220 tgggtttata gacacaagcc accacaacca gctcccttta ttgtttaagc cagtttaaat 62280 tggggtttct atgacttgca gcccacagca tcacaactcc caattgatat taccagatta 62340 ctgtttttgt tgcttttttc ttgctattta ataccataac cacgaacatt ctccatgtca 62400 ttccatctat gctgcatctt tttttttttt tttgagatag agtctcactc gcccaggctg 62460 gagtgcagtg gtgcgatctc agctcactgc aacctctgcc tcctgggttc aggcaattct 62520 cttgccttag cctcccaagt agctgagatt acaggcagcc atcaccatgc ccagctaatt 62580 tttatatttt tagtagagat ggggcttcac catattggcc aggctgctct caaactcctg 62640 acctcaggtg atccgcccac ctcggcctcc caaagtgccg ggattacagg cgtgagccac 62700 ccacgcccag cctgctgcat catttttaac aattgcatgg ttttccatcc tatggaggta 62760 cactcattaa tttaactcat cccctgctgt gacatgctta ggttatatcc ccagttcttc 62820 accacgataa atggtattct aataaacaag cttgacctaa caatcctctc tctgatgatt 62880 actttggggc taattctgaa aaatggaatt actgggtcaa aaaaagtttt tagagttttg 62940 attttgccct tcagaaagcc agggtgaatt catacttccc cagcagtgaa cagagtgtta 63000 gagatagctt actgtgtgaa tagtctggac aagactaatc atattgacta catactcata 63060 ttatatatat atatatatat atatatatat atatatatat atatatatat tttttttttt 63120 tttttttttt tttttttttt ttttgagacg gagtcttgct ctatcaccca ggctggagtg 63180 cagtggcaca atcttggctc actgcagcct ctgcctcccg ggttcaagtg attctcctgc 63240 ttcagcctcc caagtagctg ggattatagg catgcaccac catgcctggc taatttttgt 63300 atttttagta gagacgaggt ttcaccatgt tggccaggtg gcctcgaact tctgactcaa 63360 gtgatctccc tgcctcagcc tcccaaagtg ctgggattat tggtatgagc caccatgccc 63420 ggccaagcct attattttta tatctttaca atcaagttag taaaggggaa gttagcaggg 63480 tgcaaacaaa agactcagtg cagacttaac ttctctagaa ggcacagtag gctcagtgtt 63540 tagggcccac tatactttta gggggtccat gaaagtgttt tttttttttt ttgagacgga 63600 gtctcgctct gtcacccatg ctggatggag tgcagtggcg tgatctcggc tcactgcaag 63660 ctccgcctcc cgggttcacg ccattctcct gcctcagcct cccgagtagc tgggactaca 63720 ggtgcccgcc accacgcctg gctaattttt cgtattttta gtagagacgg gggggtttca 63780 ctgtgttagc caggatggtc tcaatctcct gaccttgtca tccgcccgcc tcggtctccc 63840 aaagtgctgg gattacaggc gtgagccacc gcgcctggtc gaaaatgttt ttaatattct 63900 ttaaaattag aaggatacac tgggaagtta aggttaaaaa aaaaaggaaa catatactaa 63960 taataatgaa tccagcctag attatagtta tctttttacc aaagcaattg aaaatcaaat 64020 atatataata tttatgtata ttatgtatat ttaatggagg catgtgtcca tatcccagct 64080 actcaggagg ctaaggcagg agcattgttt gaggccagga gttgaacact agctgggaca 64140 acacagaaag accctgtctc taaaaaaaaa aagaaaaaag aggccaggca cagtggctca 64200 tgcctgtaac cccagcattt tgggaggcgg aggcgggcgg atcacttgag gttgagacca 64260 gcctaacatg gtgaaatcct gtctctacta aaaataaaaa aaattatccg ggcatgatgg 64320 cacgctcctg taatcccagc tacacaggag gctgagacac gagaatcgat tgaacctagg 64380 aggtggagat tgcagtgagc caagattgtg ccactgcact ccagcctggg cgacagagca 64440 agactccgtc tcaaaataaa aataaaaatt aaaaaaagaa aaaagaaaga aaaccctagg 64500 atccatgaaa gtcataatgc agccttggct cggtattgag aaggagtccc tagattcaat 64560 gggaaaagag gacagtgacg aacttgctgt gtctgtggaa gaaagcatga agaagagaac 64620 tggcatccta atctggtgat ctggtgatcc gttctccttt tttttttttt ttttaattgt 64680 aggcatttta tctgcaaatg catattacct ccttagaaaa agaattccag gattttacct 64740 cctgtgtgtt ttcgtcttgc ttctttgtga tccatgatgc cagctgaggt tgtgagtaca 64800 atgaaaccca actggcagga tgggagcaga ttattctgcc atttttctag atttttgagt 64860 tgcacatcaa atcaggggct gattactcca cacttgttta acctgcctgt gaggttcaca 64920 gcagttttcc tagctctgtg atcatcaatg acttcaactt caccagtgta actatgcttc 64980 atcaccacag ttagaaacca gacgacgaca ttataagaac ctggtgtttg cctctctttt 65040 ggcattgttg atgctcttga gagcatcagc cgggacattc atgcacacca ttatggcagc 65100 acatggcaga aagagctatc tgcttatgta tgagattgag aggtgaagcc agctggactt 65160 cctgggtgga gtggggactt ggagaaattt tctgtctagc cagaggatta taaatgcacc 65220 aatcagcgct ctgtgtctag ctgaagaatt gtaaatgcac caatcagcac tctgtaaaaa 65280 tgcaccaatc agtgctctgt gtctagatag aggattgtaa atgcaccaat cagcactctg 65340 taaaatggac caatcagcac tctgtaaaat ggaccaatca gcaggatgtg ggcggggaca 65400 aataagggac taaaagctgg ccgccactgc cacccttcat ccccagccag cagccggcaa 65460 cctgcttggg tgcccttcgg tgctgtggaa gctttgtcct ttcgctcttc ccaataaatc 65520 ttgctgctgc tcactctttg ggtcctcacc acctttaaga gctgcaacag cctgtaatcc 65580 cagcaccttg ggaggccaag gtgggcggat tacgaggtca ggagatcaag accaccctgg 65640 ctaacacggt gaaaccccat ctctactaaa aatacaaaaa attagttggg catggtggtg 65700 ggcatctgta gtcccagtta ctcgggaggc tgaggcaaga gaatggcgtg aacccaggag 65760 gcagagcttg cagtgacctg agattgtgcc actgcacttc aacctggggg cgacagagcg 65820 agactccgtc tcaaaaaaaa aaaaaaaaaa aaagaaagaa agaaaagaaa aatagaaaaa 65880 agagagttgt atcactcacc gtgaaagtcc gtggcttcat tcttgaagtc agtgagacca 65940 ctaacccact ggaaggaaga aactccagac acatttgaag gaacaaactc tggacacacc 66000 atccttaaga gctgtaacac tcacagtgaa ggtccgcggc ttcattcttg aagtcagtga 66060 gaccaccaac ccactggaag gaagaaactc cggactctca agatgagtgc agagacatgt 66120 tgggttcaag tcccaaatcc acagttcact catttcacct ttctgagcct gtttcctaac 66180 ctgcaaaatg gagttcacgg ggtctttatg aggtaaggaa ggaactgata atgaaagcta 66240 acactgtcct agtaggtact tttttttttt tttttttttg agtcagagtc tcattctgtc 66300 gcctggctgg agtgcagtgg cgcgatctcg ggtcactgca acctccgcct cccaggttca 66360 agtgattctc ctgcgtcagc ctcccgagta gctaggatta caggcatgca ccaccacacc 66420 tgggtaattt ttttgtattt ttagtagaga cggggtttca ccatgttggc caggatggtc 66480 ttgatctctt gacttcgtga tctgcccgcc tcagtctttt tttttttttt ttttttttga 66540 gacagtctca ctgtgtcgcc caggccggag tgcagtggtg cgatctcggc tcactgcaac 66600 ctccacctcc cgggttgaag cgattctcct gcctcagcct ctggagtaac tgggactaca 66660 ggtgcccgcc actatgtgcc cagctaaatt tttttttttt tttttgagac agaattttgc 66720 tcttgttccc caggctggag tgcagtggcg ccatcttggt tcactgcaac ctccgcctcc 66780 gggttcaagc aaattttcct gcttcagcct cccgagtagc tgggattaca gacatgagaa 66840 tcatgcctgg ctaagttttg tatttttagt agaggtgggg ggtttcacca tgttggtcag 66900 gctggtctcg aactcctgac ctcaggtgat ccacccacct tggcctccca aagtgctggg 66960 attacaggca tgagccacca tgcccgtcct gtattaggta ctgttctaat gagctttata 67020 tgtgttaacc cctttatcct gccaatccca acagggtaca caatattgca tcaccacaat 67080 gtgtgctctg ggaagtaaaa accttgattg gaatttttgt ccaaagaaat aaaaaggcca 67140 ggtggagtgg ctcacacctg taattctagc actttgggag gctgaggcag gaggatcact 67200 tgagaccagg agtttgagac cagcctggtc agcagcaaga ccccgtaatc tactgaataa 67260 acaaacagcg caaacaggga ttccctaggg ttcggttttc ctatctcttt ttttctacaa 67320 ccaaattggt ttattacagg aatgcaaggt ttaacatatg aaaatcagtt cacatatttt 67380 accacattta ataaaataaa ggagaaaaac cacatgatca tctcaataga tgcaggaaaa 67440 catttgacaa agttcaacat ccattcatga taaaagctct aagaaaaata gaaatagaaa 67500 actttctttt acaaaaggca ccagtaacaa acctacagca aacatgatcg tttaaagatg 67560 atatctggaa aaagacaatt atcagttcca gtcaacattg taccagaggc cccagaccgt 67620 aaaattaaga cagtgcaacg aaacaaaacc aaggtataag gaccagaaag gaagaaaacc 67680 acttttattt ccagatgata taatatgcat atgtagaaaa taaaaaaaaa tatccagtta 67740 aactattaga gtaagaaaat tcagtaaggt cactggctgc aaggttaata tacaaaaatc 67800 aattgtcttc ctatatgcta ctaccaagca acttgaaaat gaatatgtaa aaacaataga 67860 gtttgtaatg ctataaaaaa ttaaatacct aggagtaaat ctaatgaaag atatgcaaga 67920 tatttattct aaaaaccaca aaatattatt gaaggaaatt aaagaagacc tatagaaatg 67980 gagggactta ctatgttcgt ggaagaaaag tcacaataat gtaaagctgt agagtctccc 68040 cacattgatt tccccagtgg gaatctgaaa tcctgataga aatttggaag gtttttctgt 68100 ggaggttgac gagctggccc taaattgtac ctggaagtgt gaaaggccaa gtatagtcaa 68160 gacaaccttc aagaagaaca aagctagact gcgatggctt actgaggctg tgggatcaca 68220 catggccctc accacaggaa aatgtaggcc acaggccagg catggtcgct catgcctgta 68280 atcccagtac tttgggaggc caaggcagga ggatcacttg agcccaggag tttgcgacca 68340 gcttggtcaa catggtgaaa cctcgtctct actaaaaaga caaaaaatta gccgggtgtg 68400 gtggccgacg cctgtaatcc cagctactta ggaggctgag gcaagagaat cgcttgaacc 68460 tgggaggcag aggttgcagt gagtccggat catgccactg gacatgagag tgtccagcct 68520 ggacaatgag agtgaaactc cgtctcaaaa aaaaaaaaaa aaaatcagct gggcatgatg 68580 gtgcatgcct gtagtcccag ctactcagga ggctgaggtg ggaggattgc ttgagcctgg 68640 gaggttcagg ctgtgattga gccactgcac tccagcctgg gcaacagagc aagactctgt 68700 ctcaaaaaaa aaaaaaaaat agccagccca gcagctcaca cctgtaatcc caggactttg 68760 ggaggccaag gcgggtggat gacttgaggt taggagttcg agaccagcct ggccaagatg 68820 atgaaacccc catatttact aaaaatacaa aattagctgg gcgtggtggt gggcacctgt 68880 aatcccagct acttgggagg ctgaggcaga agaatcgctt gaacctggga ggtggaggtt 68940 gcagtgagct gagatcgtgc cactgcactc cagcctggct gacagagcaa gactctgtct 69000 caaaaaaaca aacaaacaaa aaaacaaaaa aaaatgggcc aggcgcagtg gctcacacct 69060 gttatcccag cactttggga ggctgagacg ggcggatcat gagatcagga gatcaagaac 69120 atcctggcta acacagtgaa accccatctc tactaaaaat acaaaaaaat tagctgggcg 69180 tggtggcgcg tgcctgtagt cccagctact cgggaggctg aggcaggaga attgcttgaa 69240 cccgggaggc ggaggttgca gtgagccgag atcaggccac tgaactccag cctgggcaac 69300 agagcgagac tccgtctcaa aaaaaaaaag aaagaaagaa agaacaaagc tagaggacca 69360 acacacaacc agatgtcaag tctgactata aagctatagt taataagaca gcgtagttag 69420 acaaacccac tgaaggacta gaatagggta tgatattcag aagtagactc ccatatattt 69480 atatggttac ctatttattt atttatttat ttttgagaca gtctctgtcg cccaggctgg 69540 agtgcagtgg taggatgtcg gctcattgca aactctgcct cccaggttga agtgattctc 69600 ctgcctcagc ctcccaagta gctaggatta caggcgccca caccacgccc agctaatttt 69660 tgtattttta gtagcgatgg ggtttcacca tgttggccag gctggcctcg aacttctgac 69720 ctcaagtgat ctacccacct cggcctccca aagtgctggg attacaggtg tgagccacca 69780 cgcccggccg tggttgccta tttatatata acagaggtaa cgcggcagag tagcaatgaa 69840 aaagacaaga tttttaattg aattggatag ccacattaaa aaaaaaagta aatcctgact 69900 ccataaattt aacccagctg atttaagacc ctgttgtggc ctatcagctg taaccctcct 69960 tgcattttcc cacctttgaa tagcaaattc ctttcctcac cccaggtcag aaagtctgct 70020 cagcagtagc tgtggatggt aagaagacac gctggtaggt ctcagtggct cccagaagcc 70080 gcaccccctc caccgaacct cactcctcat ctcccacgct ccaaagcgag gagtcctcag 70140 aaagccagtt tcccttattt attcttcttt ctttctttcc tttttttttc ttggatgtcc 70200 taccagtttc cctatcttaa agtcgcaggt tcggctcaga aactccagtg tccctcagcg 70260 tctcgccggc accctctgcc ggcgtgaggt ggcgctgcct ggccgcatcc tgggggagcg 70320 tccacatcct cggtcgacaa aaggagcgtc gacactctcg gacctgggaa agtgacggcc 70380 caaacgccag ggaggagcca ggacctcgcc ctgagctagc gggaggtaac ggcggggagt 70440 cctggggcgg agaccgagcg ctgggggcgt ggtctccagc gggactgggc ctctagcggg 70500 agtgggggcg ggggcggggg cggggccagc ctgggggccc agacgtggcg cagcgactcg 70560 gaggttcgcc tccagcttgc gcatcatctg cggccgggtc ccgatgagcc tcctgttgcc 70620 tccgctggcg ctgctgctgc ttctcgcggc gcttgtggcc ccagccacag ccgccactgc 70680 ctaccggccg gactggaacc gtctgagcgg cctaacccgc gcccgggtag aggtgagtac 70740 gccggcctcc agccccggca ctatcgttcc ccaaccctgc ggccccatgg gagcaccgtc 70800 cgtcccggcc ccaagaccac ctcgaaccgc gagtctccct gctttccccc tggcgccggg 70860 accatccctc ctgttcccta gccccagatg gccccagcat ccaccgtgga agcctgagac 70920 accgactttg gggcctggaa ctccgaaccc ttccccagct ccccctaccc ggtccgacag 70980 cggacaccca gacacactga cgcagtctcc taactcttct cgtggcctat gactcccaat 71040 cctgtcccaa cttcccatcc cccatcactt catgttttcc tggaattccc ccccgacccg 71100 gttccagggc tggaggctcc agaaagtctc ttttccttct cctgggggga aagaagactt 71160 tctgggtgcc tcctcccata tgcaggatcc ggggaagggg gccaactcgg aggggcaacc 71220 gagttgggaa cttggttgcc aacatttact ctgcagcagc ctcccatcct cccccaacca 71280 ggaaattccc gttcggagtc cctgtcttgc tatgtgactt tgaccatcac agcccgcctc 71340 tgagcttttt gtcagctctg tctgacaaaa gggtgtagaa tggttgggtg ccggtggtgc 71400 acgcctgtaa tcccagcact ttgggaggcc aaggcaggag gattgcttga gcccaggagt 71460 tcaagaccag cttgggggac atagtgagac cctgtctcta agaaaagggc tgagggtagg 71520 atggaggagg gctggagtgg gtggtcctgg ggtctagact cctgctggat ggtggcatct 71580 cctcagggaa ggcagggagg agccctccca tcctcccatg tcagggaagc aaccacatgg 71640 tctgtggggc tgggccgcag gtggcaggca gggtgaggtc tgcctgtgta gagtagggac 71700 cagatggtag gtgtctccaa tgggggcccc cagggccatt ctgaggtgtt tccttctgct 71760 ctgcctccac tgtgagattt cagggatcaa aggccaagcc caggtctcta ctgcttaaga 71820 ggagcagggt gatcatttcc cctgggcatt gggagtcagt ccacagccag taggatgtac 71880 aggccccaag gctggcaggc acactgtggg tctctggcct tgctcttttc ccctggtgtc 71940 tctaggcctg agtctcccca cctgtataca cagttccccc ttctgcccac aagggtccag 72000 catttccttc agaccttggg aactgctgat ccggggataa ctcacagccc gacccaactc 72060 agggataagg aagtatggct ttggggatgt gactggaata aacgtgaagg actcctgacc 72120 tatcccattt tatccccctc cagacctgcg ggggatgaca gctgaaccgc ctaaaggagg 72180 tgagtttgaa ggaagaggtc cctagctctg ttccccctga gcctcttggg gagtgggcaa 72240 catggtccca atgactgggg cggggagggg ggaaggatcc ctaggctgag agtctagcct 72300 aggctgagag tctagcctgc acctgacttg ctttatgacc tcactgggct tcagtgtctc 72360 gtctgtacct cgagtagact gaggtcatgg tctctgatgc tctggttcct ccccaggtga 72420 aggctttcgt cacgcaggac attccattct agtatccttc tgttctgggg gaggggaaat 72480 gggatgggca cctgggagaa tctccacgta acttcagaaa ggggtggcag atggttttca 72540 actgacaagt tgaattgatt ggtagtggct cccagaggat tctgaggtgg tctccatgtt 72600 gggtgggcaa gagagattga ctagtgatga ctgccacaga atggagagga gggcccttta 72660 cttctttgaa ccctaatttt ctcacgtata agcggagacc ctggcccctc ccgggcacag 72720 agtaagctct gagcaaagga ggcaatgctg ttcccatcag taaggctgcg gaaaccacca 72780 cctccctctg cccaccaccc cgctccttaa caccacctcc agtcacaacc tggtgatgaa 72840 acacctccct ggggccgacc ctgagctcgt gctgctgggc cgccgctacg aggaactaga 72900 ggtgaggccg tgggaggtgg gctgggggcg aggccagagg cgaggcccag cctgctgacc 72960 ccgcccctcc tccgcctcag cgcatcccac tcagtgaaat gacccgcgaa gagatcaatg 73020 cgctagtgca ggagctcggc ttctaccgca aggcggcgcc cgacgcgcag gtgccccccg 73080 agtacgtgtg ggcgcccgcg aagcccccag aggaaacttc ggaccacgct gacctgtagg 73140 tccgggggcg cggcggagct gggacctacc tgcctgagtc ctggagacag aatgaagcgc 73200 tcagcatccc gggaatactt ctcttgctga gagccgatgc ccgtccccgg gccagcaggg 73260 atggggttgg ggaggttctc ccaaccccac tttcttcctt ccccagctcc actaaattcc 73320 ctcctgcctt aactgaggct cgactccttc gttgctgcgg gcgggtgggg tgggaggtcg 73380 gaagaagaac ctctgaggat ccctgctgga gttggagacc ttgcggagct gccttcggtt 73440 caaaccccct ccccaccccc aggagacgca gagaggagtc aggatcgttg aaaaccaata 73500 atttatcaaa acgctgcgtg tgtatgtggg ggggagggtg tcgcaacaga cagggcagcg 73560 gtgggcggac gcacaggcag gagacggtgc ccggagagtg ggggcggcag cttgccactg 73620 gctggccatg cgggcgggca ggctagacat tcttgccgcg caggcgcagt tcgtggcgtc 73680 gcaggtggtt gtagagcgac tgcacatagg tgaagacaca cttggggtca ggcttcttgc 73740 ccatgatcat catgtcgtcc acctccacca ggggcacaca gtccaccagc atcctgcagg 73800 gagggggcac ggggttggat gtcagcgcca gacccgcctc tcgtggcgcc cctctacccc 73860 aaggtctttt ttattgccgc attgcctgct ggtctttcat aaactccaga cagggaaaag 73920 ccttccagga aggcaggaag cccctggctt catctaccca agcctggagg catctctcgg 73980 ggcgggggag cagagctagg caggtggagg cggagatggc agaagagagc cccatcccag 74040 tcaggcaggt cctgggtctg cttcctccaa ccctggggag gtgctggctc caaaccctgc 74100 ccatgttctc cctggagacc accttctgct caccctcact ggcacactcc agttggtaga 74160 agcctctcag ctcggccttt gcacccagat gggcttcatc actggccaat ctttatctat 74220 ggataggtct cactctagtg gccctgtggt ccaccgatga ttgtctgcta gctgcctgat 74280 ctggtacttc ctgttgagag gcccagggac ccctattctt tgacaggggg tggggataac 74340 cctgctgctg gagatggagg ccagggaacg tgtgggcagc agaggggttc tctaaccctt 74400 atcacctgcc ttgggtagag cagaggaggc agatgaggat cccagccaat accaatggac 74460 catctatgcc atgctcgggg ggaccaccct tctggccatc cttcagaatg ctagctgccc 74520 ttcacagata aggaaactga gtcacagagc agaggagcca tttgtttcaa gccccatggc 74580 ttagtaagtg caggctaggc cgcatgggac ccaggccccc agttctgggt gttggcaaag 74640 ccttttcccc actctggagt gagtgggttg tgcctattaa gcaactgaca gctcccagag 74700 ctctgaagct ggagtctgct ctctggctcc ttttcccctg tccctcaacc cccagagcaa 74760 gacctcttct gccttgatcc ctcctatctg ccatacctgg gacatagcaa gcattcaatg 74820 ttgctgaatg agtttcctat ggcagggaag gcataatggc aacaattgct ccttattctc 74880 aagacacctg agaacccaag accacctccc atctcgtgcc cttatggaca aactcagaac 74940 tgtggtaggg ctgggcctac ccccagctca cctggactcc ttcagagaag aaacctggga 75000 ggcagaacac cgaacacctc tgttttagtc cagactgtat ccctaaccag ttgtgggtgc 75060 tagataaggc ccttttctat gactgtttcc ccctctttag aacaggacag ttattctcta 75120 tctcatttga gaccttacaa gaatttagga tgagtgagag ggttctgggt ctgctgctga 75180 tgtgccacgt gcccctaggg tcatccctat cccagactgg gcttgtttcc cgagctgtac 75240 catgatgcaa aggcagcctc tctctgaagc ttcttccagc tgtggctatc gtcctgggga 75300 tcccgaccgc cctctccaac ctggtgctcc ctcccgcccc actcccttcc ctggagacct 75360 tataaagcca ttgtttacac tggggctcag ggctcagggc tcaggctgcc ccagtgacag 75420 gccaaacacc aggcaacttg agcaacagca cggctgagtc acactttcca actggatcag 75480 ggctgggctg ggcccctctc cctccaagct ggcttgctgg gcagcagctc ctaagtccat 75540 atatgatctg gagatagcac caagcccatc cgccactcat ctgtgctcct tctctgagtg 75600 tgtgtgtgca catgtggact gccccccaca atggctccag gccctgaggg gcatctgagt 75660 gtgcccctac ctgtcactga ctcacattcc ttcagccaat ccccttgctc cttctgggcc 75720 tctattttca atcctctcta caaaatgggc gggaacacag tgatggggca aggaaaacag 75780 ccactaagtg gggagtttgg agtctcagtt tctggcccca gctctgacct aaccatcttc 75840 cctctccctc ccacccccag gacagtctta gcccacgtct ctctctgagc tccttgtctg 75900 taatggggta gttagtttag gatctgaatt ctttactttg gtactgaggt gaggtgacca 75960 gagaggaaat gccacagctg gcttaggatc cagagtcccc agccagaaac atcttcctgt 76020 tgaactggtc ctgctcctga gctccccact ttggagtatg gcaccaccaa ctccccagtg 76080 cccacacagg agcctggcag acttcttgac cttccctctc cctctccaaa ccagatctat 76140 tgggaagcct gtctctctag ctcttaagct attccagtca tctagtccat cccatctctc 76200 atccaagcct catccgagga aggtcctaga atgctatatc catcccttct ctgtttggaa 76260 accctttata actcctgttg tcctcaggag gaaggtcaaa cttttttttt tttttttttt 76320 tttttgagat ggagtctcgc tctgtcaccc aggctggagt gcagtggcat gatttcagct 76380 cattgcaacc ttcgcctcct gggttcaagt gattctccta cctcagcctc ctgagtcgct 76440 aggattacag gtgtgcgcca cacgcctggc taatttttgt atttttagta gagatggggt 76500 ttcaccatgt tggtcaggct ggtctcgaac tcatgacctc gtgatctgcc caccttggcc 76560 tcccaaagtg ctgggattac aggcatgagc caccgtgctc ggccagaagg tcaaacttct 76620 aactgtggcc ccctcctccc tcatatccag actcaagttt cttcccttcc tgatgtgctg 76680 tgctctccag ctctcttgcc ctgctaagcc taggctgatt cctctgcctg gaactccctc 76740 tccctccttt agcctgaact tgttcagatc ccagcttagt ttgcactttt ttcagatggg 76800 gggcccagac ctgcagcctg ggtcaggcat ctcccctggg cttcccccat cacagtgctg 76860 cccacctggg tcatcactgc ccatttagaa tggtctcacc tgctgggccc tgaactgcca 76920 gaagacaggg ctatgtctgg ctcctctggc ttgactaaat gcccccctta cttcccccac 76980 ccgcctccct ggaccctctc tggccttgct gagcagattc tggtgaaacg gggcaggtgg 77040 tagaggcggc gtttctcacc gtggggcccc gagcaggggt taggactttt tggtttttac 77100 cagccccttc tggaccagac agcggtagaa ttcctggatg tacgtgtaca cgcacttcca 77160 gtcaggctct cgaagccgca ccatgtcctc tgtatccagg agctgcgggc agtccgcatg 77220 ggtcctgggg agggtagggg gccgggaagg ggtgggggac gggggcagga ggccagggcc 77280 ccgggtgggg aagagaggga agaggcagag aagagagagg ggaggaaaca gagacacaca 77340 cacatacaca cacacacaca gagacatgag ttcaattacg attccagtgc tgcagtctgc 77400 cagccccccg catgcctcct ccccactgtg gacgtgccgc tcactaccca tcactaatgg 77460 tgtgcaatgc agacaagggt gggggccaaa ccagtcacag gtgcagagaa ctctaggggc 77520 aagcgggaac gcggggtggg ggcgatggcg ttggcaccaa ggttggagag gagggctgtg 77580 ccccggggag agggggtgag ggaggcgtga gaggaggtgg ggggaggagg aagaggagaa 77640 ggaggaggag gaagaaattt gagggaaacc agaaagagaa ggggaaagaa gggaagacag 77700 atggagaagg gtgctgaggg tgaggtgagc agacggggca acgattccaa agtggagggc 77760 ttgctgaggt cctatataag cctctggcag cactatatag gctgggcggg cacggtgccc 77820 gggccaggag cctccttttg gaatctccag ccgggatccc gtgggagcag gaagctctgg 77880 tgatagtggg aggagagcag gacagagaaa gggagagaga gggagaaggg ggcagaggga 77940 ggatggaggg gatatggaca gggccacctg gtgggctttg gcccgggctg gtaggccggc 78000 ctgcggctcc ttcgttccgg cgggcacctg gcacgctcag cagcgggggg gtggggatgg 78060 agaaggacgg ggactctctg gggaaggggg tctcagccgc tgactgacaa tgtggctggc 78120 ccgctccagg ggttctcagg gcaactgggc ctggtcccga tgtccagccc cagatgtgca 78180 gcaacattag cagggccagg gcccacactt actccgcaga tgagaaggcc acctcgaagt 78240 tctggcgtcg gttctgaggg ctaagctgcc catagtcgaa ggcctcaggg aagaagttgt 78300 gcaccagggc acagaaggcc atcccatcac tccagctgga ggagaagttc tggatgtcga 78360 cgtgctataa gccgtaggag gactggtcag gaacctgggg gcaactcccc cctgctgtct 78420 acccctcagc attctgttat tccagaccta gggcactggg cacaaagagg ccccgtagct 78480 tgcacaatga gtgaatagtt ggaacatgag cctcctccaa gtcagcctgt caactcccat 78540 atttgcaatt tcaagggaca gagctactga gaggcccagc gccacccagc taaggctatg 78600 gtcatgcctc atcactcctt ccctcattta gagaaattga ctcagggcct cctacagagc 78660 aacaaggagg ggactccaag agtgggatcc ggccttgaac cctgcccacc acccaagagg 78720 ccctgttact tcatcactga ttctggaatc tagggcttgc cttgtgtcct ctttgagcct 78780 cagtttcctc accccaagag cctttccatg ttccctgtga ggccacacag tggcaggaag 78840 tgtactgggt aataggagct ctgctaagaa ggaggtgttg agctggggtc tggggaggcc 78900 tccaggcccc ctggcctccc ggggctcacc tcgtagccgc gagtcttggc tcgacaccag 78960 tccagcagca tctgcttgat gctgttggcg ttggggaccc cgaagctggt ggatcgctgc 79020 acggctgcgc ggggtccgcc agggctgctg taggggcggt gtcaggacca ggtcacacga 79080 ctataagggg catgcctcgg tgggcccacc cagtggatcc caggccccgc cttccatgac 79140 cttcgggcct ttgcaccaca gatctagccg cgcggtcttc ccgcctctgc cgggccaact 79200 atcaagcccc gccccccact gcctatcacg ccccgccccc cactgcccag cccacttctg 79260 cagctcaccc ggccgcgccc tccttctcca gcttctcaat catggccttg cgcgcctggg 79320 aggctgaggt cttgggcaga ctctgcgcct tcatcagctc tttcttcttc tcggcctgcc 79380 gtttctcgag cgccgccagg ctgccggccc gtgggctggc ctggtcctcg cggtcgaaga 79440 tgctaggggt tggggaggcg catgttaggc agggagagca gggctgctcc ccagcctgga 79500 ccaccactcg cgaggaggag ggggggtctt gtagcacact agtatctcca ctgccacaaa 79560 cgcctgccag ggagggaggc gtcctcatca cacgcatttt agaggagtac actgagtctc 79620 aaatgacagc aaggttttca acaggtttcc gcctccccct cccccaccca cgagtagttc 79680 tctgagaagc ctcattgtac cctcaagtta caggggagtt cagcttctgg gcactatccg 79740 ataataaaaa tgatgactag cataataata gtaataataa taattcatct ctgttgatcc 79800 tttcctgtgt gccattttaa acttcacaag agcagggagg ggccttacca attccactaa 79860 aggtgaggaa actgagacct ctggcagtaa cttgcctaag atttcagagg acgtgatggg 79920 cggaactaga acttgaacaa ggtctctctg attcagagtc tctggacccc tttggttctc 79980 atcctggatt ctgatcctgt tcctgctttc tgccagcccc aacagcctct gttacatggg 80040 ggtaccctcc tttctcatgg ggctaaggta taaaggtgct gtgtgacctg ggacatggtt 80100 tgcagatact gggaagtggc agtgccacca ggcagctcag tgtggtaggt aggcctctgt 80160 aagtgttcaa tgctattgca gccactcaga gatgtgagcc cctaagcaac tcactggcct 80220 ccctgagcat ccacctctcc tgtggtgtgg ttgagaataa aatgagatcc caaggagagc 80280 aggatcctta actctcactt tgcccctccc tggctataga cctattacct cccagcatcc 80340 cagtctaccc ctctgtttta tttatttatt tatttattta tttatttatt tatctattta 80400 tttttgagac tgagtctcgc tctgttgccc agactggagt gcagtggagt gatctcagct 80460 cactgcaacc tccgcctccc aggttcaagt gattcttgtg cctcggcctc cccagtagtt 80520 gggattacag gtgcctgcca ccacgcccgg ctaatttttg tatttttagt agagatgagg 80580 ttttaccatg ttggccaggc tggtcttgaa ctcctgacct caagtgatcc gcccacctcg 80640 gcctcccaaa gtgctgggat tacaggcaag agccactgtg cccagcccac ccctctgtaa 80700 aacgggtttg cagttaggtc ccctgtggca ctgactcctc tatggtcagg gattgggtgc 80760 tggtgctcac ctgcccatct tcttggatga ggaggaagag gagaaggtct tggtttgcat 80820 catggtgctg ccactgccat ctgcaaaaaa ggggaagggg caccaggtga gggcctgggc 80880 tggacatcag gagatgggat gggaggctgt atggaggggt ggtgatagcc gcaggcagag 80940 aagagaaagt gacggcacag ttgaagacac ggagagagag ctcaaggaag agccggagga 81000 ggtgggcgga caggcaggca ggcacagggc gacaccaggt ggccttactc tccgagcgcc 81060 tcacgaaact cgactccact gtggtggtgc gggccgtccg tgtgccatca tctgcagggg 81120 caggggatga gaaggatgtg aaaggcacag ggggctgggg gaggatgtgt tcccaccctg 81180 agccctgggc cggccccatt tggcccctta ctggagtgga cgagccgctc agtcttggta 81240 acagtgctga cagcagagcc atcagctgcc cgctggctgt gcctcgtggt ggtctcagtg 81300 gctgtgttgc cgcgcccctc ccctggccgg ccccgtgcct cctgcagccg ccgttcccgc 81360 tccttgtccc gctggtctgg gcaggggatg ccccatgcat gcgcaaaagg gccaccaaca 81420 cccacacagc acagatgcac aggtgcatgg ggcacacaag acggggtgga gggtggcttg 81480 ttagaaacat gaatgacaca ggtaacaagg gcctctctag gagcagctgg ggtgagggga 81540 cagccataac ttgacaggga atggagtgtg ggaagggttt gatggactca ggcagaaact 81600 agagaatacg gagtagctaa actcaaaggg gtatggatcc aaaaagggtt tctataggca 81660 tgagtagcta agtcaggagg ggtatctaga tctagtgagg gggtagctga gtccaaggaa 81720 ggagaagctg agtgaggaag tagctgggtg ggccatcagc aggtctttgg ttggaggaga 81780 agagcagctg gaggcaggaa tatttagatc caggaaggga gcaattgatg ggatctgaga 81840 agcaatctga tccaggggaa gagtagctgg gagagaagct agtgaagggg gttaactggg 81900 cttaaaatag aagtaggtgg gtagagatag agactggggt ggccatcagt gggccctggc 81960 agaagcagct agattcagag gagtaattga gagtgtttga gaggagaagc aattgaaccc 82020 agaatctaag ggaatgaata gatgtgtcca gggaagaact atctggggga ggaagtagtt 82080 gtgtccagga aaagggaagc tggatggggc agaggctaag atggccatca atggacttca 82140 gggagagagg agcagcaggg agaaggagta tctggattca gggaaggagt cgttgacagt 82200 actttgagag gcaactggat ccaaggagag agtagctgcg ggagggagta tctgggtcta 82260 ggaaggagaa gagaagctgg ttggggagaa taactggggt caccagcggg agagaaggag 82320 ctagggaagg agcagctgga tccagcaggg aatagccaag ggaactgctg ggtctagaga 82380 aggagaagct gggtagggca gttattaagc tggggtgtcc acaaatggac cccagagtat 82440 gaggggagca gctggggaat ggggcagctg gatctagggt agggcaactg gctctctacc 82500 tctcttcctt tgtcggagct cacgaagtgc agcccggatg agcttccgct cttcaaagtc 82560 cgtgctctga tccagctgca tatagagccc atcattgcct acctggtgcc tgctggcctc 82620 tgccaacccc cagcccaccg gatctggcta taccatcttg tccaagactc cttcatcctc 82680 