US20020111520A1 - Hydroformylation process - Google Patents

Hydroformylation process Download PDF

Info

Publication number
US20020111520A1
US20020111520A1 US09/735,678 US73567800A US2002111520A1 US 20020111520 A1 US20020111520 A1 US 20020111520A1 US 73567800 A US73567800 A US 73567800A US 2002111520 A1 US2002111520 A1 US 2002111520A1
Authority
US
United States
Prior art keywords
solvent
catalyst system
butanediol
hydrogen
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/735,678
Other versions
US6426437B1 (en
Inventor
Wilfred Shum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lyondell Chemical Technology LP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/735,678 priority Critical patent/US6426437B1/en
Assigned to ARCO CHEMICAL TECHNOLOGY, L.P. reassignment ARCO CHEMICAL TECHNOLOGY, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHUM, WILFRED P.
Application granted granted Critical
Publication of US6426437B1 publication Critical patent/US6426437B1/en
Publication of US20020111520A1 publication Critical patent/US20020111520A1/en
Assigned to LYONDELL CHEMICAL TECHNOLOGY, L.P. reassignment LYONDELL CHEMICAL TECHNOLOGY, L.P. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ARCO CHEMICAL TECHNOLOGY, L.P.
Assigned to JPMORGAN CHASE BANK N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: LYONDELL CHEMICAL TECHNOLOGY, L.P.
Assigned to LYONDELL CHEMICAL TECHNOLOGY, L.P. reassignment LYONDELL CHEMICAL TECHNOLOGY, L.P. RELEASE OF LYONDELL CHEMICAL TECHNOLOGY, L.P. PATENT SECURITY AGREEMENT Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS Assignors: ARCO CHEMICAL TECHNOLOGY L.P., ARCO CHEMICAL TECHNOLOGY, INC., ATLANTIC RICHFIELD COMPANY, BASELL NORTH AMERICA, INC., BASELL POLYOLEFIN GMBH, BASELL POLYOLEFINE GMBH, EQUISTAR CHEMICALS. LP., LYONDELL CHEMICAL COMPANY, LYONDELL CHEMICAL TECHNOLOGY, L.P., LYONDELL PETROCHEMICAL COMPANY, NATIONAL DISTILLERS AND CHEMICAL CORPORATION, OCCIDENTAL CHEMICAL CORPORATION, OLIN CORPORATION, QUANTUM CHEMICAL CORPORATION
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: ARCO CHEMICAL TECHNOLOGY L.P., ARCO CHEMICAL TECHNOLOGY, INC., ATLANTIC RICHFIELD COMPANY, BASELL NORTH AMERICA, INC., BASELL POLYOLEFIN GMBH, BASELL POLYOLEFINE GMBH, EQUISTAR CHEMICALS, L.P., LYONDELL CHEMICAL COMPANY
Assigned to CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT reassignment CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT SECURITY AGREEMENT Assignors: LYONDELL CHEMICAL TECHNOLOGY, L.P.
Assigned to UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT reassignment UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: LYONDELL CHEMICAL TECHNOLOGY, L.P.
Assigned to LYONDELL CHEMICAL TECHNOLOGY, L.P., EQUISTAR CHEMICALS, LP reassignment LYONDELL CHEMICAL TECHNOLOGY, L.P. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to EQUISTAR CHEMICALS, LP, LYONDELL CHEMICAL TECHNOLOGY, L.P. reassignment EQUISTAR CHEMICALS, LP RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to LYONDELL CHEMICAL TECHNOLOGY, LP reassignment LYONDELL CHEMICAL TECHNOLOGY, LP RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT
Assigned to LYONDELL CHEMICAL TECHNOLOGY, LP reassignment LYONDELL CHEMICAL TECHNOLOGY, LP RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide

