US20020087039A1 - Method of making hydrofluorocarbons and hydrochlorofluorocarbons - Google Patents

Method of making hydrofluorocarbons and hydrochlorofluorocarbons Download PDF

Info

Publication number
US20020087039A1
US20020087039A1 US09/752,910 US75291000A US2002087039A1 US 20020087039 A1 US20020087039 A1 US 20020087039A1 US 75291000 A US75291000 A US 75291000A US 2002087039 A1 US2002087039 A1 US 2002087039A1
Authority
US
United States
Prior art keywords
formula
hydrohalocarbon
adduct
alkane
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/752,910
Other versions
US6518467B2 (en
Inventor
Hsueh Tung
Michael Der Puy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to US09/752,910 priority Critical patent/US6518467B2/en
Assigned to HONEYWELL INTERNATIONAL INC. reassignment HONEYWELL INTERNATIONAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TUNG, HSUEH SUNG, VAN DER PUY, MICHAEL
Priority to PCT/US2001/051356 priority patent/WO2002055459A2/en
Priority to EP01989345A priority patent/EP1345874A2/en
Priority to AU2002243446A priority patent/AU2002243446A1/en
Publication of US20020087039A1 publication Critical patent/US20020087039A1/en
Application granted granted Critical
Publication of US6518467B2 publication Critical patent/US6518467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/21Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms with simultaneous increase of the number of halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/269Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of only halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to new methods for making hydrofluorocarbons and hydrochlorofluorocarbons.
  • HFCs Hydrofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • CFCs chlorofluorocarbons
  • HFCs are of interest because they do not contain chlorine and therefore do not decompose to form chlorine-containing chemical species, which are suspected of causing depletion of the ozone layer.
  • Both HFCs and HCFCs have been used successfully in place of CFCs as heat transfer agents, blowing agents, and propellants.
  • HFCs and HCFCs are desirable targets of chemical synthesis.
  • HFC-365 1,1,1,3,3-pentafluorobutane
  • U.S. Pat. No. 5,917,098, issued to Bertocchio et al. discloses a process for forming HFC-365 comprising the steps of (a) reacting tetrachloromethane and 2-chloropropene in the presence of a catalyst comprising an amine and a copper salt; and (b) fluorinating with hydrogen fluoride.
  • the present invention is directed to a method of producing hydrofluorocarbons (HFCs) and/or hydrochlorofluorocarbons (HCFCs) using as a reactant halogenated alkanes, more preferably C 2 -C 6 halogenated alkanes, and even more preferably halogenated alkanes of Formula I, shown below.
  • HFCs hydrofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • X is independently fluorine or chlorine.
  • the term “independently” means that one X substituent on a compound may differ from another X substituent on the same compound.
  • the X substituents on a compound of Formula I may be all chlorine, all fluorine, or combinations of chlorine and fluorine.
  • at least one X is chlorine.
  • halogenated alkanes, and preferably halogenated alkanes in accordance with Formula I can be used with great advantage in a process which comprises converting the halogenated alkane to an HFC or HCFC.
  • the method of converting a halogenated alkane to an HFC and/or HCFC comprises the step of: (a) reacting a starting halogenated alkane, preferably in accordance with Formula I, with a hydrohalocarbon adduct in the presence of a catalyst to form an addition-reaction product.
  • the method of converting a halogenated alkane to an HFC and/or an HCFC comprises the steps of: (a) reacting a starting halogenated alkane, preferably in accordance with Formula I, with a hydrohalocarbon adduct in the presence of a catalyst to form an addition-reaction product; and (b) fluorinating said addition-reaction product to produce an HFC and/or an HCFC.
  • hydrohalocarbon adduct refers generally to alkanes, alkenes and mixtures thereof which are capable of reacting with the starting halogenated alkane to form an addition-reaction product according to the present invention.
  • Preferred hydrohalocarbon adducts include: (1) alkenes described by the Formula (II) below:
  • X is independently chlorine or fluorine; (2) alkanes of Formula I which are capable of forming alkenes of Formula II in situ in the reaction of the present invention; and (3) mixtures thereof.
  • reaction step (a) and optionally, but preferably, reaction step (b), shown below in Scheme 1.
  • addition-reaction product refers generally to a product comprising either a Formula III alkane or a Formula IV alkene alone, or a mixture of Formula III alkanes and Formula IV alkenes.
  • the addition-reaction product formed from step (a) may be isolated as a desired end-product HFC and/or HCFC. In such embodiments, further fluorination via step (b) is unnecessary.
  • Examples of Formula III alkanes which can be produced via step (a) include HCFCs, such as, 1-fluoro-1,1,3,3-tetrachlorobutane, 3-fluoro-1,1,1,3-tetrachlorobutane, 1,1-difluoro-3,3,3-trichlorobutane, 1,3-difluoro-1,1,3-trichlorobutane, 3,3-difluoro-1,1,1-trichlorobutane, 3,3-dichloro-1,1,1-trifluorobutane, 1,3-dichloro-1,1,3-trifluorobutane, 1,1-dichloro-1,3,3-trifluorobutane, 3-chloro-1,1,1,3-tetrafluorobutane, 1-chloro-1,1,3,3-tetrafluorobutane, and HFCs, such as, 1,1,1,3,3-pentafluorobutane.
  • Formula IV alkenes include HCFCs, such as, 1-fluoro-1,3,3-trichlorobut-1-ene, 3-fluoro-1,1,3-trichlorobut-1-ene, 1,1-dichloro-3,3-difluorobut-1-ene, 3,3-dichloro-1,1-difluorobut-1-ene, 1,3-dichloro-1,3-difluorobut-1-ene, 3-chloro-1,1,3-trifluorobut-1-ene, 1-chloro-1,3,3-trifluorobut-1-ene, HFCs, such as, 1,1,3,3-tetrafluorobut-1-ene.
  • HCFCs such as, 1-fluoro-1,3,3-trichlorobut-1-ene, 3-fluoro-1,1,3-trichlorobut-1-ene, 1,1-dichloro-3,3-difluorobut-1-ene, 3,3-d