aatagtcatc agctcctcag cgctcagagg gctccgccct tctggtgctt tgttcactcg 82740 ggtctgctca gccccattgg ccgcttccac tgctgcagcg agaggctctg ctggctctgc 82800 ttccatctgc agggtgggga gagggcatgg actttaagca ggggtatggg tgaaactcat 82860 catgtctcca atggataggg aagcagatcc tagggttgct ggcacgcctt ggaaataacc 82920 actagcctgc cagcctgcct gcccaaagat ggccatgtca gcgtcagtca gggaagaggc 82980 actgacagtt ttgttgtagg gcttcccacg taccccgaat tgtattaata caatggatag 83040 tgataataat gatgatttcc agtccatagt aagtgttgta taaacactag ggactttact 83100 gtccctattt aacagaaggg aaggccgggc gcagtggctc atgcctgtaa tgtcaacagt 83160 ttgggaggcc gaggtgggag ggatcacttg ttgccagcag tttgagacca acctgggtaa 83220 catagcgaga ccgcatctct acaaaaacaa aaataaaaaa ttagctaggc atggtggtgt 83280 gcacctgtag tcccacctac tcagaaagct gaggtaggag gattacttga gcccaggagt 83340 tagaggctgc agagagctat gatcatgcag ctgcactcca gtctgggcaa gagagtaaga 83400 ccctgttgca aagaaaacaa gaccggaaaa aaaaaaaaaa aaaacagaag gggaaactga 83460 ggctcagggc agctaactga cttgcccaca gtctctctct aagtgtgatg cagcctggga 83520 tctgagctga aggcagccta actcctgaac cttagttcat tttgctgctt tgttcccagc 83580 cccctcccag gcaggctctg ctctgtgctg ccagttcccg aggcctaggt cctcctgggc 83640 cagtgcccag gcagcacatg ttgcccccca tctgcctgct accttgccaa gagggctggc 83700 ccggggcctg taggctcctg accaggtgtc tgactggggc tgccctgagc caagacctct 83760 atgaagctct cctctgtacc acctccccct gcctcgcccc tgctggaaac catcctctaa 83820 ggagtctcta gccctgcagc cctcccaggg catctcccta gccccttgaa gacaaggccc 83880 caagccaact attatggccc ttcctctcct ggcagggcct ctccgtctgc tataagggta 83940 aggagagctg aggtggcagc tgtttcaggg aggcttggtc tggccagggt gcagggcggc 84000 agggagctgg gggctggggc ctgggtcatg ccaggggctg ccaaggcagc tgccacacat 84060 gcctcagggc tggagcctgg caccctcttg ccctagtctt agagcactag tgccccagtc 84120 ccctgtcaag atagataaac tgaggctcag agaaggtggt gacataccta aagtcaagag 84180 gaggcagagc ctggctcaaa actacccctc ccaccaaccc agaagcactt acgagactag 84240 tgctgcgggt ggtgccggtg gaggagcggc ggcgggtgct gaaggcaggt gggtgggcca 84300 cgggggtccc ggcatcctcg gcagcctgaa agagggcctc ggggtcggcg gcagccagga 84360 gcagctcgct gggctccagc tcaggctcaa ggccggacac aagtgggacc cccagccgta 84420 ggctcagcac ctccacctgc ctgctcagtg catccagccg ccggctcagt gctgctctct 84480 ctgcccgcag ctcttcagct gcccgggcca ccggctccac ggtggctaca gctacctcgg 84540 ctgcctgggt cactgccacc cggcctgctt cagccaccgc ccgcagctcc tccagtgccc 84600 ggcccaactg ctcctcaagg gctgcggcca gctcaggccc aggccctggt acccccggca 84660 tggtgctggt ggggactcta tggggggtaa tggtggggca gtggcagggg ctgctgtctc 84720 tggctgagtg tctgagtctt tgcagctggt ccgagggcaa aggcaagggc agcgggcctg 84780 ccccgcccct gcctcccagc ccgccaccag ccagctggag ctgcagccca aatagaaacc 84840 tattctgggc tcctccgtgg aaggggcagt gggggagggg gggcctgccc aagcaggcgg 84900 atcgccaggc ctggctatag ccctacagaa atcataggcc tgcagcacag taagactgca 84960 tgggttctga agatcactga gatcggggcc ccatgcctca caggtgggga aactgaggca 85020 gggaacaggg aatggacctg gcctagccac catgtacatt agctgtgaga atcagtctgc 85080 tggactccac agcctgtact cctttaccct ttaccctaac tccagctgtt ttagacagct 85140 ggaacagatg ggggaaatgg aggcacaggg aggcaggact ttgagtgatc tgctataaaa 85200 agtgtcttgg tcttacataa atgccctctg gcctgcccat ggtgctcacg tccaaccaca 85260 gactttgagc aagcacatta tgggtacatc acctgtcccc tttggttcca gatgggtaaa 85320 ctgaggcaag ttggtggtgt cagacccagg tctcactgtg gcacctccca tccacctcaa 85380 gggcctcagc gggtcccccc accccacccc acacaatccc ttgtcagagg gcagctggat 85440 cctgcttttt tggaaaggaa gggtgcttta tttccctcac tctctccctg tctcccctga 85500 gaaggcccaa agctggtcta gccatctcac ctcagccaaa gtcccattca gtccctggtt 85560 tagcacagag ggcattacct gggcagccgg gtggcccgct tggggatccc tttcccggct 85620 gagctcccgg ctagtggatc ctgggcttgg gaatgaataa tggaagggtg ctgcgtattc 85680 agttcccaag gcacctgcta ggctgctgcc tcacctgatt ggcgcccctc tgcctgtctg 85740 tcccccctca gagcttctgc ccaaccccca cagggaggtt gacgcagatg ctaatcacta 85800 atctccaatc tcctaatggg ccaggctgat cttggatgag cagatgagct gctctatacc 85860 tcggggctga tgtccagtgt gggtgggcgc aggggcactg gggctgccac aggaagaggg 85920 gagcaagccc ttaccaccct ctctgagcct cagtttcccc atctgttcac caggaatgaa 85980 ccaaccaatt tcgaactaag gatcagagat cagcatccag gaagcttaac gccagtacag 86040 agtaagcttc cgacacactt agggactgat atgctagggt ctggccttag ctctgccacc 86100 gactggctgt ggtctgtgag cagccacctt ccctctctgg gcctcggttt ctctgtgtgt 86160 gcagtagggg aggagcagag gaaccctgct agccctacac cctgaagcag tgtatgtgag 86220 gctgacggat ggtgaggctg gtggggtgag gaggggctca ccttgatgct gcagcctcct 86280 cggctactgg ggggggcatg gctgaagctg gtgacatgag tgacactgcc cagccgagcc 86340 agggtcccag ggctgttgac acgggtgatg gtgctcttgc ccccactact ggtgctgagt 86400 agggtcgggg gcgcccgcag ccccagtgtc agttctgagt ggggagaaag gtggctgtca 86460 ggaggatcag gtggagtgag ggcagtgcca gacaaggttg ataatgccct cgctcccagc 86520 acaccctttg gagacaccct gagtcctggc cgcagcacct gtcctgcatg cagaagtgcg 86580 gttgcaggca ctcatcccca ttggggaggc agtggggggc gcctacctgc cctctggttg 86640 cctgtgggca gcagcacccg gcctgtggag gcctggccac ggccgtcctt gatctcgatg 86700 gtgaatgtgg tcttcatact gccccctggc tcggcagtgc cgacggccac gggcagcggg 86760 gcaccaggct cctctgaacg tgccacaggc ccccctgctc tgttttcaag gggcctagca 86820 gccaagcccc gccccctggg gccctcctcc tgggggcagc ttcgaagctg ggccaggggc 86880 tgggctactc ctcgttgctc cttgctgaac cgggaggagg tatcactggg gccccgagag 86940 gaggagccgc tggaggagga ggcaggggtg gtgctggtga gggaggggcc caggagcctt 87000 gcgggggtca ggggacttag ggcagcctgg ggtgtgccat cctggagcct agcagccata 87060 ggagaatcag atgtgaactt gtggacacga tcccgcacag agccagcccg ctggaatgag 87120 gaaggtccgc tggcaagggg ggtggactct agaaggaaca ggagggctgt cagcaactgg 87180 gtgggacagg gtctgcacag atcctaggca gggtgagaat aggtagtacc tcggttctgg 87240 gctggttggc gggggctgag caccgacagg gagcgttggc agggtcgggg tccagccacg 87300 tctggcaggt tggggagggg gtgatggcca tgtggggaaa gagaaaagac aggggatagt 87360 gggtgtccac ctttcataat cctctcctct acacctccct agcttcccac cctttcctgt 87420 actcaacccc caccccacct ctccatcccc tcctggatct cccacactcc ggcatcccca 87480 ctcggctgca tctctcctac aggcacctcc ttctcctgcc acactgaccc taggatgact 87540 tggacactcc tgggggccag gcgaggctta ggctggagga agggtgccca gatcctttct 87600 gcagatgggg aggggggaca gccctcctgg ccagtgctgc ccacagctcc agctgggaga 87660 tgggtggact cccttattgg ggagaagaat gtgcctgagg cccgttgcct ttcaaggctg 87720 caggggaggc ctctagccat gggggtggag ggggaggctg gcctagctgg gggcggggac 87780 acttcagggg tggggtgcag tatcagggac tgcatggacc tgaggaagct agagctgcca 87840 ggcacaagag cccattttct aggcagggaa agggaggcag ggggagggga agaaagatgc 87900 ctgtgactac ccctgctggg accctcacct gctctcttgg tgtcagaggg gcctctggtg 87960 gggctctggg cagcaggggt ctctttgggg ccagacagaa gctgcaaggg agaagaacag 88020 ggcctgagca aggcctgact cccagacctg ctcacttgcc tggcatccct gcccctcatc 88080 cagactcacc ttgttgacca cctggccctc agtgctgggg agcgttggag actcctgagg 88140 ctcagggctg gtggtcttgg gtgggctggg gggtggctct gggctgcctg gaacctcagc 88200 tgtaaggcac tgggcctcgg caggctccaa tggaggctca ggagaggcag gggtgggtga 88260 actgctgggt gaggcaggtg agctggatgt gctcccaggt ggggctcgca gcaggagtgt 88320 cactgtggtc acatcctggc tggtgccttc aggggtgggg gttggctttg aaacctctgc 88380 ctgctgttcc tgttcctctc gctctggcac ctgtaaggga cccacaggat gcaaccaagg 88440 ctccctaggc tttgaacgcc acccccacca ctgagggcca ggctggcaag tgcccagggc 88500 agggcatgca aagcagagtg gtggggcatg gcttcctgta ggcacacctg cgcaagcact 88560 ggcactggca tgctaagggc agtctctgat ccccacttcc caatctcttg gcactaccta 88620 gccaaagggg ttcagagagg accaggtcct gatgtcagtg ggtgggtatg gcaggagacc 88680 tattggggac gggagcctta atagatccct ggagtggagg ttcctgactc ctggcctcag 88740 cctggttcat ctggagtggg agtggggtcc tgccaggacc gtggacccag cggcctctgc 88800 tggccacttg gggaacctgc atggcctgac ctctcaccca cactctggaa aatagagtga 88860 actgtgagcc agctggggtc tgacatgcag gccccataag ccaaggtaaa gatgtgggct 88920 gtgtggaggg tgaggggcag ccctgggacg ggttgaagca ggggaggtgc cagggccgga 88980 tttgcatttc tgggagatcc ctctgactgc taaatagagg ctggatggca ggggtgggcc 89040 ccttacagtg aaataccagc ctagcaaaga cactcaggca ctctgtgcta ccggtatcca 89100 tgggcacagg acactgggcc actctcccac cctccttacc tcacactgtt ccagcctgtg 89160 tgccgctagc cccttgctgt cctctcttga gccactgttg ggacgcccgc tgtacaacct 89220 cccagccaag gtggcagctg gaagggaagg agcaagtggc aggtgagtga cagggaggtg 89280 ctgtggacag cagacagcag ggcaggggtg gggccgggac aggccacata ccctcaatct 89340 cctgagcccg tacacggcgg atggcagctc ggatcagctt gcgctcctca tactcaccag 89400 cgcttcgcaa ctgtgggtaa gagacaggtc gcgggtgttg ggctgtggag tccaggtctt 89460 cacctgccct gcccccatcc cctgccccag cctgggcctc accagtgcag tcaattcctc 89520 cacatcgttc atggactcca gctgccctgc cagccgtgcc agggcagccc gctgctcagc 89580 ttcccgctgc tgagagctgc agagacatca tgactgtaac caccactgcc atggccaggt 89640 cgtggaggat gtgggctaag ggtaggagcc agaacagagt acccagaacc ttggcagaag 89700 ggcatgtggc tgtgcacacc ctctaactgc acactgatac acatatgccc atggacgtgg 89760 gcactaatac cacacactca gacgtgctgg ctacatcagc acggccgcga cgccacaatc 89820 agtacatgct ccatgcccac aaacatctct gtttttccag aagcgtgtgt ggacgtactg 89880 ccattagcac atgcaatcca cagatacact tgtgctcacg cctgcctgca cacatgagct 89940 gagccagggc tcacactcac cttctcaccc gcatgttcca ccccccgcta ctcactgcag 90000 ccagttctcc ttgttgtcct gccgctcggc acggaaacgc ttggatgcca gggcctcctc 90060 ctcgcgctcc agctcctgcc gctgcagttc ccggatggct gagcggatgc gccgccgctc 90120 tgccagatct gctgtgacct ccagctgcag tgggtgcgag aggcaggtca ttttggctgc 90180 caggggcgga gggctggcac cagctgccca cggctctgcc tagggcacaa tgtgtggcct 90240 gtgtccactc cctgtgtccc aagctcttca cgtgcctgcc tgcccacgca gggtcccggg 90300 ggtagaccca gcccactgtt tcagggatct tgggtagtcc actttgcatt gtggttcaca 90360 gagcacacaa ctgtgagtgg acagccagaa actgcccact tgtgccaggt gccaagccag 90420 gcactccttt ctacaactcg attcctgcct ctcagagccc agatccccaa aagtcaggga 90480 gctattgtag gaggaggagg gaggccaccc tgtgggtcac taacagggtc cctagaggga 90540 aaggtgacag atgaagtcca ccctctgagc aagggaggct ccctggtcta gtcaccaaac 90600 accacagccc agctgggggt tgactgcttc atccacagat ggggaaactg aggacaggtg 90660 ctcaggagtc ctgcctggct gagggctatt gtccccactg cactggcctg gacctagcca 90720 ccatggaaga agccagggtg cagagtggga ggaccaatcc cccagacata taaggtggct 90780 ggcactaggg gccaccccag ggccttatag agggcatccc tgggtgacag ctgcttctac 90840 cggttctcaa cccctcagtt cccgggaaat tgggggtgac tggtctaacc aggttcagga 90900 aagaacacct tctctggagt gagtcagcca atcctgttgc ctcccccaca cctccaccat 90960 gtagagccac ctgctacata cagatcctcc gtggctcaag ggagagagga ctggcccagg 91020 gttcccctgg aagatagtgg cagagataag cctccagtgt gggtctgata accagacggg 91080 agccagtaaa ggcggggtga tttcctctgt ccccaccccc caaatcattc aggggtaggg 91140 ccaaagaacc ctctatcatc tcccttttta gcgccccccc gtcattcctt tctgcttagc 91200 gggaaggcca ggtggcaagg gtggggatgg gatggagata gttttcagca gggagtgtgg 91260 gctggcccaa ctcagccatg agccagcttg tcctagtctg aagagagcag ggagagtctt 91320 gggggaagag ccctccaggc tccacattcc tgaggaatta tgagaagacc ccctgaaact 91380 caggccagag cccttagttg gttccagccc tagtccaatc ctggctgggt gatcaagagc 91440 atatccctta aactctctgt gtcttggttt tttcatttgc cagtgggtgg ggttgggaac 91500 agtgacttgg cctctcctgt acatagctgc agttgcaata agcatcaccc ccatacttgg 91560 ttctagccag tcaggaggag ggagagagac aagggggcaa atgggaaggg caggataccc 91620 cgaggcatca gtaacattta tggagagcct gtgagtcaaa ccctgtgctg agccccctac 91680 ttgtcctaag cccacaaaaa ccctagatac tactgttatt cccatttgac agatgaggag 91740 attgaagtcc agggaggaca tgtgatttgc tcatggtcaa atgacctgag ccaggatttg 91800 aacccaggtc tctctgactc cagggcctgc cctaggctga agatagctct gctactgggg 91860 tctgtgtgtc atggtgggga cctcagggat cctggcactg tgttggagac ccctctagcc 91920 tggactagag atgctctgag gcctaaggag gccttatagc agaggcgggg ggaatgaggc 91980 tcactcccca gcccccggtg ctggctgtgt ctcaggccta gagccttctg tggtacattt 92040 ggaggctggg ggctggaggg gacagagggt ccagcccctt ctgtacagag ggtaaagagg 92100 cccagagggg caagggctag ccttttgtct cctaggtccc cattctcagt gctctgggct 92160 cggagatggg gtccttgtct ctgacaaaag cctgatgtag gaacttggcc acctctacag 92220 cacaaccccc ggagcttcag tgtccccatc tggaaaatgg gagcctccct ctgatccccc 92280 aaagtgggtg ggcaaggctg gagactgaca acctcattcc actggtcacc ctctggcacg 92340 acccttccct ttgggcctgg aggcaaaggt tggaccacag tgtctcctct gtgtgtcccg 92400 agttccaccc gcccaggccc caccgctgtg taaggaggga gctgtgggag ggagggaagg 92460 aagtacaaag cgccattgtc taccgagggg gaaggggaag gggatggggc ggtttccgaa 92520 actgcccagt gaaattctcc cgggaggaaa gagggtgctt cctccccctg gggagccggc 92580 tctccgtgta ctctctgccc tcgctgttgg gaacgcctgg caggccctga ggtctcactg 92640 ggcctcagtc tccccaacag cacaacggag ggggctctcc aggctttcag tcccagctcc 92700 cccggttgcc catgggggtc ccgccggcgg tggagggaag cctcgccagg gggcgctgaa 92760 ggcccgcagg ttctgcgacc gccctccctc gcagggcgcc gccctcgcct cgcccaccct 92820 gcctcgcgct aggcgccgaa ggggtagcca ggtaggaaga cacccgctac cgcctgcttc 92880 agtgtccgga tctaaaggga agaaaccaag gtccccagga cacccagctg agtggcggag 92940 gtcgaactcg aactcgggac cgaggcagag ggcgtcccgg cgggtggtgg aggggcacgc 93000 ggcgtgcaag tccccaggcg tccccattcc tcccatcccc ggcccaatcc tcaagaatgt 93060 gcgggagccg gggccggaag cgactgcccg cgtccccaaa tcggccagac gctggggcgc 93120 agggcgggcg gagcgggcct agcttttcct tatatggccc ggccccgcgg ggaggagccc 93180 ggctcgggac gcccccgttc ttgccacgag gccagcgggg gccgggccgg cgcgcggggc 93240 gcagtaatgg cgggcgccgg gtgctggagg agccgctccc ggggtcggaa agacttcgag 93300 aggcaccgat cccgagaccg gggcaggttc tcatctgtcc tttcccagag attcaaccac 93360 tgctccagct tctctccaaa actcttttcc agcgccgccc gagcctcgct taagagaggg 93420 aggtggcggc tgaagaaccc tgagcctgcc tgtggatacc ttgagatgag gatgtgcggg 93480 aaccaggcct ggcattccct ctttttggac tgtgctgcct ctacgacccc cactgggact 93540 tggacttcct gagggaaggt cgaactgact ggcgggcacc tttggaaacc taacctcatc 93600 ccctccaggc tgcacacatc ctgcggtgat agtggagagg cagacaccca gagagtctaa 93660 tgcgctggtc cgagaacata caggcagagt gccttgggga ggtcatggca gcagctgggc 93720 actgcccagt ggctgggcta cgctggttgg ttccagcctc tgcctgcggg ggaaggtatg 93780 agagtggggt gggtcacttg tcttctaggt aaagtaaatc tttaatttac ccccatggac 93840 aagggtcagg gactgaggag atggagctcc tctggcccct cctccaggtc aggctgcctg 93900 gcctttgggg ttggggaagg agccctgccc cactgggttg ccctacggcc tctgtgcatg 93960 gaggtagaca gggctctcag gaagaggaac aagaaagggg atggagtggg ctcatctttc 94020 ctccacctga gatctgggtc catgcctcat tctgtcccca tgccaactct aggacctaga 94080 gcttgtgtgc aaacacatct ccctccctcc cttcatttta caggtagagg aactgagact 94140 caagagtaga aaaatgagat gagaagccac agaatccata agggcccaca aaacctgtct 94200 ctctcttatg gcctcgtcca gccttgactt tcccaggact ctggtccccc gtggcccact 94260 atggggttgg gattttggca cagctccttc ttagatgggt gtccttgagc aggtgatttt 94320 aactctcttg agtcgcagtg cccaggcttt cagagctgct gtgattattc tgtgacatgg 94380 tatacccagt acccagcctg ccccctgcca ggccttggca ttattaatca ttgctgctac 94440 cattatcact gggccagctt ccaggggtgg gcattgcccg agctattgct ctggagaggc 94500 atatccagcc tccccacacc tgtggctgca tacgggcgag tctacagcag ttactgttta 94560 aacaggtggt ggctgtggag ggttgggagg gactaggctt cagtaccagg catggacagg 94620 cacatgccac aagggcctct gcatcagcca catggaactg gcctacccct gttcccatgt 94680 ccccctcctc ctgacctttc ccccatcact tcttcctgtc agctgagagg taccctggat 94740 tgaccctgcc tctctggctt ggctttcctg tccccacagt gggtgatggg gccacttacc 94800 agcttccgaa gggctccctc atccagccca gctaaggcct cgtccgccat ctcgctggcc 94860 cctagctccg tcggttcctt tctggtgaga tccccagtgc ctgtggcacc tgtcaccagc 94920 tcagagaatt ctgcagggga cagacatgaa tcaggcatgc tggggcttcc agaaaccaca 94980 ggcacttagg ctctgtgcct tactttccct ctctaaccta ggagcgtcca ttactgtccc 95040 atcctataat gtggctcctg gctggaagct gccctctgcc ctagggtggt ttgctggaaa 95100 actcaccaaa cccagggtag ggggtctctg gttccagccc tgccagcttg gccgccagtc 95160 tgctgtgtgg cctgggatgg actctcatcc tgtctaaacc tcaaaacagg gagggcaggg 95220 acctggattg agaagccagg gcctggcaag acccacccaa gctgtgctta ccaccagggg 95280 gtgcactcca gtctccagtt tcctgcccca cccacccatc cacagggcct acccagcccc 95340 cacccactcc gcaggctcag cttctggctg tgggctgaac ccgtagttct tgctgccacc 95400 accactgtca ttcccccagg tataggaagg tacactgtgt cttccgattc ttggagccag 95460 ctctgctgtc cagacctcct gaagccaggt gtccaggcac ccagcacctc ctgccaattc 95520 atacagaatt caattcccca cctggaaggg ctttcagaag ctgacctgcc caacccctgg 95580 atttcaggca aactgagaag attggagagg gccaaggatt tgtcactgag caaggaggaa 95640 gccaaagact tagagggcag agaaggatgt aatcaaaatc ttcgtcatct ccggcttccg 95700 aagctccctt ccaaagtgcc ctcaagggcc tggaacactc tcagtgacag aggcaagagc 95760 cccatcttgc cccagtgctg cccatcaaaa tggaccccta aatcctggcc cagcctccca 95820 gcgcagatct ctccttcctc ctgtagcccc aactaatgtc tgtctggaat ttgaggggcc 95880 ctggtctggc acactgtgga tgcttagtta atgtatggtg actgactaat gtgtggcccc 95940 aggcctgccc cccacctcct gttgattcat ctttcaatca tcccttccct ctcttcagaa 96000 cagtcacttg ggaagtcacc ccatacggtg catgggtggg gggtgagggt taccgctcca 96060 cacagttggg gtgtgtgggt cccagcctgt tcaagtcact gcttgttccc cctcccatcc 96120 tggtaggctc agaggtgtca acctcccaat ctctgcctgt taggatcctt gcctcttacc 96180 tagttactct gtctgggtta aacctcttca agactgtcca gtggtcacca gccttaggtt 96240 ctgcggacat tctgattccc cccatgtctg ttcttctatg gggcagctga ccctaatgcc 96300 taatctagga cacccatggg attataagaa gatccctgcc gctgctcttc tccaatctcc 96360 ctgtcacaca gtctggggtc gccggacatt gtgaggggcc tcaggattct gtggcagctt 96420 ccccagggtt tctgccgcca cagactagcg cccctgtggg gcgtggagtc tcttaggaat 96480 ccgggggcgt cttcccccaa cagtctcata actttatccc atggcttaga cctctcgtat 96540 gggtgggggc tcccaggtct ggacgttcca gaactcctgt ctagacatcc gggttccacc 96600 cccggacacg ttggggcagc accaggatcc cccccgaggt ccgcacaccc acctctcagt 96660 ccagcccacc cgtccggcgc aggctcggct tagctctttc gggacccgac agacggatta 96720 gacacgcgca ggccggaggt gccgcgaccc gctgtcccag gcccgctcag caaccgtccc 96780 ctggattctg cggagagctg cccgtccagc cgcgccagca gcccggctgg ccccgccctg 96840 ccccgacgcg ccagccaacc ctcgattggg tacctcccac tctcgtgccc cattgggaaa 96900 attcaatttg acggccacgc cccgagagga aggccccgcc cctcgcgggc cagggaggtc 96960 ggaaattggg agtcttgggg tcgtctgcct cggtggcttt agcgagtcgg gtgggcatcg 97020 gcagggggac gcaggctctg cgccaagtcg gggggggcgc cccgagccga ggtaagtttc 97080 ctggggtcgt aggagtctca gagccttcag gacagcccct ctccgccctc ctctttgttc 97140 ctgagaccac gtcccctccc tcgactccac ccctttctcg cgtcagtgtt taagcttggc 97200 cgccgtccct aggctgcttt cgggacacct ggtctgagcc acctcagagc agggactgag 97260 tgactggcag caccttgacc ctgtgttgga gtgccgggac catctcaggt ggagcagaat 97320 caatcacaca gcacgcctcc cccagcccac acacctttga acagacattg ccttcttgta 97380 gcatgcttct accttccaag ccctgagagt ctgcctttag gagcgctgga gtcctaaata 97440 gggaatatgg agtccaggct gtcattcagc aaaaggggga aattgaggcc cagagagagc 97500 tgacatgtcc aagaccaaac aaggaatcag ccagggtacc caggaggtca gatccacaag 97560 gcaaagctat tccatcttca gtgccagagg ccctaaagcc gcccttgggt ctccatggag 97620 actaaagtgg gtggagttgg gaggatgggg tctggagtcc tgtcaaataa aaacaataac 97680 aaatcattta ttttgtactt gccatgtacc aggcatataa tgcccataac aagcacatga 97740 gaccatgact attgccccat tttacagatg aggacaacag ctgataagta gtaaagctgt 97800 gattcatacc cagcaccttc tgagtccaga ccctgctttt aaccactata atgtgggatt 97860 ctggggaggt ggtttcagcc tgttaaccca gaagagcccc ggttcaggtc ctctgtgaca 97920 ccccccagcc cccatctaag gaaaggccca gtctccacac tgagagtctt ttccatgtgt 97980 catttcattt catccccaca cccctgagaa gtggtcccat tttacacatc agaaaaccaa 98040 ggcacgggcc aggtgcggtg gctcatgcct gtaatcccag cactttggga tgccaaggca 98100 ggtggatcac ccaaggtcag gagttcgaga ccagcctggc caacacggca aaaaccccgt 98160 ctctactaaa aatacaaaaa ttagtcgggc aagtggcatg cacctgtaat cccagctact 98220 tgggaggctg aggcagtaga atcacttgaa cctggaggca gaggttgcag tgagccgaga 98280 ttgtgccact gcactccagc ctaagcgaca gagcaagatt ctgtctcaaa aaaagaaaaa 98340 agaaaatcaa ggcacagaag aaagcgactt gtcaatgcta cacagcagga gaggcaaaca 98400 gagctcactt cggaggacat atttcaaggt cctaggcttt ctctacctgg gcgagatgcc 98460 atgttattat ccagaacgag ggtcaggcgc cctctaagac caattctgaa tacttcaaaa 98520 ttcacgcgtc ccttgggacc tccccttcat gcagggcaca cctaggccac ctctgatttt 98580 cagggcctgc ctgaatggcg gtcaccagct ccaatgaatg gcctgctttg tgctaatgcc 98640 ctcctttctc cctgccctac tgtaggctag gaggaatggt acaggtgagt tcctccatgc 98700 ttggatttac tgtctggcac atgcgctcac tagcccttgg ccctatggaa gggatgtgtg 98760 ggtcctgccc cttcaagccc ttagtgcctg ggtccacctc cagacatacc cgcctgcctc 98820 tgtcttcctc tctgcaaggg agtgggggtg atctagagat caaagggcag tccggtacag 98880 tgctagggaa gtttacagct acagccgagg aaagagtaaa catcccgtga cgagggcccc 98940 agcatttgct gaacacctgt tgcatgtcag acgtggggct cccactactg ccaggtgacc 99000 actgtgcaag ataggtacac tctgattcga cagaggaagc tgaagctcag ggaggtgaag 99060 gcaccttggc ctagtaaagg cattcagact aaagtggaat tctgcctgat gctgaagccc 99120 cttccctcca ctttgctgcc actaggatgg gggaagctct ggaagacttc ttagggaagt 99180 ggtgtataaa ctgtgtgtca cacttgtttt tattttattt tatttttttt ggagacaggg 99240 tcttgctgtg tcccacaggc tggagtgcag tcgcatgatc acagcttacc atggcctcaa 99300 actcctggct caagcaatcc ttccatctca gcctcccaag aggctaggac tacaggcaca 99360 caccaccacg cccagctaat ttttaaaatt catcccacat agaagagggg gaaaggcatg 99420 aaagggcatt tgtggcagag gaacagtgtg agcaaagacc aatagtctgg gaaaaggagg 99480 aggataggct gtgggcggag caggaaatgt gggtggttct ctttgccaag gattctgaat 99540 gccagatgag caggatgaat gtatcttgtg ggcaccagag aggcctgggc ctcagcctgc 99600 cccctgtaaa atgaggtgat tagactggtc tgcttcaagc cttcctaggg caaggggctg 99660 tcacagaaag ggtctactct aggttcttcc aggttcaacc ctggaaaggc agaatgggaa 99720 gtggctggag cagctcagag gctaggggta atattttgct ccagagctca agtctgagaa 99780 tgactatttt accaagctgt ctgtgttgca tccctaagtc accctggcta accctccacc 99840 cagtcagggt ccttcagaga aagcccaggc cttgggtcag gaggcaagaa gggtgatggg 99900 tgtcttaccc ctggctccaa ccctaggtaa gggttggccc tcttggagct tcaacttgct 99960 catatgcaca atggaggagc tgtgccttgg gctctctaag cctctctccc caggacagca 100020 ctgtcattct ggagacggga acagcattag caaaggaacg gaagtaggat tgtgacgacc 100080 ttgttgggca acagacaggc aggtgaggct ggagaatgga gcccctagag gtggatggtt 100140 cttgttgggg ttggctggat ccaaggggta tgaccttcct ccttatgtgc agaactggat 100200 gcgtcctagg tcatggccag cagccctcgg agtgggactg aggacctgct gggaaaccag 100260 tttggcaagg ccatcatctc caggatgtca tccagccgct gtgttctctg ggcaacagtg 100320 ccaggcaaac ttctggccct gcaggaggag aaggggcctc agatgcccac tgggcagcag 100380 tgaattccag gagacccagc ctcacagaca aaggagaggc aaggggctgg aacaggaagg 100440 agagagttct ggatgtgcca gcctggacct ctttagactt ctgggagtcc ctgatgcctg 100500 ggcgcaggga gtgggggtct aggctcatgg tgggacacta tgtaattgct acctgatggg 100560 ttggacactg gctcctgatc atgcttatac tacatgtgtg gcaattttgt taccactatg 100620 accttcacag cttgagtcct gtgaggtagg accaccatta tacagataag gagacaggct 100680 cagaaccctc gttcttttgt tgtttttttt tttgttttgt tttgtttttg agacagagtc 100740 tcactctgtc gcccaggctg gagtggagtg gcacaaccat ggctcactgc agccttgacc 100800 tcccaggctc acagtgggac tacagacacg tgccaccatg cctggctaat ttttttattt 100860 tttgtagaga caagggtctc cctatgttgc cggggctagt ctcgaactcc tgggttcaag 100920 aaatccgcct gccttgacct tccaaagtgc taggattaca ggcgtgagcc actgcgcccg 100980 gccagaacat ttgttcttaa tcaccatatt ctaccatcca ccatttggaa gctccacttg 101040 gatgacgcct gagcactggg gagacctggg cctcagtctg cccatctgta aaatgagggg 101100 gtttgactcg cctccttcag gccctcctag ggcaaaaaac tgtaacaaga agggtctaga 101160 ttcttccagg ttcagctctg gactggcaga gtagggagta tctggagcag ctcaggggct 101220 gagggtattt tggctccaga gtccagtccg agaatgaata ttttaccaac ctgtcagtgt 101280 gggatcccag caaacccttc tctctacttc tgaacatagc acctgaatct tggcatcaca 101340 gagtcctaga tacccacctt atggttcaaa taggtaactg agtcccagag aggacaaggg 101400 acaggcttca ggtagtgtag caaatcagga gcagagccat tctgcatccc agattctcaa 101460 cctctcaaaa ctttgtttcc tcctcagggc ctggcacact taagcatgaa ataactgaca 101520 catattgagt gcctatggca taccatgcac tcatgtaacc atcaccacag ccctataaag 101580 cagatgctaa tgttctgtcc cttttatggg caaagaaact gaggctcaga gaggggaagt 101640 catttgtcca agttgacact gcatgttggt ggtagcgaag ggatttgaac ccaggtatat 101700 aggcccttcc ccctcagcag atccagtaag cctcactgga ggcatgaaga cctgtagaca 101760 gcggggtgga tggctccttt gccggttctg aaggcacgca gtgtccaatt cagagtttcc 101820 acgcaggcct ggcctctctg gggcagggag aaaagtgctg aggctgcaga agggctctgc 101880 atcttcccag aggaggcggc cacggtggga gggagtgctc tgcaacaacc tcagagccaa 101940 gtgtagacgt ggcggctgga ccagctgcaa gcaagggaag gcaggcaggg tggggcccaa 102000 acccaaaccc agcctccaag ccgtgttccc agccttccgc cagccaggcc ctgccctacc 102060 cgcccttctc gatccccatc tggatttgag atgaggacgc cgggcctaat aatagccaaa 102120 tggcacggag gcagtgcctg gagccactgc cagttggggc ctggggtccc ccatggtctc 102180 atattggcct ccaacagggt tcagaacttt aaaagtactg cattccagcc tgggcgacag 102240 agcgaggcct tgtctcaaaa acaaaaacaa aaacaaaaca aaacaaaaca aaaacccttt 102300 aaaatagcaa ctgcttatga agtttataat atgtgctggg cactgggcta aagcttagcc 102360 cacagtaact tacttattcc tcaccctacc cccactggct aagactattc cttttttttt 102420 ttttttttaa gacagagtct cgctctgtca cccagactag agtgcagtgg cgcaatcttg 102480 gctcactgca acccctgcct cccggcttca agtgattctc ctgcctcagc ctcccaagta 102540 gctgggatta caagggcccg tcaccacgcc tggctaattt ttgtattttc agtagagacg 102600 gggttttgac atgttggcca ggctggtctt gaactcctga actgaggtga tccacctgcc 102660 tcggactccc aaaatgctgg gattacaccg cgcctggccg ggctaagact attcttagcc 102720 cttttgatgg atggaacact gcccctgatg ataacaggaa cttggcagcc ttcaattgct 102780 gagcatgcac actgtccctc cttggcactc tgctaagcac tttctttgta ttttcccatt 102840 gattccccat ggcattatga gacagatgct aatttcttta gacgaagaaa aaaaatgagg 102900 cccagagaga aaagtgactt gcccaaggtc acacagctat aatggacaga gtcgagactc 102960 aaacctagga ctttctaact gtagagaggc taagacctta gcttctggaa acagacaaac 103020 ttgagtacgg tggggacatc actgctccct agctatgcag ccttggcaag tcacatcacc 103080 tgcctgaggc tcttgttttc tcctctgtaa