US1835118A - Alkali metal tube - Google Patents

Alkali metal tube Download PDF

Info

Publication number
US1835118A
US1835118A US284654A US28465428A US1835118A US 1835118 A US1835118 A US 1835118A US 284654 A US284654 A US 284654A US 28465428 A US28465428 A US 28465428A US 1835118 A US1835118 A US 1835118A
Authority
US
United States
Prior art keywords
caesium
alkali metal
cathode
compound
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US284654A
Inventor
John W Marden
Ernest A Lederer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Lamp Co
Original Assignee
Westinghouse Lamp Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Lamp Co filed Critical Westinghouse Lamp Co
Priority to US284654A priority Critical patent/US1835118A/en
Application granted granted Critical
Publication of US1835118A publication Critical patent/US1835118A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/395Filling vessels

Definitions

  • This invention relates to a vacuum electric device employing a thermionic active cathode, the thermionic emission of which is imparted thereto by the presence of an alkali metal vapor such as caesium, rubidium or the like, and more particularly to the introduction of alkali metals into such devices to render the cathode thermionically active and to serve as a getter to clean up residual gases and "apors.
  • an alkali metal vapor such as caesium, rubidium or the like
  • Oxygen has proven to be the most satisfactory material for use in this connection and when an oxide or oxygen film of monotomic thickness is produced on the surface of the tungsten or other metallic body it renders this body capable of holding on to or causing the caesium metal atoms to adhere thereto-,more strongly than does the plain metal surface of the cathode.
  • caesium is efl'ective to remove most of the harmful impurities from such devices so as to produce therein a substantially negligible gas pressure below that required in ordinary electron discharge devices of the thoriated tungsten cathode type or of the oxide coated type, yet in the case of devices depending upon caesium emission from the cathode, the minute quantities of reducing gases or vapors which remain in the envelope are in some instances sufiiciently active to destroy the monotomic layer of oxygen or oxide on the cathode and thereby reduce or destroy thepower of the oxidized cathode to hold the caesium metal onto the surface thereof.
  • the .aflinity of the alkali metals for hydrogen increases as the atomic weight of the alkali metal decreases and, therefore, since caesium has the highest atomic weight of the alkali metals it is less stable with hydrogen than the other alkali metals of lower atomic weight. Therefore, in order to assist in maintaining non-reducing conditions in the device we introduce into the device, in
  • alkali metal of lower atomic weight such as potassium, sodium, lithium or an alkaline earth metal.
  • the introduction of these metals must be carried out with extreme care to prevent the introduction of moisture therewith.
  • the alkali metals themselves due to their high volatility and chemical activity in the atmosphere, cannot be introduced directly into a device in their free state and even if so introduced prior to evacuation of the device it is not possible to maintain them in a nonyolatile state while baking the envelope durmg the exhaust operation.
  • pellets may be introduced into the en velope of the electric discharge device in such a manner as to be heated by high frequency induction currents, and when so heated a reaction takes place causing a reduction of the caesium compound and the liberation of the caesium metal.
  • the compounds which we prefer to employ when caesium alone is introduced are the dichromate or permanganate of caesium mixed with finely divided silicon in the proportions of about three parts of the caesium metal compound to one part silicon.
  • This getter compound is described and claimed in an application, Serial No. 218,570, of J. ⁇ V. Mardeu and E. A. Lederer, filed September 9, 1927, and entitled Production of active metals.
  • a small proportion of a stable clean-up agent such as a non-hygroscopic compound of one of the alkali metals of lower atomic weight, preferably potassium dichromate or permanganate.
  • the amount of alkali metal of low atomic weight required for cleaning up residual gases is relatively small and satisfactory results have been obtained using from lto of the compound of alkali metal of lower atomic weight in the getter pellet, such percentage based on the caesium compound content.
  • Lithium forms the most stable hydride of all the alkali metals and should exert the most efi'ective clean-up action, but lithium compounds are more likely to absorb water vapor from the atmosphere than the other alkali metal compounds, as potassium dichromate, and, therefore, in some instances at least, the potassium salts are preferable.
  • caesium and rubidium dichromates and permanganate are stable and may be dried completely free from water vapor and they do not re-absorb moisture upon standing. This is also true of potassium and sodium permanganates and di'chromates and to a lesser extent of these compounds of lithium. All of these compounds are readily reduced by metalloids such as silicon and boron, which may also be rendered extremely gas and moisture free and which do not re-absorb such deleterious materials.
