US11658292B2 - Silicon-based anode material and preparation method thereof, lithium ion battery - Google Patents

Silicon-based anode material and preparation method thereof, lithium ion battery Download PDF

Info

Publication number
US11658292B2
US11658292B2 US16/954,513 US201916954513A US11658292B2 US 11658292 B2 US11658292 B2 US 11658292B2 US 201916954513 A US201916954513 A US 201916954513A US 11658292 B2 US11658292 B2 US 11658292B2
Authority
US
United States
Prior art keywords
silicon
carbon source
source gas
carbon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/954,513
Other versions
US20220328806A1 (en
Inventor
Liangqin Wei
Fei Ma
Dongdong Liu
Yuhu WU
Zhihong Wu
Xiaoyang Ding
Fengfeng Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Shanshan Technology Co Ltd
Original Assignee
Shanghai Shanshan Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Shanshan Technology Co Ltd filed Critical Shanghai Shanshan Technology Co Ltd
Publication of US20220328806A1 publication Critical patent/US20220328806A1/en
Application granted granted Critical
Publication of US11658292B2 publication Critical patent/US11658292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field lithium-ion battery materials, in particular to silicon-based anode materials, preparation methods thereof, and lithium-ion batteries.
  • lithium ion batteries mainly use graphite as their anode material, while the theoretical capacity of graphite is only 372 mA ⁇ h/g, which cannot meet the needs of high energy density lithium ion batteries. Therefore, seeking for alternative anode materials has become a subject of the rapid developed high energy density lithium ion batteries.
  • crystalline silicon is a very promising anode material for lithium ion batteries. It has a high theoretical capacity (4200 mA ⁇ h/g, 9800 mA ⁇ h/mL) and a low delithiation voltage (0.37 V vs. Li/Li + ). However, the volume change of crystalline silicon during charging and discharging processes can be as high as 310%.
  • one of the common solutions is to uniformly coat a layer of carbon on the outside of the silicon particles to obtain a core-shell type silicon-carbon composite material.
  • the presence of the carbon shell reduces the direct contact between the silicon surface and the electrolyte and improves the electronic conduction between the silicon particles, so that the cycle stability of the entire electrode can be greatly improved.
  • a carbon deposit layer of a single structure is currently used for coating in this context.
  • the present application provides a silicon-based anode material having a surface that has a carbon deposition layer of a structural change and a preparation method thereof, which can improve the electrochemical performance of the silicon-based anode material.
  • One aspect of the present application provides a method for preparing a silicon-based anode material, comprising: passing a silicon substrate material through a vapor deposition gas to coat a surface of the silicon substrate material with a carbon deposition layer of a certain thickness, wherein the vapor deposition gas includes a first carbon source gas and a second carbon source gas, wherein, volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer, a side of the carbon deposited layer close to the silicon base material is more or less dense than the other side of the carbon deposited layer.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases at different reaction stages for forming the carbon deposition layer.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor-deposited gas monotonously increases or decreases in a stepped manner at different reaction stages for forming the carbon deposition layer.
  • the first carbon source gas is acetylene, ethylene or a combination thereof
  • the second carbon source gas is benzene, toluene or a combination thereof.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas varies between 0 and 20.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases between 0 and 20.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases in a gradient manner from 5-20 to 0-5, or increases in a gradient manner from 0-5 to 5-20.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases monotonically through 3 to 15 steps.
  • the method is performed in an inert atmosphere, and the volume of the first carbon source gas and the second carbon source gas accounts for 1-30% of the volume percentage of the atmosphere in total.
  • the silicon substrate material is selected from the group consisting of a metallurgical silicon, a silicon oxide SiOx (0 ⁇ x ⁇ 1.5), a porous silicon and a mixture thereof, and a median diameter of the silicon substrate material ranges from 1 ⁇ m to 20 ⁇ m.
  • the silicon substrate material further includes a compound of the general formula MSiOy, wherein 0.85 ⁇ y ⁇ 3; M is any one or more of Li, Na, Mg, Al, Fe and Ca.
  • a reaction temperature of the method is 700° C. to 1000° C., and a reaction time thereof is 3 to 12 h.
  • a thickness of the carbon deposition layer is 10 nm to 150 nm.