attgggggtt tggttgagat aatactaaca 103140 ctccctgaca gctattaagc ccaccttggg tgtaataaaa taggtaattt acagcacacg 103200 tttccacggt gcattccctc agtcaattct cacaatagcc cccaacgtta ggactcctct 103260 cttccagcac ctgtgttttg ttgttgttgt tgttgttgtt tttgttgttt tttgagacag 103320 tttcactctt gtcacccagg ctggagtgca atggcacaat ctcagctcac tgcaacctcc 103380 gcttcctggg ttcaagcgat tctcttgcct cagcctcccg agtagtgagt agctaggatt 103440 actggtgtgc accaccacgc ctggctaagt tatatatttt tagtagagac aggatttcac 103500 catgttgtcc aggctagtct tgaactcctg acctcaggtg atccgccctt cttggcctcc 103560 caaagtgctg ggattacagg tgtgagccac catgcccagc cccagcacct gttttataga 103620 agggaaatgt cagtctcagg gaggggaagg catttgccca aaatcaatag caagtgagtc 103680 aggacttaag cccagggctg tgattctaga ggctgagctc ttttttattt tttaagacag 103740 gatctctgtc acccaagctg gagtgcagtg gtgcgatcat ggcacactac agccttgacc 103800 tgtctgggct caggtgatcc tctcacctca gcctcccgag tagctgggac tacaggcact 103860 caccaccaca cctgactaat ttttatagag atggagtttc cccatgttgt ccaggctggt 103920 ctcaaactcc tggtttcaag taatccgtcc acctcagcct cccaaagtgc tggaattaca 103980 caggtgtgag ccaccatgcc caggcaggca tgtgactatt tttggccaat agaatatacg 104040 gaagtggcat tgccagttcg aagcctgggt gttaagagat tgggccttaa gagattccac 104100 ttattctctt ggaactctcg cagctgttat gtgaacaagc ctgggctatc ctgcctaaga 104160 gaccactgga acagggacta gttatcctag ctgaagctgt cctagtcagt caccagctaa 104220 tccaatagct gaccacagat acatgagtaa gcccaactga gaccagaaaa atctttagct 104280 gagcccaggc taaagtgcca atccatgaaa tcttgagcta aaaaaacggt tgctgtttta 104340 aggcactaag ttttggggtg gtttgttatg tagcattgtt gtggcaattg ataactgata 104400 cactgtttta ttcagtgtaa ttaatgctga ctgctgtaac aaaccaaata tctcagtggt 104460 ttaacccaat cagagtttat ttctcacccc tgcaaagtct gatacaggtt ggggctctcc 104520 cagggagctc ttttccaagc agtgaccttg cccccgaatc ctgcctccac cccaggcttt 104580 ccctggaatc tattcctgaa tcctctgcat gtggaaaggg aatcagaaaa tcaaaggagg 104640 cacatccaca cttaactgcc tttgcgcagg ggtcacgtat aatttcactg gcctttatgt 104700 agtcacgtga ctctactaac tgcaggaaaa atgagaacat gaccttcctg tgtgtccagg 104760 aaaaggaaac aggttacaga acacaaagca ttgcttccgt tacattcctc ctgttgtggg 104820 gctggcgtgc atgcgtgcat gcgtgcgtgc gtgtgtatgt gtgtctgtgt ctgtatgtgt 104880 ggtgggagtt ggaggggcat gtgtgttaag cagagaatta acatctataa agaatcaaca 104940 gtggtgcatg cctgtaatcc cactactctg ggaagctgag gcaggaggat cgcttgagct 105000 caggaggttg aggctacact gaaccgagat catgccattg cactctagcc tgggtgacag 105060 agcaagaccc tgtctcaaaa aaaaaaaaaa aaaaaaagag agagagagag aatcaacttc 105120 agcacctacc atgtgttagc ttaaataagg gacaagttat aggtaaagaa tttgaggctc 105180 agcttaactg gtcctggtgc cgcacgcctg tagtcccggc tacttgggag gctgaagtgg 105240 gaggatcact tgagcctagg aggttgaggc tgcagtaagc agagattgcc cactgcattc 105300 cagcctgggt gacagagtaa gaccttgtct taaaaaaaag aaaaagaggc tgggcacagt 105360 ggctcatgcc tgtaatccca gcactctggg gggctgaggc gggcagatca ccagaggtca 105420 ggagttcgag actagcctgg ccaagatggt gaaaccctgt ctgtactaaa aatacaaaaa 105480 ttagccaggc gtggtggcgg gcacctgtaa tcccagctac ttgggaggct gaggcaggaa 105540 aatggtttga acccggaagg cggacgttgc agtgaactga gatcgtgcat tgccctccag 105600 cctgggtgac aagagggaaa ttccatctca aaaaaagaaa aagaaaaaaa gaatctgaga 105660 ctcagaaagg ttgaggaact tgccccaaat catacagcaa gccagttgag tagctatttt 105720 gcagtagtga agggctcagg gagatctgga gttggacaga tctaggtgcg aatcccaact 105780 ctgtcaattc tttactgtgt gacatttggc aagttactta atttctctag gcctcagttt 105840 cctcatccac aaaatgggga gctaatactt ccaaccttat aaggttggga gtgatcattc 105900 acggagcttg catgggatgg ggatcctggt acatgggact tacataatga atgtcagcca 105960 cataggcaga aatgatgcta tctctgatct taccctgcca gggtccatga atttggccaa 106020 ggggatttat tatgttttgg acaaatccta tcccttccct ctatctcttg tggtgtaaat 106080 ggttttattt acttcattaa gagatggcaa tatggctaag tgtggtggct tatgcctgta 106140 atcccagcac tttggggggc tgaggtggga ggatcgcttg agtccaggag ttcgagacca 106200 gcctgggcaa catggcaaaa ccccatctct acaaaaaata caaaaatgag ctgggtgtgg 106260 tggcatgcac ctatagtccc agccacttgg gaggctgagg tgggagaatc ccttgagcct 106320 ggaaggtgga ggttgcagtg agccgagatc atgccactgc actccagatt gggtatcaga 106380 gtgaaactct gcctccaaaa aaaaaaaaaa aagagagaga gagagagaaa gagagagcta 106440 gaactatttc cccagttgaa ttttttttaa ttaattaagt ttttaatttt ttgagacagg 106500 gtctcactct gtctctcagg ctggagtgca atggcgtgat cgcagctcac tgcagcctcg 106560 acctcctggg ctcaagcgat cctcccacct cagccggtgc atgccactat gcccaactaa 106620 ttttatgtat tttatttttt gtagagatca ggtctcactt tgttgcccag ctggtctcaa 106680 actcctgggc tcaagcaatc ctcctgcctc agcctcccga agtgctagga ttacaggtgt 106740 gagccatgat gcccgctcca gctgaatatt tgttactgaa caaaccttca taagcacaaa 106800 gcccctgaac acctatggct gctgacacat gcctgaaatg cctccattat tgcttttttt 106860 tttttttttg agacagggtg tagctctgtt gcacaggtag gagtgcagtg gcgcaatcat 106920 ggctcactga agccttgaac tcctgggcgc aagcaatcct cctgcctcag ccaccaaagt 106980 agctgggact acaggcacac accaccatgt ctggctaatt ttcttatttt ttgtacagat 107040 gggatcttgc tgtgttgccc agactggtct ggaattcctg gcctcagcaa tactcctgcc 107100 ttgcctccca aagtattggg attacaggag tgagccactg cactcaggct taaatcgttt 107160 tcttttcttt tttttttttt tttttgagac agagtttcac tctgtcaccc aggctggagt 107220 gcaatggcgt gatctcagct cactgcaacc tctgcttccc gggttcaagc aatcctcctg 107280 cctcagcctc ccaagtagct gggattacag gctcctgcca ccacacccgg ttaatttttg 107340 tatttttagt agagacgggg tttcaagatg ttggccaggc tggtcttgaa cccctgacct 107400 caagtgatcc acccacctgg gcctcccaaa gtgctgggat tacaggcatg agccatcgtg 107460 cccggctggc ttaaataatt tttaaagttt tgttttgaac aggtagttct gggaggtcag 107520 aggagttatc tctcaggaga taattatgct caagtctgga agataagaaa ttgttgaaca 107580 aaaaactaag ttggtctcga cgtgggggtg ggggtgttcc aggcaagggg aacagactac 107640 gcaaatgtcc cgaggcagga acaatctcca gaaactgatg gaagaccaac gtgagtgaag 107700 tatgaagggt aagggagaag tggggtttgg atggggagag gggaaaggcc cagactgaaa 107760 ggcccctgtg ggaaccttca caatttgcag ggcctggtgc aaaatgagaa aacggagctc 107820 cttgttcaaa aattctgaag tatttcaaga tagtgacagc agagcattac accgaccctt 107880 cattacgtga agctggccct gcccatggcc catagtaaga ggaaaggact ttcatgtgag 107940 ggctgcaggg agccatggaa ggtttttgag ctagaggtga tcagatctga tttgcatacg 108000 cttcagttgc tgtcctcact accccacacc tggatgatgt gtgtctctgc acaggtggcc 108060 tgcttcactt tcctcttcaa catgtcactc ccctgctcaa gaacctgggg tggttcctac 108120 ttcctattag acccagccca gattccctat ccagacaccc agaggccctt caaaatcttc 108180 ccttactgga tttagttaat ctaatgtcaa caaaggctgt gtgctgaatc ccagagagat 108240 gatgaatcaa cccaagttca cacagcaatt ataggagagc aagtcagggc tggaacccag 108300 gtttcctgag gtcggcccac ccagccctga gcgagggtgc agtcctatga agtgttttgt 108360 gtcccccatc ctagcacaga gccatgcaca cagttaggtg ctcaatctgt gcctgtggcc 108420 gtgagttcgt tcctcttagg gcacatctct gccagggcat gggtgtccca gaatccagga 108480 tgcagttagc atccttcctg actccttctc tccctcgtcc ctacctctag gcgttcacca 108540 agccccaccg cacccaggcc agctggccag gtcttgccca tagacttgtt gtttggcctg 108600 tgcagtgttt taaagctttt cgaattcatc gttctaacat tttaaaaaat ctggaaactt 108660 cacatggcaa tccccatctt gtgtctcttt gcaaagtctc aagcctgggt ctgggttcct 108720 ttggggaggc agttctctcc aacctctgag cttggggtgg gtgaggtggg gaacggtcgc 108780 tctagtcccc agcggggcgc ctgaatttgg gactttgaag cgagagtggc ctaattacca 108840 ccaaggacca ataaggatcc tggaagagag cgccctagtt accaccaagg accaataagg 108900 atcctggaag ttgattcaat cagacgtata ataacccctc cttctggagc ggggccaggt 108960 gggggcaaac cccgcctccg gtcttctaac aacagggagt aggaggggtg ttttgcccta 109020 aaccttacaa ctagccccaa cctgatgttt gacttctgaa tcgcttaggg cttcatagat 109080 aagatgaatg cccctgagag aggccatgct gctttctctc ccctggcctc tgcctttgct 109140 ttcttctccc ctgggactgt gctcttcaac cacatcttca ctctggctgg ctccagatta 109200 ccattcagat cttaactcac acatcacctc cttagaaagg tcttcccaga gcacgtatct 109260 gaagctcccc aaaattactc tgtactgtaa ttactcccca tcacagcact gacgatcgga 109320 aatgattaat ttttttgttg tttgtctcct gctagactgt gagctctgag aagccaggga 109380 cttgggtttg tctcgctcaa cacggtcccc aggacctaga aaggatctgg cgtcaacgaa 109440 ggggctcaac acacgtgtgg aacaaatgaa ccactggatt cacaaaacac ctttccctga 109500 aggatgcatg tgaccccttg gtcagccagc cagcatgggt gggagccagt aaggaggcag 109560 ccaatttgca attagggagc aattaataac tacctaattg gtacaaaaga cagctgaggg 109620 gctgggagga gaacaaggga atgaagctca gaaaggagcc tcaggtcttt cttggaaaat 109680 actgggagca ggcaatgagg aatccccggg gtaacatttg aaaacctctt ctgttattgg 109740 agattcaaat gatcagaagc tcccctaaaa ggacttggtc cctttaaaac attttttttt 109800 ttttgagatg gagtttcact cttgtcaccc aggctagagt gcaatggcgc ggtcttggct 109860 gactgcaatc tccgcctccc aggttcaagt gattctcctt cctcagcctc ccgagtagct 109920 gggattacag gtgtccacca ccacgcccgg ctaaattttg gatttttagt agagatgggg 109980 tttcaccata ttggcccgtt ggtctcaaac tcctgacttc aggtgatcca cccgcctcgg 110040 cctcccaaac tgctgggatt acaaatgtga gccactgtgc ccagccaaaa cattttttaa 110100 tggtttgtag agatgagatt tcgctatgcc caggctggtc ttgaactctt ggactcaagg 110160 gatctgccca ccttggcctc ccaaagtgct gggattatag gcatgagcca ccgagcccag 110220 ccaggacttg gtcctttaag aagcaggtgt gggccaggcg cggtggctca tgactgtaat 110280 cccagcactt caggaggctg aggcaggcgg atcacaaggt caggagatcg agaccatccc 110340 ggctaacatg gtgaaaccct gtctctacta aaaatacaaa aaaaaaatta actgggcatg 110400 gtggcaggcg cctgtagtcc cagctactca ggaggctgag gcaggagaat ggcgtgaacc 110460 cgggaggcag agcttgcagt gagccaagat cgtgccactg cactccagcc tgggcaacag 110520 agggggactc gtctcaaaaa aaaaaaaaaa aaaaagaaga agaagcaggt gcgccgggcg 110580 tggtggctta tgcctgtaat cccagcactt tgggaggcct aagggggagg atcacgaggt 110640 caagagatca agatcatcct ggccaacatg gtgaaacccc atctctacta aaaatacaaa 110700 agttagctgg gtgtggtggc acgcacctgt agtcccagct actcaggagg ctgaggcagg 110760 agaattgctt gaacctggga ggcggagatt gcagcgagcc aagatcatgc cactgcactc 110820 cagcctggcg acagagcaag actccgtgtc aaaaaaaaaa aaaacctttc tggtcatggt 110880 ggtgtgtgcc tgtagtccca gctactcaag aggctgaagt aggaagattg ttttagccca 110940 ggagtttaag cttgcagtga gtcatgatca caccactgca ctccagcctg ggcaacagag 111000 acagactctg tctctaaata aataagtaaa tcctgcctta gattaaaatt gcaggccagg 111060 tgtggtggct cacacctgta atcccagctc tttggcagga cgaggtgggt ggattgcttg 111120 agcttaggag ttcgagagcg gcctcggcaa catggcaaaa ctctgtcttt acaaaaaaat 111180 acaaaagtta gccaggcatg gtggcgtaca cctgcagtcc cagctactca ggaaactgag 111240 ttgggaggat cacttgagcc taaaaggttg aggctgcagt gagctgtgat tgtgccactg 111300 cactccagcc tgggcaacag agtgagaccc tgtctcaaaa aataaaataa aataaaacaa 111360 aataaaaaaa attactgttg gattaattag gaggtttgat atggagtaag tcatcctttc 111420 atgttttgaa gtaactttaa agtgtgtcca ctcagtaaga cacaagtatc catttgggct 111480 tcttcaatat tctatggggt ttggctgggc acggtggctc acgcctgtaa tcccagcact 111540 ttgggaggcc aaggagggcg gatcacttga agccaggagt tcgacaccag catggtaaca 111600 cagtgaaacc ccatctctac taaagataca aaaattagcc aggcgtggtg gtgcatcact 111660 gtagtcccag ctacttggga ggctgaggca caagaattgc ttgaatctgg gaggtagagg 111720 ttgcgtgagc caagatcgtg caactgtact ccagcctggg cgacagagcg agactctgtc 111780 tcaaaaataa aataaaataa aataaaatat tctatggggt tcaagagttt cctttttagg 111840 gccaaagcat tattattgga ggaaggcaat ccctacttct cccacttatt tctgccatag 111900 gaggaaggtt ctcctgccca acacccacag gcccaggcac ctggaggcaa ctctaaaaac 111960 agcaggagac tactgaagga aattgtccat ctctatgagg cgctccttgt gtctccaaaa 112020 tttattaaat gacatcacag taaggcttgg caagtaggat aagggagtta gaccagggag 112080 gacagacaga agtctgcagg cctgaacaca ggcaggaagg aaaagggaaa tgcaaacagg 112140 agaggagagg ccagagctga gcactgcaga aggagaatga acaaccctag tttgtattac 112200 agaacacgtt cacaagtacg gtctgccttt atcctcagca gttcttactg gtaagatata 112260 atgatatcca ttttatagat aaggatccta aagcccagca aggtcatgga tctacacata 112320 actgagccac acatcttaga tcagtgcttt ttctgcttgg cacaccccac agggactggc 112380 acataatggg taaagagttg acatttactg aagaaaagta gacggcatgc atttgacagc 112440 acttaaaaaa aaaaatgtag gccaggcgcg gtggctcacg tctgtaatcc caacactttg 112500 ggaggccgag gtgggcgaat cacctgaggt caggagtttg agaccagcct ggccaacatg 112560 gtgaaaccac gtctctacta aaaaatacaa aaattagcca ggcatggtgg tgggcccctg 112620 taatcccagc tactcggaag gctgaggcag gagaatcgct tgaacccaag aggcagaggt 112680 tgcagtgagc cgaaatggca ccactgcact ccaccctggg tgacagaagg agatttcatt 112740 tcaaaaaaac aaacaaacat accgtaaatg tcaagaaatt tacatttttg catggtctta 112800 ttatctcccc acaagataat tactaattac aaaaggacac ttattataaa attataaaag 112860 agaaacccag cagataacct ctttaaccac atgatcagtg ttaacatgcc cagtaataag 112920 tcatatcaac agaaagtagc ccctgatctg atgcactaag aagggcataa cgttacttct 112980 gtgatattct tgccaaaagt gcataagctc aatctaatca ccaaaaaaaa aatcagacat 113040 tcaaattgag ggatattcta taaaatgact gaacagtacg tgtcagggtc atttgagaaa 113100 aaaagcgaga ggctgaggag ctgtcataga ttagagaaga ctaagaagac attacaacta 113160 aatgcaatgt tggaccttgg attagatcaa aaggaaaaca gctaaaattc aaataaggta 113220 tgtaggttac tgtaccagtg ttaatttcct ggttctgata attgtactaa ggtgaggtaa 113280 gatgttccta tcagggaaag ctaggtgaag gtgtaggaaa tgaagagttt aggataactc 113340 tgaactattt ttgcaacgtt tctgtaagtc taaaattatt tcaaaattaa acaccaaaat 113400 aactataaaa tataatttat atatgaatta tatctaaatt ttgaaaacta tagctaggtg 113460 tggtggtgtg cacctgtagt cccagctact ctggaggctg gggctggagg gccgcttgag 113520 cccaggagtt caaggctgca atgagctatg atcgcactgc actccagtct gggagggaga 113580 gcgagacaca ccatctgtaa aaataaaaaa cctatgaaat cttgacaaag tgagacattc 113640 atatttaatt ctttcggatg ctatcttctc cattaccagg gatcatcttt cttttctaat 113700 gtgaggtggc atttagaatc tctgtacgtt ccagatgatt ctcggcttca agacccagct 113760 cgaatgccac ctcttccaag aagctctgac tgatcaccac agttgcacag ctagaaattg 113820 tgtcttcatc ccctaaatgc ccatgacatt ttttgtgcgc atctattagg gcatttatca 113880 tctccatagt ggacatctat ggtattctct tcccagctca cctgcccagt tctgcttctt 113940 cctcttctga ctccaaccat gccgttctca tgggagctgc catgttgtta cagaccccac 114000 agctgattgg tccagagata gacatctgac ccagctgggc caatcagaca ccttccctgt 114060 ttttgtggca gttgctttct tttttctttc tcactgaaac tgagttaagt ttaacctaaa 114120 gcttcttcct tacctgttgt atattaattt gggtctaaag gtttctccat acattgtgaa 114180 ctgtaatcta attaggtatg taaacagacc gtaaggtact cttgtaacaa gtggctaggt 114240 ctcatccagt cacagctgct gagtttcagc caattgcagg ccgaccacag ttcaaacagt 114300 gtaccaataa tgccaaccgt aaccaatcta gctgtttctg taccccactt ctgttttctg 114360 tatgtaactt tcctttttct gtccataaat gtaatctgac ccttgtggca gtctctgagt 114420 tgctgtgaac ctatcctggt tctgcaaggc tctggatttg tgaattgctc tttctgcagt 114480 tacactttgt taaatttaat ttgcctaaag tgcccccccc tccaccgcca attagaggta 114540 gggactcgct atgttgccca gactggactc aaactcctgg gctcaagcga tcctcccacc 114600 tcagcctccc aagtagctgg gactacaggc tcgtgccacc gtacctagtt cagagttttt 114660 ctggtaacat tagccaccat gttctctgcc acatggagga accctgtctg taactagagt 114720 gagaagacag ctaaggcaga gagagaagca gagacacaga atgaggagag agagagagaa 114780 gagagagaga gagtgcatgc aaatgggctg attccacctg ttcttgaagt tttctgtcct 114840 tgccaagagt ggttgtttgg ttgatcccta gtcactacat aaccctcaga atccaaaaaa 114900 tcttctggta aaaccctctt ccaataaatc ttttttttta aattaagtaa ttagaagagt 114960 tttatgtggt tctcatccca agttgcaatg agctactctg agttatttgc atacatgttt 115020 tctctctcct actcatctga gggttgccaa atgcccatct tagatacagt tctcactggc 115080 ccaaggctag tgagaaaact aggacaacat agtgagtcac ttacataggt aatttttaaa 115140 attgccaaat tctgggatta gtccttgtta ttgaatttta tgagatgatg gtaacagcag 115200 aaagtagcaa tttatttttc cttttaatat tctttgacaa ataacaagat gttggcaatt 115260 gtgtacccca atttaggaaa aaactttact gggacatgaa atcccagtga agtgctggcc 115320 aggtaatgat tcctctgggt ggggccccct cttggctctc agcagagagc cttgtaaatg 115380 agtgagatga gctaatggct gtagggagct gttctggtct cctgtgtctt gtaggaatac 115440 gatctgattt agaacagtta cagcttattc attcccccag ttcttttacg atttttcaag 115500 gaggcttact ttttattttt atttttttac ttatttgcaa aataccctat tagtcctgca 115560 gggcccttcc tttcaaattg atctcatgtt gattttctct ttaatcctaa tcacctgtgt 115620 aggtgtgaga gttgaggtga agtctcccat ctgggaaggt tgaggggtcg agggtcagct 115680 cgctgtggtg gggaaacagc actggggtgg gagtcagaca gcactgttgt ccacctatgg 115740 tttctcctct tgctggttgc aaggcctcaa gcaacttgct tcatttctct gagcctcagt 115800 ttccccgtct gtgacatggg gatgatatct agcctacctt ttgcacaggg ctgttgcaaa 115860 gggttgaata aggctttggt ggcaatttgg agctgaagga ggcagcaggg gatgggacag 115920 gtgcccagtg ttgttttata gaagctgcta ggggccgggt gtggtggttc atgcctgtaa 115980 tcccagcact ttgggaagct gaggcgggtg gatcacttga ggtcaggagt tccagaccag 116040 cccggccaac atggtgaaac cccgtctcta ctaaaaatac aaaaattagc ccggtgtggt 116100 tgcatccgcc tgtaattcca gctactcagg aggctgaggt agaagaatca cttgaacctg 116160 ggaggtggag gctacagtga gccaagatca caccactgca ctccagcctg agcgacagag 116220 caagactcca tcacaaaaaa taaaaataaa aataaaaata gaagctgata gggtatatct 116280 gagggggaaa agattcaata acagaaattg aaatgtaggt aagcgtgagg aagttgtaag 116340 cacttcctag ctctgtcttt tttttttttt tttttgagac ggagtttcac tcttgttgcc 116400 cagggtaaag tgcagtggcg tgatctcggc tcacggcaac ctccaccttc tggggtcaag 116460 cgattctcct gcctcagcct cccgagtaga tgggatccac ttcccaggtt caagcgattc 116520 tcctgcctcg gcctcccgag tagctgggat tacaggcatg cgccaccatg cccagctaat 116580 tttgtacttt tagtagagac agggtttctc catgttgatc aggctggtct cgaactcgcg 116640 agctcaggtg atccacccac ctcagcctcc caaagtgctg ggattacagg tgtgagccac 116700 tgcacccggt ctctagctct gtctcttact tgaatgtgat ctcaccctgt gtgactcagc 116760 ttcctcattt ggaaatccag gtctcacagt caggaagtaa ctttttggat accttacact 116820 gaacactgaa ggttgcataa gagttggtta caggctgggt gcagtggctc atgcctgtaa 116880 tcctagcact ttgggaggct gaagtaggtg gctcatctga agacaggagt ttgagaccag 116940 cctggccaac atggcgaaac cccgactcta ttaaaaatac aaaaattagc caggtgtggt 117000 ggcacttgcc tgtaatccca gctactcggg aggttgaggc aggagaatct ctggaacccg 117060 ggaggcagag gctgcagtga gcaaagattg caccactgca ctccagctgg agacagagca 117120 agactccgtc tcaaaaaaaa aagagataca ctccaggtag atgggactgc atgagcagcg 117180 gcttgggtta gaaattacgg cagcatggat gagagacacc gttctcatgt attttgtttc 117240 aggaggacaa taataatact tgtttattgt gatgacaatt aaataagata atgcaggtaa 117300 ggtgcttagc agaggcttgt acataaccaa ctcagtaatg gtgcttgttt ttaccgccat 117360 ttttgttgtt gtttttacaa ataaagaaaa caaaggctct gataggtgat atgtaggcca 117420 ggcacacagc tattggttgt tgagcaggat ttgaacccac agcttttatt tatttattta 117480 cttatttatt tacattttta aatttaattt aattaatttt ttttttgaga tagggtctca 117540 ctcattgccc aggctgcagt gcagtgatgt gatctcagct cactgcaacc tctgcctccc 117600 gggttcaagt gattctcctg ccttagcctc ctgagtagct gggaccacag gcacatgaca 117660 tcatgaccag ctaattttta tattcttagt aaagacaggg tttcgccata tcggccaggc 117720 tggtcttgaa ctcctgacct caagtgatcc gcctgccttg gcctcctaaa gtgctgggat 117780 tacaggcgtg agcccactgc gcacagccta tttatttact tttagagaca gagtctcact 117840 atgttgtcta gggtggaatg cagtggctat tcacagtcac aatcccacca ctgatcagca 117900 cagttttgac ctgctccatt ttcatcttgg gcctgttcac ccctccttag acacccctgc 117960 ttacaggagg tcaccatatt gaagctgaac ttagcacaga cactcgatca atatagtaca 118020 ctacagccta gaactcttgg gctcaagaat ccctaggctt atcctcctgc ctcagccttc 118080 cgaggagcgc gaaccacagg gacacaccac tgttcccagc accatatctt cttgacagag 118140 accaggctct gaaccactgt gttcaagtta ccccactgtg gggcctctgt tcctgcccta 118200 ggggcctccc tgactcagca actgtgggtg gccttgcttc tgtgcctgga cagcagagga 118260 ggtgagaagc cttccagtgc cttgaaaact aaatacggcc aggccaggcc tctgaggccc 118320 gaccctcagg cttggcctgc tcctgcctgc tcatatgggc tgtggggcgc tactccctac 118380 tcaacttcct ggctctgctc cagggggctc tggcagaacc tccatccaga tcctccttct 118440 caggatcttg ttgggaaaaa tactaaaaga gaacataaaa tgaatgcctc ttatccatgc 118500 tgcaataatt cctaattcta agactttgct caagtaattt ggtccatgga gtacctctct 118560 aatcagtgct taatgtgtct ttggtggcca gtgtgagcta tcaggaagag ttactttata 118620 actgtgagac ctgcagtaag tcactcatct catccatcca cccatccatc catccatcca 118680 tctacccacc cattgggcac ctacctgtgc caaacacatt acatacagac tcttcttcca 118740 gaccggaaac tccatgagaa ttgcagacca ggtgtcaaaa gataattatt cagggcaggc 118800 atggtggctc acgcctgtaa tcccagctct ttgggaggcc gaggtgggcg gatcacttga 118860 ggtcaggagt ttgagaccag cctggccaac atggtgaaac cctgcctcta ctagtaatgc 118920 aaaaattagc caggcatggt ggcatgcatc tgtaatccca gccacttggg aggctgagac 118980 agaggaatca cttgaatcca ggaggtagag gttgcagtga gccaagatcg tgccattgca 119040 ctccagtcta ggcaacagag taagactctg tctcaaaaaa aaaaaaagaa aaaagaaaga 119100 taattattca accaatatcc atgtgtctca atgtgtctcc tccaatttat atattgaaac 119160 gtaatctgca atgtggtagt attaagaggt gggacttttg ggggcgatca cttcatgaag 119220 ctccatcctt ataaatggga ttagtgccct tataaaagaa gcctgaggga gtttgttcac 119280 cccttctacc atgtaaagac atagaagacg tcatctatga ggaacaggcc ctcattgaca 119340 cccaatctac tgacaccttg ttcttggatt tctcagcctc tagaactatg agcaacatat 119400 ttctgttgtt tatatattac tgagtctgag gtattttgtt ataacaacag gagcagacta 119460 agacaatgaa ccaatgggcc aaggcttgtc cttactacag tcctggtaag gctgttatca 119520 ttatcacccc catttcacag ttgagaagcc cgacactcag agaggggaag tacaaagaac 119580 atacagccag agatgagtgg agctgagact tggccaagtt cttaaccctc ctaacaaagg 119640 gaggaaccat gctgaggggc aggccctgga ggaggacacg gaccatttct ccttcagctc 119700 ttggcttcct tggtgggaag tggattaatt ctttctcttg tctccctcct aaccaagcct 119760 ttgagggtgc ccagctcaga gtctacaaag tccttttcaa ggtttccaga gccctcctct 119820 cagccctgta ggggattcag ggcgggggga ccttccccat ggttcagatg ggagaattga 119880 ggcctctgta ctgcccacag tcacatgcca tattaggggc ctggaatctc atgcttcaag 119940 aaactgagca tggaactggc tgctagatat ttcctgtagg tgtggtatga agcgcttaga 120000 gtctgacagg tcctagctct gccacttaca agttatgcag tcttagagga atcacttcac 120060 ccctctgaac cgcagacttc tcccctgaat agtgaggaca gtgctagtac ctatttgaga 120120 gatgttggga ggatgaaatg aaagaatgct tgtgaagcac ttagcgtagt acctggaaca 120180 tagtgagtgc tccaacaatg aggttatgat ggtacgaagt acctaaaaca gaacatcaga 120240 ctggtaggag tatccatgct gagggtaata ttagctaatg tttctctttt tttgagacag 120300 aatctcgctc tgtcacccag gctggagtgc aatggcctga tctcggctca cttcaacctc 120360 cacttcccag gttcaagcaa ttctcctgcc tcagcctccc atgtagctgg gattacaggc 120420 acaagccact atgcccagct aatttttgta tttttagtag agacagggtt tcactgtgtt 120480 ggccaggctg gtctccaact cctggcctca agtgatccgc cctccttggc ctcccaaatt 120540 gttaggatta caggcgtgag ccaccatgcc tggccagcta atgtcttttt tattgctact 120600 atgtaccaga cacagtcatc tggacaatat ccctctaact tagtgccatt ttacagatgt 120660 gataactaag gcttgaaatt gacttgccct agctccttgc ccagcaagag gaagagtctg 120720 ggcctgaacc tgagtctaag tccatgatct caggagctct gatccactgt cttggattct 120780 ccaactccat tatgttgaag ccaagagagg aaaagggagt ttctcagggc accatggaag 120840 gtgggggtag ggcagaccac actggggagg aattttttct tcctggcagc tcttcatggg 120900 tctggataat tctccagctt taggattaag gcagagcctg actagcacat tcatagtcct 120960 ctggaaggat ccagggatct ggcttttagt ctcaggccag ctagcagatt ccatttccac 121020 tcccccgacc cgagctttaa tgacaccttc agcccctact ctactctgtg actgcccgtt 121080 ccccaccccc agctttaatg catgggggcc ccctttttta atcggctgaa cctttagcca 121140 aagaaaactc tttggtgccc gcaaaaccag ccagctgccc tggaatgttg gaggggggtc 121200 atcaagctgt ttgtgagctg ctggcagaga aaggtgaaca gctacctttt tggggggaaa 121260 gtcagaacat catctgtggg aaaagatcta gggcagacca gctcagaggc ttgggcctca 121320 gtttcccata ttcaccacca tggcatgtat gggggatgaa taacttcagc taaagattca 121380 agaactattg tttgggtgct tgctacatgc caggtactgc actggctgct gcagacacat 121440 cggggacaga gttaagccct gtccttgggg gctgacattc tagcagaagg cagtcgctca 121500 gtaagtttcc caacaggcta gaggcaggtg cctcaggccc ataagacctg atcaacacac 121560 ttgtggctgg ataggtttca gaattcattt ttgttttttt cagccagggt ctcggtctgt 121620 tattcaggct ggagtgcagt ggcacagtca tggctcactg caacctcaaa ctcctgggct 121680 caagtgatcc tcccgcctcg gcctcccaaa gtgctgggat tacaggcatg agccactgct 121740 cccagcctca gaattcagga tttttttaga ttttaaaagg taatccagtg gggtctggat 121800 ccatccatct ccaatgaaac atacgaatat ttctgtagct agaagtgtga gtattgactc 121860 taagtgaaat gaacagattg cacaccctca gtcaatccag gtcagatatt gctcctgaat 121920 gagttttcac taagtgtgca gaaaagcctc tggctgtctg aattttctga acttggagct 121980 gtaggtatga gattgagggc ctgattcctc ttcccattgt acagataaga aaactgagac 122040 tcgggaccag agagtcacct acccaaggct cctgagcgag caaaacctgc aggtgggtgg 122100 gaatgcaggt ctactgtggc tccagattga cggcttgcca ctaacaggga ctgtgcctca 122160 gagagaagca gggacgggtg gagaaggctc cttgaccaaa ccttagcggc ccagcagcca 122220 gttctgccag gaaggagtta aacactagct gggcccctgc caggcctctg caccacggct 122280 cctcacaggg cctgcctgtc tggggcctgt ttaccaggct gtgcttgcat caccggctct 122340 ggctccgacg tgcagtgcaa acacattcac attcttgggt catgagaaac gcacaattgt 122400 ggtgacatca tgcccagcga ggaggctttc gacagcctct ttcccgcccc aagtcaaagc 122460 tgtttaatta gctcccttta actggaactc tctcttctcg taaaaaccaa ctggagatac 122520 tgaccaagtg cgggtgatgg ggattggagt gttgtgtgtt tctgtgtgtg tgtgttttaa 122580 gggataaaaa tagcccatct gggactcctt ttggggtatt tgtgagtgtt aatgcacgag 122640 tgtttatatt aaatctatgt cacactggac attttcatcc aaatttgggg cttggagatg 122700 gaacaaggga aaccacccac atcttttggt tccctctagt ttttcctttt gggagggaga 122760 cacatggtcc aagtaaaagg gccctgggag acaatttaga tcaatccctc attatacagc 122820 caaggaaaag gaggcccaga gaggggaggg ccttgcctga ggtcacgcag tgaggctccc 122880 agttcccata cccctgggat gtatcttgtg gcacgcccct cagcccccat ttcagcttta 122940 tgagctgttt ttcagggtgt tggaaagaga agtgctcctg gctagagctt cctggctatg 123000 ttttgagatg aagagtgaac ataccagctt gggcaacata gggagacccc gtctctacaa 123060 aaattttgta aacattagct gggcatggta gtgcgtgccc atggtcccgg ctactcagga 123120 ggctgaggta ggaagatcac ctgagtttgc gaggttgacg ctgcagtgag ctgtgattgg 123180 ttattgcact ccagcctggg agacagagtg agatcccatc tccaaaaaaa aaaaaaaaaa 123240 aaaatgtggg gcggtggggc caagcacagt ggctcacacg agtaatccca