  • the metallic reducing agents such as magnesium, calcium, etc., which have been employed heretofore, give ofi' certain gases, such as hydrocarbons, hydrogen or carbon monoxide, in small quantities or in the case of calrial in diluted hydrochloric acid until gas evolution entirely ceases.
  • gases such as hydrocarbons, hydrogen or carbon monoxide
  • Various proportions may be used, but we prefer to employ about 50 grams of powdered silicon or boron in 100 cc. of a 1 to 4% solution of hydrochloric acid. After the gas has been completely eliminated in this material, the metalloid is filtered out, washed and dried.
  • the silicon or boron may be mixed with caesium-dichromate or permanganate and the dlchromate or permanganate of the alkali metal of lower atomic weight, such as potassium, in the proportions of about three parts of the alkali metal compounds to one part silicon.
  • the mixture of alkali metal compounds may consist, as stated above of from 10 to 50% of the compound of the alkali metal of lower atomic weight. This mixture is pressed into pellets and introduced into the envelope in contact with a metallic body capable of being heated by high frequency induction currents or other suitable manner.
  • the compound Upon the heating of this mixture in the envelope the compound is reduced and the alkali metal liberated without the evolution of any gases or impurities except a small quantity of oxygen.
  • the oxygen is beneficial in that it may serve as the source of oxygen for oxidizing the tungsten cathode or to flush out-the envelope and thus tend to free it from reducing gases.
  • the reaction is such that the oxygen is all liberated subsequent to the liberation of the alkali metal and may be readily removed from the envelope by the pumps before the alkali metals are set free.
  • the temperature required to start the reae tion between thereducing agent and the alkali permanganates 'or dichromates is estimated at about 900 C., but this temperature may be somewhat reduced by adding to the mixture a small proportion of ametallic re- .ducing agent insulficient'inquantity to give off a detachable quantity of gas, as for instance about 1% of finely powdered aluminum. This additionof aluminum reduces the reaction temperature of the mixture to around 700 C. Commercial powdered a1u- 2000 C. in this oxygen atmosphere, after which the oxygen is removed by pumping.
  • the caesium is liberated by heating the pellets to decompose the caesium dichromate or permanganate.
  • the caesium forms a deposit on the oxidized tungsten cathode and is held thereto, at least in an atomic layer, by the electro-negative oxygen gas layer and thus serves as the active electron emitting portion of the cathode.
  • the alkali metal of lower atomic weight, such as potassium is also liberated and assists the caesium in cleaning-up the residual gases and vapors in the envelope by forming stable com pounds therewith.
  • a cacsiated cathode which comprises introducing into the device a mixture of caesium dichromate and potassium dichromate with a reducing agent, and heating the mixture to cause a reduction of the caesium and potassium dichromates and liberation of thecaesium and potassium metals.
  • a getter for electron discharge devices employing caesium therein, comprising a mixture of a compound of caesium and a compound of another alkali metal of lower atomic weight mixed with a reducing agent.
  • a getter for electron discharge devices employing caesium therein, comprising a mixture of a compound of caesium and a compound of potassium mixed with a reducing agent.
  • a getter for electron discharge devices employing caesium therein, comprising a mixture of a nonhygroscopic compound of caesium and a reducing agent and a small percentage of a compound of another alkali metal of lower atomic weight.
  • a getter for electron discharge devices employing caesium therein, comprising a mixture of caesium dichromate, potassium dichromate and a reducing agent.
  • a getter for electron discharge devices employing caesium therein, comprising a mixture of caesium dichromate, potassium dichromate and silicon.
  • a getter for introducing alkali metals 5 into evacuated devices comprising approximately three parts of a mixture of the dichromates of caesium .izid potassium mixed the potassium dichromate comprising about 10 to 50% of the dichromate mixture.
  • a getter for electron discharge devices employing a caesiated cathode, comprising a mixture of a nonhygroscopic compound of caesium and a reducing agent, said admixture containing from 10 to 50% of acompound of another alkali metal of lower atomic Weight, such percentage being based on the total alkali compound content.
  • a material for generating alkali metals in an evacuated device comprising a mixture of a non-hygroscopic compound of caesium, a non-hygroscopic compound of potassium and a reducing agent.
  • the steps in the method of producing a thermionic discharge device employin a caesiated cathode which comprises introducing into the device a mixture of a re ucible compound of caesium and a compound of another alkali metal of lower atomic weight with a reducing agent and heating the mixture to liberate the alkali metals in the device.
  • a getter for electron discharge devices employing caesium therein, comprising a mixture of a compound of caesium and a compound of another metal of lower atomic weight mixed with a reducing agent.
  • a getter for electron discharge devices employing caesium therein, comprising a mixture of a compound of cae 'um and a. compound of potass1um,mixed with a reducing agent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Discharge Lamp (AREA)