Definitions

  • This invention relates to a process for the production of 1,4-butanediol from allyl alcohol using a catalyst system comprising a rhodium complex, a ruthenium complex and a diphosphine ligand.
  • the catalyst system is useful in both the hydroformylation step (allyl alcohol to 4-hydroxybutyraldehyde) and the hydrogenation step (4-hydroxybutyraldehyde to 1,4-butanediol).
  • the catalyst system shows high activity and produces a high ratio of linear:branched (1,4-butanediol:2-methyl-1,3-propanediol) product.
  • the catalyst is also easily recycled with minimal loss of activity.
  • 1,4-butanediol from allyl alcohol is a well-known and commercially practiced process. See, for example, U.S. Pat. Nos. 4,238,419, 4,678,857, 4,215,177, 5,290,743 and the like.
  • the process consists of a hydroformylation reaction followed by hydrogenation step.
  • allyl alcohol is reacted with a CO/H 2 gas mixture using a rhodium-phosphine catalyst system to form 4-hydroxybutyraldehyde.
  • the 4-hydroxybutyraldehyde is separated from the catalyst by water extraction and hydrogenated over a nickel catalyst to form 1,4-butanediol. See U.S. Pat. No. 5,504,261.
  • 6,127,584 also discloses a one catalyst process using rhodium and a trialkyl phosphine wherein higher ratios of 1,4-butanediol to 2-methyl-1,3-propanediol are produced.
  • this process also produces a significant amount of isobutanol by-product, which has little commercial value.
  • the invention is a process for producing 1,4-butanediol that comprises first reacting allyl alcohol with a mixture of carbon monoxide and hydrogen in the presence of a solvent and a catalyst system to produce 4-hydroxybutyraldehyde.
  • the catalyst system comprises a rhodium complex, a ruthenium complex and a bidentate diphosphine ligand.
  • the 4-hydroxybutyraldehyde is then reacted with hydrogen in the presence of the catalyst system and the solvent to form 1,4-butanediol.
  • the 1,4-butanediol product is optionally separated from the solvent and the catalyst system by water extraction.
  • the solvent and catalyst system are then optionally recycled to the first step. I surprisingly found that using this catalyst system produced high BDO:MPD ratio with no isobutanol by-product.
  • the process of the invention comprises a hydroformylation step followed by a hydrogenation step.
  • the hydroformylation step comprises reacting allyl alcohol with a mixture of carbon monoxide and hydrogen in the presence of a solvent and a catalyst system to produce 4-hydroxybutyraldehyde.
  • the hydrogenation step follows hydroformylation and comprises reacting the 4-hydroxybutyraldehyde with hydrogen in the presence of the catalyst system and solvent.
  • the catalyst system of the invention comprises a rhodium complex, a ruthenium complex and a bidentate diphosphine ligand.
  • Suitable rhodium complexes contain rhodium attached to ligand groups. The rhodium complex is soluble in the solvent.
  • suitable ligands include halides, hydrides, carbonyl, substituted and unsubstituted cyclopentadienyls, 2,4-alkanedionates, and trialkyl or triaryl phosphines.
  • Particularly preferred ligands include chloride, carbonyl, acetylacetonate (2,4-pentanedionate), and triphenylphosphine.
  • the catalyst system of the invention also comprises a ruthenium complex.
  • Suitable ruthenium complexes contain ruthenium attached to ligand groups.
  • the ruthenium complex is soluble in the solvent.
  • suitable ligands include halides, hydrides, carbonyl, trialkyl or triaryl phosphines, substituted and unsubstituted cyclopentadienyls, and 2,4-alkanedionates.
  • Particularly preferred ligands include chloride, carbonyl, triphenylphosphine, cyclopentadienyl, and acetylacetonate (2,4-pentanedionate).
  • the catalyst system of the invention also comprises a diphosphine ligand.
  • Diphosphine ligands contain two phosphine atoms that are covalently bond to one another through a bridging groups that contains at least one nonhydrogen atom. Diphosphine ligands are well known in the art.
  • diphosphine ligands examples include DIOP [2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane], XANTPHOS [4a,9a-dihydro-9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene], DIPHOS [1,2-bis(diphenylphospino)ethane], BISBI [2,2′-bis(( diphenylphospino)methyl-1,1′-biphenyl], T-BDCP [trans-1,2-bis(( diphenylphospino)methyl)cyclopropane], and CHDIOP (see, for example, Casey, et al., J.
  • diphosphine ligands include DIOP and XANTPHOS.
  • the diphosphine ligand can be pre-associated with the rhodium complex and/or ruthenium complex prior to use, or added separately. However, it is preferable to add the diphosphine ligand separate from the rhodium and ruthenium complexes.
  • the molar ratio of Rh:Ru contained in the catalyst system is not critical.
  • a typical Rh:Ru molar ratio ranges from 5:1 to 1:5, preferably from 2:1 to 1:2, and most preferably the molar ratio is 1.
  • the amount of diphosphine ligand is typically added such that the molar ratio of diphosphine ligand:(Rh+Ru) ranges from 2 to 20, preferably from 2 to 6, and most preferably the molar ratio is 4.
  • a solvent is also required for the process of the invention.
  • Typical solvents are those that are capable of solubilizing the rhodium and ruthenium complexes and are not reactive to the hydroxyaldehydes that are produced in the hydroformylation step.
  • Suitable solvents include any organic solvent having very low or minimal solubility in water.
  • Preferred solvents include C 4 -C 20 aliphatic hydrocarbons, C 1 -C 20 halogenated aliphatic hydrocarbons, C 6 -C 20 aromatic hydrocarbons, C 6 -C 20 halogenated aromatic hydrocarbons, and ethers.
  • Particularly preferred solvents include toluene, cyclohexane, and methyl t-butyl ether.
  • Typical reaction conditions for the hydroformylation step are mild to favor the formation of linear rather than branched reaction products.
  • Reaction conditions are typically in the range of from about 20 to 100° C. and pressures of from about 30 to 600 psig, preferably from about 60 to 80° C. and 30 to 300 psig.
  • the molar ratio of CO:H 2 is typically about 1:1, although the ratio can vary considerably.
  • the partial pressure of CO is typically within the range of 50 to 100 psig.
  • the partial pressure of hydrogen is typically within the range of 50 to 100 psig.