gctctttggg 123300 aggctgaggc aggcggatca cttgaggtca ggagtttgag accagcctgg cagcctggcc 123360 aacatggtga aaccccatct ctattaaaaa tacaaaaatt agctggatgt ggtggcgggc 123420 ccctgtaatc ccagctactc aggaggctga ggcaggggaa ttgcttgaac tctggaggta 123480 gaggttgccg tgagccgaga tggcgccact gcactccagc ctgggtgaca gagcaagaca 123540 gtctcaaaag aaaaaaactg tggatacctt tttttgtggt ggtggtggtg gtggcttcca 123600 catgtggtgt tggggtggca gcagtgaata ataaaacaag agacctcagc ctccccaatc 123660 tcctgtcttt ctttttttga gacagggtat tgctctgttg ctcaggctgg agtgcagtgc 123720 tgtgatcaca gcccactgca gccttgacct cccaggctca ggtgatgctc ccacctcagc 123780 ctccagagta gctgggacta taggcatgtg ccatcacact cagctagttt ttgtggtttt 123840 agttcagaca gggttttgcc acattgccca ggctggtctc gaactcctgg actcaagtga 123900 tctgcccatc tcggcctccc aaagtgttgg gattacaggc ctgagcaact gtgcctggcc 123960 acctcctctt tttctgtccc aacgacttgc ctctcccccg cagatcaccc caggtcttct 124020 tttgtttctc tttccaaaga agtcccagtc cttgctgact tcctgcgatg gccactgaag 124080 cttgtttctc acttagggat actaaattga gccaatataa atgtaggaca cccagttgaa 124140 tttgagttca gataaacaac gttttagttt atgtcccacg gaatatcagg atatacattt 124200 atcgagcaac cctattttct tcctcctgca tcatcctggc tgtggcagat actcttgact 124260 gcctccccat taaccttcct tctacttcct tgataactga gccctgattt ctgtctgtgg 124320 tggcagtgtg tcccagttgg cgaactgtga ttggtctagg ctagtcatga caatcctgtt 124380 ctctgttgtt ttccctgact cccttgtagt gagaaatgat ctgatggtta ttattattat 124440 tatttttttt agagacaggg tctcactctg ttgcccaggc tggagtgcag tgacgtgatc 124500 atagctcatg gcagccttga acttgtggct gagatcctcc catctcagcc tccccagtag 124560 ctgagacaac aggtgcatgt caccacacct ggctaatttt ttaaaaaatt tgtagagatg 124620 ggatctcact atgttgccca ggctggtctc aaattcctag cctcaagtaa tccccctgcc 124680 ttggcctctc aaagtgctag gattacaggc atgagccact gggcccagca gatctgatgg 124740 ttttaagata tgcctgcaag ttccttgaca tctctccttt cagaaggtgg agactcatcc 124800 cttccccttg aaagtaggct ggacttagtg attcatttca aagagtgatt tctgagggca 124860 gctcataaaa accattgttg cttctgcctt gctctcttaa attactcatt ctagcggaag 124920 cctgctgcca tgttgtgagg acacccagta gccctatgga gaggcctgca tggggagaac 124980 ctaagtcctc ccatcaacag ctagccccag cttgccaggc atgtgagtga gcaaccttaa 125040 aagtggctcc agacccagtc aagcctttga atgactgcag tgtgggccaa cattctgaca 125100 acagcataaa ccagagatat gcctgtatta atcatatttt tcattttctt tcttcttttt 125160 ctttcttttt tctttctctt tttttctttc ttcctctcct tctctttctt tcttctttct 125220 ttcctctttc tttctctttc tttccctccc tcccttcctt ccttccttcc ctttctttct 125280 tcctctcttt ctttctttct ctttctttct ttttcttttt cttttgtttt ttttttgaga 125340 tggagtctca ctctgttgcc taggctggag tgcagtgaca caatcttggc tcactgcaac 125400 ctctgcctcc cgggttcagg cgattctcct gcctcagcct cccaagtagc tgggattacc 125460 ggcacgctca accatgccca gctaattttt gtatttttag tagagatggg gtttcaccat 125520 gttggtcagg ctggtctcga actcctgacc ttgtgatctg cctgcctcag cctcccaaag 125580 tgttgggatt acaggcgtga gccaccgtgc acagcttctt tttttttttt tttttttttt 125640 tttttttaaa gagacagggt cttggtctgt tgcccagcct ggagtgcagt agcatgatca 125700 tggttcactg cagcctggaa ctctggggct caagtgatcc tcctgtcagc ctcctgcgta 125760 gctgggacta taggcatgca cctccatgcc tggctaattt tttttttttt tttttttttg 125820 agacagagtc tcgctctgtt acccagtttg cagtgcagta gcacagtctc ggctcactgc 125880 aacctccacc tcccgggttt aggtgattct tgtgcctcag cctcccaagt agctggaatt 125940 acagacatac accattaggc ctggctaatt tttgtatttt tagtagaaat ggggtttcgc 126000 catgttggcc aggctggttt cgaactccca acctcaggtg atctgcccgc ctcagcctcc 126060 caaagtgctg ggattacagg cgtgagcacc caccctcatg cctggctaat ttaaaaacat 126120 ttttcttttt ttttttgagg ccgtgttttc gctcttgtca cccagacttg tgccagtggc 126180 atggtctcag ctcattacaa tctccacctc tgggtccaag caattctcct gcctcagcct 126240 cctaagtagc tgggattaca ggcacccgcc accatgcccg ataatttttt tttttttttt 126300 tgagacagag tctcgctgtg ttgccagtgg cgtgatttcg gctcactgca acctctgcct 126360 cccaggttca agcaattctc gtgcctcagc ctcccaagtt gctgggacta caggcgtgtg 126420 ccaccacacc cagctaattt ttgtattttt agtagagaca gtgtttcacc atgttggcca 126480 ggatggtctt gatcttctga cctcgtgatc cacccgcctt ggcctcccaa agtgctggga 126540 ttacaggcgt gagccactgc acatggccta aaaatttttt tgtagagatg ggggtctcct 126600 tatgttgtcc agactggtct tgaactccca ggctcaagtg atcttcctgc cttgacctcc 126660 cagagtgctg ggattagagg tgtgagccac tgccccccac catttttcat tttcttggag 126720 tttgtgtgtt tccatgtgtg tgtgtatatg ttttaaggga taaaaatagc ccatctggga 126780 ctccttttgg ggtgtattaa tgcaccattg tttatattaa atctatgtca aactggacat 126840 tttctcatat tttatgttgt ttttgacata tttaagggag ggcttgccgg ctggaaagag 126900 acttctgctt ttagggctag gtaatttcta gagacagtga acaacttgtc agtgagccca 126960 ccttttatac acaaaccagt gaatttcaag tccatatcct cagcctcctt tatccaattc 127020 tcatacaccc tgccctaaat caatctaggg ccaggtaccg ggcaactagg aacagcccct 127080 attccccaaa gctctctgga atgattcgaa ctaggcagtc ctaaactgtt taccacaccc 127140 tgccttgcct tcctgtggaa aacaaaataa acctgtggct atgccttctc cttactcctt 127200 tctgcctctc gactgactga cgctagtgct tctccctgtg gccccgcctg gcatgctata 127260 cctctgattt ttagggaact gtaagtcacg taaaactttt ctttcaatgg cattgacctc 127320 tctgtgttgt cacttagtca cctttataaa ttaaaacctg ggcacaggct aggcacagtg 127380 gctcacgcct gtaatcccag cactttggga ggccgaggca ggcggatcac ctgaggtctg 127440 gagtttgaaa ccagcctggc caacatggtg aaacctcatc tctactaaaa atacaaaaat 127500 tagctgggtg tggtggcgca cacctgtagt cgcagctact ccggaggctg aggcaggaga 127560 atcacttaaa cctgggaggt ggaggttgta ccaagcggag atcgtggaga cagagcaggc 127620 ccctgtctca aaaaaacaaa acaaaacaaa accccaaaaa acaaaaaaac ctgggcagaa 127680 atcaactcag agattctgag ccagaactac ctaattaagc cattcccaat acctgaccca 127740 cagaaagtct gagatagtaa tcccagcctc ccaaaatgct gggattacag gcatgagcca 127800 ttgcacaaag tcagaatgta gcaattctaa gataccctac agcacattta ttctgttatc 127860 tctgtacttc acagatggga atctaaggcc caagggtggg gaaggcacag cctagaatag 127920 tacaggagac cagtggcaga gtggagatta gaatccagaa ctttgaactt tccctttctc 127980 caggctgtga ggaaggcagt gtggattccc ttggaccacc caaacatttc ctttcaggag 128040 gaggcgattc ttgacccagt gctgctacca gctccccctg ggtcaggaag ctctgcctgc 128100 ccaggatttc ctgtgtgtgg gaaagaaaca ggatgagtag ataaatcccc caaggctttt 128160 tttccccaag tgcgtgaggt cctctccctg gtaagtctgc agcagttcta gccaagatga 128220 ccaacccatc gacatgtatt ttgtgtgttt ataaacagta ataaaaagaa tgattggcaa 128280 ggcacagtgg ctctcacctg tgacctcagt attttggaag gccaaggtgg gctgatcgct 128340 tgagcccagg agtttgagac cagtgtgggc aacacagtga gaccccatct ctacaaaaaa 128400 ttagccaggt atggtggcac acgcctgtag tcccaggtac ttgaaaggcc gagatgggag 128460 gattgcttta gcccaggaag ttgaggcttc agtgagccga gatcacacca ctgcactcca 128520 gcctggacaa cagagcgaga ccctgtctca aaaaaaaaaa aaaaaaaaaa agaacgattg 128580 catgtgcatg aagcacaaga caggaggtag gggagaagag tccacatcac cgtcccttgt 128640 ccctgccctt gtggagctgc ctttgtttgg gtcctcccag aagcaggtct taagagaagt 128700 atttaagttc aagtaatctg tctgggaggt gatcccaggg aatcccctgc aggggagtgg 128760 ggaggtgaga tggggaaagg aaagcagcca ataaattcaa taaatgaatt gaaagcacac 128820 ttcgataggc aactggagtt caaccccact agggaaagct cagagacagt catcccaacc 128880 aaggagcaag aggcagctgg agtatctagc caccaacttc tcattcttca ctggttgagg 128940 gatgcttctg gaactcagcc ttcccgcttg ccagaggaca ggcccaagtg tgctcctgag 129000 gtcagaacaa cacagtcaag cagttacatt cacagtaaga agcctttgat gggtagaggt 129060 atcatcaggg gcctctgggc ggtatctgct ccagaggctg accactaatg agttttccat 129120 ccacaggaaa aggcagaagg aggcccagga gacatgcctt cccctccctg ggtggggtta 129180 tggaggccgt gtggagtgca tagtgggcct tttgcctgtt caggccccca tcaccccttt 129240 cttctcattt tgaggaatca ccttacccca ctgtggtcca catcgtcctc ttcaacactg 129300 tactagacca catttcccag cctcccttgc tgttagggga gccatgtgac tgattccagc 129360 caatgaaatg tgagcagaag ggacatgtgc tgttttcaga cttggtccat aaataccaac 129420 cactcacttc ctttcgcttt ttctctcttt ttaacttttt tggagacagg gtcccactct 129480 gttacccagg ctggagtgca gtggcgtgat catggctcac tgcagccttc acctcctggg 129540 ctcaagtgat catcccaggt tcaagcaatc ctccagcctc agcctcttga gtagctagga 129600 caacaggtat acaccaccac acctggctaa tttttttatt ctttattttt tttgtagaga 129660 caaggtccca ctatgtttct taggctggtc tcgaactcct gtgctccagc aatcctcctg 129720 ccttggcctt ccaaatagct gtgattataa gtgtgagcca ctgtgcctgt ctcgcttttt 129780 ggaatgtctt caatggtgct ttggaggaag aaaacatcat gtgaatgact acacaaatca 129840 ctattgtcag ttgggagtta gctctgagag gaaaagttta gggtgtcttg agcactttga 129900 cttgagatcc agcagaggaa gtcatgggca aaggccctga agcaggaagg aggagtctga 129960 agtgggccat ggtgactgga ggttatgaac aaagctgaat ggcctgagag gaaggcacat 130020 gatcttgatg taaaactcat aggtgtgtgt attagtctgt tttcacgctg ctgataaaga 130080 cataccaaga ctgggaataa aaagaggttt aattggactt acagttccac atggctgggg 130140 aggcctcaca atcatggcgg aaggcaaaag gcacttcata catggtggcg gcaagaggga 130200 tgaggaagaa gcaaaagcag aaacccctga taaacccatc agatctcatg agacttattc 130260 actatcacga gaatagcatg ggaaagaccg gcccccatga ttcaattacc tccccctggg 130320 tccctcccac aacacatggg aattctggga gatacaattc aagttgagat ttgggcgggg 130380 acacagccaa accatatcag tgtgtgagga gttagatgga tatgggctgg acactgccct 130440 ggcacccttc ttcctctttc tggggacaga gagccagttt gagaaaccag attataacca 130500 ggaggggctg agcctagaaa ttcaacagaa tttgggcata catgtggctt gcagagacat 130560 ggaattcagt ggttcccatg cctggagccc cctgctctgg tctatagtgg cagaagggct 130620 tttctgtctt ccagacacag ctcagtctca cctcattctc aggtcatgtg gcctgaattt 130680 gatgggtttt caaatcatgt gccccgacca tcttgtgtat gggctgggta cctctcatcc 130740 tacacaaatg actttccagg tcaggtgctg tggctcacac ctgtaatccc agcactttgg 130800 gaggccgaga cggggagatc acctaaactg ggagttcagg atcggcctgg ccaacatggc 130860 gaaaccctgt ctctactaaa agtacaaaaa tttagctggg catggtagtg caaacctgta 130920 attccagcta cttgggaggc taaggctatg agaatcgcat gaaacgggag gcagaggggg 130980 ttcaagtgat cacacagcga gccgagatcg tgcaactgta ctccagcttg ggcgacagag 131040 ggagactctg tctcaaaaca aacaaacaaa caaacaaaca aaacaaatga ctttccaaca 131100 tcagtgcaat aggctcttct tgaggactag cctgggagcc ttgctccttg gtgttgtgaa 131160 acctcaagta actgatttaa tattgaactg ctgggccaga gctgcaagcc tgacctcagg 131220 ggctgccttt ctcctgcccc accccctccc ctggagcagt gtcctctggg gaaatgcagc 131280 tgacccagct gcatccgtgg gaaggcctgg cccccacact tcaccttctc agccctgcct 131340 ctcggccaca ggaaatgacc ctcttagcag ccacgagctg tgatccagag gacaatgaca 131400 gagggacgga agccctgttt gtcccagcta acttgttccc ttgggtggat gccagctgct 131460 gaaacaaaaa actgaagatt cagtggaaaa catatttttt acaaaacaaa caaacaaccc 131520 tgtgggcttt agccaacttc tgaggctctg gggccggggg agggggggtt gttttcttta 131580 cttgcttctg tgtgtgtgtt taaaacacag ataaagctca gagaatcaaa tagcctaaag 131640 cttggaagaa ggccagtgat cccaccctag cagcagagcc cccctgtggt gtctttcttc 131700 atgtggctgg gccccacttc tccacaccac tgttcatcat gtcacttggc tccggccact 131760 gcccccaccc cacctccatt caccacccag aagtcagaaa gctctgctca aacccacatc 131820 aagtcaccat tctagggctc tgcaggctgc ctgtctcagt cttcaagtct ccagctcaaa 131880 tgccacctcc tccaaggggc ttccctgacc attccatatg aaatagcacc tctcagtctc 131940 tctccctccc atagcacttg taactcttac tatatctgga atgatctgct ttgtttccac 132000 gtgccaggca cgtagtagct actcaataaa tgttggttga ctggcaatgt ttctcagtgg 132060 ttgttgcatt cagatgaaaa ctggcttaga aaatccatat tccattgtat ttcaacaaac 132120 attattggcc acaaacagtg ctagggatca gaggcaaatt agttgggatt cgttcattca 132180 ctcactcact cattcattca tgagaagggt agaccccatg gtaaatgggg attcagccgg 132240 gggtgcagag aaccaggaaa gctttaggtg ggaggagatt gttggtgggt ttccccccat 132300 taaagtaggg ttcagaggtg tgagcaagaa agtgtttgga aaaacaagag aaccttgggg 132360 tgtggaattt aatttattcc cacttagaac ccccagggag ggcagagacc cgattttatc 132420 tggggctgca gagagggcac tctccatgtg cttgttgaag gaactgaggg atgagggatg 132480 gtcaggtagt gtatgaagtt tatggctctg tttaagaggt tgctgtgacg tcccgaatgc 132540 caggctatga agcctggatt tccatctata gggaacagag tctaatcaaa ataatgattt 132600 tggtgctggg tgtggtgact catgcctgta atcctaacat tttgggaggc tgaggcggga 132660 ggatcgcttg agctcaggag ttcaagatca gcctggagaa catagtgaga tggagtcgct 132720 aattaaaaaa aaaaaaaatt agccaggcat ggtggtgcgt gcctgtagtc ctaactactg 132780 gggagactga ggcaggatga ccacttgagc ctgggaggtt gaggctgtaa agaggtgtga 132840 ttgagccact gcactccagc ctgggtgaca aagcgagacc ctgtttcaaa aaaaaaaacc 132900 ggctgccacg cacggtggct tacacctgta atcttagtac tttgggaggt cgaggcaggt 132960 ggatcacctg agttcaggag ttcaagacca gcctgggcaa cacagtgaaa ccctgtctct 133020 actaaaaata caaaaattgg ctgggcgtgg tggtgtgtcc ctgtagtccc agctacttgg 133080 gaggctgagg taggagaatc acttgaacct gggaggtgga ggttgcagtg agccgagatt 133140 gtgcccctca ctccagcctg ggggacagag caagactccg tctcaaaaat aataataatt 133200 ataaaataat aatgatttgc aaagcctgtt tgaagtgcct gaatgtcact gattcctgaa 133260 ctccagttct ctagctacat cagagtatcc aaaccccatc ctagaagagt ctgattcacc 133320 gtaagttgga gtcggggcct ggccatctgc cattttcaca cacttgccag atgtcgttgc 133380 tattcactag gtttggtgac cactgaggct cagagaggtg aaggcacttg cccaaagtct 133440 gtaggtggtg ggggaggggg cggaggctgg tgtttgaacc tggttggcct ggccctccac 133500 attcaccagc tccacttcgg cctcccgctg gactggctcc tttctccatg ttattttccc 133560 ctggatgcag gaatctgggc tgtggctgag cctgcccgcc ctgtcctctc ttcccatccc 133620 cgcccccagc ctcaaaggtc aggtacctcc cagcctccct cggtcgtgtc catttatggc 133680 tctgttgttc caaaatgtgg ccaaatttat aaactcccct ttcctggaga cacgaaacaa 133740 tttgtgcaga gtgcagtgcg ggggcagagc tgggagcttc atctaagacc tggacttcag 133800 cccaggccca atgagctctg gcgttgaaca ggctccagtt cctccctggg cctcagtctc 133860 ctcacctgca gagtaaatat actggactag atc 133893 2 2230 DNA Homo sapiens 2 gagccaaggg agtccaggct gccgggggct gcagacatgg agggccagag cagcaggggc 60 agcaggaggc cagggacccg ggctggcctg ggttccctgc ccatgcccca gggtgttgcc 120 caaactgggg caccctccaa ggtggactca agttttcagc tcccagcaaa gaagaacgca 180 gccctaggac cctcggaacc aaggatcact gtggtcacat ggaacgtggg cactgccatg 240 cccccagacg atgtcacatc cctcctccac ctgggcggtg gtgacgacag cgacggcgca 300 gacatgatcg ccatagggtt gcaggaagtg aactccatgc tcaacaagcg actcaaggac 360 gccctcttca cggaccagtg gagtgagctg ttcatggatg cgctagggcc cttcaacttc 420 gtgctggtga gttcggtgag gatgcagggt gtcatcctgc tgctgttcgc caagtactac 480 cacctgccct tcctgcgaga cgtgcagacc gactgcacgc gcactggcct gggcggctac 540 tggggtaaca agggtggcgt gagcgtgcgc ctggcggcct tcgggcacat gctctgcttc 600 ctgaactgcc acttgcctgc gcatatggac aaggcggagc agcgcaaaga caacttccag 660 accatcctca gcctccagca gttccaaggg ccgggcgcac agggcatcct ggatcatgac 720 ctcgtgttct ggttcgggga cctgaacttc cgcattgaga gctatgacct gcactttgtc 780 aagtttgcca tcgacagtga ccagctccat cagctctggg agaaggacca gctcaacatg 840 gccaagaaca cctggcccat tctgaagggc tttcaggagg ggcccctcaa cttcgctccc 900 accttcaagt ttgatgtggg taccaacaaa tacgatacca gtgccaagaa acggaagcca 960 gcttggacag accgtatcct atggaaggtc aaggctccag gtgggggtcc cagcccctca 1020 ggacggaaga gccaccgact ccaggtgacg cagcacagct accgcagcca catggaatac 1080 acagtcagcg accacaagcc tgtggctgcc cagttcctcc tgcagtttgc cttcagggac 1140 gacatgccac tggtgcggct ggaggtggca gatgagtggg tgcggcccga gcaggcggtg 1200 gtgaggtacc gcatggaaac agtgttcgcc cgcagctcct gggactggat cggcttatac 1260 cgggtgggtt tccgccattg caaggactat gtggcttatg tctgggccaa acatgaagat 1320 gtggatggga atacctacca ggtaacattc agtgaggaat cactgcccaa gggccatgga 1380 gacttcatcc tgggctacta tagtcacaac cacagcatcc tcatcggcat cactgaaccc 1440 ttccagatct cgctgccttc ctcggagttg gccagcagca gcacagacag ctcaggcacc 1500 agctcagagg gagaggatga cagcacactg gagctccttg cacccaagtc ccgcagcccc 1560 agtcctggca agtccaagcg acaccgcagc cgcagcccgg gactggccag gttccctggg 1620 cttgccctac ggccctcatc ccgtgaacgc cgtggtgcca gccgtagccc ctcaccccag 1680 agccgccgcc tgtcccgagt ggctcctgac aggagcagta atggcagcag ccggggcagt 1740 agtgaagagg ggccctctgg gttgcctggc ccctgggcct tcccaccagc tgtgcctcga 1800 agcctgggcc tgttgcccgc cttgcgccta gagactgtag accctggtgg tggtggctcc 1860 tggggacctg atcgggaggc cctggcgccc aacagcctgt ctcctagtcc ccagggccat 1920 cgggggctgg aggaaggggg cctggggccc tgagggtggg gtaggcagat gggccaaggt 1980 gaccaccatt ctgcctcaat cttttgcaag cccacctgcc tctctcctgc tgctcctcca 2040 gctgtatctg cacctgcctc tctgtcctgg ccaggggtgg acaactgggg tcccccaaaa 2100 ctcagtcctg gcacctcaac tgtgacaatc agcaaagccc cacccaggcc cccatctggg 2160 atgatgggag agctctggca gatgtcccaa tcctggaggt catccattag gaattaaatt 2220 ctccagcctc 2230 3 3042 DNA Homo sapiens 3 acatggaggg ccagagcagc aggggcagca ggaggccagg gacccgggct ggcctgggtt 60 ccctgcccat gccccagggt gttgcccaaa ctggggcacc ctccaaggtg gactcaagtt 120 ttcagctccc agcaaagaag aacgcagccc taggaccctc ggaaccaagg ttggctctgg 180 cacctgtagg gccacgggca gctatgtcag cttcctcgga aggaccgagg ctggctctgg 240 catctccccg accaatcctg gctccactgt gtacccctga agggcagaaa acagctactg 300 cccaccgcag ctccagcctg gccccaacat ctgtgggcca gctggtgatg tctgcctcag 360 ctggaccaaa gcctccccca gcgaccacag gctcagttct ggctccgacg tccctggggc 420 tggtgatgcc tgcctcagca gggccaagat ctcccccagt caccctgggg cccaatctgg 480 ccccaacctc cagagaccag aagcaggagc cacctgcctc cgtgggaccc aagccaacac 540 tggcagcctc tggcctgagc ctggccctgg cttctgagga gcagccccca gaactcccct 600 ccaccccttc cccggtgccc agtccagttc tgtctccaac tcaggaacag gccctggctc 660 cagcatccac ggcatcaggc gcagcctctg tgggacagac atcagctaga aagagggatg 720 ccccagcccc tagacctctc cctgcttctg aggggcatct ccagcctcca gctcagacat 780 ctggtcctac aggctcccca ccctgcatcc aaacctcccc agaccctcgg ctctccccct 840 ccttccgagc ccggcctgag gccctccaca gcagccctga ggatcctgtt ttgccacggc 900 caccccagac cttgcccttg gatgtgggcc agggtccttc agagcctggc actcactccc 960 ctggacttct gtcccccacc ttccggcctg gggccccctc aggccagact gtgcccccac 1020 ctctgcccaa gccaccccga tcacccagcc gttccccaag ccactccccg aatcgctctc 1080 cctgtgttcc cccagcccct gacatggccc tcccaaggct tggcacacag agtacagggc 1140 ctggcaggtg cctgagcccc aaccttcagg cccaagaagc cccagcccca gtcaccacct 1200 cctcttctac atccaccctg tcatcctccc cttggtcagc tcagcctacc tggaagagcg 1260 accccggctt ccggatcact gtggtcacat ggaacgtggg cactgccatg cccccagacg 1320 atgtcacatc cctcctccac ctgggcggtg gtgacgacag cgacggcgca gacatgatcg 1380 ccatagggtt gcaggaagtg aactccatgc tcaacaagcg actcaaggac gccctcttca 1440 cggaccagtg gagtgagctg ttcatggatg cgctagggcc cttcaacttc gtgctggtga 1500 gttcggtgag gatgcagggt gtcatcctgc tgctgttcgc caagtactac cacctgccct 1560 tcctgcgaga cgtgcagacc gactgcacgc gcactggcct gggcggctac tggggtaaca 1620 agggtggcgt gagcgtgcgc ctggcggcct tcgggcacat gctctgcttc ctgaactgcc 1680 acttgcctgc gcatatggac aaggcggagc agcgcaaaga caacttccag accatcctca 1740 gcctccagca gttccaaggg ccgggcgcac agggcatcct ggatcatgac ctcgtgttct 1800 ggttcgggga cctgaacttc cgcattgaga gctatgacct gcactttgtc aagtttgcca 1860 tcgacagtga ccagctccat cagctctggg agaaggacca gctcaacatg gccaagaaca 1920 cctggcccat tctgaagggc tttcaggagg ggcccctcaa cttcgctccc accttcaagt 1980 ttgatgtggg taccaacaaa tacgatacca gtgccaagaa acggaagcca gcttggacag 2040 accgtatcct atggaaggtc aaggctccag gtgggggtcc cagcccctca ggacggaaga 2100 gccaccgact ccaggtgacg cagcacagct accgcagcca catggaatac acagtcagcg 2160 accacaagcc tgtggctgcc cagttcctcc tgcagtttgc cttcagggac gacatgccac 2220 tggtgcggct ggaggtggca gatgagtggg tgcggcccga gcaggcggtg gtgaggtacc 2280 gcatggaaac agtgttcgcc cgcagctcct gggactggat cggcttatac cgggtgggtt 2340 tccgccattg caaggactat gtggcttatg tctgggccaa acatgaagat gtggatggga 2400 atacctacca ggtaacattc agtgaggaat cactgcccaa gggccatgga gacttcatcc 2460 tgggctacta tagtcacaac cacagcatcc tcatcggcat cactgaaccc ttccagatct 2520 cgctgccttc ctcggagttg gccagcagca gcacagacag ctcaggcacc agctcagagg 2580 gagaggatga cagcacactg gagctccttg cacccaagtc ccgcagcccc agtcctggca 2640 agtccaagcg acaccgcagc cgcagcccgg gactggccag gttccctggg cttgccctac 2700 ggccctcatc ccgtgaacgc cgtggtgcca gccgtagccc ctcaccccag agccgccgcc 2760 tgtcccgagt ggctcctgac aggagcagta atggcagcag ccggggcagt agtgaagagg 2820 ggccctctgg gttgcctggc ccctgggcct tcccaccagc tgtgcctcga agcctgggcc 2880 tgttgcccgc cttgcgccta gagactgtag accctggtgg tggtggctcc tggggacctg 2940 atcgggaggc cctggcgccc aacagcctgt ctcctagtcc ccagggccat cgggggctgg 3000 aggaaggggg cctggggccc tgagggtggg gtaggcagat gg 3042 4 2757 DNA Homo sapiens misc_feature (939)..(939) “n” is A, C, G, or T 4 cgtctctgac ggaagccggg gcggacggtc ggagtccgga agaaaaacag tccgcgacag 60 ctaggcgcgt gagaccgacc gccgcgcagg gctgctctgg ccgggacccg ctggccggga 120 gacgcgaacc tgccggacca ccgcgcgggg acgacggcgg ccatgagctc gcggaagctg 180 agcgggccga aaggcaggag gctcagcata cacgtcgtga cttggaacgt ggcttcgnca 240 gcgccccctc tagatctcag tgacctgctt cagctgaaca accggaacct caatcttgac 300 atatatgtta ttggtttgca ggaattgaac tctgggatca taagcctcct ttccgatgct 360 gcctttaatg actcgtggag cagtttcctc atggatgtgc tttcccctct gagcttcatc 420 aaggtctccc atgtccgtat gcaggggatc ctcttactgg tctttgccaa gtatcagcat 480 ttgccctata tccagattct gtctactaaa tccaccccca ctggcctgtt tgggtactgg 540 gggaacaaag gtggagtcaa catctgcctg aagctttatg gctactatgt cagcatcatc 600 aactgccacc tgcctcccca catttccaac aattaccagc ggctggagca ctttgaccgg 660 atcctggaga tgcagaattg tgaggggcga gacatcccaa acatcctgga ccacgacctc 720 attatctggt ttggagacat gaactttcgg atcgaggact ttgggttgca ctttgttcgg 780 gaatccatta aaaatcggtg ctacggtggc ctgtgggaga aggaccagct cagcattgcc 840 aagaaacatg acccgctgct ccgggagttc caggagggcc gcctactctt cccgcccacc 900 tacaagtttg ataggaactc caacgactat gacaccagnt gagaaaaaac gcaagcctgc 960 atggaccgat cgcatcctgt ggaggctgaa gcggcaggcc tgtgctggcc ccgacactcc 1020 cataccgccg gcgtcacact tctccttgtc tctgaggggc tacagcagcc acatgacgta 1080 cggcatcagc gaccacaagc ctgtctccgg cacgttcgac ttggagctga agccattggt 1140 gtctgctccg ctgatcgtcc tgatgcccga ggacctgtgg accgtggaaa atgacatgat 1200 ggtcagctac tcttcaacct cggacttccc cagcagcccg tgggactgga ttggactgta 1260 caaggtgggg ctgcgggacg ttaatgacta cgtgtcctat gcctgggtcg gggacagcaa 1320 ggtctcctgc agcgacaacc tgaaccaggt ttacatcgac atcagcaata tccctaccac 1380 tgaagatgag tttctcctct gttactacag caacagtctg cgttctgtgg tggggataag 1440 cagacccttc cagatcccgc ctggctcctt gagggaggac ccactgggtg aagcacagcc 1500 acagatctga gccaggatgg gagtgaatcc caggcggagg ccagagctgg cagccagctc 1560 tgcctttcca ctgccgggag tgnctggggn cccagcctgg ccccctgaag agacagccaa 1620 gtgtcgtcca catactcctc ccagagtgag ctctaaccag gctcatttgc tctctccact 1680 actcatctct ggaattagcc gcttaaatac aggtttttgt tgctgagatg tgagtgaaac 1740 cagctagtgt gtcaacagtg aagacctggg gacagttctg cgtctcattt ctggattcct 1800 accccctctt ctagtcttgc ccaagtagtc ctgccaggca catgccccat ttggcacagg 1860 cctgcattct tgtcgtgccg tcctgggcct caggctgtct gggaggggag atgctcacat 1920 ttgtacaggc tacatagact ggtgcaagca gtgctggatt ccaggagtct tggcatctca 1980 tagcttgtcc ccgtgaggag tgagcagagg gtctgggatt tctgctttca gcaaaagcag 2040 tctgactcag tgggcagaat ggaggggccc ctctagccag gctcttacgc catggttatg 2100 agcaggttga tgagggtcct tcggccagca caaccttcct ccctactcac ggcatggagt 2160 ctgactgcat ggaagttcca gatcctgaca gagagaactg ggaaggatcc aggttcgctt 2220 ccgttggtag cttgagtccc atgcctccac cctgccatct gaggaagggg tgacaagtgg 2280 tcaaggagct gtggccacag acttttccag ggtggtcctt ggcaggtgag gtgcgtctgt 2340 gccacccttg tcaggagcca ttgacgacgg gccccccctg gaccccccgg gacctcagag 2400 tgggggcagg cagaagggag aaccagctca agacattttg gaggatctgg ccctggggtt 2460 cttcagagaa caccctctag gggctttggg gacatggcct gtccccacat ccagcacttg 2520 cctccgccat ggtcactcgg cagccctttt cccaggagaa gacacctctg ggagcctgct 2580 cagtgcttgt cctgccatcc tgtgtcctgg gactgagggt tactccagtt gctctgtgtt 2640 gcatactctc ccccgcaagc ctgtgtatga agaattgtcc cctggcttcc agcaggccat 2700 ggctggctgt tttgtgactg ttacattgtg caggggtaat tattagcgtg gctttta 2757 5 2786 DNA Homo sapiens 5 ggtgcgcggt agggccgtct ctgacggaag ccggggcgac ggtcggagtc cggaagaaaa 60 acagtccgcg acagctaggc gcgtgatatc cggccgcccg cagtgctctg gccgggcgcc 120 cgctggccgg gagacgcgaa cctgccggac caccgcgcgg ggacgacggc ggccatgagc 180 tcgcggaagc tgagcgggcc gaaaggcagg aggctcagca tacacgtcgt gacttggaac 240 gtggcttcgg cagcgccccc tctagatctc agtgacctgc ttcagctgaa caaccggaac 300 ctcaatcttg acatatatgt tattggtttg caggaattga actctgggat cataagcctc 360 ctttccgatg ctgcctttaa tgactcgtgg agcagtttcc tcatggatgt gctttcccct 420 ctgagcttca tcaaggtctc ccatgtccgt atgcagggga tcctcttact ggtctttgcc 480 aagtatcagc atttgcccta tatccagatt ctgtctacta aatccacccc cactggcctg 540 tttgggtact gggggaacaa aggtggagtc aacatctgcc tgaagcttta tggctactat 600 gtcagcatca tcaactgcca cctgcctccc cacatttcca acaattacca gcggctggag 660 cactttgacc ggatcctgga gatgcagaat tgtgaggggc gagacatccc aaacatcctg 720 gaccacgacc tcattatctg gtttggagac atgaactttc ggatcgagga ctttgggttg 780 cactttgttc gggaatccat taaaaatcgg tgctacggtg gcctgtggga gaaggaccag 840 ctcagcattg ccaagaaaca tgacccgctg ctccgggagt tccaggaggg ccgcctactc 900 ttcccgccca cctacaagtt tgataggaac tccaacgact atgacaccag tgagaaaaaa 960 cgcaagcctg catggaccga tcgcatcctg tggaggctga agcggcagcc ctgtgctggc 1020 cccgacactc ccataccgcc ggcgtcacac ttctccttgt ctctgagggg ctacagcagc 1080 cacatgacgt acggcatcag cgaccacaag cctgtctccg gcacgttcga cttggagctg 1140 aagccattgg tgtctgctcc gctgatcgtc ctgatgcccg aggacctgtg gaccgtggaa 1200 aatgacatga tggtcagcta ctcttcaacc tcggacttcc ccagcagccc gtgggactgg 1260 attggactgt acaaggtggg gctgcgggac gttaatgact acgtgtccta tgcctgggtc 1320 ggggacagca aggtctcctg cagcgacaac ctgaaccagg tttacatcga catcagcaat 1380 atccctacca ctgaagatga gtttctcctc tgttactaca gaaacagtct gcgttctgtg 1440 gtggggataa gaagaccctt ccagatcccg cctggctcct tgagggagga cccactgggt 1500 gaagcacagc cacagatctg agccaggatg ggagtgaatc ccaggcggag gccagagctg 1560 gcagccagct ctgcctttcc actgccggga gtgctggggg cccagcctgg ccccctgaag 1620 agacagccaa gtgtcgtcca catactcctc ccagagtgag ctctaaccag gctcatttgc 1680 tctctccact actcatctct ggaattagcc gcttaaatac aggtttttgt tgctgagatg 1740 