  • a silicon-based anode material comprising: a silicon substrate material; and a carbon deposition layer, wherein the carbon deposition layer coats the silicon substrate material, the carbon deposition layer is denser on one side thereof close to the silicon substrate material than the other side of the carbon deposition layer.
  • the carbon deposition layer monotonously increases or decreases from an inner side thereof to an outer side thereof.
  • a density of the carbon deposition layer increases or decreases monotonously through 3 to 15 steps.
  • the silicon substrate material is selected from the group consisting of a metallurgical silicon, a silicon oxide SiOx (0 ⁇ x ⁇ 1.5), a porous silicon and a mixture thereof, and a median diameter of the silicon substrate material ranges from 1 ⁇ m to 20 ⁇ m.
  • the silicon substrate material further includes a compound of the general formula MSiOy, wherein 0.85 ⁇ y ⁇ 3; M is any one or more of Li, Na, Mg, Al, Fe and Ca.
  • a thickness of the carbon deposition layer is 10 nm to 150 nm.
  • an anode of the lithium ion battery comprises any of the silicon-based anode material as mentioned above.
  • the present application provide the silicon-based anode material and the method for preparing the silicon-based anode material as described in the embodiments of the present application.
  • a chemical vapor deposition approach is used to form a carbon deposition layer with different densities on the surface of silicon material.
  • the portion with a high structural density in the carbon deposition layer has more stable electrochemical cycle performance, while the portion with relatively lower density has better interface conductivity.
  • the chemical vapor deposition process is carried out in a vapor deposition furnace with sections of various temperatures and an atmosphere that can be independently controlled, so that the density of the carbon deposition layer can be increased or decreased as desired.
  • the carbon deposition layer on the surface of the silicon-based anode material has a continuously changing structure, in which the inner deposition layer is tightly coated, which can effectively suppress the volume effect of the silicon-based anode material during charging and discharging and thus improve the interface conductivity.
  • the surface of the outer deposition layer is smooth and dense, which help form a stable SEI (solid electrolyte interphase) film, thereby greatly improving the cycling stability of the material.
  • the preparation method for the silicon-based anode material is simple in process, strong in continuity of operation, suitable for large-scale industrial production, and thus has wide application prospects in the field of lithium ion batteries.
  • FIGURE illustrates in detail the exemplary embodiments disclosed in the present application.
  • the same reference numerals indicate similar structures shown in different FIGURES.
  • a person of ordinary skill in the art will understand that these embodiments are merely exemplary embodiments rather than limiting embodiments.
  • the accompanying drawings are only for the purpose of illustration and description, and are not intended to limit the scope of the present application. Other embodiments may also accomplish the objects of the present application. Moreover, it should be understood that the drawings are not drawn to scale.
  • FIG. 1 is a schematic structural diagram of a vapor deposition furnace according to some embodiments of the present application.
  • the present application provides a method for preparing a silicon-based anode material, comprising: passing a silicon substrate material through a vapor deposition gas to coat a surface of the silicon substrate material with a carbon deposition layer of a certain thickness, wherein the vapor deposition gas includes a first carbon source gas and a second carbon source gas, wherein, volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer, a side of the carbon deposited layer close to the silicon base material is more or less dense than the other side of the carbon deposited layer.
  • the silicon substrate material can be pulverized into powdery particles, and the powdery particles are then transported to a vapor deposition furnace.
  • the silicon substrate materials can be one or more of metallurgical silicon, silicon oxide SiOx (0 ⁇ x ⁇ 1.5), porous silicon, etc.
  • the median diameter of the silicon substrate material ranges from 1 ⁇ m to 20 ⁇ m.
  • the silicon substrate material also includes a compound of the general formula MSiOy, where 0.85 ⁇ y ⁇ 3; M can be any one or more of Li, Na, Mg, Al, Fe, and Ca.
  • the particle size of the silicon substrate material also has a certain influence on the electrochemical performance of the finally formed silicon-based anode material.
  • the particle size of the silicon substrate material decreases, and its specific surface area increases, the surface reaction that accompanies the charging and discharging cycles increases, and the formation of SEI film consumes more Li + , which reduce the cycle characteristics and first cycle Coulombic efficiency of the silicon-based anode material.
  • An increase in the particle size of the silicon substrate material can prevent the active material in the electrode from cracking due to charging and discharging, which makes it difficult to generate a new surface. Therefore, the amount of side reactions is reduced, and the cycle performance and first cycle Coulombic efficiency become better.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas is highly related to the density of the carbon deposition layer formed.