  • the addition-reaction product produced from step (a) is fluorinated via reaction step (b) to form a desired HFC and/or HCFC.
  • reaction step (a) preferably comprises reacting a starting alkane of Formula I with a hydrohalocarbon adduct in the presence of a catalyst under conditions effective to achieve the formation of addition-reaction product at a yield of at least about 50% by mole.
  • a wide range of starting alkanes in accordance with Formula I are suitable for use in the present invention, including, for example, 1,1-dichloro-1-fluoroethane, 1-chloro-1,1-difluoroethane and 1,1,1-trichloroethane, each of which is commercially available.
  • many compounds of Formula I are known in the literature and are obtainable by art-recognized procedures.
  • Preferred Formula I alkanes include alkanes comprising at least one chlorine group, such as 1,1-dichloro-1-fluoroethane and 1,1,1-trichloroethane.
  • Any suitable hydrohalocarbon adduct may be used in the method of the present invention.
  • suitable adducts include: alkenes of Formula II, such as 1-chloro-1-fluoroethene, 1,1-dichloroethene, 1,1-difluoroethene, 1-chloroethene, 1-fluoroethene; alkanes of Formula I, such as those described above; and mixtures thereof.
  • Preferred adducts include 1-chloro-1-fluoroethene, 1,1-dichloroethane, 1,1-dichloro-1-fluoroethane, 1,1,1-trichloroethane and mixtures thereof. More preferred hydrohalocarbon adducts are 1,1-dichloro-1-fluoroethane and 1,1,1-trichloroethane.
  • the alkane adduct may be the same as or different from the starting alkane of Formula I.
  • the hydrohalocarbon adduct comprises the same compound as the starting alkane.
  • any suitable amounts of starting alkane and hydrohalocarbon adduct can be used in the present invention.
  • the amount of such materials used is an amount effective to achieve a greater than 30% conversion (on a mole basis) of the starting alkane to an addition-reaction product.
  • the reactants are generally present in approximately equimolar amounts unless one reactant is more volatile or less stable in which case it may be used in excess.
  • the mole ratio of starting alkane to hydrohalocarbon adduct is preferably from about 3:1 to about 1:1, more preferably from about 2:1 to about 1:1 and even more preferably about 1:1.
  • any of a wide range of known catalysts are suitable for use in the present invention.
  • suitable catalysts include Lewis acids, derivatives of Lewis acids, and the like.
  • a particularly preferred Lewis acids comprises aluminum trichloride.
  • the amount of catalyst to be used according to the present invention will depend on many variables, including the particular starting materials being used and the desired yield from the reaction step (a). For example, although applicants do not wish to be bound by or to any theory of operation, it is believed that a relatively large amount of catalyst promotes undesirable polymerization of reaction intermediates, thus lowering the yield of desired product. As shown below in Scheme 2, it is believed that two different intermediates (I a and I b ) may be formed from the starting alkane in the reaction of the present invention.
  • the amount of catalyst used is an amount effective to achieve a greater than 30% conversion (on a mole basis) of the starting alkane to an addition-reaction product.
  • the starting alkane and hydrohalocarbon adduct are 1,1-dichloro-1-fluoroethane and the catalyst is a Lewis acid
  • the mole ratio of Lewis acid catalyst to 1,1-dichloro-1-fluoroethane is less than about 1:2, preferably less than about 1:3, and more preferably less than about 1:4.
  • the temperature at which the reaction step (a) is conducted and the period of reaction will depend in part on the starting materials and the desired yield. Generally, it is preferred that the reaction temperature be controlled so as to hinder alkene polymerization.
  • the reaction temperature for step (a) is preferably maintained at less than about 120° C., more preferably at less than about 100° C. and even more preferably at leass than about 90° C. It is contemplated that in certain embodiments in which polymerization of the alkenes of Formula II is considered to be especially detrimental, the reaction temperature is preferably maintained at less than about 80° C. In many preferred embodiments of the present invention, the temperature of reaction step (a) is maintained at from about 20° C. to about 120° C. In view of the present teachings, those skilled in the art will be able to adapt the reaction parameters to achieve the particular desired results for numerous starting materials and desired HFCs.
  • the addition-reaction product produced from step (a) may be purified by conventional means, such as, for example, distillation.
  • unreacted starting materials recovered from such a purification step are recycled for further reaction. Recycling such unreacted starting material generally results in higher overall yields and selectivity of the reaction step (a).
  • certain preferred embodiments of the present invention comprise the step of fluorinating the addition-reaction product to form an HFC.
  • the fluorination step preferably comprises reacting the addition-reaction product with a fluorinating agent in the presence of a fluorination catalyst to produce an HFC in a yield of about 80% by mole.
  • suitable fluorination agents include any material capable of providing fluorine to the reaction.
  • suitable fluorinating agents are substantially anhydrous hydrogen fluoride, aqueous hydrogen fluoride, metal fluorides, halogen fluorides, elemental fluorine and sulfur fluorides.
  • a preferred fluorination agent is substantially anhydrous hydrogen fluoride (HF).
  • Anhydrous hydrogen fluoride is preferred because the presence of water in the reaction tends to deactivate the fluorination catalyst.