tgagtgaaac cagctagtgt gtcaacagtg aagacctggg gacagttctg cgtctcattt 1800 ctggattcct accccctctt ctagtcttgc ccaagtagtc ctgccaggca catgccccat 1860 ttggcacagg cctgcattct tgtcgtgccg tcctgggcct caggctgtct gggaggggag 1920 atgctcacat ttgtacaggc tacatagact ggtgcaagca gtgctggatt ccaggagtct 1980 tggcatctca tagcttgtcc ccgtgaggag tgagcagagg gtctgggatt tctgctttca 2040 gcaaaagcag tctgactcag tgggcagaat ggaggggccc ctctagccag gctcttacgc 2100 catggttatg agcaggttga tgagggtcct tcggccagca caaccttcct ccctactcac 2160 ggcatggagt ctgactgcat ggaagttcca gatcctgaca gagagaactg ggaaggatcc 2220 aggttcgctt ccgttggtag cttgagtccc atgcctccac cctgccatct gaggaagggg 2280 tgacaagtgg tcaaggagct gtggccacag acttttccag ggtggtcctt ggcaggtgag 2340 gtgcgtctgt cccacccttg tcaggagcca ttgacgacgg gccccccctg gaccccccgg 2400 gacctcagag tgggggcagg cagaagggag aaccagctca agacattttg gaggatctgg 2460 ccctggggtt cttcagagaa caccctctag gggctttggg gacatggcct gtccccacat 2520 ccagcacttg cctccgccat ggtcactcgg cagccctttt cccaggagaa gacacctctg 2580 ggagcctgct cagtgcttgt cctgccatcc tgtgtcctgg gactgagggt tactccagtt 2640 gctctgtgtt gcatactctc ccccgcaagc ctgtgtatga agaattgtcc cctggcttcc 2700 agcaggccat ggctggctgt tttgtgactg ttacattgtg caggggtaat tattagcgtg 2760 gcttttaaaa aaaaaaaaaa aaaaaa 2786 6 3015 DNA Homo sapiens 6 ggtgcgcggt agggccgtct ctgacggaag ccggggcgac ggtcggagtc cggaagaaaa 60 acagtccgcg acagctaggc gcgtgatatc cggccgcccg cagtgctctg gccgggcgcc 120 cgctggccgg gagacgcgaa cctgccggac caccgcgcgg ggacgacggc ggccatgagc 180 tcgcggaagc tgagcgggcc gaaaggcagg aggctcagca tacatcagga ggtctgcctg 240 atcccatggt gaaccccggg aatccgaaat cagattgaga taagatcctt tagggaagtg 300 acttagcctg gtctcttgcc tgctctttca cggggaacaa cgctaatcgc ccacttagtc 360 taagttacga tgcttggatt tgctgctaat cgtcggattt gagagttgga acaagaaatc 420 cggacttttg ctctccatcc tcttagacat acacgtcgtg acttggaacg tggcttcggc 480 agcgccccct ctagatctca gtgacctgct tcagctgaac aaccggaacc tcaatcttga 540 catatatgtt attggtttgc aggaattgaa ctctgggatc ataagcctcc tttccgatgc 600 tgcctttaat gactcgtgga gcagtttcct catggatgtg ctttcccctc tgagcttcat 660 caaggtctcc catgtccgta tgcaggggat cctcttactg gtctttgcca agtatcagca 720 tttgccctat atccagattc tgtctactaa atccaccccc actggcctgt ttgggtactg 780 ggggaacaaa ggtggagtca acatctgcct gaagctttat ggctactatg tcagcatcat 840 caactgccac ctgcctcccc acatttccaa caattaccag cggctggagc actttgaccg 900 gatcctggag atgcagaatt gtgaggggcg agacatccca aacatcctgg accacgacct 960 cattatctgg tttggagaca tgaactttcg gatcgaggac tttgggttgc actttgttcg 1020 ggaatccatt aaaaatcggt gctacggtgg cctgtgggag aaggaccagc tcagcattgc 1080 caagaaacat gacccgctgc tccgggagtt ccaggagggc cgcctactct tcccgcccac 1140 ctacaagttt gataggaact ccaacgacta tgacaccagt gagaaaaaac gcaagcctgc 1200 atggaccgat cgcatcctgt ggaggctgaa gcggcagccc tgtgctggcc ccgacactcc 1260 cataccgccg gcgtcacact tctccttgtc tctgaggggc tacagcagcc acatgacgta 1320 cggcatcagc gaccacaagc ctgtctccgg cacgttcgac ttggagctga agccattggt 1380 gtctgctccg ctgatcgtcc tgatgcccga ggacctgtgg accgtggaaa atgacatgat 1440 ggtcagctac tcttcaacct cggacttccc cagcagcccg tgggactgga ttggactgta 1500 caaggtgggg ctgcgggacg ttaatgacta cgtgtcctat gcctgggtcg gggacagcaa 1560 ggtctcctgc agcgacaacc tgaaccaggt ttacatcgac atcagcaata tccctaccac 1620 tgaagatgag tttctcctct gttactacag aaacagtctg cgttctgtgg tggggataag 1680 aagacccttc cagatcccgc ctggctcctt gagggaggac ccactgggtg aagcacagcc 1740 acagatctga gccaggatgg gagtgaatcc caggcggagg ccagagctgg cagccagctc 1800 tgcctttcca ctgccgggag tgctgggggc ccagcctggc cccctgaaga gacagccaag 1860 tgtcgtccac atactcctcc cagagtgagc tctaaccagg ctcatttgct ctctccacta 1920 ctcatctctg gaattagccg cttaaataca ggtttttgtt gctgagatgt gagtgaaacc 1980 agctagtgtg tcaacagtga agacctgggg acagttctgc gtctcatttc tggattccta 2040 ccccctcttc tagtcttgcc caagtagtcc tgccaggcac atgccccatt tggcacaggc 2100 ctgcattctt gtcgtgccgt cctgggcctc aggctgtctg ggaggggaga tgctcacatt 2160 tgtacaggct acatagactg gtgcaagcag tgctggattc caggagtctt ggcatctcat 2220 agcttgtccc cgtgaggagt gagcagaggg tctgggattt ctgctttcag caaaagcagt 2280 ctgactcagt gggcagaatg gaggggcccc tctagccagg ctcttacgcc atggttatga 2340 gcaggttgat gagggtcctt cggccagcac aaccttcctc cctactcacg gcatggagtc 2400 tgactgcatg gaagttccag atcctgacag agagaactgg gaaggatcca ggttcgcttc 2460 cgttggtagc ttgagtccca tgcctccacc ctgccatctg aggaaggggt gacaagtggt 2520 caaggagctg tggccacaga cttttccagg gtggtccttg gcaggtgagg tgcgtctgtc 2580 ccacccttgt caggagccat tgacgacggg ccccccctgg accccccggg acctcagagt 2640 gggggcaggc agaagggaga accagctcaa gacattttgg aggatctggc cctggggttc 2700 ttcagagaac accctctagg ggctttgggg acatggcctg tccccacatc cagcacttgc 2760 ctccgccatg gtcactcggc agcccttttc ccaggagaag acacctctgg gagcctgctc 2820 agtgcttgtc ctgccatcct gtgtcctggg actgagggtt actccagttg ctctgtgttg 2880 catactctcc cccgcaagcc tgtgtatgaa gaattgtccc ctggcttcca gcaggccatg 2940 gctggctgtt ttgtgactgt tacattgtgc aggggtaatt attagcgtgg cttttaaaaa 3000 aaaaaaaaaa aaaaa 3015 7 2684 DNA Homo sapiens misc_feature (167)..(167) “n” is A, C, G, or T 7 gagaccggcc gcccgcaggg ctgctctggc cgggacccgc tggccgggag acgcgaacct 60 gccggaccac cgcgcgggga cgacggcggc catgagctcg cggaagctga gcgggccgaa 120 aggcaggagg ctcagcatac acgtcgtgac ttggaacgtg gcttcgncag cgccccctct 180 agatctcagt gacctgcttc agctgaacaa ccggaacctc aatcttgaca tatatgttat 240 tggtttgcag gaattgaact ctgggatcat aagcctcctt tccgatgctg cctttaatga 300 ctcgtggagc agtttcctca tggatgtgct ttcccctctg agcttcatca aggtctccca 360 tgtccgtatg caggggatcc tcttactggt ctttgccaag tatcagcatt tgccctatat 420 ccagattctg tctactaaat ccacccccac tggcctgttt gggtactggg ggaacaaagg 480 tggagtcaac atctgcctga agctttatgg ctactatgtc agcatcatca actgccacct 540 gcctccccac atttccaaca attaccagcg gctggagcac tttgaccgga tcctggagat 600 gcagaattgt gaggggcgag acatcccaaa catcctggac cacgacctca ttatctggtt 660 tggagacatg aactttcgga tcgaggactt tgggttgcac tttgttcggg aatccattaa 720 aaatcggtgc tacggtggcc tgtgggagaa ggaccagctc agcattgcca agaaacatga 780 cccgctgctc cgggagttcc aggagggccg cctactcttc ccgcccacct acaagtttga 840 taggaactcc aacgactatg acaccagtga gaaaaaacgc aagcctgcat ggaccgatcg 900 catcctgtgg aggctgaagc ggcaggcctg tgctggcccc gacactccca taccgccggc 960 gtcacacttc tccttgtctc tgaggggcta cagcagccac atgacgtacg gcatcagcga 1020 ccacaagcct gtctccggca cgttcgactt ggagctgaag ccattggtgt ctgctccgct 1080 gatcgtcctg atgcccgagg acctgtggac cgtggaaaat gacatgatgg tcagctactc 1140 ttcaacctcg gacttcccca gcagcccgtg ggactggatt ggactgtaca aggtggggct 1200 gcgggacgtt aatgactacg tgtcctatgc ctgggtcggg gacagcaagg tctcctgcag 1260 cgacaacctg aaccaggttt acatcgacat cagcaatatc cctaccactg aagatgagtt 1320 tctcctctgt tactacagca acagtctgcg ttctgtggtg gggataagca gacccttcca 1380 gatcccgcct ggctccttga gggaggaccc actgggtgaa gcacagccac agatctgagc 1440 caggatggga gtgaatccca ggcggaggcc agagctggca gccagctctg cctttccact 1500 gccgggagtg nctggggncc cagcctggcc ccctgaagag acagccaagt gtcgtccaca 1560 tactcctccc agagtgagct ctaaccaggc tcatttgctc tctccactac tcatctctgg 1620 aattagccgc ttaaatacag gtttttgttg ctgagatgtg agtgaaacca gctagtgtgt 1680 caacagtgaa gacctgggga cagttctgcg tctcatttct ggattcctac cccctcttct 1740 agtcttgccc aagtagtcct gccaggcaca tgccccattt ggcacaggcc tgcattcttg 1800 tcgtgccgtc ctgggcctca ggctgtctgg gaggggagat gctcacattt gtacaggcta 1860 catagactgg tgcaagcagt gctggattcc aggagtcttg gcatctcata gcttgtcccc 1920 gtgaggagtg agcagagggt ctgggatttc tgctttcagc aaaagcagtc tgactcagtg 1980 ggcagaatgg aggggcccct ctagccaggc tcttacgcca tggttatgag caggttgatg 2040 agggtccttc ggccagcaca accttcctcc ctactcacgg catggagtct gactgcatgg 2100 aagttccaga tcctgacaga gagaactggg aaggatccag gttcgcttcc gttggtagct 2160 tgagtcccat gcctccaccc tgccatctga ggaaggggtg acaagtggtc aaggagctgt 2220 ggccacagac ttttccaggg tggtccttgg caggtgaggt gcgtctgtgc cacccttgtc 2280 aggagccatt gacgacgggc cccccctgga ccccccggga cctcagagtg ggggcaggca 2340 gaagggagaa ccagctcaag acattttgga ggatctggcc ctggggttct tcagagaaca 2400 ccctctaggg gctttgggga catggcctgt ccccacatcc agcacttgcc tccgccatgg 2460 tcactcggca gcccttttcc caggagaaga cacctctggg agcctgctca gtgcttgtcc 2520 tgccatcctg tgtcctggga ctgagggtta ctccagttgc tctgtgttgc atactctccc 2580 ccgcaagcct gtgtatgaag aattgtcccc tggcttccag caggccatgg ctggctgttt 2640 tgtgactgtt acattgtgca ggggtaatta ttagcgtggc tttt 2684 8 1355 DNA Homo sapiens 8 ggccatgagc tcgcggaagc tgagcgggcc gaaaggcagg aggctcagca tacacgtcgt 60 gacttggaac gtggcttcgg cagcgccccc tctagatctc agtgacctgc ttcagctgaa 120 caaccggaac ctcaatcttg acatatatgt tattggtttg caggaattga actctgggat 180 cataagcctc ctttccgatg ctgcctttaa tgactcgtgg agcagtttcc tcatggatgt 240 gctttcccct ctgagcttca tcaaggtctc ccatgtccgt atgcagggga tcctcttact 300 ggtctttgcc aagtatcagc atttgcccta tatccagatt ctgtctacta aatccacccc 360 cactggcctg tttgggtact gggggaacaa aggtggagtc aacatctgcc tgaagcttta 420 tggctactat gtcagcatca tcaactgcca cctgcctccc cacatttcca acaattacca 480 gcggctggag cactttgacc ggatcctgga gatgcagaat tgtgaggggc gagacatccc 540 aaacatcctg gaccacgacc tcattatctg gtttggagac atgaactttc ggatcgagga 600 ctttgggttg cactttgttc gggaatccat taaaaatcgg tgctacggtg gcctgtggga 660 gaaggaccag ctcagcattg ccaagaaaca tgacccgctg ctccgggagt tccaggaggg 720 ccgcctactc ttcccgccca cctacaagtt tgataggaac tccaacgact atgacaccag 780 tgagaaaaaa cgcaagcctg catggaccga tcgcatcctg tggaggctga agcggcagcc 840 ctgtgctggc cccgacactc ccataccgcc ggcgtcacac ttctccttgt ctctgagggg 900 ctacagcagc cacatgacgt acggcatcag cgaccacaag cctgtctccg gcacgttcga 960 cttggagctg aagccattgg tgtctgctcc gctgatcgtc ctgatgcccg aggacctgtg 1020 gaccgtggaa aatgacatga tggtcagcta ctcttcaacc tcggacttcc ccagcagccc 1080 gtgggactgg attggactgt acaaggtggg gctgcgggac gttaatgact acgtgtccta 1140 tgcctgggtc ggggacagca aggtctcctg cagcgacaac ctgaaccagg tttacatcga 1200 catcagcaat atccctacca ctgaagatga gtttctcctc tgttactaca gcaacagtct 1260 gcgttctgtg gtggggataa gcagaccctt ccagatcccg cctggctcct tgagggagga 1320 cccactgggt gaagcacagc cacagatctg agcca 1355 9 1126 DNA Homo sapiens 9 tcatggatgt gctttcccct ctgagcttca tcaaggtctc ccatgtccgt atgcagggga 60 tcctcttact ggtctttgcc aagtatcagc atttgcccta tatccagatt ctgtctacta 120 aatccacccc cactggcctg tttgggtact gggggaacaa aggtggagtc aacatctgcc 180 tgaagcttta tggctactat gtcagcatca tcaactgcca cctgcctccc cacatttcca 240 acaattacca gcggctggag cactttgacc ggatcctgga gatgcagaat tgtgaggggc 300 gagacatccc aaacatcctg gaccacgacc tcattatctg gtttggagac atgaactttc 360 ggatcgagga ctttgggttg cactttgttc gggaatccat taaaaatcgg tgctacggtg 420 gcctgtggga gaaggaccag ctcagcattg ccaagaaaca tgacccgctg ctccgggagt 480 tccaggaggg ccgcctactc ttcccgccca cctacaagtt tgataggaac tccaacgact 540 atgacaccag tgagaaaaaa cgcaagcctg catggaccga tcgcatcctg tggaggctga 600 agcggcagcc ctgtgctggc cccgacactc ccataccgcc ggcgtcacac ttctccttgt 660 ctctgagggg ctacagcagc cacatgacgt acggcatcag cgaccacaag cctgtctccg 720 gcacgttcga cttggagctg aagccattgg tgtctgctcc gctgatcgtc ctgatgcccg 780 aggacctgtg gaccgtggaa aatgacatga tggtcagcta ctcttcaacc tcggacttcc 840 ccagcagccc gtgggactgg attggactgt acaaggtggg gctgcgggac gttaatgact 900 acgtgtccta tgcctgggtc ggggacagca aggtctcctg cagcgacaac ctgaaccagg 960 tttacatcga catcagcaat atccctacca ctgaagatga gtttctcctc tgttactaca 1020 gcaacagtct gcgttctgtg gtggggataa gcagaccctt ccagatcccg cctggctcct 1080 tgagggagga cccactgggt gaagcacagc cacagatctg agccag 1126 10 1056 PRT Homo sapiens 10 Glu Pro Arg Glu Ser Arg Leu Pro Gly Ala Ala Asp Met Glu Gly Gln 1 5 10 15 Ser Ser Arg Gly Ser Arg Arg Pro Gly Thr Arg Ala Gly Leu Gly Ser 20 25 30 Leu Pro Met Pro Gln Gly Val Ala Gln Thr Gly Ala Pro Ser Lys Val 35 40 45 Asp Ser Ser Phe Gln Leu Pro Ala Lys Lys Asn Ala Ala Leu Gly Pro 50 55 60 Ser Glu Pro Arg Leu Ala Leu Ala Pro Val Gly Pro Arg Ala Ala Met 65 70 75 80 Ser Ala Ser Ser Glu Gly Pro Arg Leu Ala Leu Ala Ser Pro Arg Pro 85 90 95 Ile Leu Ala Pro Leu Cys Thr Pro Glu Gly Gln Lys Thr Ala Thr Ala 100 105 110 His Arg Ser Ser Ser Leu Ala Pro Thr Ser Val Gly Gln Leu Val Met 115 120 125 Ser Ala Ser Ala Gly Pro Lys Pro Pro Pro Ala Thr Thr Gly Ser Val 130 135 140 Leu Ala Pro Thr Ser Leu Gly Leu Val Met Pro Ala Ser Ala Gly Pro 145 150 155 160 Arg Ser Pro Pro Val Thr Leu Gly Pro Asn Leu Ala Pro Thr Ser Arg 165 170 175 Asp Gln Lys Gln Glu Pro Pro Ala Ser Val Gly Pro Lys Pro Thr Leu 180 185 190 Ala Ala Ser Gly Leu Ser Leu Ala Leu Ala Ser Glu Glu Gln Pro Pro 195 200 205 Glu Leu Pro Ser Thr Pro Ser Pro Val Pro Ser Pro Val Leu Ser Pro 210 215 220 Thr Gln Glu Gln Ala Leu Ala Pro Ala Ser Thr Ala Ser Gly Ala Ala 225 230 235 240 Ser Val Gly Gln Thr Ser Ala Arg Lys Arg Asp Ala Pro Ala Pro Arg 245 250 255 Pro Leu Pro Ala Ser Glu Gly His Leu Gln Pro Pro Ala Gln Thr Ser 260 265 270 Gly Pro Thr Gly Ser Pro Pro Cys Ile Gln Thr Ser Pro Asp Pro Arg 275 280 285 Leu Ser Pro Ser Phe Arg Ala Arg Pro Glu Ala Leu His Ser Ser Pro 290 295 300 Glu Asp Pro Val Leu Pro Arg Pro Pro Gln Thr Leu Pro Leu Asp Val 305 310 315 320 Gly Gln Gly Pro Ser Glu Pro Gly Thr His Ser Pro Gly Leu Leu Ser 325 330 335 Pro Thr Phe Arg Pro Gly Ala Pro Ser Gly Gln Thr Val Pro Pro Pro 340 345 350 Leu Pro Lys Pro Pro Arg Ser Pro Ser Arg Ser Pro Ser His Ser Pro 355 360 365 Asn Arg Ser Pro Cys Val Pro Pro Ala Pro Asp Met Ala Leu Pro Arg 370 375 380 Leu Gly Thr Gln Ser Thr Gly Pro Gly Arg Cys Leu Ser Pro Asn Leu 385 390 395 400 Gln Ala Gln Glu Ala Pro Ala Pro Val Thr Thr Ser Ser Ser Thr Ser 405 410 415 Thr Leu Ser Ser Ser Pro Trp Ser Ala Gln Pro Thr Trp Lys Ser Asp 420 425 430 Pro Gly Phe Arg Ile Thr Val Val Thr Trp Asn Val Gly Thr Ala Met 435 440 445 Pro Pro Asp Asp Val Thr Ser Leu Leu His Leu Gly Gly Gly Asp Asp 450 455 460 Ser Asp Gly Ala Asp Met Ile Ala Ile Gly Leu Gln Glu Val Asn Ser 465 470 475 480 Met Leu Asn Lys Arg Leu Lys Asp Ala Leu Phe Thr Asp Gln Trp Ser 485 490 495 Glu Leu Phe Met Asp Ala Leu Gly Pro Phe Asn Phe Val Leu Val Thr 500 505 510 His Pro Ser Pro Pro Gly Gln Pro Glu Thr Leu Leu Asn Ser Trp Leu 515 520 525 Gln Leu Tyr Pro Gly Ser Leu Trp Gly Pro Leu Gly Leu Cys Gly Trp 530 535 540 Val Ser Ser Val Arg Met Gln Gly Val Ile Leu Leu Leu Phe Ala Lys 545 550 555 560 Tyr Tyr His Leu Pro Phe Leu Arg Asp Val Gln Thr Asp Cys Thr Arg 565 570 575 Thr Gly Leu Gly Gly Tyr Trp Gly Asn Lys Gly Gly Val Ser Val Arg 580 585 590 Leu Ala Ala Phe Gly His Met Leu Cys Phe Leu Asn Cys His Leu Pro 595 600 605 Ala His Met Asp Lys Ala Glu Gln Arg Lys Asp Asn Phe Gln Thr Ile 610 615 620 Leu Ser Leu Gln Gln Phe Gln Gly Pro Gly Ala Gln Gly Ile Leu Asp 625 630 635 640 His Glu Tyr Gly Leu Gly Leu Val Phe Trp Phe Gly Asp Leu Asn Phe 645 650 655 Arg Ile Glu Ser Tyr Asp Leu His Phe Val Lys Phe Ala Ile Asp Ser 660 665 670 Asp Gln Leu His Gln Leu Trp Glu Lys Asp Gln Leu Asn Met Ala Lys 675 680 685 Asn Thr Trp Pro Ile Leu Lys Gly Phe Gln Glu Gly Pro Leu Asn Phe 690 695 700 Ala Pro Thr Phe Lys Phe Asp Val Gly Thr Asn Lys Tyr Asp Thr Ser 705 710 715 720 Ala Lys Lys Arg Lys Pro Ala Trp Thr Asp Arg Ile Leu Trp Lys Val 725 730 735 Lys Ala Pro Gly Gly Gly Pro Ser Pro Ser Gly Arg Lys Ser His Arg 740 745 750 Leu Gln Val Thr Gln His Ser Tyr Arg Ser His Met Glu Tyr Thr Val 755 760 765 Ser Asp His Lys Pro Val Ala Ala Gln Phe Leu Leu Gln Phe Ala Phe 770 775 780 Arg Asp Asp Met Pro Leu Val Arg Leu Glu Val Ala Asp Glu Trp Val 785 790 795 800 Arg Pro Glu Gln Ala Val Val Arg Tyr Arg Met Glu Thr Val Phe Ala 805 810 815 Arg Ser Ser Trp Asp Trp Ile Gly Leu Tyr Arg Val Gly Phe Arg His 820 825 830 Cys Lys Asp Tyr Val Ala Tyr Val Trp Ala Lys His Glu Asp Val Asp 835 840 845 Gly Asn Thr Tyr Gln Val Thr Phe Ser Glu Glu Ser Leu Pro Lys Gly 850 855 860 His Gly Asp Phe Ile Leu Gly Tyr Tyr Ser His Asn His Ser Ile Leu 865 870 875 880 Ile Gly Ile Thr Glu Pro Phe Gln Ile Ser Leu Pro Ser Ser Glu Leu 885 890 895 Ala Ser Ser Ser Thr Asp Ser Ser Gly Thr Ser Ser Glu Gly Glu Asp 900 905 910 Asp Ser Thr Leu Glu Leu Leu Ala Pro Lys Ser Arg Ser Pro Ser Pro 915 920 925 Gly Lys Ser Lys Arg His Arg Ser Arg Ser Pro Gly Leu Ala Arg Phe 930 935 940 Pro Gly Leu Ala Leu Arg Pro Ser Ser Arg Glu Arg Arg Gly Ala Ser 945 950 955 960 Arg Ser Pro Ser Pro Gln Ser Arg Arg Leu Ser Arg Val Ala Pro Asp 965 970 975 Arg Ser Ser Asn Gly Ser Ser Arg Gly Ser Ser Glu Glu Gly Pro Ser 980 985 990 Gly Leu Pro Gly Pro Trp Ala Phe Pro Pro Ala Val Pro Arg Ser Leu 995 1000 1005 Gly Leu Leu Pro Ala Leu Arg Leu Glu Thr Val Asp Pro Gly Gly 1010 1015 1020 Gly Gly Ser Trp Gly Pro Asp Arg Glu Ala Leu Ala Pro Asn Ser 1025 1030 1035 Leu Ser Pro Ser Pro Gln Gly His Arg Gly Leu Glu Glu Gly Gly 1040 1045 1050 Leu Gly Pro 1055 11 478 PRT Homo sapiens misc_feature (56)..(56) “X” is any amino acid 11 Arg Pro Ala Ala Arg Arg Ala Ala Leu Ala Gly Thr Arg Trp Pro Gly 1 5 10 15 Asp Ala Asn Leu Pro Asp His Arg Ala Gly Thr Thr Ala Ala Met Ser 20 25 30 Ser Arg Lys Leu Ser Gly Pro Lys Gly Arg Arg Leu Ser Ile His Val 35 40 45 Val Thr Trp Asn Val Ala Ser Xaa Ala Pro Pro Leu Asp Leu Ser Asp 50 55 60 Leu Leu Gln Leu Asn Asn Arg Asn Leu Asn Leu Asp Ile Tyr Val Ile 65 70 75 80 Gly Leu Gln Glu Leu Asn Ser Gly Ile Ile Ser Leu Leu Ser Asp Ala 85 90 95 Ala Phe Asn Asp Ser Trp Ser Ser Phe Leu Met Asp Val Leu Ser Pro 100 105 110 Leu Ser Phe Ile Lys Val Ser His Val Arg Met Gln Gly Ile Leu Leu 115 120 125 Leu Val Phe Ala Lys Tyr Gln His Leu Pro Tyr Ile Gln Ile Leu Ser 130 135 140 Thr Lys Ser Thr Pro Thr Gly Leu Phe Gly Tyr Trp Gly Asn Lys Gly 145 150 155 160 Gly Val Asn Ile Cys Leu Lys Leu Tyr Gly Tyr Tyr Val Ser Ile Ile 165 170 175 Asn Cys His Leu Pro Pro His Ile Ser Asn Asn Tyr Gln Arg Leu Glu 180 185 190 His Phe Asp Arg Ile Leu Glu Met Gln Asn Cys Glu Gly Arg Asp Ile 195 200 205 Pro Asn Ile Leu Asp His Asp Leu Ile Ile Trp Phe Gly Asp Met Asn 210 215 220 Phe Arg Ile Glu Asp Phe Gly Leu His Phe Val Arg Glu Ser Ile Lys 225 230 235 240 Asn Arg Cys Tyr Gly Gly Leu Trp Glu Lys Asp Gln Leu Ser Ile Ala 245 250 255 Lys Lys His Asp Pro Leu Leu Arg Glu Phe Gln Glu Gly Arg Leu Leu 260 265 270 Phe Pro Pro Thr Tyr Lys Phe Asp Arg Asn Ser Asn Asp Tyr Asp Thr 275 280 285 Ser Glu Lys Lys Arg Lys Pro Ala Trp Thr Asp Arg Ile Leu Trp Arg 290 295 300 Leu Lys Arg Gln Ala Cys Ala Gly Pro Asp Thr Pro Ile Pro Pro Ala 305 310 315 320 Ser His Phe Ser Leu Ser Leu Arg Gly Tyr Ser Ser His Met Thr Tyr 325 330 335 Gly Ile Ser Asp His Lys Pro Val Ser Gly Thr Phe Asp Leu Glu Leu 340 345 350 Lys Pro Leu Val Ser Ala Pro Leu Ile Val Leu Met Pro Glu Asp Leu 355 360 365 Trp Thr Val Glu Asn Asp Met Met Val Ser Tyr Ser Ser Thr Ser Asp 370 375 380 Phe Pro Ser Ser Pro Trp Asp Trp Ile Gly Leu Tyr Lys Val Gly Leu 385 390 395 400 Arg Asp Val Asn Asp Tyr Val Ser Tyr Ala Trp Val Gly Asp Ser Lys 405 410 415 Val Ser Cys Ser Asp Asn Leu Asn Gln Val Tyr Ile Asp Ile Ser Asn 420 425 430 Ile Pro Thr Thr Glu Asp Glu Phe Leu Leu Cys Tyr Tyr Ser Asn Ser 435 440 445 Leu Arg Ser Val Val Gly Ile Ser Arg Pro Phe Gln Ile Pro Pro Gly 450 455 460 Ser Leu Arg Glu Asp Pro Leu Gly Glu Ala Gln Pro Gln Ile 465 470 475 12 448 PRT Homo sapiens 12 Met Ser Ser Arg Lys Leu Ser Gly Pro Lys Gly Arg Arg Leu Ser Ile 1 5 10 15 His Val Val Thr Trp Asn Val Ala Ser Ala Ala Pro Pro Leu Asp Leu 20 25 30 Ser Asp Leu Leu Gln Leu Asn Asn Arg Asn Leu Asn Leu Asp Ile Tyr 35 40 45 Val Ile Gly Leu Gln Glu Leu Asn Ser Gly Ile Ile Ser Leu Leu Ser 50 55 60 Asp Ala Ala Phe Asn Asp Ser Trp Ser Ser Phe Leu Met Asp Val Leu 65 70 75 80 Ser Pro Leu Ser Phe Ile Lys Val Ser His Val Arg Met Gln Gly Ile 85 90 95 Leu Leu Leu Val Phe Ala Lys Tyr Gln His Leu Pro Tyr Ile Gln Ile 100 105 110 Leu Ser Thr Lys Ser Thr Pro Thr Gly Leu Phe Gly Tyr Trp Gly Asn 115 120 125 Lys Gly Gly Val Asn Ile Cys Leu Lys Leu Tyr Gly Tyr Tyr Val Ser 130 135 140 Ile Ile Asn Cys His Leu Pro Pro His Ile Ser Asn Asn Tyr Gln Arg 145 150 155 160 Leu Glu His Phe Asp Arg Ile Leu Glu Met Gln Asn Cys Glu Gly Arg 165 170 175 Asp Ile Pro Asn Ile Leu Asp His Asp Leu Ile Ile Trp Phe Gly Asp 180 185 190 Met Asn Phe Arg Ile Glu Asp Phe Gly Leu His Phe Val Arg Glu Ser 195 200 205 Ile Lys Asn Arg Cys Tyr Gly Gly Leu Trp Glu Lys Asp Gln Leu Ser 210 215 220 Ile Ala Lys Lys His Asp Pro Leu Leu Arg Glu Phe Gln Glu Gly Arg 225 230 235 240 Leu Leu Phe Pro Pro Thr Tyr Lys Phe Asp Arg Asn Ser Asn Asp Tyr 245 250 255 Asp Thr Ser Glu Lys Lys Arg Lys Pro Ala Trp Thr Asp Arg Ile Leu 260 265 270 Trp Arg Leu Lys Arg Gln Pro Cys Ala Gly Pro Asp Thr Pro Ile Pro 275 280 285 Pro Ala Ser His Phe Ser Leu Ser Leu Arg Gly Tyr Ser Ser His Met 290 295 300 Thr Tyr Gly Ile Ser Asp His Lys Pro Val Ser Gly Thr Phe Asp Leu 305 310 315 320 Glu Leu Lys Pro Leu Val Ser Ala Pro Leu Ile Val Leu Met Pro Glu 325 330 335 Asp Leu Trp Thr Val Glu Asn Asp Met Met Val Ser Tyr Ser Ser Thr 340 345 350 Ser Asp Phe Pro Ser Ser Pro Trp Asp Trp Ile Gly Leu Tyr Lys Val 355 360 365 Gly Leu Arg Asp Val Asn Asp Tyr Val Ser Tyr Ala Trp Val Gly Asp 370 375 380 Ser Lys Val Ser Cys Ser Asp Asn Leu Asn Gln Val Tyr Ile Asp Ile 385 390 395 400 Ser Asn Ile Pro Thr Thr Glu Asp Glu Phe Leu Leu Cys Tyr Tyr Arg 405 410 415 Asn Ser Leu Arg Ser Val Val Gly Ile Arg Arg Pro Phe Gln Ile Pro 420 425 430 Pro Gly Ser Leu Arg Glu Asp Pro Leu Gly Glu Ala Gln Pro Gln Ile 435 440 445 13 372 PRT Homo sapiens 13 Met Asp Val Leu Ser Pro Leu Ser Phe Ile Lys Val Ser His Val Arg 1 5 10 15 Met Gln Gly Ile Leu Leu Leu Val Phe Ala Lys Tyr Gln His Leu Pro 20 25 30 Tyr Ile Gln Ile Leu Ser Thr Lys Ser Thr Pro Thr Gly Leu Phe Gly 35 40 45 Tyr Trp Gly Asn Lys Gly Gly Val Asn Ile Cys Leu Lys Leu Tyr Gly 50 55 60 Tyr Tyr Val Ser Ile Ile Asn Cys His Leu Pro Pro His Ile Ser Asn 65 70 75 80 Asn Tyr Gln Arg Leu Glu His Phe Asp Arg Ile Leu Glu Met Gln Asn 85 90 95 Cys Glu Gly Arg Asp Ile Pro Asn Ile Leu Asp His Asp Leu Ile Ile 100 105 110 Trp Phe Gly Asp Met Asn Phe Arg Ile Glu Asp Phe Gly Leu His Phe 115 120 125 Val Arg Glu Ser Ile Lys Asn Arg Cys Tyr Gly Gly Leu Trp Glu Lys 130 135 140 Asp Gln Leu Ser Ile Ala Lys Lys His Asp Pro Leu Leu Arg Glu Phe 145 150 155 160 Gln Glu Gly Arg Leu Leu Phe Pro Pro Thr Tyr Lys Phe Asp Arg Asn 165 170 175 Ser Asn Asp Tyr Asp Thr Ser Glu Lys Lys Arg Lys Pro Ala Trp Thr 180 185 190 Asp Arg Ile Leu Trp Arg Leu Lys Arg Gln Pro Cys Ala Gly Pro Asp 195 200 205 Thr Pro Ile Pro Pro Ala Ser His Phe Ser Leu Ser Leu Arg Gly Tyr 210 215 220 Ser Ser His Met Thr Tyr Gly Ile Ser Asp His Lys Pro Val Ser Gly 225 230 235 240 Thr Phe Asp Leu Glu Leu Lys Pro Leu Val Ser Ala Pro Leu Ile Val 245 250 255 Leu Met Pro Glu Asp Leu Trp Thr Val Glu Asn Asp Met Met Val Ser 260 265 270 Tyr Ser Ser Thr Ser Asp Phe Pro Ser Ser Pro Trp Asp Trp Ile Gly 275 280 285 Leu Tyr Lys Val Gly Leu Arg Asp Val Asn Asp Tyr Val Ser Tyr Ala 290 295 300 Trp Val Gly Asp Ser Lys Val Ser Cys Ser Asp Asn Leu Asn Gln Val 305 310 315 320 Tyr Ile Asp Ile Ser Asn Ile Pro Thr Thr Glu Asp Glu Phe Leu Leu 325 330 335 Cys Tyr Tyr Arg Asn Ser Leu Arg Ser Val Val Gly Ile Arg Arg Pro 340 345 350 Phe Gln Ile Pro Pro Gly Ser Leu Arg Glu Asp Pro Leu Gly Glu Ala 355 360 365 Gln Pro Gln Ile 370 14 448 PRT Homo sapiens 14 Met Ser Ser Arg Lys Leu Ser Gly Pro Lys Gly Arg Arg Leu Ser Ile 1 5 10 15 His Val Val Thr Trp Asn Val Ala Ser Ala Ala Pro Pro Leu Asp Leu 20 25 30 Ser Asp Leu Leu Gln Leu Asn Asn Arg Asn Leu Asn Leu Asp Ile Tyr 35 40 45 Val Ile Gly Leu Gln Glu Leu Asn Ser Gly Ile Ile Ser Leu Leu Ser 50 55 60 Asp Ala Ala Phe Asn Asp Ser Trp Ser Ser Phe Leu Met Asp Val Leu 65 70 75 80 Ser Pro Leu Ser Phe Ile Lys Val Ser His Val Arg Met Gln Gly Ile 85 90 95 Leu Leu Leu Val Phe Ala Lys Tyr Gln His Leu Pro Tyr Ile Gln Ile 100 105 110 Leu Ser Thr Lys Ser Thr Pro Thr Gly Leu Phe Gly Tyr Trp Gly Asn 115 120 125 Lys Gly Gly Val Asn Ile Cys Leu Lys Leu Tyr Gly Tyr Tyr Val Ser 130 135 140 Ile Ile Asn Cys His Leu Pro Pro His Ile Ser Asn Asn Tyr Gln Arg 145 150 155 160 Leu Glu His Phe Asp Arg Ile Leu Glu Met Gln Asn Cys Glu Gly Arg 165 170 175 Asp Ile Pro Asn Ile Leu Asp His Asp Leu Ile Ile Trp Phe Gly Asp 180 185 190 Met Asn Phe Arg Ile Glu Asp Phe Gly Leu His Phe Val Arg Glu Ser 195 200 205 Ile Lys Asn Arg Cys Tyr Gly Gly Leu Trp Glu Lys Asp Gln Leu Ser 210 215 220 Ile Ala Lys Lys His Asp Pro Leu Leu Arg Glu Phe Gln Glu Gly Arg 225 230 235 240 Leu Leu Phe Pro Pro Thr Tyr Lys Phe Asp Arg Asn Ser Asn Asp Tyr 245 250 255 Asp Thr Ser Glu Lys Lys Arg Lys Pro Ala Trp Thr Asp Arg Ile Leu 260 265 270 Trp Arg Leu Lys Arg Gln Pro Cys Ala Gly Pro Asp Thr Pro Ile Pro 275 280 285 Pro Ala Ser His Phe Ser Leu Ser Leu Arg Gly Tyr Ser Ser His Met 290 295 300 Thr Tyr Gly Ile Ser Asp His Lys Pro Val Ser Gly Thr Phe Asp Leu 305 310 315 320 Glu Leu Lys Pro Leu Val Ser Ala Pro Leu Ile Val Leu Met Pro Glu 325 330 335 Asp Leu Trp Thr Val Glu Asn Asp Met Met Val Ser Tyr Ser Ser Thr 340 345 350 Ser Asp Phe Pro Ser Ser Pro Trp Asp Trp Ile Gly Leu Tyr Lys Val 355 360 365 Gly Leu Arg Asp Val Asn Asp Tyr Val Ser Tyr Ala Trp Val Gly Asp 370 375 380 Ser Lys Val Ser Cys Ser Asp Asn Leu Asn Gln Val Tyr Ile Asp Ile 385 390 395 400 Ser Asn Ile Pro Thr Thr Glu Asp Glu Phe Leu Leu Cys Tyr Tyr Ser 405 410 415 Asn Ser Leu Arg Ser Val Val Gly Ile Ser Arg Pro Phe Gln Ile Pro 420 425 430 Pro Gly Ser Leu Arg Glu Asp Pro Leu Gly Glu Ala Gln Pro Gln Ile 435 440 445