Description

Patented Bee. 8, 1931 e y QFFICE JOHN W. MARDEN AND ERNEST A. LEDERER, OF EAST ORANGE, NEW JERSEY, AS-
SIGNORS TO WESTINGHOUSE LAMP COMPANY, A CORPORATION OF PENNSYLVANIA.
ALKALI METAL runs No Drawing.
This invention relates to a vacuum electric device employing a thermionic active cathode, the thermionic emission of which is imparted thereto by the presence of an alkali metal vapor such as caesium, rubidium or the like, and more particularly to the introduction of alkali metals into such devices to render the cathode thermionically active and to serve as a getter to clean up residual gases and "apors.
It has been found that alkali metals of high vapor pressure, particularly caesium, under proper conditions greatly increase the electronemission of a metallic cathode, such as a tungsten cathode in a thermionic device,
so that high electron emissivity is imparted thereto at a temperature so low that in the absence of such alkali metal vapor no substantial emission would occur. This phenomenon is explained on the theory that a film of the alkali metal forms continuously 'onthe metallic cathode, as for instance a filament, which film resists evaporation at temperatures much in excess of the normal vaporization temperature of tlfealkali metal when the cathode consists of a suitable metal such as tungsten. .The formation of the caesium film is greatly facilitated by the presence of an electro-negative gas layer on the surface of the cathode. Oxygen has proven to be the most satisfactory material for use in this connection and when an oxide or oxygen film of monotomic thickness is produced on the surface of the tungsten or other metallic body it renders this body capable of holding on to or causing the caesium metal atoms to adhere thereto-,more strongly than does the plain metal surface of the cathode.
In the construction of such devices, difliculty has been encountered due to the sensitivity of this active film of alkali metal and to the ease with which the monotomic layer of oxide or oxygen produced on the surface of the cathode is destroyed, as by the presence of hydrocarbons, hydrogen or other reducing materials in the envelope. Heretofore, the caesium which is employed to activate the oxidized cathode has been relied upon for eliminating all residual gases from the envelope. The caesium metal has been introstructure employed in devices of t Application filed June 11, 1928, Serial No. 284,654.
material. Its clean-up action has been ordinarily considered sufiicient to remove all residual and deleterious gases and vapors.
We have found, however, that while caesium is efl'ective to remove most of the harmful impurities from such devices so as to produce therein a substantially negligible gas pressure below that required in ordinary electron discharge devices of the thoriated tungsten cathode type or of the oxide coated type, yet in the case of devices depending upon caesium emission from the cathode, the minute quantities of reducing gases or vapors which remain in the envelope are in some instances sufiiciently active to destroy the monotomic layer of oxygen or oxide on the cathode and thereby reduce or destroy thepower of the oxidized cathode to hold the caesium metal onto the surface thereof.
Upon seasoning devices of this nature employlng caesium as both the thermionically active material and the clean-up agent, all of the gases seem to disappear and a high vac,- uum is obtained, but upon standing unused for some time gas reappears, in some instances, in suificient quantity to afiect the operation of the tube, at least when first placed ositive ions cathodeortothenegativelycharged The 1s nature is such that the major portions of the ions formed between the cathode and the anode" come in contact with the grid and the grid is charged negatively by an outside source of potential in order to prevent or restrict positive ion bombardment of the cathode by such ions. Assumin gas is hydrogen, for instance, this gas, upon seasoning of the tube, becomes posit1vely ionized and-is drawn over against the negatively charged grid where it is held by electrical that the troublesome .tion on the oxidized cathode. overcome this defect we have previously proattraction as lon as the negative bias is maintained on the grid, thus removing the major portion of the gas from the discharge space. However, when the negative grid bias is removed by discontinuing the operation of the the tube it comes in contact with the oxidized cathode and exerts a reduction action on the monotomic oxide or oxygen layer, eventually destroying the same and rendering the tube inoperative.