  • substantially anhydrous means that the HF contains less than about 0.05 weight percent water and preferably contains less than about 0.02 weight percent water. It should be understood, however, that the presence of water in the catalyst can be compensated for by increasing the amount of catalyst used.
  • the fluorination catalyst preferably comprises an inorganic metal catalyst which promotes a reaction involving the addition of fluorine for chlorine in a chlorinated organic molecule.
  • exemplary catalysts include, without limitation, chromium, copper, aluminum, cobalt, magnesium, manganese, antimony, tantalum, niobium, titanium, tin, zinc, nickel and iron oxides, hydroxides, halides, oxyhalides and inorganic salts thereof, Cr203/Al203, Cr203/AlF3, Cr203/carbon, CoCl2CrO3/Al203, NiCl2/Cr203/Al203, CoCl2AlF3 and NiCl2/AlF3.
  • supported metal catalysts such as nickel, cobalt, zinc, iron, and copper supported on chromia, magnesia, or alumina may be used.
  • chromium oxide/aluminum oxide catalysts are known and are described, for example, in U.S. Pat. No. 5,155,082, which is incorporated herein by reference.
  • chromium oxide (Cr 2 O 3 ) a commercially available catalyst, is used.
  • any suitable amounts of fluorinating agent and fluorination catalyst can be used in the present invention.
  • the amount of fluorinating agent used is an amount effective to achieve a greater than 90% conversion of addition-reaction product to HFC.
  • the mole ratio of addition-reaction product to HF is preferably about 1:30, more preferably about 1:25, and even more preferably about 1:20.
  • the amount of catalyst used can vary widely and can be determined by one skilled in the art without undue experimentation. The amount depends on a number of factors including the catalyst employed, reactants and other process variables. In a batch process, the mole ratio of addition-reaction product to catalyst used is preferably greater than about 2:1, more preferably greater than about 3:1, and even more preferably greater about 4:1.
  • the fluorination reaction may comprise a liquid-phase or vapor-phase reaction.
  • the fluorination reaction comprises combining the addition-reaction product, fluorinating agent and fluorination catalyst under pressure to produce an HFC.
  • temperatures are preferably from about 10° C. to about 100° C., more preferably from about 20° C. to about 40° C., and even more preferably from about 25° C. to about 35° C.
  • pressures are preferably from about 0 to about 300 psig, more preferably from about 0 to about 200 psig, and even more preferably from about 0 to about 175 psig.
  • Vapor-phase fluorination reactions according to the present invention are preferably carried out in a reactor vessel.
  • One or more of the reactants comprising the fluorination agent and the addition-reaction product may be preheated in at least one vaporizer before feeding the reactor.
  • Suitable temperatures for preheating range from about 20° C. to about 400° C., preferably from about 30° C. to about 350° C., and more preferably from about 50° C. to about 300° C.
  • the fluorination reactor is charged preferably with a fluorination catalyst before feeding the reactants to the reactor.
  • the catalyst Before adding the reactants to the fluorination reactor, it may be preferable to pretreat the catalyst chemically and/or physically to create active sites which facilitate fluorination.
  • the catalyst can be pretreated by calcining it under a flow of inert gas, such as nitrogen, at a temperature comparable to or higher than that of the fluorination reaction.
  • the calcined catalyst is exposed to a fluorinating agent alone or in combination with up to about 5 to about 99 weight percent of inert gas at a temperature from about 25° C. to about 450° C. for at least about an hour.
  • the reactants can be fed individually or as a mixture to the reactor, or diluted with inert material, such as nitrogen or argon, or perhalogenated material. Once the reaction is underway, the reactants may be continuously added under pressure to supply the additional amounts of reactants needed to continue the process.
  • inert material such as nitrogen or argon, or perhalogenated material.
  • temperatures in the fluorination reactor are preferably from about 100° C. and about 400° C., more preferably from about 150° C. to about 350° C., and even more preferably from about 200° C. to about 350° C. Pressure is not critical. Atmospheric, sub- or super-atmospheric pressures can be used.
  • the contact time for the reactants stream is preferably from about 1 to about 240 seconds, more preferably from about 1 to about 200 seconds, and even more preferably from about 1 to about 120 seconds.
  • the HFC product produced in the fluorination reaction will comprise not only HFC's, but also by-products and impurities.
  • at least a portion of the HFC may be purified via conventional means, such as distillation, phase separation, HF-extraction, or water scrubbing.
  • any addition-reaction product recovered from the fluorination reaction may be recycled back to the reactor for further fluorination.
  • This example illustrates the synthesis of 1,1,3-trichloro-1,3-difluorobutane and 1,3-dichloro-1,3-difluorobut-1-ene using 1,1-dichloro-1-fluoroethane as both the starting halogenated alkane of Formula I and the hydrohalocarbon adduct.
  • This example illustrates the synthesis of 1,1,1,3,3-pentafluorobutane from a mixture of 1,1,3-trichloro-1,3-difluorobutane and 1,3-dichloro-1,3-difluorobut-1-ene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A method of producing hydrofluorocarbons and/or hydrochlorofluorocarbons by using halogenated alkanes as a principal reactant. Generally, the method comprises the step of: (a) reacting a starting halogenated alkane corresponding to the formula (I):
H3C—CX3  (I)
wherein X is independently fluorine or chlorine, with a hydrohalocarbon adduct in the presence of a catalyst to form a hydrofluorocarbon and/or hydrochlorofluorocarbon.