Claims (25)

What is claimed is:
1. A method of identifying a candidate p53 pathway modulating agent, said method comprising the steps of:
(a) providing an assay system comprising a purified PIB polypeptide or nucleic acid or a functionally active fragment or derivative thereof;
(b) contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity; and
(c) detecting a test agent-biased activity of the assay system, wherein a difference between the test agent-biased activity and the reference activity identifies the test agent as a candidate p53 pathway modulating agent.
2. The method of claim 1 wherein the assay system comprises cultured cells that express the PIB polypeptide.
3. The method of claim 2 wherein the cultured cells additionally have defective p53 function.
4. The method of claim 1 wherein the assay system includes a screening assay comprising a PIB polypeptide, and the candidate test agent is a small molecule modulator.
5. The method of claim 4 wherein the assay is a phosphatase assay.
6. The method of claim 1 wherein the assay system is selected from the group consisting of an apoptosis assay system, a cell proliferation assay system, an angiogenesis assay system, and a hypoxic induction assay system.
7. The method of claim 1 wherein the assay system includes a binding assay comprising a PIB polypeptide and the candidate test agent is an antibody.
8. The method of claim 1 wherein the assay system includes an expression assay comprising a PIB nucleic acid and the candidate test agent is a nucleic acid modulator.
9. The method of claim 8 wherein the nucleic acid modulator is an antisense oligomer.
10. The method of claim 8 wherein the nucleic acid modulator is a PMO.
11. The method of claim 1 additionally comprising:
(d) administering the candidate p53 pathway modulating agent identified in (c) to a model system comprising cells defective in p53 function and, detecting a phenotypic change in the model system that indicates that the p53 function is restored.
12. The method of claim 11 wherein the model system is a mouse model with defective p53 function.
13. A method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 function with a candidate modulator that specifically binds to a PIB polypeptide comprising an amino acid sequence selected from group consisting of SEQ ID NOs:10, 11, 12, 13, and 14, whereby p53 function is restored.
14. The method of claim 13 wherein the candidate modulator is administered to a vertebrate animal predetermined to have a disease or disorder resulting from a defect in p53 function.
15. The method of claim 13 wherein the candidate modulator is selected from the group consisting of an antibody and a small molecule.
16. The method of claim 1, comprising the additional steps of:
(d) providing a secondary assay system comprising cultured cells or a non-human animal expressing PIB,
(e) contacting the secondary assay system with the test agent of (b) or an agent derived therefrom under conditions whereby, but for the presence of the test agent or agent derived therefrom, the system provides a reference activity; and
(f) detecting an agent-biased activity of the second assay system, wherein a difference between the agent-biased activity and the reference activity of the second assay system confirms the test agent or agent derived therefrom as a candidate p53 pathway modulating agent, and wherein the second assay detects an agent-biased change in the p53 pathway.
17. The method of claim 16 wherein the secondary assay system comprises cultured cells.
18. The method of claim 16 wherein the secondary assay system comprises a non-human animal.
19. The method of claim 18 wherein the non-human animal mis-expresses a p53 pathway gene.
20. A method of modulating p53 pathway in a mammalian cell comprising contacting the cell with an agent that specifically binds a PIB polypeptide or nucleic acid.
21. The method of claim 20 wherein the agent is administered to a mammalian animal predetermined to have a pathology associated with the p53 pathway.
22. The method of claim 20 wherein the agent is a small molecule modulator, a nucleic acid modulator, or an antibody.
23. A method for diagnosing a disease in a patient comprising:
(a) obtaining a biological sample from the patient;
(b) contacting the sample with a probe for PIB expression;
(c) comparing results from step (b) with a control;
(d) determining whether step (c) indicates a likelihood of disease.
24. The method of claim 23 wherein said disease is cancer.
25. The method according to claim 24, wherein said cancer is a cancer as shown in Table 1 as having >25% expression level.
US10/161,510 2001-06-05 2002-06-03 PIBs as modifiers of the p53 pathway and methods of use Abandoned US20020192695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/161,510 US20020192695A1 (en) 2001-06-05 2002-06-03 PIBs as modifiers of the p53 pathway and methods of use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US29607601P 2001-06-05 2001-06-05
US32860501P 2001-10-10 2001-10-10
US35725302P 2002-02-15 2002-02-15
US10/161,510 US20020192695A1 (en) 2001-06-05 2002-06-03 PIBs as modifiers of the p53 pathway and methods of use