While hydrogen has been mentioned as an example of the reducing gas which may be present, it is to be understood that other reducing materials, such as hydrocarbons, carbon monoxide, etc., may be and probably a re present in many instances.
The .aflinity of the alkali metals for hydrogen increases as the atomic weight of the alkali metal decreases and, therefore, since caesium has the highest atomic weight of the alkali metals it is less stable with hydrogen than the other alkali metals of lower atomic weight. Therefore, in order to assist in maintaining non-reducing conditions in the device we introduce into the device, in
' addition to the caesium metal, another alkali metal of lower atomic weight, such as potassium, sodium, lithium or an alkaline earth metal. The introduction of these metals must be carried out with extreme care to prevent the introduction of moisture therewith. The alkali metals themselves, due to their high volatility and chemical activity in the atmosphere, cannot be introduced directly into a device in their free state and even if so introduced prior to evacuation of the device it is not possible to maintain them in a nonyolatile state while baking the envelope durmg the exhaust operation.
Various methods have been proposed for introducing the alkali metals such as vaporization from a side tube or container attached to the device, but the method which we have found preferable is to introduce alkali metals in the form of a stable compound which is subsequently decomposed by means of a simple reducing agent in order to liberate the alkali metal in the device. Some difficulty has been experienced with this last method due to the absorption of moisture by the compounds and the reducing agents prior to their introduction intoan evacuated device. The water vapor liberated at the time the decomposition takes place exerts a reducing ac- In order to posed the use of a class of alkali metal compounds and reducing agents which are extremely non-hygroscopic. In application Serial No. 96,335, of J. W. Mai-den, filed March 20, 1926, entitled Introduction of alkali metals into evacuated containers, there is set forth a number of compounds of this nature. Briefly, these compounds consist of double halide salts, such as caesiumzirconium fluoride or caesium-uranium or zirconium fluoride, or such stable compounds as caesium-permanganate, caesium-chromate or caesium-dichromate. These salts, in powdered form, are mixed with a metallic reducing agent such as magnesium, aluminum, misch metal or a metalloid such as silicon and boron, and pressed into pellets of appropriate size. These pellets may be introduced into the en velope of the electric discharge device in such a manner as to be heated by high frequency induction currents, and when so heated a reaction takes place causing a reduction of the caesium compound and the liberation of the caesium metal.
The compounds which we prefer to employ when caesium alone is introduced are the dichromate or permanganate of caesium mixed with finely divided silicon in the proportions of about three parts of the caesium metal compound to one part silicon. This getter compound is described and claimed in an application, Serial No. 218,570, of J. \V. Mardeu and E. A. Lederer, filed September 9, 1927, and entitled Production of active metals. In accordance with the present invention we propose to add to the getter mixture, set forth in the application just referred to, a small proportion of a stable clean-up agent such as a non-hygroscopic compound of one of the alkali metals of lower atomic weight, preferably potassium dichromate or permanganate. The amount of alkali metal of low atomic weight required for cleaning up residual gases is relatively small and satisfactory results have been obtained using from lto of the compound of alkali metal of lower atomic weight in the getter pellet, such percentage based on the caesium compound content. Lithium forms the most stable hydride of all the alkali metals and should exert the most efi'ective clean-up action, but lithium compounds are more likely to absorb water vapor from the atmosphere than the other alkali metal compounds, as potassium dichromate, and, therefore, in some instances at least, the potassium salts are preferable.
caesium and rubidium dichromates and permanganate are stable and may be dried completely free from water vapor and they do not re-absorb moisture upon standing. This is also true of potassium and sodium permanganates and di'chromates and to a lesser extent of these compounds of lithium. All of these compounds are readily reduced by metalloids such as silicon and boron, which may also be rendered extremely gas and moisture free and which do not re-absorb such deleterious materials.