  • the reaction is conducted at these conditions until a predominance of the allyl alcohol has reacted, e.g. 60 to 90%, the products being largely 4-hydroxybutyraldehyde with some BDO and branched reaction products. Usually a reaction time of 1 to 4 hours is adequate.
  • the first product mixture comprising 4-hydroxybutyraldehyde, the solvent and the catalyst system is transferred to another vessel for hydrogenation of the 4-hydroxybutyraldehyde.
  • Hydrogen is added to the vessel for the hydrogenation.
  • the hydrogenation reaction conditions are typically more severe than hydroformylation. Reaction conditions are typically in the range of from about 60 to 200° C. and pressures of from about 200 to 1000 psig, preferably from about 80 to 140° C. and 300 to 1000 psig. Generally reaction times of 1 to 10 hours are appropriate.
  • water can also be added to the hydrogenation vessel. The addition of a small amount of water, typically from about 0.1 to about 5 weight percent of the total amount of the first reaction mixture added to hydrogenation, has been shown to slightly improve selectivity to BDO product (see Example 2).
  • the second product mixture comprises BDO, the solvent and the catalyst system.
  • the second product mixture and water are optionally passed to an extraction vessel for a water extraction step in which BDO is separated from the solvent and catalyst system by water extraction.
  • Water extraction methods are well known in the art and can be effected by any suitable means, such as mixer-settlers, packed or trayed extraction columns, rotating disk contactors, or passed to a settling tank for resolution of the mixture into aqueous and organic phases.
  • BDO remains soluble in the water (aqueous) phase and the catalyst mixture remains in the solvent (organic) phase. The extraction step is necessary to separate the catalyst system from the BDO product.
  • the organic (solvent) phase containing a major proportion of the catalyst system, is optionally recycled to the hydroformylation step for further reaction with allyl alcohol.
  • the aqueous phase comprises BDO, MPD, GBL, and ether dimers formed from the reaction of hydroxyaldehydes.
  • BDO, MPD, and GBL are commercially significant products. It may be necessary to further process the aqueous stream in order to break up the ether dimers that are formed. This reaction can be easily performed by the hydrogenation of the aqueous stream in the presence of a suitable hydrogenation catalyst.
  • Suitable hydrogenation catalysts include any Group VIII metal, such as nickel, cobalt, ruthenium, platinum, and palladium, as well as copper, zinc and chromium and mixtures and alloys thereof. Especially preferred are fixed-bed nickel catalysts. Temperatures for this finishing hydrogenation reaction are typically greater than 40° C., preferably from 40-200° C. Hydrogen pressure is at least 100 psig and typically from about 200 to 2000 psig.
  • allyl alcohol, solvent such as toluene, and the catalyst system are charged to a first reactor to which is introduced the CO/H 2 reaction gas mixture.
  • the reactor is heated to reaction temperature and pressurized with the CO/H 2 mixture for the desired reaction time to form 4-hydroxybutanol with high selectivity.
  • agitation is provided.
  • the product effluent from hydroformylation is transferred to a second reactor.
  • the remaining CO and H 2 from hydroformylation may be optionally removed during transfer.
  • H 2 is introduced into the reactor and the temperature of the reaction mixture is increased along with H 2 pressure to the more severe conditions for BDO formation. These conditions are maintained until the desired conversion to BDO is achieved.
  • the product mixture following hydrogenation can then be separated by extraction of the diol products into water.
  • the catalyst system remains in the solvent (organic) phase, which can then be recycled to the first reactor for hydroformylation of allyl alcohol.
  • GBL is a commercially useful product that is currently produced from BDO.
  • the ether dimers reaction products of hydroxybutyraldehydes and diols
  • the ether dimers can be converted into BDO by a finishing hydrogenation reactor, so that overall selectivity to BDO product is even further increased. No isobutanol is made by this process.
  • Example 1A Allyl alcohol (6.5 g), toluene (30 g), Rh(CO) 2 (acac) (0.02 g), [RuCI 2 (CO) 3 ] 2 (0.02 g), and DIOP (0.16 g) are charged into a 100 mL Parr reactor for hydroformylation. After 3 hours at 65° C. and under 200 psig of CO/H 2 , allyl alcohol conversion is >98%. The reaction effluent is then transferred into another Parr reactor for hydrogenation. After 3 hours at 100° C.
  • reaction effluent now 2 phases due to limited solubility of BDO in toluene
  • reaction effluent is removed from the reactor and extracted with 50 ml of water for product recovery.
  • the products in the two phases were analyzed by gas chromatography (GC). Conversion of hydroxyaldehydes (HBA and HMPA) is 95%, and the product selectivities are: 57% BDO, 14% MPD, 19% GBL, and 10% ether dimers.
  • Example 1B Example 1B is run according to the procedure of Example 1A except that chloro(cyclopentadienyl) bis(triphenylphosphine) ruthenium (II) (0.056 g) is used in place of [RuCI 2 (CO) 3 ] 2 . Hydroxyaldehydes conversion is 96% and product selectivities are: 56% BDO, 14% MPD, 20% GBL, and 10% ether dimers.
  • Example 1C is run according to the procedure of Example 1A except that dichlorocarbonylbis(triphenylphosphine) ruthenium (II) (0.058 g) is used in place of [RuCI 2 (CO) 3 ] 2 . Hydroxyaldehydes conversion is 95% and product selectivities are: 56% BDO, 14% MPD, 20% GBL, and 10% ether dimers.
  • Example 1D Example 1D is run according to the procedure of Example 1A except that carbonyl(dihydrido)tris(triphenylphosphine) ruthenium (II) (0.071 g) is used in place of [RuCI 2 (CO) 3 ] 2 . Hydroxyaldehydes conversion is 88% and product selectivities are: 54% BDO, 14% MPD, 23% GBL, and 9% ether dimers.
  • Example 2 is run according to the procedure of Example 1A except that water (2 g) is added to the first reaction mixture prior to hydrogenation. Conversion of hydroxyaldehydes is 95%, and the product selectivities are: 63% BDO, 14% MPD, 15% GBL, and 8% ether dimers.