  • the volume percentage of the first carbon source gas and the second carbon source gas decreases, the density of the formed carbon deposition layer increases.
  • the carbon deposition layer can better suppress the expansion effect of the internal core structure, which is beneficial to the improvement of the electrochemical cycle performance of the silicon-based anode material.
  • the smooth and dense carbon deposition layer can facilitate the formation of a stable SEI film, which helps improve the first cycle Coulombic efficiency.
  • the first carbon source gas can be acetylene, ethylene or a combination thereof
  • the second carbon source gas can be benzene, toluene or a combination thereof.
  • the volume percentage of the first carbon source gas and the second carbon source gas may increases or decreases in different reaction stages in order to adjust the density distribution of the formed carbon deposition layer. For example, the volume percentage of the first carbon source gas and the second carbon source gas may be increased in a stage, then decreased in the subsequent stage, and then increased again in the next stage, so that a carbon deposition layer with alternating density distributions may be formed. In the embodiments of the present application, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas may increase or decrease within a range of 0-20.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases at different reaction stages for forming a carbon deposition layer. That is to say, the volume percentage of the first carbon source gas and the second carbon source gas can be adjusted continuously or intermittently according to the setting, so as to form a carbon deposition layer whose density is continuously increased or discontinuously increased, or carbon deposition layer whose density is continuously decreased or discontinuously decreased. For example, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases between 0-20.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases in a stepped manner at different reaction stages for forming the carbon deposition layer.
  • the density of the formed carbon deposition layer also increases or decreases in a stepped manner.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases from 5-20 in a gradient manner to 0-5 or increases from 0-5 to 5-20 in a gradient manner.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases monotonically through 3 to 15 steps.
  • the changes in the density of the carbon deposition layer also affect the electrochemical performance of the silicon-based anode material.
  • the changes in the density of the carbon deposition layer cause the carbon deposition layer structure to contain certain sub-structures. The more times the volume percentage of the first carbon source gas and the second carbon source gas change, the more sub-layers are included in the carbon deposition layer structure. As the number of structural sub-layers of the carbon deposition layer increases, the cycle performance of the silicon-based anode material becomes better.
  • the carbon deposition layer structure includes 3 to 15 sub-layers, and the thickness of each sub-layer is the same or similar.
  • FIG. 1 is a schematic structural view of a vapor deposition furnace according to some embodiments of the present application.
  • the silicon substrate material is pulverized into powdery particles, and the powdery particles are then transported through the feeding zone to reach a heating zone in the vapor deposition furnace.
  • the powdery particles are heated to a first temperature in the heating zone, for example, 700° C. to 1000° C.
  • the powdery particles are transported to a thermal insulation zone, where the thermal insulation zone further includes n stages of reaction zones with independently controlled atmosphere, as shown in FIG. 1 , the first furnace zone, the second furnace zone, the third furnace zone, the fourth furnace zone, the fifth furnace zone, . . .
  • the thermal insulation zone may be equally divided into n sections with equal lengths, or may be divided into n sections with unequal lengths.
  • the value of n can be, for example, 3-15.
  • the atmosphere may include a first carbon source gas (corresponding to the carbon source A shown in FIG. 1 ), a second carbon source gas (corresponding to the carbon source B shown in FIG. 1 ), and an inert gas.
  • the first carbon source gas may be one or a combination of acetylene and ethylene.
  • the second carbon source gas may be one or a combination of benzene and toluene.
  • the inert gas may be one or a combination of at least two of argon, nitrogen and helium.
  • the total volume of the first carbon source gas and the second carbon source gas accounts for 1-30% of the total volume percentage of the atmosphere.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer.
  • the volume ratio of the first carbon source gas to the second carbon source gas in the total atmosphere volume of each section of the heat preservation zone is referred to as R, then R would decrease or increase from R1 in the first furnace zone to Rn in the n th furnace zone as required.
  • R1 in the first furnace zone is 19, R2 in the second furnace zone is 17, R3 in the third furnace zone is 14, R4 in the fourth furnace zone is 12, R5 in the fifth furnace zone is 8, and R6 in the sixth furnace zone is 6.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas may monotonously increase or decreases at different reaction stages for forming a carbon deposition layer.