Publications (1)

Publication Number Publication Date
US20020192695A1 true US20020192695A1 (en) 2002-12-19

Family

ID=27404397

Family Applications (7)

Application Number Title Priority Date Filing Date
US10/161,510 Abandoned US20020192695A1 (en) 2001-06-05 2002-06-03 PIBs as modifiers of the p53 pathway and methods of use
US10/161,398 Abandoned US20030013144A1 (en) 2001-06-05 2002-06-03 HS2STs as modifiers of the p53 pathway and methods of use
US10/161,565 Abandoned US20030165809A1 (en) 2001-06-05 2002-06-03 MARKs as modifiers of the p53 pathway and methods of use
US10/160,758 Abandoned US20030036076A1 (en) 2001-06-05 2002-06-03 CADs as modifiers of the p53 pathway and methods of use
US11/378,923 Abandoned US20060160764A1 (en) 2001-06-05 2006-03-17 LIMKs as modifiers of p53 pathway and methods of use
US11/627,976 Abandoned US20080166709A1 (en) 2001-06-05 2007-01-28 MARKs as Modifiers of the p53 Pathway and Methods of Use
US12/802,748 Expired - Fee Related US8153384B2 (en) 2001-06-05 2010-06-10 Marks as modifiers of the p53 pathway and methods of use

Family Applications After (6)

Application Number Title Priority Date Filing Date
US10/161,398 Abandoned US20030013144A1 (en) 2001-06-05 2002-06-03 HS2STs as modifiers of the p53 pathway and methods of use
US10/161,565 Abandoned US20030165809A1 (en) 2001-06-05 2002-06-03 MARKs as modifiers of the p53 pathway and methods of use
US10/160,758 Abandoned US20030036076A1 (en) 2001-06-05 2002-06-03 CADs as modifiers of the p53 pathway and methods of use
US11/378,923 Abandoned US20060160764A1 (en) 2001-06-05 2006-03-17 LIMKs as modifiers of p53 pathway and methods of use
US11/627,976 Abandoned US20080166709A1 (en) 2001-06-05 2007-01-28 MARKs as Modifiers of the p53 Pathway and Methods of Use
US12/802,748 Expired - Fee Related US8153384B2 (en) 2001-06-05 2010-06-10 Marks as modifiers of the p53 pathway and methods of use

Country Status (8)

Country Link
US (7) US20020192695A1 (en)
EP (7) EP1456650B1 (en)
JP (7) JP2005501528A (en)
AT (1) ATE483976T1 (en)
AU (17) AU2002320264B2 (en)
CA (7) CA2449289A1 (en)
DE (1) DE60237917D1 (en)
WO (27) WO2002099140A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051314A2 (en) * 2003-11-24 2005-06-09 Exelixis, Inc. Iraks as modifiers of branching morphogenesis and methods of use
US20080263684A1 (en) * 2004-09-17 2008-10-23 Exelixis Inc. Pik4ca As Modifier of the Rac Pathway and Methods of Use