Description

    FIELD OF THE INVENTION
  • The present invention relates to new methods for making hydrofluorocarbons and hydrochlorofluorocarbons. [0001]
  • BACKGROUND OF THE INVENTION
  • Hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs) are of interest as potential replacements for highly useful chlorofluorocarbons (CFCs). In particular, HFCs are of interest because they do not contain chlorine and therefore do not decompose to form chlorine-containing chemical species, which are suspected of causing depletion of the ozone layer. Both HFCs and HCFCs have been used successfully in place of CFCs as heat transfer agents, blowing agents, and propellants. Thus, HFCs and HCFCs are desirable targets of chemical synthesis. [0002]
  • Applicants believe that known methods for making HFCs and HCFCs, especially methods for making 1,1,1,3,3-pentafluorobutane (“HFC-365”), are highly inefficient, often using disfavored reaction ingredients and/or reaction conditions. For example, U.S. Pat. No. 5,917,098, issued to Bertocchio et al., discloses a process for forming HFC-365 comprising the steps of (a) reacting tetrachloromethane and 2-chloropropene in the presence of a catalyst comprising an amine and a copper salt; and (b) fluorinating with hydrogen fluoride. [0003]
  • The present inventors have come to appreciate that such prior processes are disadvantageous for several reasons. For example, one such disadvantage is that the availability of many halogenated compounds, such as tetrachloromethane and 2-chloropropene, is limited and their use as starting materials tends to be very expensive. [0004]
  • Recognizing this and other drawbacks of the prior art, the present inventors have perceived a need for a new, efficient and more desirable method for producing a wide range of HFCs and HCFCs. These and other objects are achieved by the present invention as described below. [0005]
  • DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS
  • The present invention is directed to a method of producing hydrofluorocarbons (HFCs) and/or hydrochlorofluorocarbons (HCFCs) using as a reactant halogenated alkanes, more preferably C[0006] 2-C6 halogenated alkanes, and even more preferably halogenated alkanes of Formula I, shown below. Formula I:
  • H3C—CX3  (I)
  • wherein X is independently fluorine or chlorine. As used herein with respect to X, the term “independently” means that one X substituent on a compound may differ from another X substituent on the same compound. Accordingly, the X substituents on a compound of Formula I may be all chlorine, all fluorine, or combinations of chlorine and fluorine. Preferably, at least one X is chlorine. Applicants have discovered that halogenated alkanes, and preferably halogenated alkanes in accordance with Formula I, can be used with great advantage in a process which comprises converting the halogenated alkane to an HFC or HCFC. [0007]
  • Applicants have discovered that a process which utilizes such a conversion operation is highly advantageous in that the cost of producing HFCs and HCFCs according to the present halogenated alkane conversion operation is greatly reduced relative to conventional HFC and HCFC production techniques. This reduction in cost is due in part to the relative commercial availability of the present halogenated alkanes in comparison to the starting materials of the prior art. [0008]
  • According to certain preferred embodiments of the present invention, the method of converting a halogenated alkane to an HFC and/or HCFC comprises the step of: (a) reacting a starting halogenated alkane, preferably in accordance with Formula I, with a hydrohalocarbon adduct in the presence of a catalyst to form an addition-reaction product. [0009]
  • According to certain other preferred embodiments of the present invention, the method of converting a halogenated alkane to an HFC and/or an HCFC comprises the steps of: (a) reacting a starting halogenated alkane, preferably in accordance with Formula I, with a hydrohalocarbon adduct in the presence of a catalyst to form an addition-reaction product; and (b) fluorinating said addition-reaction product to produce an HFC and/or an HCFC. [0010]
  • As used herein, the term “hydrohalocarbon adduct” refers generally to alkanes, alkenes and mixtures thereof which are capable of reacting with the starting halogenated alkane to form an addition-reaction product according to the present invention. Preferred hydrohalocarbon adducts include: (1) alkenes described by the Formula (II) below:[0011]
  • H2C═CX2  (II)
  • wherein X is independently chlorine or fluorine; (2) alkanes of Formula I which are capable of forming alkenes of Formula II in situ in the reaction of the present invention; and (3) mixtures thereof. [0012]
  • Although applicants do not wish to be bound by or to any particular theory of operation, it is believed that the methods according to certain preferred aspects of the present invention involve reaction step (a), and optionally, but preferably, reaction step (b), shown below in Scheme 1. [0013]
    Figure US20020087039A1-20020704-C00001
  • As used herein, the term “addition-reaction product” refers generally to a product comprising either a Formula III alkane or a Formula IV alkene alone, or a mixture of Formula III alkanes and Formula IV alkenes. In certain preferred embodiments of the present invention, the addition-reaction product formed from step (a) may be isolated as a desired end-product HFC and/or HCFC. In such embodiments, further fluorination via step (b) is unnecessary. Examples of Formula III alkanes which can be produced via step (a) include HCFCs, such as, 1-fluoro-1,1,3,3-tetrachlorobutane, 3-fluoro-1,1,1,3-tetrachlorobutane, 1,1-difluoro-3,3,3-trichlorobutane, 1,3-difluoro-1,1,3-trichlorobutane, 3,3-difluoro-1,1,1-trichlorobutane, 3,3-dichloro-1,1,1-trifluorobutane, 1,3-dichloro-1,1,3-trifluorobutane, 1,1-dichloro-1,3,3-trifluorobutane, 3-chloro-1,1,1,3-tetrafluorobutane, 1-chloro-1,1,3,3-tetrafluorobutane, and HFCs, such as, 1,1,1,3,3-pentafluorobutane. Examples of Formula IV alkenes include HCFCs, such as, 1-fluoro-1,3,3-trichlorobut-1-ene, 3-fluoro-1,1,3-trichlorobut-1-ene, 1,1-dichloro-3,3-difluorobut-1-ene, 3,3-dichloro-1,1-difluorobut-1-ene, 1,3-dichloro-1,3-difluorobut-1-ene, 3-chloro-1,1,3-trifluorobut-1-ene, 1-chloro-1,3,3-trifluorobut-1-ene, HFCs, such as, 1,1,3,3-tetrafluorobut-1-ene. [0014]
  • In certain other embodiments of the present invention, the addition-reaction product produced from step (a) is fluorinated via reaction step (b) to form a desired HFC and/or HCFC. [0015]
  • According to certain preferred embodiments of the present invention, reaction step (a) preferably comprises reacting a starting alkane of Formula I with a hydrohalocarbon adduct in the presence of a catalyst under conditions effective to achieve the formation of addition-reaction product at a yield of at least about 50% by mole. [0016]
  • A wide range of starting alkanes in accordance with Formula I are suitable for use in the present invention, including, for example, 1,1-dichloro-1-fluoroethane, 1-chloro-1,1-difluoroethane and 1,1,1-trichloroethane, each of which is commercially available. Furthermore, many compounds of Formula I are known in the literature and are obtainable by art-recognized procedures. Preferred Formula I alkanes include alkanes comprising at least one chlorine group, such as 1,1-dichloro-1-fluoroethane and 1,1,1-trichloroethane. [0017]