Abstract

A process for the production of 1,4-butanediol is described. The process comprises hydroformylating allyl alcohol in the presence of a solvent and a catalyst system comprising a rhodium complex, a ruthenium complex and a diphosphine ligand and hydrogenating the resulting 4-hydroxybutyraldehyde using the same catalyst system. The process gives high yield of 1,4-butanediol compared to 2-methyl-1,3-propanediol.

Description

    FIELD OF THE INVENTION
  • This invention relates to a process for the production of 1,4-butanediol from allyl alcohol using a catalyst system comprising a rhodium complex, a ruthenium complex and a diphosphine ligand. The catalyst system is useful in both the hydroformylation step (allyl alcohol to 4-hydroxybutyraldehyde) and the hydrogenation step (4-hydroxybutyraldehyde to 1,4-butanediol). Surprisingly, the catalyst system shows high activity and produces a high ratio of linear:branched (1,4-butanediol:2-methyl-1,3-propanediol) product. The catalyst is also easily recycled with minimal loss of activity. [0001]
  • BACKGROUND OF THE INVENTION
  • The production of 1,4-butanediol from allyl alcohol is a well-known and commercially practiced process. See, for example, U.S. Pat. Nos. 4,238,419, 4,678,857, 4,215,177, 5,290,743 and the like. Generally, the process consists of a hydroformylation reaction followed by hydrogenation step. In hydroformylation, allyl alcohol is reacted with a CO/H[0002] 2 gas mixture using a rhodium-phosphine catalyst system to form 4-hydroxybutyraldehyde. Then, the 4-hydroxybutyraldehyde is separated from the catalyst by water extraction and hydrogenated over a nickel catalyst to form 1,4-butanediol. See U.S. Pat. No. 5,504,261.
  • The above reaction sequence involves the use of different catalysts and usually different reaction gas mixtures for each of the reactions. For obvious reasons, it would be advantageous to produce 1,4-butanediol from allyl alcohol using only a single catalyst system. [0003]
  • It has been reported, for example, in Kokai No. S52-78809 by Kawahito, et al. that 1,4-butanediol can be produced from allyl alcohol in a one-step reaction system using a rhodium and a trialkyl phosphine catalyst system. However, a disadvantage of the process described in S52-78809 is the relatively low ratio of 1,4-butanediol to 2-methyl-1,3-propanediol which is produced. U.S. Pat. No. 6,127,584 also discloses a one catalyst process using rhodium and a trialkyl phosphine wherein higher ratios of 1,4-butanediol to 2-methyl-1,3-propanediol are produced. However, this process also produces a significant amount of isobutanol by-product, which has little commercial value. [0004]
  • In sum, new processes that would allow the production of 1,4-butanediol using a single catalyst system are needed. Particularly valuable processes would result in high ratios of 1,4-butanediol (BDO) compared to 2-methyl-1,3-propanediol (MPD), without production of isobutanol by-product. [0005]
  • SUMMARY OF THE INVENTION
  • The invention is a process for producing 1,4-butanediol that comprises first reacting allyl alcohol with a mixture of carbon monoxide and hydrogen in the presence of a solvent and a catalyst system to produce 4-hydroxybutyraldehyde. The catalyst system comprises a rhodium complex, a ruthenium complex and a bidentate diphosphine ligand. The 4-hydroxybutyraldehyde is then reacted with hydrogen in the presence of the catalyst system and the solvent to form 1,4-butanediol. The 1,4-butanediol product is optionally separated from the solvent and the catalyst system by water extraction. The solvent and catalyst system are then optionally recycled to the first step. I surprisingly found that using this catalyst system produced high BDO:MPD ratio with no isobutanol by-product. [0006]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The process of the invention comprises a hydroformylation step followed by a hydrogenation step. The hydroformylation step comprises reacting allyl alcohol with a mixture of carbon monoxide and hydrogen in the presence of a solvent and a catalyst system to produce 4-hydroxybutyraldehyde. The hydrogenation step follows hydroformylation and comprises reacting the 4-hydroxybutyraldehyde with hydrogen in the presence of the catalyst system and solvent. [0007]
  • The catalyst system of the invention comprises a rhodium complex, a ruthenium complex and a bidentate diphosphine ligand. Suitable rhodium complexes contain rhodium attached to ligand groups. The rhodium complex is soluble in the solvent. There are no particular restrictions regarding the choice of ligands attached to the rhodium complex. For example, suitable ligands include halides, hydrides, carbonyl, substituted and unsubstituted cyclopentadienyls, 2,4-alkanedionates, and trialkyl or triaryl phosphines. Particularly preferred ligands include chloride, carbonyl, acetylacetonate (2,4-pentanedionate), and triphenylphosphine. [0008]
  • The catalyst system of the invention also comprises a ruthenium complex. Suitable ruthenium complexes contain ruthenium attached to ligand groups. The ruthenium complex is soluble in the solvent. There are no particular restrictions regarding the choice of ligands attached to the ruthenium complex. For example, suitable ligands include halides, hydrides, carbonyl, trialkyl or triaryl phosphines, substituted and unsubstituted cyclopentadienyls, and 2,4-alkanedionates. Particularly preferred ligands include chloride, carbonyl, triphenylphosphine, cyclopentadienyl, and acetylacetonate (2,4-pentanedionate). [0009]