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098356A2 (en) * 2001-06-05 2002-12-12 Exelixis Inc. Ppp2cs as modifiers of the p53 pathway and methods of use
WO2003003016A1 (en) * 2001-06-27 2003-01-09 The Walter And Eliza Hall Institute Of Medical Research Diagnostic methods and agents
US20030165966A1 (en) * 2002-03-01 2003-09-04 Marcia Belvin MSRAs as modifiers of the p53 pathway and methods of use
GB0207533D0 (en) * 2002-04-02 2002-05-08 Oxford Glycosciences Uk Ltd Protein
US20060189518A1 (en) * 2002-06-26 2006-08-24 Takeda Pharmaceutical Company Limited Preventing/remedies for cancer
FR2844713A1 (en) * 2002-09-25 2004-03-26 Exonhit Therapeutics Sa Use of inhibitor of FLJ protein, for treatment and prevention of e.g. cancer, diabetic retinopathy or arthritis, also new protein, nucleic acid and their inhibitors
US7358262B2 (en) 2003-01-29 2008-04-15 Whitehead Institute For Biomedical Research Identification of genotype-selective anti-tumor agents
WO2004067721A2 (en) * 2003-01-29 2004-08-12 Exelixis Inc. Tkts as modifiers of the beta-catenin pathway and methods of use
US7767387B2 (en) * 2003-06-13 2010-08-03 Sagres Discovery, Inc. Therapeutic targets in cancer
JP4584242B2 (en) * 2003-02-27 2010-11-17 ビーエーエスエフ ソシエタス・ヨーロピア Modified nitrilase and its use in a process for the production of carboxylic acids
US8273536B2 (en) 2003-06-19 2012-09-25 Exelixis, Inc. Marks as modifers of the PTEN pathway and methods of use
CA2527853A1 (en) * 2003-06-19 2005-01-13 Exelixis, Inc. Mptens as modifiers of the pten/igf pathway and methods of use
US7435808B2 (en) 2003-06-25 2008-10-14 Bristol-Myers Squibb Company Polynucleotides encoding novel adiponectin receptor variant, AdipoR2v2
WO2005026737A2 (en) * 2003-09-18 2005-03-24 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with organic cation transporter slc22a4 (slc22a4)
WO2005029085A2 (en) * 2003-09-22 2005-03-31 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with organic cation transporter slc22a11 (slc22a11)
EP1671122B1 (en) * 2003-09-27 2012-04-18 Siemens Healthcare Diagnostics Inc. Diagnostics and therapeutics for diseases associated with g-protein coupled receptor adipor2 (adipor2)
WO2005040830A1 (en) * 2003-10-21 2005-05-06 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with organic cationic transporter-like 3 (orctl3) (orctl3)
WO2005040827A2 (en) * 2003-10-21 2005-05-06 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with organic cationic transporter-like 4 (orctl4) (orctl4)
KR101520209B1 (en) 2003-11-06 2015-05-13 시애틀 지네틱스, 인크. Monomethylvaline compounds capable of conjugation to ligands
GB0328928D0 (en) * 2003-12-12 2004-01-14 Cancer Rec Tech Ltd Materials and methods relating to cell cycle control
US8415315B2 (en) 2004-05-06 2013-04-09 University Of Central Florida Research Foundation, Inc. Methods and compositions for inhibiting the proliferation of cancer cells
US8492106B2 (en) 2004-05-24 2013-07-23 Universitat Zu Koln Identification methods for ergothioneine transporter modulators and therapeutic uses thereof
NZ551180A (en) 2004-06-01 2009-10-30 Genentech Inc Antibody drug conjugates and methods
EP1791565B1 (en) 2004-09-23 2016-04-20 Genentech, Inc. Cysteine engineered antibodies and conjugates
US20100111856A1 (en) 2004-09-23 2010-05-06 Herman Gill Zirconium-radiolabeled, cysteine engineered antibody conjugates
EP1817328A2 (en) 2004-11-24 2007-08-15 Theraptosis S.A. New peptides useful as dual caspase-2/-6 inhibitors and their biological applications
JP4993645B2 (en) 2004-12-01 2012-08-08 ジェネンテック, インコーポレイテッド Antibody drug conjugates and methods
NZ556055A (en) * 2004-12-21 2009-12-24 Viventia Biotech Inc Cancer specific antibody and cell surface proteins
EP1848698B1 (en) * 2005-01-25 2013-03-13 Prolexys Pharmaceuticals, Inc. Quinoxaline derivatives as antitumor agents
US20060246543A1 (en) * 2005-03-03 2006-11-02 President And Fellows Of Harvard College Slim compositions and methods of use thereof
EP1734118A1 (en) * 2005-06-15 2006-12-20 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Identification of JAK/STAT pathway modulating genes by genome wide RNAi screening
WO2007037538A1 (en) * 2005-09-30 2007-04-05 Link Genomics, Inc. Therapeutic or diagnostic application of spo11 gene
US20090007281A1 (en) * 2006-01-13 2009-01-01 Battelle Memorial Institute Animal Model for Assessing Copd-Related Diseases
JPWO2008068827A1 (en) * 2006-12-01 2010-03-11 ジェイファーマ株式会社 Novel organic ion transporter with kidney specificity
EP1978105A1 (en) * 2007-04-04 2008-10-08 Deutsches Institut Für Ernährungsforschung - Stiftung Des Öffentlichen Rechts - Vertreten Durch Den Stiftungsvorstand TBC1D1 as a marker in the response to dietary fat and obesity
EP2023144A1 (en) * 2007-08-01 2009-02-11 Sanofi-Aventis Novel AS160-like protein, test systems, methods and uses involving it for the identification of diabetes type 2 therapeutics
CN101772502A (en) 2007-08-08 2010-07-07 莱西肯医药有限公司 (7H-pyrrolo-[2, the 3-d] pyrimidine-4-yl) piperazine compounds that is used for the treatment of cancer and inflammation as kinase inhibitor
CN101828114B (en) * 2007-08-24 2015-03-11 Lsip基金运营联合公司 Method for detecting gynecological cancer
EP2297153B1 (en) 2008-04-21 2015-05-27 Lexicon Pharmaceuticals, Inc. Limk2 inhibitors, compositions comprising them, and methods of their use
AU2009270988A1 (en) 2008-07-15 2010-01-21 Genentech, Inc. Anthracycline derivative conjugates, process for their preparation and their use as antitumor compounds
JP2013504585A (en) 2009-09-09 2013-02-07 セントローズ, エルエルシー Extracellular targeted drug complex
IN2012DN06061A (en) 2010-01-22 2015-09-18 Lexicon Pharmaceuticals Inc
KR101738203B1 (en) 2010-04-15 2017-05-19 메디뮨 리미티드 Pyrrolobenzodiazepines and conjugates thereof
CA3220104A1 (en) 2010-06-08 2011-12-15 Genentech, Inc. Cysteine engineered antibodies and conjugates
EP2596125A1 (en) * 2010-07-19 2013-05-29 Cellzome Ag In vivo method for the evaluation of a compound-target interaction
US20120121615A1 (en) 2010-11-17 2012-05-17 Flygare John A Alaninyl maytansinol antibody conjugates
WO2012131297A1 (en) 2011-03-28 2012-10-04 Jonathan Bayldon Baell Pyrido [3',2' :4,5] thieno [3, 2-d] pyrimidin- 4 - ylamine derivatives and their therapeutical use
JP5987053B2 (en) 2011-05-12 2016-09-06 ジェネンテック, インコーポレイテッド Multiple reaction monitoring LC-MS / MS method for detecting therapeutic antibodies in animal samples using framework signature peptides
EP2750713B1 (en) 2011-10-14 2015-09-16 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
FR2984362B1 (en) * 2011-12-20 2017-11-24 Biomerieux Sa METHOD FOR IN VITRO DIAGNOSIS OR PROGNOSIS OF LUNG CANCER
WO2013130093A1 (en) 2012-03-02 2013-09-06 Genentech, Inc. Biomarkers for treatment with anti-tubulin chemotherapeutic compounds
WO2013138456A1 (en) * 2012-03-14 2013-09-19 University Of Central Florida Research Foundation, Inc. Lim kinasemodulating agents for neurofibromatoses therapy and methods for screening for same
WO2014057120A1 (en) 2012-10-12 2014-04-17 Adc Therapeutics Sàrl Pyrrolobenzodiazepine-antibody conjugates
ES2680153T3 (en) 2012-10-12 2018-09-04 Adc Therapeutics Sa Anti-PSMA-pyrrolobenzodiazepine antibody conjugates
BR112015008238A2 (en) 2012-10-12 2017-11-28 Adc Therapeutics Sarl pyrrolbenzodiazepine-anti-cd22 antibody conjugates
HUE045435T2 (en) 2012-10-12 2019-12-30 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
HUE042731T2 (en) 2012-10-12 2019-07-29 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
AU2013328625B2 (en) 2012-10-12 2016-12-15 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
SI2906253T1 (en) 2012-10-12 2018-11-30 Adc Therapeutics Sa Pyrrolobenzodiazepine - anti-psma antibody conjugates
US8959767B2 (en) 2012-11-21 2015-02-24 United Technologies Corporation Method of extending life of rotating parts
JP6307519B2 (en) 2012-12-21 2018-04-04 メドイミューン・リミテッドMedImmune Limited Pyrrolobenzodiazepine and its conjugates
EA032986B1 (en) 2012-12-21 2019-08-30 Медимьюн Лимитед Pyrrolobenzodiazepines
JP6340019B2 (en) 2013-03-13 2018-06-06 メドイミューン・リミテッドMedImmune Limited Pyrrolobenzodiazepine and its conjugates
CA2905181C (en) 2013-03-13 2020-06-02 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof for providing targeted therapy
EA027910B1 (en) 2013-03-13 2017-09-29 Медимьюн Лимитед Pyrrolobenzodiazepines and conjugates thereof
MX2016001862A (en) 2013-08-12 2016-08-03 Genentech Inc 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment.
GB201317982D0 (en) 2013-10-11 2013-11-27 Spirogen Sarl Pyrrolobenzodiazepines and conjugates thereof
US9956299B2 (en) 2013-10-11 2018-05-01 Medimmune Limited Pyrrolobenzodiazepine—antibody conjugates
WO2015052534A1 (en) 2013-10-11 2015-04-16 Spirogen Sàrl Pyrrolobenzodiazepine-antibody conjugates
EP3054983B1 (en) 2013-10-11 2019-03-20 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
RU2689388C1 (en) 2013-12-16 2019-05-28 Дженентек, Инк. Peptidomimetic compounds and their conjugates of antibodies with drugs
EP3082875B1 (en) 2013-12-16 2020-11-25 Genentech, Inc. Peptidomimetic compounds and antibody-drug conjugates thereof
JP6980384B2 (en) 2013-12-16 2021-12-15 ジェネンテック, インコーポレイテッド 1- (Chloromethyl) -2,3-dihydro-1H-benzo [E] indole dimer antibody-drug conjugate compound, and methods of use and treatment
EP3083678B1 (en) * 2013-12-17 2019-04-03 Aimm Therapeutics B.V. Means and methods for counteracting myeloproliferative or lymphoproliferative disorders
US10188746B2 (en) 2014-09-10 2019-01-29 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
CA2957354A1 (en) 2014-09-12 2016-03-17 Genentech, Inc. Cysteine engineered antibodies and conjugates
EP3191134B1 (en) 2014-09-12 2019-11-20 Genentech, Inc. Anthracycline disulfide intermediates, antibody-drug conjugates and methods
GB201416112D0 (en) 2014-09-12 2014-10-29 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
MX2017003523A (en) 2014-09-17 2017-11-08 Genentech Inc Pyrrolobenzodiazepines and antibody disulfide conjugates thereof.
CN107148285B (en) 2014-11-25 2022-01-04 Adc治疗股份有限公司 Pyrrolobenzodiazepine-antibody conjugates
EP3226909A1 (en) 2014-12-03 2017-10-11 Genentech, Inc. Quaternary amine compounds and antibody-drug conjugates thereof
GB201506411D0 (en) 2015-04-15 2015-05-27 Bergenbio As Humanized anti-axl antibodies
GB201506402D0 (en) 2015-04-15 2015-05-27 Berkel Patricius H C Van And Howard Philip W Site-specific antibody-drug conjugates
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
MA43354A (en) 2015-10-16 2018-08-22 Genentech Inc CONJUGATE DRUG CONJUGATES WITH CLOUDY DISULPHIDE
MA45326A (en) 2015-10-20 2018-08-29 Genentech Inc CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
GB201601431D0 (en) 2016-01-26 2016-03-09 Medimmune Ltd Pyrrolobenzodiazepines
GB201602356D0 (en) 2016-02-10 2016-03-23 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
GB201602359D0 (en) 2016-02-10 2016-03-23 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
JP6943872B2 (en) 2016-03-25 2021-10-06 ジェネンテック, インコーポレイテッド Multiple whole antibody and antibody complex drug quantification assay
GB201607478D0 (en) 2016-04-29 2016-06-15 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
WO2017201449A1 (en) 2016-05-20 2017-11-23 Genentech, Inc. Protac antibody conjugates and methods of use
JP7022080B2 (en) 2016-05-27 2022-02-17 ジェネンテック, インコーポレイテッド Biochemical analytical methods for the characterization of site-specific antibody-drug conjugates
EP3464280B1 (en) 2016-06-06 2021-10-06 F. Hoffmann-La Roche AG Silvestrol antibody-drug conjugates and methods of use
WO2018031662A1 (en) 2016-08-11 2018-02-15 Genentech, Inc. Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
CN110139674B (en) 2016-10-05 2023-05-16 豪夫迈·罗氏有限公司 Method for preparing antibody drug conjugates
GB201617466D0 (en) 2016-10-14 2016-11-30 Medimmune Ltd Pyrrolobenzodiazepine conjugates
GB201702031D0 (en) 2017-02-08 2017-03-22 Medlmmune Ltd Pyrrolobenzodiazepine-antibody conjugates
JP6671555B2 (en) 2017-02-08 2020-03-25 アーデーセー セラピューティクス ソシエテ アノニム Pyrrolobenzodiazepine antibody conjugate
AU2018255876B2 (en) 2017-04-18 2020-04-30 Medimmune Limited Pyrrolobenzodiazepine conjugates
AU2018253948A1 (en) 2017-04-20 2019-09-19 Adc Therapeutics Sa Combination therapy with an anti-AXL Antibody-Drug Conjugate
MX2019015042A (en) 2017-06-14 2020-08-06 Adc Therapeutics Sa Dosage regimes for the administration of an anti-cd19 adc.
KR102270107B1 (en) 2017-08-18 2021-06-30 메디뮨 리미티드 pyrrolobenzodiazepine conjugate
CN111788208B (en) 2017-09-20 2023-11-24 Ph制药有限公司 Talarstatin analogues
GB201803342D0 (en) 2018-03-01 2018-04-18 Medimmune Ltd Methods
GB201806022D0 (en) 2018-04-12 2018-05-30 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
JP2022505450A (en) 2018-10-24 2022-01-14 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Conjugated chemical decomposition inducers and usage
CN113227119A (en) 2018-12-10 2021-08-06 基因泰克公司 Photocrosslinked peptides for site-specific conjugation to Fc-containing proteins
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955338A (en) * 1997-06-27 1999-09-21 Incyte Pharmaceuticals, Inc. Phosphatidylinositol 4,5-bisphosphate 5-phosphatase
US6020135A (en) * 1998-03-27 2000-02-01 Affymetrix, Inc. P53-regulated genes

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873191A (en) 1981-06-12 1989-10-10 Ohio University Genetic transformation of zygotes
US4870009A (en) 1982-11-22 1989-09-26 The Salk Institute For Biological Studies Method of obtaining gene product through the generation of transgenic animals
US4670388A (en) 1982-12-30 1987-06-02 Carnegie Institution Of Washington Method of incorporating DNA into genome of drosophila
US4736866B1 (en) 1984-06-22 1988-04-12 Transgenic non-human mammals
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5235033A (en) * 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5421964A (en) * 1993-04-30 1995-06-06 E. I. Du Pont De Nemours And Company Process for separating HCl and halocarbons
US5989893A (en) * 1993-09-27 1999-11-23 University Of Massachusetts Medical Center Receptor-activated reporter systems
AU1211895A (en) * 1993-11-22 1995-06-13 Onyx Pharmaceuticals P53-binding polypeptides and polynucleotides encoding same
US5659024A (en) * 1994-01-14 1997-08-19 The Burnham Institute Promotors that regulate the expression of genes involved in cell death
CA2203910A1 (en) * 1994-10-28 1996-05-09 Eckhard Dr. Mandelkow Novel protein kinase (npk-110)
US6218162B1 (en) * 1995-09-27 2001-04-17 Gerald Krystal SH2-containing inositol-phosphatase
US5863729A (en) 1996-07-09 1999-01-26 Washington University DNA sequences encoding human TcAK1 kinase
US5876713A (en) 1996-08-13 1999-03-02 Takeda Chemical Industries Ltd Glutamine: fructose-6-phosphate amidotransferase, its production and use
US5962303A (en) * 1996-10-15 1999-10-05 Smithkline Beecham Corporation Topoisomerase III
SE9604731D0 (en) * 1996-12-20 1996-12-20 Tamas Bartfai Konsulting Ab A component of intercellular junctions in the endothelium
JPH10257896A (en) * 1997-01-17 1998-09-29 Seikagaku Kogyo Co Ltd Polypeptide of glycosaminoglycan sulfate group transferase and dna coding for the same
CA2203083A1 (en) * 1997-04-18 1998-10-18 Gail Ouellette Gene and cdna involved in alzheimer's disease
AU8382998A (en) * 1997-07-02 1999-01-25 Genzyme Corporation P53 influenced gene expression
US6133246A (en) * 1997-08-13 2000-10-17 Isis Pharmaceuticals Inc. Antisense oligonucleotide compositions and methods for the modulation of JNK proteins
US5977311A (en) * 1997-09-23 1999-11-02 Curagen Corporation 53BP2 complexes
US6203788B1 (en) * 1997-09-29 2001-03-20 Adherex Inc. Compounds and methods for regulating cell adhesion
AUPO957397A0 (en) * 1997-10-01 1997-10-30 St. Vincent's Institute Of Medical Research Transporter protein
AU3908299A (en) * 1997-12-08 1999-06-28 Ontogeny, Inc. Cadherin-like polypeptides, methods and compositions related thereto
US6818744B1 (en) * 1997-12-15 2004-11-16 Raymond Frade p53 regulatory protein called RB18A and uses thereof
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US5942398A (en) * 1998-02-26 1999-08-24 Millennium Pharmaceuticals, Inc. Nucleic acid molecules encoding glutx and uses thereof
US6214821B1 (en) * 1998-03-05 2001-04-10 Washington State University Research Foundation Methods and composition for the inhibition of cancer cells
US6165461A (en) * 1998-04-14 2000-12-26 Board Of Regents, University Of Texas System Tao protein kinases and methods of use therefor
CA2335315A1 (en) * 1998-07-20 2000-01-27 Thomas Jefferson University Nitrilase homologs
AU5683099A (en) 1998-08-18 2000-03-14 Uab Research Foundation, The Blockade of glucose toxicity to the beta cells in the islets of langerhans
AU1736600A (en) * 1998-11-23 2000-06-13 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The P53 and vegf regulate tumor growth of nos2 expressing cancer cells
WO2000037617A1 (en) 1998-12-22 2000-06-29 G.D. Searle & Co. Glutamine: fructose-6-phosphate aminotransferase ii enzyme and their encoding nucleic acids
CA2364609A1 (en) 1999-03-16 2000-09-21 Exelixis, Inc. Insect p53 tumor suppressor genes and proteins
WO2000061747A2 (en) * 1999-04-14 2000-10-19 Arbor Vita Corporation Clasp-2 transmembrane proteins
AU5173400A (en) * 1999-05-28 2000-12-18 Sugen, Inc. Protein kinases
US6558903B1 (en) * 1999-06-30 2003-05-06 Millennium Pharmaceuticals, Inc. Kinases and uses thereof
EP1196568A1 (en) * 1999-07-13 2002-04-17 Incyte Genomics, Inc. Human lim domain proteins
WO2001004145A2 (en) * 1999-07-14 2001-01-18 University Of Lausanne Glutx polypeptide family and nucleic acids encoding same
WO2001009345A1 (en) * 1999-07-29 2001-02-08 Helix Research Institute Novel genes encoding protein kinase/protein phosphatase
EP2267029B1 (en) * 1999-09-03 2016-06-15 The Brigham And Women's Hospital, Inc. Methods and compositions for treatment of inflammatory disease using Cadherin-11 modulating agents
WO2001025436A2 (en) * 1999-10-05 2001-04-12 Curagen Corporation Endozepine-like polypeptides and polynucleotides encoding same
WO2001029058A1 (en) 1999-10-15 2001-04-26 University Of Massachusetts Rna interference pathway genes as tools for targeted genetic interference
AU1339701A (en) * 1999-10-22 2001-05-08 Lifespan Biosciences, Inc. Anti-cancer nucleic acid and protein targets
AU1466001A (en) * 1999-11-05 2001-05-14 Phase-1 Molecular Toxicology Methods of determining individual hypersensitivity to an agent
JP2003514583A (en) * 1999-11-24 2003-04-22 スージェン・インコーポレーテッド Novel human protein kinases and protein kinase-like enzymes
CN1390255A (en) 1999-11-24 2003-01-08 武田药品工业株式会社 Use of disease-associated gene
US6635742B1 (en) * 2000-01-25 2003-10-21 Nuvelo, Inc. Antibodies specific for semaphorin-like polypeptides
WO2001046258A2 (en) * 1999-12-23 2001-06-28 Incyte Genomics, Inc. Transporters and ion channels
AU2001234944A1 (en) 2000-02-03 2001-08-14 Hyseq, Inc. Novel nucleic acids and polypeptides
AU2001238488A1 (en) * 2000-02-17 2001-08-27 Incyte Genomics, Inc. Human kinases
AU2001249064A1 (en) * 2000-02-22 2001-09-03 Mount Sinai School Of Medicine Of New York University N-cadherin modulated migration, invasion, and metastasis
US6420382B2 (en) * 2000-02-25 2002-07-16 Merck & Co., Inc. Tyrosine kinase inhibitors
US7001735B2 (en) * 2000-03-01 2006-02-21 Albert Einstein College Of Medicine Of Yeshiva University Glucose transporter/sensor protein and uses thereof
AU4592601A (en) * 2000-03-21 2001-10-03 Millennium Predictive Medicine Novel genes, compositions, kits, and method for identification, assessment, prevention, and therapy of ovarian cancer
AU2001261697A1 (en) * 2000-05-16 2001-11-26 The Regents Of The University Of California Methods for identifying novel therapeutics and diagnostics in the p53 pathway
DE10024171A1 (en) * 2000-05-17 2001-12-20 Basf Lynx Bioscience Ag Neural serine threonine protein kinase
AU7634301A (en) * 2000-05-26 2001-12-03 Bayer Aktiengesellschaft Regulation of human p78-like serine/threonine kinase
WO2001096547A2 (en) 2000-06-15 2001-12-20 Incyte Genomics, Inc. Human kinases
AU2001279106A1 (en) * 2000-07-28 2002-02-13 Chiron Corporation Isolation of drosophila and human polynucleotides encoding par-1 kinase, polypeptides encoded by the polynucleotides and methods utilizing the polynucleotides and polypeptides
WO2002033097A2 (en) * 2000-10-16 2002-04-25 Bayer Aktiengesellschaft Regulation of human sulfotransferase
AU2002221781A1 (en) * 2000-10-30 2002-05-15 Bayer Aktiengesellschaft Regulation of human inositolpolyphosphate 5-phosphatase
WO2002090378A2 (en) * 2001-05-09 2002-11-14 Genaissance Pharmaceuticals, Inc. Haplotypes of the ces2 gene
CA2445611A1 (en) * 2001-05-31 2002-12-05 Chiron Corporation P-cadherin as a target for anti-cancer therapy
WO2003033708A2 (en) * 2001-10-15 2003-04-24 Bayer Healthcare Ag Regulation of human serine/threonine protein kinase
WO2003054190A1 (en) * 2001-12-21 2003-07-03 Takeda Chemical Industries, Ltd. Novel proteins and dnas thereof
WO2003083085A2 (en) * 2002-03-28 2003-10-09 Incyte Corporation Transporters and ion channels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955338A (en) * 1997-06-27 1999-09-21 Incyte Pharmaceuticals, Inc. Phosphatidylinositol 4,5-bisphosphate 5-phosphatase
US6020135A (en) * 1998-03-27 2000-02-01 Affymetrix, Inc. P53-regulated genes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051314A2 (en) * 2003-11-24 2005-06-09 Exelixis, Inc. Iraks as modifiers of branching morphogenesis and methods of use
WO2005051314A3 (en) * 2003-11-24 2007-04-26 Exelixis Inc Iraks as modifiers of branching morphogenesis and methods of use
US20080263684A1 (en) * 2004-09-17 2008-10-23 Exelixis Inc. Pik4ca As Modifier of the Rac Pathway and Methods of Use
US8481269B2 (en) * 2004-09-17 2013-07-09 Exelixis, Inc. PIK4CA as modifier of the Rac pathway and methods of use

Also Published As

Publication number Publication date
WO2002099051A2 (en) 2002-12-12
CA2448250A1 (en) 2002-12-12
EP1456650A2 (en) 2004-09-15
EP1401861A2 (en) 2004-03-31
WO2002099051A3 (en) 2003-04-03
AU2002312255A1 (en) 2002-12-16
EP1402067A2 (en) 2004-03-31
WO2002098890A2 (en) 2002-12-12
AU2002312254A8 (en) 2005-11-17
EP1404863A1 (en) 2004-04-07
WO2002099046A3 (en) 2003-05-01
WO2002099083A3 (en) 2004-07-01
JP2004536297A (en) 2004-12-02
US20080166709A1 (en) 2008-07-10
EP1404374A1 (en) 2004-04-07
WO2002099047A2 (en) 2002-12-12
WO2002099055A2 (en) 2002-12-12
WO2002099053A3 (en) 2005-04-21
WO2002099044A2 (en) 2002-12-12
WO2002099052A2 (en) 2002-12-12
WO2002099427A1 (en) 2002-12-12
CA2449267A1 (en) 2002-12-12
WO2002099426A1 (en) 2002-12-12
EP1463827A2 (en) 2004-10-06
WO2002099125A1 (en) 2002-12-12
US20100325743A1 (en) 2010-12-23
WO2002098890A3 (en) 2004-09-10
CA2449425A1 (en) 2002-12-12
AU2002305796A1 (en) 2002-12-16
EP1401861A4 (en) 2005-04-27
AU2002345490A1 (en) 2002-12-16
CA2449289A1 (en) 2002-12-12
US20030165809A1 (en) 2003-09-04
AU2002312254A1 (en) 2002-12-16
WO2002099059A3 (en) 2003-11-27
CA2448107A1 (en) 2002-12-12
AU2002345500A1 (en) 2002-12-16
AU2002312228A1 (en) 2002-12-16
WO2002099041A2 (en) 2002-12-12
JP2005501528A (en) 2005-01-20
WO2002099052A3 (en) 2003-04-03
US20030036076A1 (en) 2003-02-20
WO2002098898A2 (en) 2002-12-12
AU2002312269A1 (en) 2002-12-16
EP1402067A4 (en) 2005-04-27
EP1456650B1 (en) 2010-10-06
WO2002099047A3 (en) 2004-02-26
WO2002099057A3 (en) 2003-07-24
WO2002099138A3 (en) 2003-02-20
AU2002320264B2 (en) 2008-05-01
WO2002099046A2 (en) 2002-12-12
US8153384B2 (en) 2012-04-10
WO2002099056A3 (en) 2003-10-02
EP1404374A4 (en) 2005-04-27
WO2002099048A2 (en) 2002-12-12
US20030013144A1 (en) 2003-01-16
AU2002320052A1 (en) 2002-12-16
WO2002099042A2 (en) 2002-12-12
JP2005505255A (en) 2005-02-24
WO2002099059A2 (en) 2002-12-12
CA2449270A1 (en) 2002-12-12
JP2004534539A (en) 2004-11-18
EP1474687A4 (en) 2005-11-16
CA2449206A1 (en) 2002-12-12
AU2002320052A8 (en) 2009-07-30
AU2002310271A1 (en) 2002-12-16
JP2004535191A (en) 2004-11-25
AU2002312241A1 (en) 2002-12-16
AU2002318172A1 (en) 2002-12-16
WO2002099122A1 (en) 2002-12-12
WO2002099140A1 (en) 2002-12-12
EP1456650A4 (en) 2005-11-02
WO2002099053A2 (en) 2002-12-12
WO2002099049A3 (en) 2005-08-18
WO2002099058A3 (en) 2009-06-11
AU2002305797A1 (en) 2002-12-16
WO2002099058A2 (en) 2002-12-12
EP1404863A4 (en) 2005-05-11
EP1463827A4 (en) 2005-11-09
AU2002303956A1 (en) 2002-12-16
US20060160764A1 (en) 2006-07-20
DE60237917D1 (en) 2010-11-18
JP2004528044A (en) 2004-09-16
WO2002099042A3 (en) 2003-07-31
EP1474687A2 (en) 2004-11-10
WO2002099057A2 (en) 2002-12-12
WO2002099049A2 (en) 2002-12-12
WO2002099044A3 (en) 2003-07-17
WO2002099055A3 (en) 2003-05-01
AU2002314884A1 (en) 2002-12-16
WO2002099041A3 (en) 2003-10-30
WO2002098898A3 (en) 2003-07-03
WO2002099054A3 (en) 2005-03-31
WO2002099054A2 (en) 2002-12-12
AU2002345497A1 (en) 2002-12-16
WO2002099056A2 (en) 2002-12-12
WO2002099138A2 (en) 2002-12-12
JP2004537294A (en) 2004-12-16
WO2002099048A3 (en) 2004-07-22
WO2002099050A2 (en) 2002-12-12
WO2002098467A1 (en) 2002-12-12
WO2002099050A3 (en) 2004-03-11
WO2002099083A2 (en) 2002-12-12
AU2002312252A1 (en) 2002-12-16
ATE483976T1 (en) 2010-10-15

Similar Documents

Publication Publication Date Title
US20020192695A1 (en) PIBs as modifiers of the p53 pathway and methods of use
US20030087266A1 (en) IGs as modifiers of the p53 pathway and methods of use
CA2512536A1 (en) Biomarkers and methods for determining sensitivity to epidermal growth factor receptor modulators
US9018230B2 (en) Identification, assessment, and therapy of cancers with innate or acquired resistance to ALK inhibitors
CA2449479A1 (en) Map3ks as modifiers of the p53 pathway and methods of use
US20030036078A1 (en) P5CRs as modifiers of the p53 pathway and methods of use
US8268548B2 (en) MAP3Ks as modifiers of the p53 pathway and methods of use
US20030022209A1 (en) ADSLs as modifiers of the p53 pathway and methods of use
US20110159508A1 (en) GFATS as Modifiers of the P53 Pathway and Methods of Use
US20050186566A9 (en) PRMTs as modifiers of the p53 pathway and methods of use
AU2002310283A1 (en) PIBs as modifiers of the p53 pathway and methods of use
AU2002314883A1 (en) MAP3Ks as modifier of the p53 pathway and methods of use
AU2002305770A1 (en) ADSLs as modifiers of the p53 pathway and methods of use
AU2002305776A1 (en) IGs as modifiers of the p53 pathway and methods of use
AU2002320051A1 (en) CHDs as modifiers of the p53 pathway and methods of use

Legal Events

Date Code Title Description
AS Assignment

Owner name: EXELIXIS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRIEDMAN, LORI;PLOWMAN, GREGORY D.;BELVIN, MARCIA;AND OTHERS;REEL/FRAME:013620/0625;SIGNING DATES FROM 20030425 TO 20030429

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION