US20020045726A1 - Process for the removal of dissolved oxygen from phenol - Google Patents

Process for the removal of dissolved oxygen from phenol Download PDF

Info

Publication number
US20020045726A1
US20020045726A1 US09/777,152 US77715201A US2002045726A1 US 20020045726 A1 US20020045726 A1 US 20020045726A1 US 77715201 A US77715201 A US 77715201A US 2002045726 A1 US2002045726 A1 US 2002045726A1
Authority
US
United States
Prior art keywords
phenol
platinum
ion exchanger
oxygen
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/777,152
Other versions
US6417318B1 (en
Inventor
Frieder Heydenreich
Rudolf Wagner
Michael Bodiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to BAYER AKTIENGESELLSCHAFT reassignment BAYER AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BODIGER, MICHAEL, HEYDENREICH, FRIEDER, WAGNER, RUDOLF
Publication of US20020045726A1 publication Critical patent/US20020045726A1/en
Application granted granted Critical
Publication of US6417318B1 publication Critical patent/US6417318B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/86Purification; separation; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a process for the removal of dissolved oxygen from phenol by admixing water into the phenol, which is then passed over metals of the platinum group applied to supports in order to catalyze the reaction of hydrogen and oxygen to give water in accordance with the equation: 2H 2 +O 2 ⁇ 2H 2 O.
  • the invention further relates to polycarbonate and bisphenol A that are prepared from oxygen-free phenol prepared by admixing water and subsequently passing the mixture over ion exchangers doped with platinum metal.
  • Phenol is an important unit in the preparation of the plastic polycarbonate. Phenol is first reacted with acetone under acid conditions to give bisphenol A. The molar ratio of the reactants phenol:acetone here is in the range of 8:1 to 14:1, preferably in the region of 12:1. Bisphenol A is then reacted with either phosgene or diphenyl carbonate to give polycarbonate in the following step.
  • This plastic is employed in a very wide-ranging spectrum of uses, inter alia in very demanding fields, such as in the preparation of high-quality optical materials and of compact discs and in the electronics field.
  • the present invention relates to a process for the catalytic removal of dissolved oxygen from phenol comprising
  • the platinum metals to be used according to the invention are the elements of the series ruthenium, rhodium, palladium, osmium, iridium, and platinum. Palladium and platinum are preferred for the process according to the invention.
  • the ion exchangers to be used according to the invention are preferably anion exchangers and can contain weakly and/or strongly basic groups. Strongly basic anion exchangers in the Cl form or weakly basic anion exchangers in the free base form are particularly preferred.
  • a crosslinked polymer of ethylenically unsaturated monomers is used as the base polymer.
  • ethylenically monounsaturated monomers are, for example, styrene, vinyltoluene, ethylstyrene, ⁇ -methylstyrene, and derivatives thereof halogenated in the nucleus (such as chlorostyrene), vinylbenzyl chloride, acrylic acid and its salts and esters (particularly the methyl and ethyl esters), methacrylic acid and its salts and esters (particularly the methyl ester), and the nitriles and amides of acrylic and methacrylic acid.
  • the polymers are crosslinked, preferably by copolymerization with crosslinking monomers having more than one (preferably 2 or 3) copolymerizable C ⁇ C double bonds per molecule.
  • crosslinking monomers include, for example, polyfunctional vinylaromatics, such as di- or trivinylbenzenes, divinylethylbenzene, divinyltoluene, divinylxylene, divinylethylbenzene, or divinylnaphthalene; polyfunctional allylaromatics, such as di- or triallylbenzenes; polyfunctional vinyl- or allyl-heterocyclic compounds, such as trivinyl or triallyl cyanurate or trivinyl or triallyl isocyanurate; N,N′-C 1 -C 6 -alkylenediacrylamides or -dimethacrylamides, such as N,N′-methylenediacrylamide or -dimethacrylamide or N,N′-ethylened
  • Divinylbenzene (as an isomer mixture) and mixtures of divinylbenzene and aliphatic C 6 -C 12 -hydrocarbons having 2 or 3 C ⁇ C double bonds have proved to be particularly suitable crosslinking monomers.
  • the crosslinking monomers are in general employed in amounts of 2 to 20% by weight, preferably 2 to 12% by weight, based on the total amount of polymerizable monomers employed.
  • crosslinking monomers do not have to be employed in pure form but can also be employed in the form of their technical grade mixtures of lower purity (such as, for example, divinylbenzene mixed with ethylstyrene).
  • the crosslinked polymers can be further processed to give anion exchangers in a known manner.
  • the anion exchangers can be prepared on the one hand by chloromethylation (cf. U.S. Pat. Nos. 2,642,417, 2,960,480, 2,597,492, 2,597,493, 3,311,602, and 2,616,877), preferably with chloromethyl ether, and subsequent amination (cf. U.S. Pat. Nos.
  • a primary amine such as methyl- or ethylamine
  • a secondary amine such as dimethylamine
  • a tertiary amine such as trimethylamine or dimethylisopropanolamine
  • the anion exchangers can be prepared by the aminomethylation process, in which (a) the crosslinked polymers are reacted with phthalimide derivatives and (b) the resulting imides are hydrated.
  • the amidomethylation (a) can be carried out by reaction of the crosslinked polymers with N-chloromethyl-phthalimide in the presence of swelling agents for crosslinked polymers and Friedel-Crafts catalysts (DE-A 1,054,715), the phthalimile derivative being employed in amounts suitable for the desired level of substitution (0.3 to 2.0 substitutions per aromatic nucleus) of the aromatic nuclei present in the crosslinked polymer (or in an excess of up to 20%, preferably up to 10%).
  • Suitable swelling agents include halogenated hydrocarbons, preferably chlorinated C 1 -C 4 -hydrocarbons.
  • the most preferred swelling agent is 1,2-dichloroethane.
  • Preferred Friedel-Crafts catalysts include, for example, AlCl 3 , BF 3 , FeCl 3 , ZnCl 2 , TiCl 4 , ZrCl 4 , SnCl 4 , H 3 PO 4 , HF, and HBF 4 .
  • the catalysts can be employed in amounts of 0.01 to 0.1 mol per mole of N-chloromethylphthalimide.
  • the reaction can be carried out, for example, by a procedure in which the crosslinked polymer is introduced into a solution of N-chloromethylphthalimide in a swelling agent and the reactants are allowed to act in the presence of the catalyst at elevated temperature, as a rule at 50 to 100° C., preferably 50 to 75° C., until the evolution of hydrogen chloride has substantially ended. This is in general the case after 2 to 20 hours. After separation of the substituted polymer and liquid reaction medium and inorganic products, it is advisable to take up the polymer in aqueous sodium chloride solution and to remove residues of swelling agent by distillation.
  • the hydrolysis (b) of the substituted polymer can be carried out, for example, by subsequently hydrolyzing the product that has been isolated with an approximately 5 to 40% strength by weight aqueous or alcoholic solution of an alkali, such as sodium hydroxide or potassium hydroxide, or with an approximately 5 to 50% strength by weight aqueous solution of a mineral acid, such as hydrochloric acid, hydrobromic acid, or sulfuric acid, in an autoclave at temperatures between 100 and 250° C.
  • the intermediate product can also be reacted with a 5 to 50% strength by weight aqueous or alcoholic solution of hydrazine hydrate at temperatures of 50 to 100° C.
  • the solution described last can contain other alkalis, in particular caustic alkalis, in amounts of 1 to 20% by weight.
  • the reaction product can be isolated, washed with water and then heated with an aqueous solution of mineral acid (preferably 5 to 20% strength by weight) to bring the hydrolysis to completion.
  • the aminoalkyl compounds that can be obtained can be modified by alkylation.
  • Known alkylating agents such as, for example, methyl, ethyl, or propyl chlorides and bromides, dialkyl sulfates, alkylene oxides, halogenohydrins, polyhalogen compounds, epihalohydrins, and ethyleneimines, can be used for this purpose.
  • alkylation of the said amino derivatives can be effected by reaction thereof with alkylating agents in molar amounts at temperatures of between 20 and 125° C. If, for example, alkyl halides or dialkyl sulfates are used, it is advisable to add the amount of an alkaline agent, such as sodium hydroxide, calcium carbonate, magnesium oxide, and the like, required for neutralization of the hydrogen halide acids or alkylsulfuric acids formed. Secondary, tertiary, or quaternary amino derivatives or mixtures thereof are obtained depending on the amount of alkylating agent used.
  • alkylating agents such as sodium hydroxide, calcium carbonate, magnesium oxide, and the like
  • a mixture of formaldehyde with formic acid is another customary alkylating agent which is used in the form of an aqueous solution, if appropriate in the presence of mineral acids.
  • the reaction can be carried out with these alkylating agents at temperatures of between 50 and 120° C.
  • tertiary amino derivatives are obtained as the sole reaction products if an excess of alkylating agent is used.
  • the tertiary amino derivatives can be converted completely or partly into quaternary derivatives by carrying out a further reaction with alkylating agents, such as, for example, methyl chloride, at temperatures of between 10 and 120° C.
  • the anion exchangers used can be in gel form or, preferably, macroporous; those based on polystyrene are preferred. Strongly basic anion exchangers in the Cl form and weakly basic anion exchangers in the free base form are particularly preferred.
  • Doping of the anion exchangers with platinum metals can be carried out, for example, by a procedure in which the platinum metal, preferably platinum or palladium, in a suitable salt form is taken up by the groups with ion exchange activity and is then reduced, or reducing substances are first applied and the platinum metal, preferably platinum or palladium, is then precipitated on the resin from a suitable solution. Finally, colloidally dispersed platinum metal that has already been reduced, preferably platinum or palladium, can also be taken up adsorptively by the resin from a corresponding solution or suspension.
  • the application process which is particularly preferred in the present invention starts from the salt form of the resin, which is first treated with a palladium salt solution (for example, 2 to 20% strength by weight Na 2 PdCl 4 ), the anion on the resin being exchanged for the anionic palladium complex.
  • a palladium salt solution for example, 2 to 20% strength by weight Na 2 PdCl 4
  • the palladium complex is chiefly distributed in the surface region of the resin grain, so that the regions which are distinguished by rapid kinetics are affected above all.
  • the reduction of the noble metal bonded ionogenically to the resin for example, of palladium to metallic palladium, can be carried out by reducing agents that are usual for this type of reduction, such as hydrazine, hydroxylamine, hydrogen, ascorbic acid, formalin, or formic acid, in strongly alkaline solution at elevated temperature. Hydrazine or formalin is preferably used.
  • the noble metal content, preferably of platinum metal, of the ion exchangers to be used according to the invention is in general in the range from 0.3 to 10 g, preferably 0.5 to 1.2 g, per liter of anion exchanger.
  • DE-A 25 24 722 discloses the use of polystyrenes containing copper ions or cobalt ions for reduction of oxygen dissolved in water.
  • U.S. Pat. No. 4,789,488 recommends palladium- or platinum-doped anion exchangers for decreasing the oxygen content in aqueous systems with hydrogen.
  • other reducing agents such as, for example, hydrazine
  • the use of metal-doped anion exchangers for simultaneous removal of oxygen and undesirable ions has also already been discussed.
  • the system pressure of the bisphenol A production was in the range of 3-10 bar at an oxygen feed concentration of 0.1 mg/l to 2 mg/l.
  • the hydrogen-containing stream of phenol was passed through a reactor upstream of the bisphenol A production which was filled with a palladized weakly basic anion exchanger (0.5 m 3 Lewatit® catalyst K3433, manufacturer Bayer AG).
  • the height of the resin was 0.5 mm, the specific load was 20 bed volumes/hour and the pressure loss was in the range of 0.08-0.2 bar.
  • the oxygen concentration measured in the discharge of the catalyst bed was only 0.01 to 0.03 mg/l.
  • the product discoloration index of the bisphenol A was 13 to 17 Hazen melt color index.
  • the “Yellowness Index” of the polycarbonate changes accordingly from ⁇ 1.7 with phenol treated by the process according to the invention to ⁇ 1.7 without the treatment according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method for avoiding undesirable discoloration in polycarbonate production by catalytic removal of dissolved oxygen from phenol by
(a) admixing hydrogen with phenol and
(b) passing the phenol stream over ion exchangers doped with platinum group metals.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates to a process for the removal of dissolved oxygen from phenol by admixing water into the phenol, which is then passed over metals of the platinum group applied to supports in order to catalyze the reaction of hydrogen and oxygen to give water in accordance with the equation: 2H[0001] 2+O2→2H2O. The invention further relates to polycarbonate and bisphenol A that are prepared from oxygen-free phenol prepared by admixing water and subsequently passing the mixture over ion exchangers doped with platinum metal.
  • Phenol is an important unit in the preparation of the plastic polycarbonate. Phenol is first reacted with acetone under acid conditions to give bisphenol A. The molar ratio of the reactants phenol:acetone here is in the range of 8:1 to 14:1, preferably in the region of 12:1. Bisphenol A is then reacted with either phosgene or diphenyl carbonate to give polycarbonate in the following step. [0002]
  • This plastic is employed in a very wide-ranging spectrum of uses, inter alia in very demanding fields, such as in the preparation of high-quality optical materials and of compact discs and in the electronics field. [0003]
  • However, discoloration of the plastics often prevent their use in these applications, even when a very great effort is made to keep the quality of the starting substances at a high level. [0004]
  • It has now been found, surprisingly, that discoloration can be virtually completely avoided if hydrogen is added to the phenol and the mixture is then passed over a support, preferably an ion exchanger, doped with at least one metal of the platinum group. [0005]
  • How the discoloration arises has not yet been clarified in detail. At the moment, however, it is assumed that discoloration is caused by the nonselective action of oxygen present in the starting substances. [0006]
  • The use of anion exchangers doped with noble metals of the platinum group as catalysts for the catalytic removal of oxygen from water, for example, for use in the generation of steam, has been known for a relatively long time and is already practiced worldwide. See JP-A 58/079,590 and CN-A 1,098,384. In this process, hydrogen is fed stoichiometrically to the water in such way that the oxygen present is reacted away virtually quantitatively. Residual oxygen values of less than 0.1% of the feed value are obtainable in this manner. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a process for the catalytic removal of dissolved oxygen from phenol comprising [0008]
  • (a) admixing hydrogen with phenol and [0009]
  • (b) passing the phenol stream over ion exchangers doped with platinum group metals to catalyze the reaction 2H[0010] 2+O2→2H2O.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The platinum metals to be used according to the invention are the elements of the series ruthenium, rhodium, palladium, osmium, iridium, and platinum. Palladium and platinum are preferred for the process according to the invention. [0011]
  • The ion exchangers to be used according to the invention are preferably anion exchangers and can contain weakly and/or strongly basic groups. Strongly basic anion exchangers in the Cl form or weakly basic anion exchangers in the free base form are particularly preferred. A crosslinked polymer of ethylenically unsaturated monomers is used as the base polymer. Examples of ethylenically monounsaturated monomers are, for example, styrene, vinyltoluene, ethylstyrene, α-methylstyrene, and derivatives thereof halogenated in the nucleus (such as chlorostyrene), vinylbenzyl chloride, acrylic acid and its salts and esters (particularly the methyl and ethyl esters), methacrylic acid and its salts and esters (particularly the methyl ester), and the nitriles and amides of acrylic and methacrylic acid. [0012]
  • The polymers are crosslinked, preferably by copolymerization with crosslinking monomers having more than one (preferably 2 or 3) copolymerizable C═C double bonds per molecule. Such crosslinking monomers include, for example, polyfunctional vinylaromatics, such as di- or trivinylbenzenes, divinylethylbenzene, divinyltoluene, divinylxylene, divinylethylbenzene, or divinylnaphthalene; polyfunctional allylaromatics, such as di- or triallylbenzenes; polyfunctional vinyl- or allyl-heterocyclic compounds, such as trivinyl or triallyl cyanurate or trivinyl or triallyl isocyanurate; N,N′-C[0013] 1-C6-alkylenediacrylamides or -dimethacrylamides, such as N,N′-methylenediacrylamide or -dimethacrylamide or N,N′-ethylenediacrylamide or -dimethacrylamide; polyvinyl or polyallyl ethers of saturated C2-C20-polyols having 2 to 4 OH groups per molecule, such as, for example, ethylene glycol divinyl or diallyl ether or diethylene glycol divinyl or diallyl ethers; esters of unsaturated C3-C12-alcohols or saturated C2-C20-polyols having 2 to 4 OH groups per molecule, such as allyl methacrylate, ethylene glycol di(meth)acrylate, glycerol tri(meth)acrylate, or pentaerythritol tetra(meth)acrylate; divinylethyleneurea, divinylpro-pyleneurea or divinyl adipate; or aliphatic or cycloaliphatic olefins having 2 or 3 isolated C═C double bonds, such as hexa-1,5-diene, 2,5-dimethylhexa-1,5-diene, octa-1,7-diene, or 1,2,4-trivinylcyclohexane. Divinylbenzene (as an isomer mixture) and mixtures of divinylbenzene and aliphatic C6-C12-hydrocarbons having 2 or 3 C═C double bonds have proved to be particularly suitable crosslinking monomers. The crosslinking monomers are in general employed in amounts of 2 to 20% by weight, preferably 2 to 12% by weight, based on the total amount of polymerizable monomers employed.
  • The crosslinking monomers do not have to be employed in pure form but can also be employed in the form of their technical grade mixtures of lower purity (such as, for example, divinylbenzene mixed with ethylstyrene). [0014]
  • The crosslinked polymers can be further processed to give anion exchangers in a known manner. The anion exchangers can be prepared on the one hand by chloromethylation (cf. U.S. Pat. Nos. 2,642,417, 2,960,480, 2,597,492, 2,597,493, 3,311,602, and 2,616,877), preferably with chloromethyl ether, and subsequent amination (cf. U.S. Pat. Nos. 2,632,000, 2,616,877, 2,642,417, 2,632,001, and 2,992,544) with ammonia, a primary amine, such as methyl- or ethylamine, a secondary amine, such as dimethylamine, or a tertiary amine, such as trimethylamine or dimethylisopropanolamine, at a temperature of as a rule 25 to 150° C. [0015]
  • On the other hand, the anion exchangers can be prepared by the aminomethylation process, in which (a) the crosslinked polymers are reacted with phthalimide derivatives and (b) the resulting imides are hydrated. The amidomethylation (a) can be carried out by reaction of the crosslinked polymers with N-chloromethyl-phthalimide in the presence of swelling agents for crosslinked polymers and Friedel-Crafts catalysts (DE-A 1,054,715), the phthalimile derivative being employed in amounts suitable for the desired level of substitution (0.3 to 2.0 substitutions per aromatic nucleus) of the aromatic nuclei present in the crosslinked polymer (or in an excess of up to 20%, preferably up to 10%). [0016]
  • Suitable swelling agents include halogenated hydrocarbons, preferably chlorinated C[0017] 1-C4-hydrocarbons. The most preferred swelling agent is 1,2-dichloroethane.
  • Preferred Friedel-Crafts catalysts include, for example, AlCl[0018] 3, BF3, FeCl3, ZnCl2, TiCl4, ZrCl4, SnCl4, H3PO4, HF, and HBF4. The catalysts can be employed in amounts of 0.01 to 0.1 mol per mole of N-chloromethylphthalimide.
  • The reaction can be carried out, for example, by a procedure in which the crosslinked polymer is introduced into a solution of N-chloromethylphthalimide in a swelling agent and the reactants are allowed to act in the presence of the catalyst at elevated temperature, as a rule at 50 to 100° C., preferably 50 to 75° C., until the evolution of hydrogen chloride has substantially ended. This is in general the case after 2 to 20 hours. After separation of the substituted polymer and liquid reaction medium and inorganic products, it is advisable to take up the polymer in aqueous sodium chloride solution and to remove residues of swelling agent by distillation. [0019]
  • The hydrolysis (b) of the substituted polymer can be carried out, for example, by subsequently hydrolyzing the product that has been isolated with an approximately 5 to 40% strength by weight aqueous or alcoholic solution of an alkali, such as sodium hydroxide or potassium hydroxide, or with an approximately 5 to 50% strength by weight aqueous solution of a mineral acid, such as hydrochloric acid, hydrobromic acid, or sulfuric acid, in an autoclave at temperatures between 100 and 250° C. On the other hand, the intermediate product can also be reacted with a 5 to 50% strength by weight aqueous or alcoholic solution of hydrazine hydrate at temperatures of 50 to 100° C. In a preferred embodiment, the solution described last can contain other alkalis, in particular caustic alkalis, in amounts of 1 to 20% by weight. The reaction product can be isolated, washed with water and then heated with an aqueous solution of mineral acid (preferably 5 to 20% strength by weight) to bring the hydrolysis to completion. [0020]
  • The aminoalkyl compounds that can be obtained can be modified by alkylation. Known alkylating agents, such as, for example, methyl, ethyl, or propyl chlorides and bromides, dialkyl sulfates, alkylene oxides, halogenohydrins, polyhalogen compounds, epihalohydrins, and ethyleneimines, can be used for this purpose. [0021]
  • The above-mentioned alkylation of the said amino derivatives can be effected by reaction thereof with alkylating agents in molar amounts at temperatures of between 20 and 125° C. If, for example, alkyl halides or dialkyl sulfates are used, it is advisable to add the amount of an alkaline agent, such as sodium hydroxide, calcium carbonate, magnesium oxide, and the like, required for neutralization of the hydrogen halide acids or alkylsulfuric acids formed. Secondary, tertiary, or quaternary amino derivatives or mixtures thereof are obtained depending on the amount of alkylating agent used. A mixture of formaldehyde with formic acid is another customary alkylating agent which is used in the form of an aqueous solution, if appropriate in the presence of mineral acids. The reaction can be carried out with these alkylating agents at temperatures of between 50 and 120° C. In the latter case, tertiary amino derivatives are obtained as the sole reaction products if an excess of alkylating agent is used. The tertiary amino derivatives can be converted completely or partly into quaternary derivatives by carrying out a further reaction with alkylating agents, such as, for example, methyl chloride, at temperatures of between 10 and 120° C. [0022]
  • The anion exchangers used can be in gel form or, preferably, macroporous; those based on polystyrene are preferred. Strongly basic anion exchangers in the Cl form and weakly basic anion exchangers in the free base form are particularly preferred. [0023]
  • Doping of the anion exchangers with platinum metals, preferably platinum or palladium, can be carried out, for example, by a procedure in which the platinum metal, preferably platinum or palladium, in a suitable salt form is taken up by the groups with ion exchange activity and is then reduced, or reducing substances are first applied and the platinum metal, preferably platinum or palladium, is then precipitated on the resin from a suitable solution. Finally, colloidally dispersed platinum metal that has already been reduced, preferably platinum or palladium, can also be taken up adsorptively by the resin from a corresponding solution or suspension. [0024]
  • The application process which is particularly preferred in the present invention starts from the salt form of the resin, which is first treated with a palladium salt solution (for example, 2 to 20% strength by weight Na[0025] 2PdCl4), the anion on the resin being exchanged for the anionic palladium complex. The palladium complex is chiefly distributed in the surface region of the resin grain, so that the regions which are distinguished by rapid kinetics are affected above all.
  • The reduction of the noble metal bonded ionogenically to the resin, for example, of palladium to metallic palladium, can be carried out by reducing agents that are usual for this type of reduction, such as hydrazine, hydroxylamine, hydrogen, ascorbic acid, formalin, or formic acid, in strongly alkaline solution at elevated temperature. Hydrazine or formalin is preferably used. [0026]
  • The noble metal content, preferably of platinum metal, of the ion exchangers to be used according to the invention is in general in the range from 0.3 to 10 g, preferably 0.5 to 1.2 g, per liter of anion exchanger. [0027]
  • DE-A 25 24 722 discloses the use of polystyrenes containing copper ions or cobalt ions for reduction of oxygen dissolved in water. U.S. Pat. No. 4,789,488 recommends palladium- or platinum-doped anion exchangers for decreasing the oxygen content in aqueous systems with hydrogen. In addition to hydrogen, other reducing agents, such as, for example, hydrazine, have also already been described for removal of oxygen from water. Cf. F. Martinola et al., VGB Kraftwerkstechnik 64 (1984), pages [0028] 61-63. The use of metal-doped anion exchangers for simultaneous removal of oxygen and undesirable ions has also already been discussed. Cf. F. Martinola, loc. cit.
  • It has now been found that this process is very effective in avoiding discoloration in polycarbonate production by catalytic reduction of oxygen. The theory described above that the discoloration is to be attributed to traces of oxygen is thereby substantiated. Since phenol not only is the main component of the polycarbonate but is also present in a large excess in the preparation of bisphenol A and is at the start of the production sequence it is appropriate to use this process on this starting material. [0029]
  • EXAMPLE
  • Hydrogen at a rate of 50 to 100 l/hour was fed into a phenol stream having a 10 m[0030] 3/hour feed rate in a reactor for the preparation of bisphenol A. The temperature of the phenol was 50° C. to 80° C.
  • The system pressure of the bisphenol A production was in the range of 3-10 bar at an oxygen feed concentration of 0.1 mg/l to 2 mg/l. The hydrogen-containing stream of phenol was passed through a reactor upstream of the bisphenol A production which was filled with a palladized weakly basic anion exchanger (0.5 m[0031] 3 Lewatit® catalyst K3433, manufacturer Bayer AG).
  • The height of the resin was 0.5 mm, the specific load was 20 bed volumes/hour and the pressure loss was in the range of 0.08-0.2 bar. [0032]
  • The oxygen concentration measured in the discharge of the catalyst bed was only 0.01 to 0.03 mg/l. [0033]
  • In this procedure, the product discoloration index of the bisphenol A was 13 to 17 Hazen melt color index. [0034]
  • If the hydrogen feed was stopped and the stream of phenol and the catalyst were bypassed, the product discoloration index of the bisphenol A rose to >17 Hazen melt color index. [0035]
  • The “Yellowness Index” of the polycarbonate changes accordingly from ≦1.7 with phenol treated by the process according to the invention to ≧1.7 without the treatment according to the invention. [0036]