  • Any suitable hydrohalocarbon adduct may be used in the method of the present invention. Examples of suitable adducts include: alkenes of Formula II, such as 1-chloro-1-fluoroethene, 1,1-dichloroethene, 1,1-difluoroethene, 1-chloroethene, 1-fluoroethene; alkanes of Formula I, such as those described above; and mixtures thereof. Preferred adducts include 1-chloro-1-fluoroethene, 1,1-dichloroethane, 1,1-dichloro-1-fluoroethane, 1,1,1-trichloroethane and mixtures thereof. More preferred hydrohalocarbon adducts are 1,1-dichloro-1-fluoroethane and 1,1,1-trichloroethane. [0018]
  • In embodiments of the present invention wherein the hydrohalocarbon adduct comprises an alkane of Formula I, the alkane adduct may be the same as or different from the starting alkane of Formula I. In certain preferred embodiments, the hydrohalocarbon adduct comprises the same compound as the starting alkane. [0019]
  • Any suitable amounts of starting alkane and hydrohalocarbon adduct can be used in the present invention. Preferably, the amount of such materials used is an amount effective to achieve a greater than 30% conversion (on a mole basis) of the starting alkane to an addition-reaction product. As will be recognized by those of skill in the art, the reactants are generally present in approximately equimolar amounts unless one reactant is more volatile or less stable in which case it may be used in excess. Accordingly, the mole ratio of starting alkane to hydrohalocarbon adduct is preferably from about 3:1 to about 1:1, more preferably from about 2:1 to about 1:1 and even more preferably about 1:1. [0020]
  • Any of a wide range of known catalysts are suitable for use in the present invention. Examples of suitable catalysts include Lewis acids, derivatives of Lewis acids, and the like. Preferred catalysts include Lewis acid catalysts such as: boron trifluoride; aluminum compounds of the formula: AlCl[0021] nF3−n, wherein n=0 to 3, such as aluminum trichloride; boron compounds of the formula: (C6F5)3B (wherein B is boron); tin tetrachloride; titanium tetrachloride; antimony trichloride and the like. Preferred Lewis acids agents include aluminum compounds of the formula: AlClnF3−n, wherein n=0 to 3. A particularly preferred Lewis acids comprises aluminum trichloride.
  • Those skilled in the art will appreciate that the amount of catalyst to be used according to the present invention will depend on many variables, including the particular starting materials being used and the desired yield from the reaction step (a). For example, although applicants do not wish to be bound by or to any theory of operation, it is believed that a relatively large amount of catalyst promotes undesirable polymerization of reaction intermediates, thus lowering the yield of desired product. As shown below in Scheme 2, it is believed that two different intermediates (I[0022] a and Ib) may be formed from the starting alkane in the reaction of the present invention.
    Figure US20020087039A1-20020704-C00002
  • It is believed that when two or more alkenes come in contact with each other in solution, they tend to polymerize. Such polymerization reduces the amount of alkene available in solution for reaction with intermediate (I[0023] a) and consequently reduces the desired product yield. However, by limiting the amount of catalyst used, the conversion of starting alkane to alkene Ib can be hindered such that the formation of intermediate Ia predominates alkene Ib formation. Accordingly, each alkene in solution is more likely to encounter and react with an intermediate Ia to form desired product rather than polymerize with another alkene.
  • Preferably, the amount of catalyst used is an amount effective to achieve a greater than 30% conversion (on a mole basis) of the starting alkane to an addition-reaction product. For preferred processes in which the starting alkane and hydrohalocarbon adduct are 1,1-dichloro-1-fluoroethane and the catalyst is a Lewis acid, the mole ratio of Lewis acid catalyst to 1,1-dichloro-1-fluoroethane is less than about 1:2, preferably less than about 1:3, and more preferably less than about 1:4. In light of the above disclosure, those of skill in the art will be readily able to determine an amount of catalyst suitable for use in the present invention without undue experimentation. [0024]
  • The temperature at which the reaction step (a) is conducted and the period of reaction will depend in part on the starting materials and the desired yield. Generally, it is preferred that the reaction temperature be controlled so as to hinder alkene polymerization. The reaction temperature for step (a) is preferably maintained at less than about 120° C., more preferably at less than about 100° C. and even more preferably at leass than about 90° C. It is contemplated that in certain embodiments in which polymerization of the alkenes of Formula II is considered to be especially detrimental, the reaction temperature is preferably maintained at less than about 80° C. In many preferred embodiments of the present invention, the temperature of reaction step (a) is maintained at from about 20° C. to about 120° C. In view of the present teachings, those skilled in the art will be able to adapt the reaction parameters to achieve the particular desired results for numerous starting materials and desired HFCs. [0025]
  • As an optional step, the addition-reaction product produced from step (a) may be purified by conventional means, such as, for example, distillation. Optionally, but preferably, unreacted starting materials recovered from such a purification step are recycled for further reaction. Recycling such unreacted starting material generally results in higher overall yields and selectivity of the reaction step (a). [0026]
  • As mentioned above, certain preferred embodiments of the present invention comprise the step of fluorinating the addition-reaction product to form an HFC. The fluorination step preferably comprises reacting the addition-reaction product with a fluorinating agent in the presence of a fluorination catalyst to produce an HFC in a yield of about 80% by mole. [0027]
  • In general, suitable fluorination agents include any material capable of providing fluorine to the reaction. Examples of suitable fluorinating agents are substantially anhydrous hydrogen fluoride, aqueous hydrogen fluoride, metal fluorides, halogen fluorides, elemental fluorine and sulfur fluorides. A preferred fluorination agent is substantially anhydrous hydrogen fluoride (HF). Anhydrous hydrogen fluoride is preferred because the presence of water in the reaction tends to deactivate the fluorination catalyst. The term “substantially anhydrous”, as used herein, means that the HF contains less than about 0.05 weight percent water and preferably contains less than about 0.02 weight percent water. It should be understood, however, that the presence of water in the catalyst can be compensated for by increasing the amount of catalyst used. [0028]
  • The fluorination catalyst preferably comprises an inorganic metal catalyst which promotes a reaction involving the addition of fluorine for chlorine in a chlorinated organic molecule. Numerous fluorination catalysts are known to those skilled in the art. Exemplary catalysts include, without limitation, chromium, copper, aluminum, cobalt, magnesium, manganese, antimony, tantalum, niobium, titanium, tin, zinc, nickel and iron oxides, hydroxides, halides, oxyhalides and inorganic salts thereof, Cr203/Al203, Cr203/AlF3, Cr203/carbon, CoCl2CrO3/Al203, NiCl2/Cr203/Al203, CoCl2AlF3 and NiCl2/AlF3. Additionally, supported metal catalysts such as nickel, cobalt, zinc, iron, and copper supported on chromia, magnesia, or alumina may be used. Such chromium oxide/aluminum oxide catalysts are known and are described, for example, in U.S. Pat. No. 5,155,082, which is incorporated herein by reference. Preferably, chromium oxide (Cr[0029] 2O3), a commercially available catalyst, is used.