  • the volume percentage of the first carbon source gas and the second carbon source gas may monotonically increase or decrease between 0-20.
  • R1 in the first furnace zone is 15, R2 in the second furnace zone is 12, R3 in the third furnace zone is 9, R4 in the fourth furnace zone is 6, and so on.
  • R1 in the first furnace zone is 6, R2 in the second furnace zone is 9. R3 in the third furnace zone is 12, R4 in the fourth furnace zone is 15, and so on.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas may increase or decrease monotonously in a stepped manner in different reaction stages for forming the carbon deposition layer.
  • the volume percentage of the first carbon source gas and the second carbon source gas may change between 0 and 20, that is, 0 ⁇ R ⁇ 20.
  • the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas may decrease in a gradient manner from 5-20 to 0-5, or increase in a gradient manner from 0-5 to 5-20.
  • the volume percentages of the first carbon source gas and the second carbon source gas may decrease monotonically according through 3 to 15 steps.
  • the thermal insulation zone can be divided into a plurality of reaction zones (for example, 3 to 15 reaction zones) that can independently control the atmosphere
  • the volume percentages of the first carbon source gas and the second carbon source gas can be regarded as uniform and unchanged in the same reaction zone, and can increase or decrease monotonously between different reaction areas.
  • R1 in the first furnace zone is 15, R2 in the second furnace zone is 12, R3 in the third furnace zone is 9, R4 in the fourth furnace zone is 6, and so on.
  • R1 in the first furnace zone is 6, R2 in the second furnace zone is 9, R3 in the third furnace zone is 12, R4 in the fourth furnace zone is 15, and so on.
  • the temperature of the vapor deposition heat treatment in the thermal insulation zone is from 700° C. to 1000° C., and the treatment time is from 3 to 12 hours.
  • the silicon-based anode material with a carbon deposition layer have a surface for changes structure can be obtained after cooling down to room temperature under an inert gas condition.
  • the thickness of the carbon deposition layer can be from 10 nm to 150 nm.
  • the present application can control the heat treatment time of the reactants under different atmosphere conditions, and achieve the preparation of a silicon material coated with a carbon deposition layer with structural changes on the surface thereof.
  • the carbon deposition layer is tightly coated, which can effectively suppress the volume effect and conductivity of the silicon-based anode material during the battery charging and discharging processes, and thus greatly improve the cycle stability of the material.
  • the embodiments of the present application further provide a silicon-based anode material prepared according to the preparation method of a silicon-based anode material as provided by the present application. Since the gas composition changes in a stepped manner during the vapor deposition process, the carbon deposition layer formed will also have structural changes.
  • the silicon-based anode material provided by the present application may include a silicon substrate material and a carbon deposition layer, the carbon deposition layer covers the silicon substrate material, where the side of the carbon deposition layer close to the silicon substrate material is more or less dense than the other side of the carbon deposition layer.
  • the silicon substrate material may include one or more of metallurgical silicon, silicon oxide SiOx (0 ⁇ x ⁇ 1.5), and porous silicon, and the median diameter of the silicon substrate material ranges from 1 ⁇ m to 20 ⁇ m.
  • the density of the carbon deposition layer may increases or decreases monotonously from an inner side thereof to an outer side thereof. Since the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer, the density of the carbon deposition layer formed under different gas volume ratios may also be different. The density of the carbon deposition layer may increase or decrease from the inner side to the outer side as the volume percentage of the first carbon source gas and the second carbon source gas changes.
  • the density of the carbon deposition layer may increase or decrease monotonously through 3 to 15 steps. Since the thermal incubation zone can be divided into a plurality of reaction zones (for example, 3 to 15 reaction zones) that can independently control the atmosphere, the volume percentage of the first carbon source gas and the second carbon source gas can be regarded as uniform and unchanged in the same reaction zone, and may increase or decrease monotonously between different reaction areas. The density of the carbon deposition layer formed in the same reaction area can be regarded as approximately unchanged or slightly changed, and the density of the carbon deposition layer formed in different reaction areas can be regarded as having an increasing or decreasing trend.
  • the powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment.
  • the thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, ethylene and benzene.
  • Ethylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 8% of the total gas volume (the total gas volume is the sum of the volumes of argon, ethylene and benzene).
  • Table 1 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone.
  • the vapor deposition temperature is 950° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
  • the powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment.