Claims (12)

What is claimed is:
1. A process for the catalytic removal of dissolved oxygen from phenol comprising
(a) admixing hydrogen with phenol and
(b) passing the phenol stream over an ion exchanger doped with a platinum group metal to catalyze the reaction 2H2+O2→2H2O2O.
2. A process according to claim 1 wherein the platinum group metal is an element selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, and platinum.
3. A process according to claim 1 wherein the platinum group metal is platinum or palladium.
4. A process according to claim 1 wherein the ion exchanger is an anion exchanger with weakly and/or strongly basic groups.
5. A process according to claim 4 wherein the anion exchanger is a strongly basic anion exchanger in the Cl form or a weakly basic anion exchanger in the free base form.
6. A process according to claim 1 wherein the ion exchanger is a gel form or macroporous ion exchanger.
7. A process according to claim 1 wherein the ion exchanger contains 0.3 to 10 g of platinum metal per liter of ion exchanger.
8. A process for the preparation of oxygen-free phenol comprising adding hydrogen to the phenol and passing the resultant mixture over an ion exchanger doped with a platinum group metal.
9. A method for preparing bispenol A comprising reacting acetone under acidic conditions with phenol prepared by the process of claim 1.
10. A method for preparing a polycarbonate comprising reacting phosgene or diphenyl carbonate with bispenol A prepared by reacting acetone under acidic conditions with phenol prepared by the process of claim 1.
11. Bisphenol A prepared from oxygen-free phenol obtained by the process of claim 1.
12. A polycarbonate prepared from oxygen-free phenol obtained by the process of claim 1.
US09/777,152 2000-02-10 2001-02-05 Process for the removal of dissolved oxygen from phenol Expired - Fee Related US6417318B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10005770A DE10005770A1 (en) 2000-02-10 2000-02-10 Process for removing dissolved oxygen from phenol
DE10005770 2000-02-10
DE10005770.5 2000-02-10