  • Any suitable amounts of fluorinating agent and fluorination catalyst can be used in the present invention. Preferably, the amount of fluorinating agent used is an amount effective to achieve a greater than 90% conversion of addition-reaction product to HFC. For example, in particularly preferred embodiments in which the addition-reaction product comprises a mixture of 1,1,3-trichloro-1,3-difluorobutane and 1,3-dichloro-1,3-difluorobut -1-ene and the HFC comprises HFC-365, the mole ratio of addition-reaction product to HF is preferably about 1:30, more preferably about 1:25, and even more preferably about 1:20. [0030]
  • The amount of catalyst used can vary widely and can be determined by one skilled in the art without undue experimentation. The amount depends on a number of factors including the catalyst employed, reactants and other process variables. In a batch process, the mole ratio of addition-reaction product to catalyst used is preferably greater than about 2:1, more preferably greater than about 3:1, and even more preferably greater about 4:1. [0031]
  • According to the present invention, the fluorination reaction may comprise a liquid-phase or vapor-phase reaction. Generally, in the liquid-phase, the fluorination reaction comprises combining the addition-reaction product, fluorinating agent and fluorination catalyst under pressure to produce an HFC. [0032]
  • The temperature at which the liquid-state fluorination reaction is conducted and the period of reaction will depend on the starting materials, amounts used, and catalyst used. In view of the present teachings, those skilled in the art will be able to adapt the reaction parameters to achieve the particular desired results for numerous starting materials and desired HFCs. For methods involving the use of a mixture of 1,1,3-trichloro-1,3-difluorobutane and 1,3-dichloro-1,3-difluorobut-1-ene as the addition-reaction product, temperatures are preferably from about 10° C. to about 100° C., more preferably from about 20° C. to about 40° C., and even more preferably from about 25° C. to about 35° C. Furthermore, pressures are preferably from about 0 to about 300 psig, more preferably from about 0 to about 200 psig, and even more preferably from about 0 to about 175 psig. [0033]
  • Vapor-phase fluorination reactions according to the present invention are preferably carried out in a reactor vessel. One or more of the reactants comprising the fluorination agent and the addition-reaction product may be preheated in at least one vaporizer before feeding the reactor. Suitable temperatures for preheating range from about 20° C. to about 400° C., preferably from about 30° C. to about 350° C., and more preferably from about 50° C. to about 300° C. [0034]
  • The fluorination reactor is charged preferably with a fluorination catalyst before feeding the reactants to the reactor. [0035]
  • Before adding the reactants to the fluorination reactor, it may be preferable to pretreat the catalyst chemically and/or physically to create active sites which facilitate fluorination. For example, the catalyst can be pretreated by calcining it under a flow of inert gas, such as nitrogen, at a temperature comparable to or higher than that of the fluorination reaction. Next, the calcined catalyst is exposed to a fluorinating agent alone or in combination with up to about 5 to about 99 weight percent of inert gas at a temperature from about 25° C. to about 450° C. for at least about an hour. [0036]
  • The reactants can be fed individually or as a mixture to the reactor, or diluted with inert material, such as nitrogen or argon, or perhalogenated material. Once the reaction is underway, the reactants may be continuously added under pressure to supply the additional amounts of reactants needed to continue the process. [0037]
  • The temperature at which the vapor-phase fluorination reaction is conducted and the period of reaction will depend on the starting materials, amounts used, and catalyst used. In view of the present teachings, those skilled in the art will be able to adapt the reaction parameters to achieve the particular desired results for numerous starting materials and desired HFCs. For methods involving the use of a mixture of 1,1,3-trichloro-1,3-difluorobutane and 1,3-dichloro-1,3-difluorobut-1-ene as the addition-reaction product, temperatures in the fluorination reactor are preferably from about 100° C. and about 400° C., more preferably from about 150° C. to about 350° C., and even more preferably from about 200° C. to about 350° C. Pressure is not critical. Atmospheric, sub- or super-atmospheric pressures can be used. [0038]
  • In a continuous process, the contact time for the reactants stream is preferably from about 1 to about 240 seconds, more preferably from about 1 to about 200 seconds, and even more preferably from about 1 to about 120 seconds. [0039]
  • In many embodiments, the HFC product produced in the fluorination reaction will comprise not only HFC's, but also by-products and impurities. As an optional step, at least a portion of the HFC may be purified via conventional means, such as distillation, phase separation, HF-extraction, or water scrubbing. As a further optional step, any addition-reaction product recovered from the fluorination reaction may be recycled back to the reactor for further fluorination.[0040]
  • EXAMPLES
  • In order to illustrate, in a non-limiting manner, the present invention is described in connection with the following examples. [0041]
  • Example 1
  • This example illustrates the synthesis of 1,1,3-trichloro-1,3-difluorobutane and 1,3-dichloro-1,3-difluorobut-1-ene using 1,1-dichloro-1-fluoroethane as both the starting halogenated alkane of Formula I and the hydrohalocarbon adduct. [0042]
  • To a 1 liter autoclave, equipped with a vent condenser, is charged 10 grams of aluminum chloride. Subsequently, 200 grams of 1,1-dichloro-1-fluoroethane are charged to the autoclave and the autoclave is heated to 100° C. with the vent condenser set to 200 psig pressure. The mixture is stirred for 12 hours. The reaction mixture is then poured into an ice water solution. The organic compounds are phase separated. Gas chromatography shows that the reaction product is 25% 1,1,3-trichloro-1,3-difluorobutane and 25% 1,3-dichloro-1,3-difluorobut-1-ene. The remainder of the product substantially comprises unreacted 1,1-dichloro-1-fluoroethane. [0043]
  • Example 2
  • This example illustrates the synthesis of 1,1,1,3,3-pentafluorobutane from a mixture of 1,1,3-trichloro-1,3-difluorobutane and 1,3-dichloro-1,3-difluorobut-1-ene. [0044]
  • To a 1 liter autoclave is charged about 25 grams of SbCl[0045] 5 and 50 grams of a mixture of 1,1,3-trichloro-1,3-difluorobutane and 1,3-dichloro-1,3-difluorobut-1-ene. The autoclave is cooled to 0° C. and 150 grams of anhydrous HF is charged. The autoclave is warmed slowly to 100° C., while the pressure is maintained below 400 psig. The mixture is stirred for 12 hours. The reaction mixture is worked up using water and caustic solutions. 1,1,1,3,3-pentafluorobutane is recovered in 90% yield (based on molar basis of starting alkane/alkene mixture).
  • Having thus described a few particular embodiments of the invention, various alterations, modifications and improvements will readily occur to those skilled in the art. Such alterations, modifications and improvements as are made obvious by this disclosure are intended to be part of this description though not expressly stated herein, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only, and not limiting. The invention is limited only as defined in the following claims and equivalents thereto. [0046]