  • The catalyst system of the invention also comprises a diphosphine ligand. Diphosphine ligands contain two phosphine atoms that are covalently bond to one another through a bridging groups that contains at least one nonhydrogen atom. Diphosphine ligands are well known in the art. Examples of suitable diphosphine ligands include DIOP [2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane], XANTPHOS [4a,9a-dihydro-9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene], DIPHOS [1,2-bis(diphenylphospino)ethane], BISBI [2,2′-bis(( diphenylphospino)methyl-1,1′-biphenyl], T-BDCP [trans-1,2-bis(( diphenylphospino)methyl)cyclopropane], and CHDIOP (see, for example, Casey, et al., [0010] J. Am. Chem. Soc., 1995, 117, 6007, van der Veen, et al., Organomet., 1999, 18, 4765, and U.S. Pat. No. 5,817,848). Preferred diphosphine ligands include DIOP and XANTPHOS.
  • The diphosphine ligand can be pre-associated with the rhodium complex and/or ruthenium complex prior to use, or added separately. However, it is preferable to add the diphosphine ligand separate from the rhodium and ruthenium complexes. [0011]
  • The molar ratio of Rh:Ru contained in the catalyst system is not critical. A typical Rh:Ru molar ratio ranges from 5:1 to 1:5, preferably from 2:1 to 1:2, and most preferably the molar ratio is 1. The amount of diphosphine ligand is typically added such that the molar ratio of diphosphine ligand:(Rh+Ru) ranges from 2 to 20, preferably from 2 to 6, and most preferably the molar ratio is 4. [0012]
  • A solvent is also required for the process of the invention. Typical solvents are those that are capable of solubilizing the rhodium and ruthenium complexes and are not reactive to the hydroxyaldehydes that are produced in the hydroformylation step. Suitable solvents include any organic solvent having very low or minimal solubility in water. Preferred solvents include C[0013] 4-C20 aliphatic hydrocarbons, C1-C20 halogenated aliphatic hydrocarbons, C6-C20 aromatic hydrocarbons, C6-C20 halogenated aromatic hydrocarbons, and ethers. Particularly preferred solvents include toluene, cyclohexane, and methyl t-butyl ether.
  • Typical reaction conditions for the hydroformylation step are mild to favor the formation of linear rather than branched reaction products. Reaction conditions are typically in the range of from about 20 to 100° C. and pressures of from about 30 to 600 psig, preferably from about 60 to 80° C. and 30 to 300 psig. The molar ratio of CO:H[0014] 2 is typically about 1:1, although the ratio can vary considerably. The partial pressure of CO is typically within the range of 50 to 100 psig. The partial pressure of hydrogen is typically within the range of 50 to 100 psig. The reaction is conducted at these conditions until a predominance of the allyl alcohol has reacted, e.g. 60 to 90%, the products being largely 4-hydroxybutyraldehyde with some BDO and branched reaction products. Usually a reaction time of 1 to 4 hours is adequate.
  • Following the hydroformylation step, the first product mixture comprising 4-hydroxybutyraldehyde, the solvent and the catalyst system is transferred to another vessel for hydrogenation of the 4-hydroxybutyraldehyde. Prior to hydrogenation, it may be desirable to remove the residual CO and H[0015] 2 remaining after hydroformylation. Hydrogen is added to the vessel for the hydrogenation. The hydrogenation reaction conditions are typically more severe than hydroformylation. Reaction conditions are typically in the range of from about 60 to 200° C. and pressures of from about 200 to 1000 psig, preferably from about 80 to 140° C. and 300 to 1000 psig. Generally reaction times of 1 to 10 hours are appropriate. Preferably, water can also be added to the hydrogenation vessel. The addition of a small amount of water, typically from about 0.1 to about 5 weight percent of the total amount of the first reaction mixture added to hydrogenation, has been shown to slightly improve selectivity to BDO product (see Example 2).
  • During the hydrogenation reaction, BDO is formed while the high ratio of linear to branched products is substantially retained. Thus, the second product mixture comprises BDO, the solvent and the catalyst system. After hydrogenation, the second product mixture and water are optionally passed to an extraction vessel for a water extraction step in which BDO is separated from the solvent and catalyst system by water extraction. Water extraction methods are well known in the art and can be effected by any suitable means, such as mixer-settlers, packed or trayed extraction columns, rotating disk contactors, or passed to a settling tank for resolution of the mixture into aqueous and organic phases. BDO remains soluble in the water (aqueous) phase and the catalyst mixture remains in the solvent (organic) phase. The extraction step is necessary to separate the catalyst system from the BDO product. [0016]
  • The organic (solvent) phase, containing a major proportion of the catalyst system, is optionally recycled to the hydroformylation step for further reaction with allyl alcohol. The aqueous phase comprises BDO, MPD, GBL, and ether dimers formed from the reaction of hydroxyaldehydes. BDO, MPD, and GBL are commercially significant products. It may be necessary to further process the aqueous stream in order to break up the ether dimers that are formed. This reaction can be easily performed by the hydrogenation of the aqueous stream in the presence of a suitable hydrogenation catalyst. Suitable hydrogenation catalysts include any Group VIII metal, such as nickel, cobalt, ruthenium, platinum, and palladium, as well as copper, zinc and chromium and mixtures and alloys thereof. Especially preferred are fixed-bed nickel catalysts. Temperatures for this finishing hydrogenation reaction are typically greater than 40° C., preferably from 40-200° C. Hydrogen pressure is at least 100 psig and typically from about 200 to 2000 psig. [0017]
  • In an illustrative embodiment of the invention, allyl alcohol, solvent such as toluene, and the catalyst system are charged to a first reactor to which is introduced the CO/H[0018] 2 reaction gas mixture. The reactor is heated to reaction temperature and pressurized with the CO/H2 mixture for the desired reaction time to form 4-hydroxybutanol with high selectivity. Preferably, agitation is provided.
  • Thereafter, the product effluent from hydroformylation is transferred to a second reactor. The remaining CO and H[0019] 2 from hydroformylation may be optionally removed during transfer. H2 is introduced into the reactor and the temperature of the reaction mixture is increased along with H2 pressure to the more severe conditions for BDO formation. These conditions are maintained until the desired conversion to BDO is achieved.
  • The product mixture following hydrogenation can then be separated by extraction of the diol products into water. The catalyst system remains in the solvent (organic) phase, which can then be recycled to the first reactor for hydroformylation of allyl alcohol. [0020]
  • The product of this reaction typically contains BDO, MPD (BDO:MPD=4), [0021]
    Figure US20020111520A1-20020815-P00900
    -butyrolactone (GBL), and ether dimers. GBL is a commercially useful product that is currently produced from BDO. The ether dimers (reaction products of hydroxybutyraldehydes and diols) can be converted into BDO by a finishing hydrogenation reactor, so that overall selectivity to BDO product is even further increased. No isobutanol is made by this process.
  • The following examples merely illustrate the invention. Those skilled in the art will recognize many variations that are within the spirit of the invention and scope of the claims. [0022]
  • EXAMPLE 1 Preparation of BDO from Ru/Rh Catalyst System
  • Example 1A: Allyl alcohol (6.5 g), toluene (30 g), Rh(CO)[0023] 2(acac) (0.02 g), [RuCI2(CO)3]2 (0.02 g), and DIOP (0.16 g) are charged into a 100 mL Parr reactor for hydroformylation. After 3 hours at 65° C. and under 200 psig of CO/H2, allyl alcohol conversion is >98%. The reaction effluent is then transferred into another Parr reactor for hydrogenation. After 3 hours at 100° C. and under 400 psig of H2, the entire reaction effluent (now 2 phases due to limited solubility of BDO in toluene) is removed from the reactor and extracted with 50 ml of water for product recovery. The products in the two phases were analyzed by gas chromatography (GC). Conversion of hydroxyaldehydes (HBA and HMPA) is 95%, and the product selectivities are: 57% BDO, 14% MPD, 19% GBL, and 10% ether dimers.
  • Example 1B: Example 1B is run according to the procedure of Example 1A except that chloro(cyclopentadienyl) bis(triphenylphosphine) ruthenium (II) (0.056 g) is used in place of [RuCI[0024] 2(CO)3]2. Hydroxyaldehydes conversion is 96% and product selectivities are: 56% BDO, 14% MPD, 20% GBL, and 10% ether dimers.
  • Example 1C: Example 1C is run according to the procedure of Example 1A except that dichlorocarbonylbis(triphenylphosphine) ruthenium (II) (0.058 g) is used in place of [RuCI[0025] 2(CO)3]2. Hydroxyaldehydes conversion is 95% and product selectivities are: 56% BDO, 14% MPD, 20% GBL, and 10% ether dimers.
  • Example 1D: Example 1D is run according to the procedure of Example 1A except that carbonyl(dihydrido)tris(triphenylphosphine) ruthenium (II) (0.071 g) is used in place of [RuCI[0026] 2(CO)3]2. Hydroxyaldehydes conversion is 88% and product selectivities are: 54% BDO, 14% MPD, 23% GBL, and 9% ether dimers.
  • EXAMPLE 2 Effect of Water Addition to the Hydrogenation Step During BDO Preparation
  • Example 2 is run according to the procedure of Example 1A except that water (2 g) is added to the first reaction mixture prior to hydrogenation. Conversion of hydroxyaldehydes is 95%, and the product selectivities are: 63% BDO, 14% MPD, 15% GBL, and 8% ether dimers. [0027]
  • COMPARATIVE EXAMPLE 3 Use of Triphenylphospine in Place of a Disphoshphine Ligand
  • Allyl alcohol (6.5 g), toluene (30 g), Rh(CO)[0028] 2(acac) (0.02 g), [RuCI2(CO)3]2 (0.02 g), and triphenylphosphine (2.0 g) are charged into a 100 mL Parr reactor for hydroformylation. After 3 hours at 65° C. and under 200 psig of CO/H2, allyl alcohol conversion is 99%. The reaction effluent is then transferred into a second Parr reactor for hydrogenation. After 6 hours at 100° C. and under 400 psig of H2, the reaction effluent is removed from the reactor and extracted with 50 ml of water for product recovery. The products in the two phases were analyzed by gas chromatography (GC). Conversion of hydroxyaldehydes is less than 50%, and the product selectivities are: 32% BDO, 18% MPD, 22% GBL, and 20% ether dimers, with 8% unknown heavies.

Claims (12)

I claim:
1. A process for producing 1,4-butanediol comprising the steps of:
(a) reacting allyl alcohol with a mixture of carbon monoxide and hydrogen in the presence of a solvent and a catalyst system comprising a rhodium complex, a ruthenium complex and a bidentate diphosphine ligand to produce a first product mixture comprising 4-hydroxybutyraldehyde, the solvent and the catalyst system, wherein the ratio of diphosphine ligand:(rhodium complex+ruthenium complex) is at least two;
(b) reacting the first product mixture with hydrogen to form a second product mixture comprising 1,4-butanediol, the solvent and the catalyst system;
(c) optionally, separating 1,4-butanediol from the solvent and the catalyst system by water extraction, whereby a water phase and a solvent phase are formed, wherein the water phase comprises 1,4-butanediol the solvent phase comprises the solvent and the catalyst system; and
(d) optionally, recycling the solvent phase to step (a).
2. The process of claim 1 wherein the solvent is toluene, cyclohexane, and methyl t-butyl ether.
3. The process of claim 1 wherein the rhodium complex comprises rhodium and ligands selected from the group consisting of halides, hydrides, carbonyl, trialkyl or triaryl phosphines, substituted and unsubstituted cyclopentadienyls, and 2,4-alkanedionates.
4. The process of claim 1 wherein the ruthenium comprises rhodium and ligands selected from the group consisting of halides, hydrides, carbonyl, trialkyl or triaryl phosphines, substituted and unsubstituted cyclopentadienyls, and 2,4-alkanedionates.
5. The process of claim 1 wherein the diphosphine ligand is selected from the group consisting of DIOP and XANTHOS.
6. The process of claim 1 wherein step (a) is performed at a temperature of from about 60° C. to about 80° C. and a pressure of from about 30 to about 300 psig.
7. The process of claim 1 wherein step (b) is performed at a temperature of from about 80° C. to about 140° C. and a pressure of from about 300 to about 1000 psig.
8. The process of claim 1 wherein the carbon monoxide and hydrogen used in step (a) are removed prior to step (b).
9. The process of claim 1 wherein water is added to step (b).
10. The process of claim 1 comprising an additional step of reacting the water phase from step (c) with hydrogen in the presence of a hydrogenation catalyst comprising a Group VIII metal.
11. The process of claim 10 wherein the hydrogenation catalyst is a fixed-bed nickel catalyst.
12. A process for producing 1,4-butanediol comprising the steps of:
(a) reacting allyl alcohol with a mixture of carbon monoxide and hydrogen in the presence of a solvent and a catalyst system comprising a rhodium complex, a ruthenium complex and a bidentate diphosphine ligand to produce a first product mixture comprising 4-hydroxybutyraldehyde, the solvent and the catalyst system, wherein the ratio of diphosphine ligand:(rhodium complex+ruthenium complex) is at least two;
(b) reacting the first product mixture with hydrogen to form a second product mixture comprising 1,4-butanediol, the solvent and the catalyst system;
(c) separating 1,4-butanediol from the solvent and the catalyst system by water extraction, whereby a water phase and a solvent phase are formed, wherein the water phase comprises 1,4-butanediol the solvent phase comprises the solvent and the catalyst system;
(d) recycling the solvent phase to step (a); and
(e) reacting the water phase from step (c) with hydrogen in the presence of a hydrogenation catalyst comprising a Group VIII metal.
US09/735,678 2000-12-13 2000-12-13 Hydroformylation process Expired - Fee Related US6426437B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/735,678 US6426437B1 (en) 2000-12-13 2000-12-13 Hydroformylation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/735,678 US6426437B1 (en) 2000-12-13 2000-12-13 Hydroformylation process

Publications (2)

Publication Number Publication Date
US6426437B1 US6426437B1 (en) 2002-07-30
US20020111520A1 true US20020111520A1 (en) 2002-08-15

Family

ID=24956750

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/735,678 Expired - Fee Related US6426437B1 (en) 2000-12-13 2000-12-13 Hydroformylation process

Country Status (1)

Country Link
US (1) US6426437B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213022A (en) * 2012-03-07 2013-10-17 Mitsubishi Chemicals Corp Method for producing terminal alcohol
JP2015110632A (en) * 2010-10-20 2015-06-18 三菱化学株式会社 Method for producing alcohol
JP2015519340A (en) * 2012-05-29 2015-07-09 ライオンデル ケミカル テクノロジー、エル.ピー. Improving the ratio and selectivity in the hydroformylation of allyl alcohol.
KR20160071376A (en) * 2013-09-03 2016-06-21 미리안트 코포레이션 A process for manufacturing acrylic acid, acrylonitrile and 1,4-butanediol from 1,3-propanediol