  • the thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, ethylene and toluene. Ethylene and toluene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 10% of the total gas volume.
  • Table 2 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone.
  • the vapor deposition temperature is 950° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
  • the powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment.
  • the thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, acetylene and benzene. Acetylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 10% of the total gas volume.
  • Table 3 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone.
  • the vapor deposition temperature is 950° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
  • the powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment.
  • the thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, ethylene and benzene. Ethylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 16% of the total gas volume.
  • Table 4 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone.
  • the vapor deposition temperature is 850° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
  • the powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment.
  • the thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, ethylene and benzene. Ethylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 16% of the total gas volume.
  • Table 5 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone.
  • the vapor deposition temperature is 850° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
  • the powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment.
  • the thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, acetylene and benzene. Acetylene and benzene. Ethylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 10% of the total gas volume.
  • Table 6 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone.
  • the vapor deposition temperature is 850° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
  • the silicon-based anode material samples obtained in the above Examples 1 to 6 are then made into button batteries using a lithium sheet as a counter electrode, and the charge cycle test is next performed.
  • the charge and discharge rate was 0.1 C, and the charge and discharge voltage range is from 0.01 V to 1.50 V.
  • the test results obtained are shown in Table 7 below.
  • Example 2 As the number of sub-layer structures in the carbon deposition layer increases, the cycle performance of the silicon-based anode material becomes better.
  • Example 3 the volume percentage content of the second carbon source gas benzene accounts for a relatively larger percentage.
  • a smooth and dense carbon deposition layer is formed, which is beneficial to the formation of an SEI film.
  • it first cycle Coulombic efficiency has been improved to some extent, but its carbon deposition layer has fewer sub-layer structures, accordingly, its cycle performance is reduced compared to that of Example 2.
  • both the carbon content and the number of sub-layer structures in the carbon deposition layer in Example 1 are slightly lower, accordingly, its capacity is improved, but the cycle number is slightly reduced.
  • the cycle performance of the silicon-based anode material is lower than those of Examples 1 to 3; this is due to the fact that the median diameter of their silicon substrate material particles has been changed.
  • the median diameter of the anode active material particle is 2.5 ⁇ m, the specific surface area increases, so the surface reaction accompanying the charge and discharge cycles increases, and the formation of the SET film would consume more Li + , thereby reducing the cycle characteristics and the first cycle Coulombic efficiency.
  • the median particle size is 8 ⁇ m, it can prevent the active material from cracking during the charging and discharging processes and thus the newly formed new surface is reduced. As a result, the amount of side reactions is reduced, and the cycle performance and first cycle Coulombic efficiency are improved.
  • Example 6 When comparing Example 5 with Example 6, the number of carbon sub-layer structures in Example 5 is higher than that in Example 6, and thus its cycle performance is better.
  • Example 6 because the median particle size of the silicon-based material is 2.5 ⁇ m, its specific surface area is larger, 10% volume fraction of carbon source coating results in low carbon content, further it has a lower number of carbon sub-layer structures. As a result, it has poorer cycle performance and lower first cycle Coulombic efficiency.
  • its Si/C ratio is higher as compared to Examples 4 and 5, its capacity has been increased accordingly.
  • first”, “second”, “third”, etc. may be used herein to describe various elements, these elements may not be limited by these terms. These terms are merely used to distinguish one element from another. Thus, a first element in some embodiments may be referred to as a second element in other embodiments without departing from the teachings of the present application. Moreover, the same reference symbols or reference numerals are used throughout entire disclosure to represent the same elements.

Abstract

A silicon-based anode material, a preparation method thereof and a lithium ion battery are provided. The preparation method of the silicon-based anode material includes: passing a silicon substrate material through a vapor deposition gas to coat the surface of the silicon substrate material with a carbon deposition layer, the vapor deposition gas includes a first carbon source gas and a second carbon source gas, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer. The side of the carbon deposited layer close to the silicon base material is more or less dense than the other side of the carbon deposited layer. The coating layer on the surface of the silicon-based anode material has a continuously changing junction, thereby greatly improving the cycling stability of the material.

Description

This application is a national stage application of PCT application No. PCT/CN2019/129889, filed on Dec. 30, 2019, and the contents of which are incorporated herein by reference in their entirety.
TECHNICAL FIELD
The present application relates to the field lithium-ion battery materials, in particular to silicon-based anode materials, preparation methods thereof, and lithium-ion batteries.
BACKGROUND
Commercial lithium ion batteries mainly use graphite as their anode material, while the theoretical capacity of graphite is only 372 mA·h/g, which cannot meet the needs of high energy density lithium ion batteries. Therefore, seeking for alternative anode materials has become a subject of the rapid developed high energy density lithium ion batteries. Among various non-carbon anode materials, crystalline silicon is a very promising anode material for lithium ion batteries. It has a high theoretical capacity (4200 mA·h/g, 9800 mA·h/mL) and a low delithiation voltage (0.37 V vs. Li/Li+). However, the volume change of crystalline silicon during charging and discharging processes can be as high as 310%. Such significant expansion and contraction may cause the existence of large stresses in the material, which may further cause certain problems, for example, the material becomes a powder, the active material is separated from the current collector and thus losing its activity, and the capacity quickly decays. Hence, how to solve the expansion problem and poor cycle performance of silicon-based anode materials becomes one of the focuses of the research on silicon-based anode materials.
In order to solve the aforementioned problems, one of the common solutions is to uniformly coat a layer of carbon on the outside of the silicon particles to obtain a core-shell type silicon-carbon composite material. The presence of the carbon shell reduces the direct contact between the silicon surface and the electrolyte and improves the electronic conduction between the silicon particles, so that the cycle stability of the entire electrode can be greatly improved. In the field of new energy, a carbon deposit layer of a single structure is currently used for coating in this context.
SUMMARY
The present application provides a silicon-based anode material having a surface that has a carbon deposition layer of a structural change and a preparation method thereof, which can improve the electrochemical performance of the silicon-based anode material.
One aspect of the present application provides a method for preparing a silicon-based anode material, comprising: passing a silicon substrate material through a vapor deposition gas to coat a surface of the silicon substrate material with a carbon deposition layer of a certain thickness, wherein the vapor deposition gas includes a first carbon source gas and a second carbon source gas, wherein, volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer, a side of the carbon deposited layer close to the silicon base material is more or less dense than the other side of the carbon deposited layer.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases at different reaction stages for forming the carbon deposition layer.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor-deposited gas monotonously increases or decreases in a stepped manner at different reaction stages for forming the carbon deposition layer.
In some embodiments, the first carbon source gas is acetylene, ethylene or a combination thereof, and the second carbon source gas is benzene, toluene or a combination thereof.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas varies between 0 and 20.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases between 0 and 20.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases in a gradient manner from 5-20 to 0-5, or increases in a gradient manner from 0-5 to 5-20.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases monotonically through 3 to 15 steps.
In some embodiments, the method is performed in an inert atmosphere, and the volume of the first carbon source gas and the second carbon source gas accounts for 1-30% of the volume percentage of the atmosphere in total.
In some embodiments, the silicon substrate material is selected from the group consisting of a metallurgical silicon, a silicon oxide SiOx (0≤x≤1.5), a porous silicon and a mixture thereof, and a median diameter of the silicon substrate material ranges from 1 μm to 20 μm.
In some embodiments, the silicon substrate material further includes a compound of the general formula MSiOy, wherein 0.85<y≤3; M is any one or more of Li, Na, Mg, Al, Fe and Ca.
In some embodiments, a reaction temperature of the method is 700° C. to 1000° C., and a reaction time thereof is 3 to 12 h.
In some embodiments, a thickness of the carbon deposition layer is 10 nm to 150 nm.
Another aspect of the present application provides a silicon-based anode material, comprising: a silicon substrate material; and a carbon deposition layer, wherein the carbon deposition layer coats the silicon substrate material, the carbon deposition layer is denser on one side thereof close to the silicon substrate material than the other side of the carbon deposition layer.
In some embodiments, the carbon deposition layer monotonously increases or decreases from an inner side thereof to an outer side thereof.
In some embodiments, a density of the carbon deposition layer increases or decreases monotonously through 3 to 15 steps.
In some embodiments, the silicon substrate material is selected from the group consisting of a metallurgical silicon, a silicon oxide SiOx (0≤x≤1.5), a porous silicon and a mixture thereof, and a median diameter of the silicon substrate material ranges from 1 μm to 20 μm.