The metallic reducing agents such as magnesium, calcium, etc., which have been employed heretofore, give ofi' certain gases, such as hydrocarbons, hydrogen or carbon monoxide, in small quantities or in the case of calrial in diluted hydrochloric acid until gas evolution entirely ceases. Various proportions may be used, but we prefer to employ about 50 grams of powdered silicon or boron in 100 cc. of a 1 to 4% solution of hydrochloric acid. After the gas has been completely eliminated in this material, the metalloid is filtered out, washed and dried.
The silicon or boron may be mixed with caesium-dichromate or permanganate and the dlchromate or permanganate of the alkali metal of lower atomic weight, such as potassium, in the proportions of about three parts of the alkali metal compounds to one part silicon. The mixture of alkali metal compounds may consist, as stated above of from 10 to 50% of the compound of the alkali metal of lower atomic weight. This mixture is pressed into pellets and introduced into the envelope in contact with a metallic body capable of being heated by high frequency induction currents or other suitable manner.
Upon the heating of this mixture in the envelope the compound is reduced and the alkali metal liberated without the evolution of any gases or impurities except a small quantity of oxygen. The oxygen, however, is beneficial in that it may serve as the source of oxygen for oxidizing the tungsten cathode or to flush out-the envelope and thus tend to free it from reducing gases. The reaction is such that the oxygen is all liberated subsequent to the liberation of the alkali metal and may be readily removed from the envelope by the pumps before the alkali metals are set free.
The temperature required to start the reae tion between thereducing agent and the alkali permanganates 'or dichromates is estimated at about 900 C., but this temperature may be somewhat reduced by adding to the mixture a small proportion of ametallic re- .ducing agent insulficient'inquantity to give off a detachable quantity of gas, as for instance about 1% of finely powdered aluminum. This additionof aluminum reduces the reaction temperature of the mixture to around 700 C. Commercial powdered a1u- 2000 C. in this oxygen atmosphere, after which the oxygen is removed by pumping.
After the complete removal of the oxygen from the bulb, the caesium is liberated by heating the pellets to decompose the caesium dichromate or permanganate. The caesium forms a deposit on the oxidized tungsten cathode and is held thereto, at least in an atomic layer, by the electro-negative oxygen gas layer and thus serves as the active electron emitting portion of the cathode. At the same time the caesium is liberated, the alkali metal of lower atomic weight, such as potassium, is also liberated and assists the caesium in cleaning-up the residual gases and vapors in the envelope by forming stable com pounds therewith.
-While the present invention has been described with particular refernce to the use of alkali metal dichromates or permanganates, it is to be understood that any other stable non-hygroscopic compounds of caesium and other alkali metals of lower atomic weight or other clean-up agents may be emploved and we do not desire to be restrictedother alkali metal of lower atomic weight with a reducing agent and heating the m1xture to liberate the alkali metals in the device.
2. The method of activating a metallic cathode for electron emission purposes and cleaning up residual gases and vapors in an electron discharge device of the caesiated cathode type, comprising heating to reaction temperatures in the device a mixture of a compound of caesium and a compound of potassium with a reducing agent to liberate these metals in the device.
3. The steps in the method of producing a thermionic discharge device employing a caesiated cathode which comprises liberatingin the' device from chemical compounds of which they are elements a quantity of forms more stable compounds with hydrogen than does the caesium.
4. The steps in the method of producing a thermionic discharge device employing a cacsiated cathode which comprises liberating in the device from chemical compounds of which they are elements a quantity of caesium and potassium.
5. The steps in the method of producing a thermionic discharge device employing a czesiated cathode which comprises introducing into the device a non-hygroscopic compound of caesium and a compound of another alkali metal of lower atomic weight and reducing said compounds to liberate the caesium metal and other alkali metal of lower atomic weight.