Publications (2)

Publication Number Publication Date
US20020045726A1 true US20020045726A1 (en) 2002-04-18
US6417318B1 US6417318B1 (en) 2002-07-09

Family

ID=7630378

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/777,152 Expired - Fee Related US6417318B1 (en) 2000-02-10 2001-02-05 Process for the removal of dissolved oxygen from phenol

Country Status (11)

Country Link
US (1) US6417318B1 (en)
EP (1) EP1123912B1 (en)
JP (1) JP2001278826A (en)
KR (1) KR20010080868A (en)
BR (1) BR0100479A (en)
CA (1) CA2334473A1 (en)
DE (2) DE10005770A1 (en)
ES (1) ES2204757T3 (en)
MX (1) MXPA01001532A (en)
TW (1) TW575549B (en)
ZA (1) ZA200100359B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217540B2 (en) 2012-02-23 2015-12-22 Organo Corporation Device and method for removing dissolved oxygen in alcohol, alcohol supply apparatus and rinsing liquid supply apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723881B1 (en) * 1999-11-23 2004-04-20 Bayer Aktiengesellschaft Method for conditioning ion exchangers
DE102004017983A1 (en) 2004-04-14 2005-11-03 Degussa Ag Catalytic removal of dissolved oxygen from organic liquids
SA113340468B1 (en) * 2012-04-13 2015-07-07 ميتسوي كيميكالز، انك. Phenol purification process