In some embodiments, the silicon substrate material further includes a compound of the general formula MSiOy, wherein 0.85<y≤3; M is any one or more of Li, Na, Mg, Al, Fe and Ca.
In some embodiments, a thickness of the carbon deposition layer is 10 nm to 150 nm.
Yet another aspect of the present application provides a lithium ion battery, an anode of the lithium ion battery comprises any of the silicon-based anode material as mentioned above.
In view of the deficiencies in the performance of existing silicon-based anode materials, the present application provide the silicon-based anode material and the method for preparing the silicon-based anode material as described in the embodiments of the present application. A chemical vapor deposition approach is used to form a carbon deposition layer with different densities on the surface of silicon material. The portion with a high structural density in the carbon deposition layer has more stable electrochemical cycle performance, while the portion with relatively lower density has better interface conductivity.
Moreover, the chemical vapor deposition process is carried out in a vapor deposition furnace with sections of various temperatures and an atmosphere that can be independently controlled, so that the density of the carbon deposition layer can be increased or decreased as desired.
Moreover, the carbon deposition layer on the surface of the silicon-based anode material has a continuously changing structure, in which the inner deposition layer is tightly coated, which can effectively suppress the volume effect of the silicon-based anode material during charging and discharging and thus improve the interface conductivity. On the other hand, the surface of the outer deposition layer is smooth and dense, which help form a stable SEI (solid electrolyte interphase) film, thereby greatly improving the cycling stability of the material.
In addition, the preparation method for the silicon-based anode material is simple in process, strong in continuity of operation, suitable for large-scale industrial production, and thus has wide application prospects in the field of lithium ion batteries.
Some other features of the present application will be described in the following description. Through the description, the contents in the following drawings and embodiments will become obvious to a person of ordinary skill in the art. The inventive points of the present application will be fully described by practicing or using the methods, means or combinations thereof set forth in the detailed examples discussed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The following FIGURE illustrates in detail the exemplary embodiments disclosed in the present application. The same reference numerals indicate similar structures shown in different FIGURES. A person of ordinary skill in the art will understand that these embodiments are merely exemplary embodiments rather than limiting embodiments. The accompanying drawings are only for the purpose of illustration and description, and are not intended to limit the scope of the present application. Other embodiments may also accomplish the objects of the present application. Moreover, it should be understood that the drawings are not drawn to scale.
FIG. 1 is a schematic structural diagram of a vapor deposition furnace according to some embodiments of the present application.
DETAILED DESCRIPTION
The following description provides specific application scenarios and requirements of the present application in order to enable a person skilled in the art to make and use the present application. Various modifications to the disclosed embodiments will be apparent to a person skilled in the art. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present application. Therefore, the present application is not limited to the embodiments described herein, but the broadest scope consistent with the claims.
The technical solution of the present application will be described in detail below with reference to the embodiments and accompanying drawings.
The present application provides a method for preparing a silicon-based anode material, comprising: passing a silicon substrate material through a vapor deposition gas to coat a surface of the silicon substrate material with a carbon deposition layer of a certain thickness, wherein the vapor deposition gas includes a first carbon source gas and a second carbon source gas, wherein, volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer, a side of the carbon deposited layer close to the silicon base material is more or less dense than the other side of the carbon deposited layer.
In some embodiments of the present application, by way of the method for preparing the silicon-based anode material, the silicon substrate material can be pulverized into powdery particles, and the powdery particles are then transported to a vapor deposition furnace. The silicon substrate materials can be one or more of metallurgical silicon, silicon oxide SiOx (0<x≤1.5), porous silicon, etc. The median diameter of the silicon substrate material ranges from 1 μm to 20 μm. The silicon substrate material also includes a compound of the general formula MSiOy, where 0.85<y≤3; M can be any one or more of Li, Na, Mg, Al, Fe, and Ca.
In the embodiments of the present application, the particle size of the silicon substrate material also has a certain influence on the electrochemical performance of the finally formed silicon-based anode material. As the particle size of the silicon substrate material decreases, and its specific surface area increases, the surface reaction that accompanies the charging and discharging cycles increases, and the formation of SEI film consumes more Li+, which reduce the cycle characteristics and first cycle Coulombic efficiency of the silicon-based anode material. An increase in the particle size of the silicon substrate material can prevent the active material in the electrode from cracking due to charging and discharging, which makes it difficult to generate a new surface. Therefore, the amount of side reactions is reduced, and the cycle performance and first cycle Coulombic efficiency become better.