Claims (26)

What is claimed is:
1. A method for the preparation of a hydrofluorocarbon comprising the steps of:
(a) reacting a starting halogenated alkane corresponding to the formula (I):
H3C—CX3  (I)
wherein X is independently fluorine or chlorine, with a hydrohalocarbon adduct in the presence of a catalyst to form an addition-reaction product; and
(b) fluorinating said addition-reaction product to produce a hydrofluorocarbon.
2. The method of claim 1 wherein at least one X of said starting halogenated alkane is chlorine.
3. The method of claim 2 wherein said starting halogenated alkane is 1,1,1-trichloroethane, 1,1-dichloro-1-fluoroethane or 1-chloro-1,1-difluoroethane.
4. The method of claim 3, wherein said starting halogenated alkane is 1,1-dichloro-1-fluoroethane.
5. The method of claim 1 wherein said hydrohalocarbon adduct comprises an alkane of Formula I.
6. The method of claim 5 wherein said hydrohalocarbon adduct alkane is 1,1,1-trichloroethane, 1,1-dichloro-1-fluoroethane, 1-chloro-1,1-difluoroethane or a mixture of two or more of these.
7. The method of claim 5 wherein said alkane of said hydrohalocarbon adduct is the same compound as said starting halogenated alkane.
8. The method of claim 1 wherein said hydrohalocarbon adduct comprises an alkene described by the formula II:
H2C═CX2  (II)
wherein X is independently chlorine or fluorine.
9. The method of claim 8 wherein said alkene of Formula II is 1-chloro-1-fluoroethene, 1,1-dichloroethene or a mixture thereof.
10. The method of claim 1 wherein said hydrohalocarbon adduct comprises a mixture of at least one alkane of Formula I and at least one alkene of Formula II.
11. The method of claim 10 wherein said at least one alkane comprises 1,1-dichloro-1-fluoroethane.
12. The method of claim 10 wherein said at least one alkene comprises 1-chloro-1 -fluoroethene.
13. The method of claim 1 wherein said catalyst is a Lewis acid catalyst.
14. The method of claim 13 wherein said Lewis acid is selected from the group consisting of aluminum trichloride; boron trifluoride; aluminum compounds of the formula: AlClnF3-n; boron compounds of the formula: (C6F5)3B; tin tetrachloride; titanium tetrachloride; antimony trichloride; and mixtures of two or more of these.
15. The method of claim 14 wherein the mole ratio of Lewis acid catalyst to starting halogenated alkane and hydrohalocarbon adduct is less than 1:2.
16. The method of claim 15 wherein the mole ratio of Lewis acid catalyst to starting halogenated alkane and hydrohalocarbon adduct is less than 1:4.
17. The method of claim 1 wherein said reacting step (a) is conducted at a temperature of less than about 100° C.
18. The method of claim 17 wherein said reacting step (a) is conducted at a temperature of less than about 90° C.
19. The method of claim 1 wherein said fluorinating step (b) comprises reacting the addition-reaction product with a fluorinating agent in the presence of a fluorination catalyst to form an HFC.
20. The method of claim 19 wherein said fluorinating agent is selected from the group consisting of substantially anhydrous hydrogen fluoride, aqueous hydrogen fluoride, metal fluorides, halogen fluorides, elemental fluorine, sulfur fluorides and mixtures of two or more of these.
21. The method of claim 20 wherein said fluorinating agent is substantially anhydrous hydrogen fluoride.
22. The method of claim 21 wherein the mole ratio of addition reaction product to catalyst is greater than 4:1.
23. The method of claim 1 wherein said fluorinating step (b) comprises a liquid-phase reaction.
24. The method of claim 1 wherein said fluorinating step (b) comprises a vapor-phase reaction.
25. The method of claim 24 wherein the fluorination step (b) produces a product stream comprising HFCs.
26. A method for the preparation of a hydrofluorocarbon comprising the steps of:
(a) reacting a starting halogenated alkane corresponding to the formula (I):
H3C—CX3  (I)
wherein X is independently fluorine or chlorine, with a hydrohalocarbon adduct, each of said starting halogenated alkane and said hydrohalocarbon adduct comprising 1,1-dichloro-1-fluoroethane, in the presence of a Lewis acid to produce an addition-reaction product comprising a mixture of 1,1,3-trichloro-1,3-difluorobutane and 1,3-dichloro-1,3-difluorobut-1-ene; and
(b) fluorinating said addition-reaction product to produce 1,1,1,3,3-pentafluorobutane.
US09/752,910 2000-12-29 2000-12-29 Method of making hydrofluorocarbons and hydrochlorofluorocarbons Expired - Fee Related US6518467B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/752,910 US6518467B2 (en) 2000-12-29 2000-12-29 Method of making hydrofluorocarbons and hydrochlorofluorocarbons
PCT/US2001/051356 WO2002055459A2 (en) 2000-12-29 2001-12-20 Method of making hydrofluorocarbons and hydrochlorofluorocarbons
EP01989345A EP1345874A2 (en) 2000-12-29 2001-12-20 Method of making hydrofluorocarbons and hydrochlorofluorocarbons
AU2002243446A AU2002243446A1 (en) 2000-12-29 2001-12-20 Method of making hydrofluorocarbons and hydrochlorofluorocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/752,910 US6518467B2 (en) 2000-12-29 2000-12-29 Method of making hydrofluorocarbons and hydrochlorofluorocarbons

Publications (2)

Publication Number Publication Date
US20020087039A1 true US20020087039A1 (en) 2002-07-04
US6518467B2 US6518467B2 (en) 2003-02-11

Family

ID=25028399

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/752,910 Expired - Fee Related US6518467B2 (en) 2000-12-29 2000-12-29 Method of making hydrofluorocarbons and hydrochlorofluorocarbons

Country Status (4)

Country Link
US (1) US6518467B2 (en)
EP (1) EP1345874A2 (en)
AU (1) AU2002243446A1 (en)
WO (1) WO2002055459A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110215273A1 (en) * 2008-11-13 2011-09-08 Solvay Fluor Gmbh Hydrofluoroolefins, manufacture of hydrofluoroolefins and methods of using hydrofluoroolefins
JP2013507396A (en) * 2009-10-09 2013-03-04 ダウ グローバル テクノロジーズ エルエルシー Process for producing chlorinated and / or fluorinated propenes and higher alkenes
US9321707B2 (en) 2012-09-20 2016-04-26 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9382176B2 (en) 2013-02-27 2016-07-05 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9403741B2 (en) 2013-03-09 2016-08-02 Blue Cube Ip Llc Process for the production of chlorinated alkanes
US9475740B2 (en) 2012-12-19 2016-10-25 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9512053B2 (en) 2012-12-18 2016-12-06 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9598334B2 (en) 2012-09-20 2017-03-21 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9795941B2 (en) 2012-09-30 2017-10-24 Blue Cube Ip Llc Weir quench and processes incorporating the same
US10065157B2 (en) 2012-10-26 2018-09-04 Blue Cube Ip Llc Mixer and processes incorporating the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759381B1 (en) 2003-05-06 2004-07-06 Honeywell International Inc. Azeotrope-like compositions of 1-chloro-1,3,3,3-tetrafluoropropane and 1,2-dichloro-3,3,3-trifluoropropene
US20050020863A1 (en) * 2003-07-25 2005-01-27 Honeywell International Inc. Method of making fluorinated propanes
WO2009072124A1 (en) * 2007-12-05 2009-06-11 Navotek Medical Ltd. Detecting photons in the presence of a pulsed radiation beam
CA2837292C (en) 2011-05-31 2020-01-28 Max Markus Tirtowidjojo Process for the production of chlorinated propenes
US9475739B2 (en) 2011-08-07 2016-10-25 Blue Cube Ip Llc Process for the production of chlorinated propenes
CN109438173A (en) 2011-08-07 2019-03-08 蓝立方知识产权有限责任公司 The method for producing the propylene of chlorination
CA2856271A1 (en) 2011-11-21 2013-05-30 Dow Global Technologies Llc Process for the production of chlorinated alkanes
US9199899B2 (en) 2011-12-02 2015-12-01 Blue Cube Ip Llc Process for the production of chlorinated alkanes
IN2014CN04029A (en) 2011-12-02 2015-10-23 Dow Global Technologies Llc
JP6170068B2 (en) 2011-12-13 2017-07-26 ブルー キューブ アイピー エルエルシー Method for producing chlorinated propane and propene
IN2014CN04418A (en) 2011-12-22 2015-09-04 Dow Global Technologies Llc
US9512049B2 (en) 2011-12-23 2016-12-06 Dow Global Technologies Llc Process for the production of alkenes and/or aromatic compounds