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803491B1 (en) 2003-11-13 2004-10-12 Arco Chemical Technology, L.P. Preparation of lithium phosphate catalysts
US7217848B2 (en) * 2004-11-29 2007-05-15 Dow Global Technologies Inc. Tridentate phosphines and method of forming aldehyde hydrogenation catalysts
US7279606B1 (en) * 2007-04-02 2007-10-09 Lyondell Chemical Technology, L.P. Hydroformylation process
MX337013B (en) * 2011-12-14 2015-12-15 Ct Investig Materiales Avanzados Sc Unsupported and supported promoted ruthenium sulfide catalyst with high catalytic activity for hydrocarbon hydrotreatments and its method.
MX337012B (en) 2011-12-14 2015-12-15 Ct Investig Materiales Avanzados Sc Unsupported and supported non-promoted ruthenium sulfide catalyst with high catalytic activity for hydrocarbon hydrotreatments and its method.
TWI471296B (en) * 2012-01-17 2015-02-01 China Petrochemical Dev Corp Taipei Taiwan A heterogeneous catalyst and a method of producing 1,4-butanediol, γ-butyrolactone and tetrahydrofuran
CN113083374A (en) * 2021-04-09 2021-07-09 福州大学 Immobilized multi-tooth phosphine-rhodium complex catalyst and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278809A (en) 1975-12-26 1977-07-02 Ube Ind Ltd Preparation of 1, 4-butanediol
US4215077A (en) * 1978-02-09 1980-07-29 Kuraray Co., Ltd. Hydroformylation of olefins
FR2428021A1 (en) 1978-06-05 1980-01-04 Kuraray Co HYDROFORMYLATION OF OLEFINIC COMPOUNDS
US4678857A (en) 1986-03-31 1987-07-07 Texaco Inc. Process for separation of product resulting from hydroformylation
US5290743A (en) 1993-03-22 1994-03-01 Arco Chemical Technology L.P. Process for regenerating a deactivated rhodium hydroformylation catalyst system
US5874652A (en) * 1993-10-18 1999-02-23 Arco Chemical Technology, L.P. Process for hydrogenating aqueous aldehyde mixtures
BE1008343A3 (en) * 1994-05-06 1996-04-02 Dsm Nv Bidentate phosphine ligand
US5504261A (en) 1994-08-01 1996-04-02 Arco Chemical Technology, L.P. Production of hydroxy compounds
US6127584A (en) * 1999-04-14 2000-10-03 Arco Chemical Technology, L.P. Butanediol production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110632A (en) * 2010-10-20 2015-06-18 三菱化学株式会社 Method for producing alcohol
JP2013213022A (en) * 2012-03-07 2013-10-17 Mitsubishi Chemicals Corp Method for producing terminal alcohol
JP2015519340A (en) * 2012-05-29 2015-07-09 ライオンデル ケミカル テクノロジー、エル.ピー. Improving the ratio and selectivity in the hydroformylation of allyl alcohol.
KR20160071376A (en) * 2013-09-03 2016-06-21 미리안트 코포레이션 A process for manufacturing acrylic acid, acrylonitrile and 1,4-butanediol from 1,3-propanediol
EP3041942A1 (en) * 2013-09-03 2016-07-13 Myriant Corporation A process for manufacturing acrylic acid, acrylonitrile and 1,4-butanediol from 1,3-propanediol
EP3041942A4 (en) * 2013-09-03 2017-04-26 Myriant Corporation A process for manufacturing acrylic acid, acrylonitrile and 1,4-butanediol from 1,3-propanediol
KR102266181B1 (en) 2013-09-03 2021-06-17 피티티 글로벌 케미컬 퍼블릭 컴퍼니 리미티드 A process for manufacturing acrylic acid, acrylonitrile and 1,4-butanediol from 1,3-propanediol

Also Published As

Publication number Publication date
US6426437B1 (en) 2002-07-30

Similar Documents

Publication Publication Date Title
US7294602B1 (en) Hydroformylation process
EP2081882B1 (en) Hydroformylation process
EP2429978B1 (en) Hydroformylation process
JPH06501958A (en) Recovery of high-boiling aldehydes from rhodium-based hydroformylation processes
US6426437B1 (en) Hydroformylation process
US7612241B1 (en) Hydroformylation process
US7655821B1 (en) Direct hydrocarbonylation process
US5233093A (en) Hydroformylation process and bimetallic catalyst therefor
US10807934B1 (en) High linear selectivity ligand for allyl alcohol hydroformylation
US8124805B2 (en) Allyl acetate hydroformylation process
EP2516058B1 (en) Hydroformylation process
US5426250A (en) Process for preparing 1,4-butanediol
CA2404758A1 (en) One step process for preparing a 1,3-diol
US11613510B2 (en) Methylcyclohexane as allyl alcohol hydroformylation solvent
US10865174B2 (en) One step process for the hydroformylation of olefins
JPH0662464B2 (en) Method for producing 1,9-nonanediol
KR20010064462A (en) Carbonylation Processes of Epoxide Derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARCO CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHUM, WILFRED P.;REEL/FRAME:011670/0052

Effective date: 20001213

AS Assignment

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: CHANGE OF NAME;ASSIGNOR:ARCO CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:016206/0001

Effective date: 20050622

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: JPMORGAN CHASE BANK N.A., AS ADMINISTRATIVE AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:018260/0306

Effective date: 20060816

AS Assignment

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: RELEASE OF LYONDELL CHEMICAL TECHNOLOGY, L.P. PATENT SECURITY AGREEMENT;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:020679/0063

Effective date: 20071220

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE

Free format text: RELEASE OF LYONDELL CHEMICAL TECHNOLOGY, L.P. PATENT SECURITY AGREEMENT;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:020679/0063

Effective date: 20071220

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:020704/0562

Effective date: 20071220

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:020704/0562

Effective date: 20071220

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:021354/0708

Effective date: 20071220

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:021354/0708

Effective date: 20071220

AS Assignment

Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLAT

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:022708/0830

Effective date: 20090303

XAS Not any more in us assignment database

Free format text: SECURITY AGREEMENT;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT;REEL/FRAME:022520/0782

AS Assignment

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONN

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:023449/0138

Effective date: 20090303

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT,CONNE

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:023449/0138

Effective date: 20090303

REMI Maintenance fee reminder mailed
AS Assignment

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP,TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP,TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0020

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:024337/0285

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP, DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0020

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP, DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:024337/0285

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100730