6. The steps in the method of producing a thermionic discharge device employing a cacsiated cathode which comprises introducing into the device a mixture of caesium dichromate and potassium dichromate with a reducing agent, and heating the mixture to cause a reduction of the caesium and potassium dichromates and liberation of thecaesium and potassium metals.
7. The steps in the method of producing a thermionic discharge device employing a czrsiated cathode which comprises introducing into the device a mixture of caesium dichromate and potassium dichromate with silicon. and heating the mixture to cause a reduction of the caesium and potassium dichromates and liberation of the caesium and potassium metals.
8. A getter for electron discharge devices employing caesium therein, comprising a mixture of a compound of caesium and a compound of another alkali metal of lower atomic weight mixed with a reducing agent.
9. A getter for electron discharge devices employing caesium therein, comprising a mixture of a compound of caesium and a compound of potassium mixed with a reducing agent.
10. A getter for electron discharge devices employing caesium therein, comprising a mixture of a nonhygroscopic compound of caesium and a reducing agent and a small percentage of a compound of another alkali metal of lower atomic weight.
11. A getter for electron discharge devices employing caesium therein, comprising a mixture of caesium dichromate, potassium dichromate and a reducing agent.
12. A getter for electron discharge devices employing caesium therein, comprising a mixture of caesium dichromate, potassium dichromate and silicon.
13. A getter for introducing alkali metals 5 into evacuated devices comprising approximately three parts of a mixture of the dichromates of caesium .izid potassium mixed the potassium dichromate comprising about 10 to 50% of the dichromate mixture.
14. A getter for electron discharge devices employing a caesiated cathode, comprising a mixture of a nonhygroscopic compound of caesium and a reducing agent, said admixture containing from 10 to 50% of acompound of another alkali metal of lower atomic Weight, such percentage being based on the total alkali compound content.
15. A material for generating alkali metals in an evacuated device comprising a mixture of a non-hygroscopic compound of caesium, a non-hygroscopic compound of potassium and a reducing agent.
In testimony whereof, we have hereunto subscribed our names this 8th day of June,
JOHN W. MARDEN. ERNEST A. LEDERER.
DBSCLARMER 1,835,118.Joim W. Marden and Ernest A. Lederer, East/ Orange, N. J. ALKALI METAL TUBE. Patent dated December 8, 1931. Disclaimer filed November 4, 1933, by the assignee, Westinghouse Lamp Company.
Therefore, enters this disclaimer to that part of said specification and claims which are in the following words, to wit:
1. The steps in the method of producing a thermionic discharge device employin a caesiated cathode which comprises introducing into the device a mixture of a re ucible compound of caesium and a compound of another alkali metal of lower atomic weight with a reducing agent and heating the mixture to liberate the alkali metals in the device.
2. The method of activating a metallic cathode for electron emission purposes and cleaning up residual gases and vapors in an electron discharge device of the caesiated cathode type, comprising heating to reaction temperatures in the device a mixture of a compound of caesium and a compound of potassium with a reducing agent to liberate these metals in the device. I
3. The steps in the method of producing a thermionic discharge device employing a caesiated cathode which comprises liberating in the device from chemical compounds of which they are elements a quantity of caesium and another alkali metal which. forms more stable compounds with hydrogen than does the caesium.
4. The steps in the method of producing a thermionic discharge device employing a caesiated cathode which comprises liberating the device from chemical compounds of which they are elements a quantity of caesium and potassium.
8. A getter for electron discharge devices employing caesium therein, comprising a mixture of a compound of caesium and a compound of another metal of lower atomic weight mixed witha reducing agent.
9. A getter for electron discharge devices employing caesium therein, comprising a mixture of a compound of cae 'um and a. compound of potass1um,mixed with a reducing agent. r
' [Oflic'ial Gazette December 5, 1.983.]
US284654A 1928-06-11 1928-06-11 Alkali metal tube Expired - Lifetime US1835118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US284654A US1835118A (en) 1928-06-11 1928-06-11 Alkali metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US284654A US1835118A (en) 1928-06-11 1928-06-11 Alkali metal tube