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950364A (en) 1989-05-04 1990-08-21 Pennwalt Corporation Process for the separation of 1,1-dichloro-1-fluoroethane and 1,1,1,3,3-pentafluorobutane
JP3008510B2 (en) * 1991-02-16 2000-02-14 ダイキン工業株式会社 Method for producing dimer of fluorinated ethane
CA2070924C (en) * 1991-06-14 2002-08-13 Hirokazu Aoyama Process for preparing fluorinated compound
US5099081A (en) 1991-08-28 1992-03-24 Atochem North America, Inc. Solvent extraction of I-365 from I-141b
US5099082A (en) 1991-08-28 1992-03-24 Atochem North America, Inc. Solvent extraction of I-141B from I-365
US5208398A (en) 1992-04-16 1993-05-04 Elf Atochem N.A., Inc. HF extraction of R365 from R141B
JP2661489B2 (en) 1992-11-20 1997-10-08 ダイキン工業株式会社 Method for separating high boiling halogenated hydrocarbons and hydrogen fluoride
US5395997A (en) 1993-07-29 1995-03-07 Alliedsignal Inc. Process for the preparation of hydrofluorocarbons having 3 to 7 carbon atoms
EP0734368B1 (en) * 1993-12-14 2001-08-29 E.I. Du Pont De Nemours And Company Process for perhalofluorinated butanes
US5446217A (en) * 1994-05-16 1995-08-29 Alliedsignal Inc. Processes for the preparation of fluorinated olefins and hydrofluorocarbons using fluorinated olefin
US5608126A (en) * 1994-06-28 1997-03-04 Ag Technology Co., Ltd. Process for preparing 1,1,1,3,3-pentafluoropropane
FR2724167B1 (en) 1994-09-05 1996-11-29 Solvay PROCESS FOR THE HYDROFLUORINATION OF CHLORO (FLUORO) BUTANE
JPH08198783A (en) 1995-01-18 1996-08-06 Central Glass Co Ltd Production of 1,1,1,3,3-pentafluorobutane
US5902914A (en) 1995-08-14 1999-05-11 Alliedsignal Inc. Process for the preparation of halogenated alkanes
FR2744442B1 (en) 1996-02-01 1998-02-27 Atochem Elf Sa PREPARATION OF 1,1,1,3,3-PENTACHLOROBUTANE AND 1,1,1,3,3, -PENTAFLUOROBUTANE
ATE229491T1 (en) 1997-05-05 2002-12-15 Solvay NEW MEDICINAL PRODUCTS BASED ON POLYMERS FROM GELATIN MODIFIED WITH METHACRYLAMIDE
DE69823189T2 (en) 1997-05-05 2005-04-21 Solvay Sa Bruessel Bruxelles METHOD FOR PRODUCING HALOGENATED HYDROCARBONS
BE1011188A3 (en) 1997-06-02 1999-06-01 Solvay Method for preparing halogenated hydrocarbons.
FR2768717B1 (en) 1997-09-24 1999-11-12 Solvay PROCESS FOR SEPARATING HYDROGEN FLUORIDE FROM ITS MIXTURES WITH A HYDROFLUOROALCANE CONTAINING FROM 3 TO 6 CARBON ATOMS
FR2768725B1 (en) 1997-09-24 1999-11-12 Solvay PROCESS FOR THE PREPARATION OF 2-CHLOROPROP-1-ENE

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110215273A1 (en) * 2008-11-13 2011-09-08 Solvay Fluor Gmbh Hydrofluoroolefins, manufacture of hydrofluoroolefins and methods of using hydrofluoroolefins
JP2013507396A (en) * 2009-10-09 2013-03-04 ダウ グローバル テクノロジーズ エルエルシー Process for producing chlorinated and / or fluorinated propenes and higher alkenes
US9321707B2 (en) 2012-09-20 2016-04-26 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9598334B2 (en) 2012-09-20 2017-03-21 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9795941B2 (en) 2012-09-30 2017-10-24 Blue Cube Ip Llc Weir quench and processes incorporating the same
US10065157B2 (en) 2012-10-26 2018-09-04 Blue Cube Ip Llc Mixer and processes incorporating the same
US9512053B2 (en) 2012-12-18 2016-12-06 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9475740B2 (en) 2012-12-19 2016-10-25 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9382176B2 (en) 2013-02-27 2016-07-05 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9403741B2 (en) 2013-03-09 2016-08-02 Blue Cube Ip Llc Process for the production of chlorinated alkanes

Also Published As

Publication number Publication date
EP1345874A2 (en) 2003-09-24
AU2002243446A1 (en) 2002-07-24
WO2002055459A2 (en) 2002-07-18
WO2002055459A3 (en) 2003-04-10
US6518467B2 (en) 2003-02-11

Similar Documents

Publication Publication Date Title
US6518467B2 (en) Method of making hydrofluorocarbons and hydrochlorofluorocarbons
US8034984B2 (en) Process for producing fluoropropenes
EP0770048B1 (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
US7592494B2 (en) Process for the manufacture of 1,3,3,3-tetrafluoropropene
US5969198A (en) Process for the preparation of 1,1,1,3,3-pentafluoropropane
US7312367B2 (en) Method of making 1,1,3,3,3-pentafluoropropene
WO2000024696A1 (en) Method of producing hydrofluorocarbons
US6235950B1 (en) Method of making hydrofluorocarbons
US5780691A (en) Process for producing 1,1,1,2,3,3,3,-heptafluoroprane
US6313359B1 (en) Method of making hydrofluorocarbons
US9000239B2 (en) Methods for producing 1-chloro-3,3,3-trifluoropropene from 2-chloro-3,3,3-trifluoropropene
JP3839490B2 (en) Process for producing 1,1-difluoroethane
US6891074B2 (en) Production of hydrofluoroalkanes
US6268540B1 (en) Catalyst and process for the fluorination of hydrohalomethanes
EP1153906B1 (en) Preparation of 245fa
EP1034156A2 (en) Method of producing hydrofluorocarbons
JPH1072382A (en) Production of 1,1,1,3,3-pentafluoropropane
MXPA99010401A (en) Process for preparing hydrofluorocarbons

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONEYWELL INTERNATIONAL INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TUNG, HSUEH SUNG;VAN DER PUY, MICHAEL;REEL/FRAME:011688/0667

Effective date: 20010314

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20070211