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2632001A (en) 1948-12-29 1953-03-17 Dow Chemical Co Anion exchange resins from tertiary amines and methyl styrene polymers
US2632000A (en) 1948-12-29 1953-03-17 Dow Chemical Co Anion exchange resins from amines and alkyl styrene polymers
US2616877A (en) 1950-04-06 1952-11-04 Dow Chemical Co Process for aminating halomethylated copolymers
US2597492A (en) 1951-05-12 1952-05-20 Rohm & Haas Cation-exchange polymers of vinylanisole
US2597493A (en) 1951-05-12 1952-05-20 Rohm & Haas Anion-exchange polymers of vinylanisole
US2642417A (en) 1952-05-21 1953-06-16 Dow Chemical Co Process for making anionexchange resins
US2992544A (en) 1955-05-09 1961-07-18 Dow Chemical Co Insoluble resinous copolymers of (chloromethyl) styrene and polyvinyl aromatic hydrocarbons and nitrogen-containing derivatives of the copolymers
US2960480A (en) 1957-03-13 1960-11-15 Nalco Chemical Co Production of haloalkylated resin particles
NL113552C (en) 1957-12-02
US3311602A (en) 1963-07-01 1967-03-28 Dow Chemical Co Process for the chloromethylation of aromatic hydrocarbons
US3437699A (en) * 1965-11-19 1969-04-08 Skelly Oil Co Phenol purification
CH596869A5 (en) 1975-05-09 1978-03-31 Bbc Brown Boveri & Cie
JPS5932195B2 (en) 1981-11-05 1984-08-07 栗田工業株式会社 How to remove dissolved oxygen
EP0526964B1 (en) * 1991-08-05 1996-10-23 Chiyoda Corporation Process for the production of bisphenol A
JPH0597742A (en) * 1991-10-11 1993-04-20 Chiyoda Corp Production of high-grade bisphenol compound
JP3297469B2 (en) 1992-06-23 2002-07-02 出光興産株式会社 Electrophotographic photoreceptor
JP3187142B2 (en) 1992-07-07 2001-07-11 帝人化成株式会社 High refractive index, low birefringence polycarbonate resin
JPH0649195A (en) 1992-07-28 1994-02-22 Teijin Chem Ltd Plastic container for food
JPH06216078A (en) 1992-08-31 1994-08-05 Texas Instr Inc <Ti> Equipment and method for capacitive coupling discharge processing of wafer
JPH06145317A (en) 1992-11-05 1994-05-24 Teijin Chem Ltd New aromatic polyester carbonate resin
JP3233734B2 (en) 1993-05-07 2001-11-26 出光興産株式会社 Phase difference compensation film
CN1098384A (en) 1993-08-04 1995-02-08 丹东化工三厂 Catalytic type deoxygen resin
JP3475972B2 (en) 1994-11-14 2003-12-10 三菱瓦斯化学株式会社 Polycarbonate resin for wet molding
JP3486989B2 (en) 1994-11-14 2004-01-13 三菱瓦斯化学株式会社 Molding material for optical recording media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217540B2 (en) 2012-02-23 2015-12-22 Organo Corporation Device and method for removing dissolved oxygen in alcohol, alcohol supply apparatus and rinsing liquid supply apparatus

Also Published As

Publication number Publication date
US6417318B1 (en) 2002-07-09
DE10005770A1 (en) 2001-08-16
TW575549B (en) 2004-02-11
ES2204757T3 (en) 2004-05-01
BR0100479A (en) 2001-10-02
JP2001278826A (en) 2001-10-10
KR20010080868A (en) 2001-08-25
MXPA01001532A (en) 2002-08-06
ZA200100359B (en) 2001-08-10
EP1123912A1 (en) 2001-08-16
DE50100505D1 (en) 2003-09-25
CA2334473A1 (en) 2001-08-10
EP1123912B1 (en) 2003-08-20

Similar Documents

Publication Publication Date Title
JP2769391B2 (en) Ethylene glycol recovery method
US4560813A (en) Processes for the production of alkylene glycol in the presence of organometalate
CN1197085A (en) Improved chelating resins
US6417318B1 (en) Process for the removal of dissolved oxygen from phenol
JPH1066984A (en) Decomposing method of oxidized material in aqueous fluid
WO2000058009A1 (en) Cationic exchange resin
CN100546720C (en) The manufacture method of modified ion-exchange resin and bisphenols
CN107849179B (en) Novel aluminum-doped, iminoacetic acid group-containing chelate resins
US2824844A (en) Aminated ion exchange resins containing divinyl substituted heterocyclic comonomers as cross-linkers
US6667349B1 (en) Method for producing osmotically and mechanically stable gel-like anion exchangers
IL137647A (en) Method for producing aqueous hydroxylamine solutions which are substantially free of metal ions
CN85108570A (en) The preparation method of the anion exchange resin that chlorinity is very low
JP2002119872A (en) Anion exchange resin
TW200301248A (en) Method of deionizing solution yielded from polyester decomposition with ethylene glycol
JPH05192592A (en) Treatment of strongly basic anion exchange resin
US4579983A (en) Process for the hydrolysis of alkylene oxides using organometalates
WO2022067747A1 (en) Method for controlling toc in effluent brine in dam production process
US6716889B1 (en) Process for the preparation of strongly basic anion exchangers using ethylene oxide
EP1622852B1 (en) Process of removing organic halogen-containing compounds
KR800000501B1 (en) Purification of acrylamide solution
JPH10130181A (en) Production of ethylene oxide adduct
JP2000126617A (en) Separation of ion-exchange resin and chlorate by adsorption
JP2001131221A (en) Method for production of ionic polymer compound
MXPA97005007A (en) Procedure for the destruction of oxidizing substances in aquoid liquids
JPH05980A (en) Production of 9,9-bis(hydroxyphenyl)fluorenes

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEYDENREICH, FRIEDER;WAGNER, RUDOLF;BODIGER, MICHAEL;REEL/FRAME:011530/0078;SIGNING DATES FROM 20010108 TO 20010121

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20060709