Publications (1)

Publication Number Publication Date
US1835118A true US1835118A (en) 1931-12-08

Family

ID=23091016

Family Applications (1)

Application Number Title Priority Date Filing Date
US284654A Expired - Lifetime US1835118A (en) 1928-06-11 1928-06-11 Alkali metal tube

Country Status (1)

Country Link
US (1) US1835118A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462245A (en) * 1942-08-25 1949-02-22 Bell Telephone Labor Inc Space discharge device
US3656826A (en) * 1970-07-17 1972-04-18 Westinghouse Electric Corp Method for the preparation and handling of highly oxygen reactant materials
DE2554461A1 (en) * 1975-12-04 1977-06-08 Licentia Gmbh Alkali metal photocathode prodn. - using mixt. of salt and reducing agent, degassed above vapour deposition temp. before high temp. reaction
US20040045866A1 (en) * 2001-03-09 2004-03-11 International Business Machines Corporation Packaged radiation sensitive coated workpiece process for making and method of storing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462245A (en) * 1942-08-25 1949-02-22 Bell Telephone Labor Inc Space discharge device
US3656826A (en) * 1970-07-17 1972-04-18 Westinghouse Electric Corp Method for the preparation and handling of highly oxygen reactant materials
DE2554461A1 (en) * 1975-12-04 1977-06-08 Licentia Gmbh Alkali metal photocathode prodn. - using mixt. of salt and reducing agent, degassed above vapour deposition temp. before high temp. reaction
US20040045866A1 (en) * 2001-03-09 2004-03-11 International Business Machines Corporation Packaged radiation sensitive coated workpiece process for making and method of storing same
US7168224B2 (en) * 2001-03-09 2007-01-30 International Business Machines Corporation Method of making a packaged radiation sensitive resist film-coated workpiece

Similar Documents

Publication Publication Date Title
US2368060A (en) Coating of electron discharge device parts
US2348045A (en) Electron discharge device and method of manufacture
US2041802A (en) Electron emitter
US2173259A (en) Active metal compounds for vacuum tubes
US2173258A (en) Active metal compound for vacuum tubes
US1835118A (en) Alkali metal tube
US1895855A (en) Method of lamp manufacture
US2275886A (en) Process of activating cathodes
US1894948A (en) Manufacture of electron discharge devices
US1529597A (en) Electron-emitting device and method of preparation
US2141644A (en) Manufacture of evacuated metal envelopes
US1670483A (en) Electron device and method of activation
US1747063A (en) Electrode composition for electron-discharge devices
US2246162A (en) Thermionic cathode treatment
US1966254A (en) Production of active metals
US1648312A (en) Electron-discharge device
US1964506A (en) Method of introducing active metal into electric discharge devices
US1648458A (en) Electron-discharge device and method of operating the same
US1935699A (en) Electric discharge tube for the emission of rays
US1894946A (en) Method for activating glowing cathodes or the like
US1931647A (en) Process for introducing active metal into alpha vacuum tube
US1659207A (en) Method of cleaning up residual gases
US1698850A (en) Activation of refractory metal filaments
US1835117A (en) Introduction of alkali metals into evacuated containers
US2984534A (en) Method of manufacturing vacuum tubes