In the case where a chemical vapor deposition reaction is performed in a vapor deposition furnace, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas is highly related to the density of the carbon deposition layer formed. When the volume percentage of the first carbon source gas and the second carbon source gas decreases, the density of the formed carbon deposition layer increases. Thus, the carbon deposition layer can better suppress the expansion effect of the internal core structure, which is beneficial to the improvement of the electrochemical cycle performance of the silicon-based anode material. In addition, the smooth and dense carbon deposition layer can facilitate the formation of a stable SEI film, which helps improve the first cycle Coulombic efficiency. As the volume percentage of the first carbon source gas and the second carbon source gas increases, the density of the formed carbon deposition layer decreases, and the interface conductivity of the carbon deposition layer increases. In some embodiments, the first carbon source gas can be acetylene, ethylene or a combination thereof, and the second carbon source gas can be benzene, toluene or a combination thereof.
In some embodiments of the present application, when the chemical vapor deposition reaction is carried out, the volume percentage of the first carbon source gas and the second carbon source gas may increases or decreases in different reaction stages in order to adjust the density distribution of the formed carbon deposition layer. For example, the volume percentage of the first carbon source gas and the second carbon source gas may be increased in a stage, then decreased in the subsequent stage, and then increased again in the next stage, so that a carbon deposition layer with alternating density distributions may be formed. In the embodiments of the present application, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas may increase or decrease within a range of 0-20.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases at different reaction stages for forming a carbon deposition layer. That is to say, the volume percentage of the first carbon source gas and the second carbon source gas can be adjusted continuously or intermittently according to the setting, so as to form a carbon deposition layer whose density is continuously increased or discontinuously increased, or carbon deposition layer whose density is continuously decreased or discontinuously decreased. For example, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases between 0-20.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases in a stepped manner at different reaction stages for forming the carbon deposition layer. As a result, the density of the formed carbon deposition layer also increases or decreases in a stepped manner. For example, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases from 5-20 in a gradient manner to 0-5 or increases from 0-5 to 5-20 in a gradient manner. Optionally, in some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases monotonically through 3 to 15 steps.
The changes in the density of the carbon deposition layer also affect the electrochemical performance of the silicon-based anode material. The changes in the density of the carbon deposition layer cause the carbon deposition layer structure to contain certain sub-structures. The more times the volume percentage of the first carbon source gas and the second carbon source gas change, the more sub-layers are included in the carbon deposition layer structure. As the number of structural sub-layers of the carbon deposition layer increases, the cycle performance of the silicon-based anode material becomes better.
A large change in the volume percentage of the first carbon source gas and the second carbon source gas would result in more significant sub-layered structure formed in the carbon deposition layer. Optionally, the carbon deposition layer structure includes 3 to 15 sub-layers, and the thickness of each sub-layer is the same or similar.
FIG. 1 is a schematic structural view of a vapor deposition furnace according to some embodiments of the present application. As shown in FIG. 1 , the silicon substrate material is pulverized into powdery particles, and the powdery particles are then transported through the feeding zone to reach a heating zone in the vapor deposition furnace. The powdery particles are heated to a first temperature in the heating zone, for example, 700° C. to 1000° C. After the heating treatment, the powdery particles are transported to a thermal insulation zone, where the thermal insulation zone further includes n stages of reaction zones with independently controlled atmosphere, as shown in FIG. 1 , the first furnace zone, the second furnace zone, the third furnace zone, the fourth furnace zone, the fifth furnace zone, . . . the n−1th furnace zone, nth furnace zone. Different reaction areas correspond to different reaction stages during the forming process of the carbon deposition layer. In some embodiments, the thermal insulation zone may be equally divided into n sections with equal lengths, or may be divided into n sections with unequal lengths. The value of n can be, for example, 3-15.
For each reaction zone, the atmosphere may include a first carbon source gas (corresponding to the carbon source A shown in FIG. 1 ), a second carbon source gas (corresponding to the carbon source B shown in FIG. 1 ), and an inert gas. The first carbon source gas may be one or a combination of acetylene and ethylene. The second carbon source gas may be one or a combination of benzene and toluene. The inert gas may be one or a combination of at least two of argon, nitrogen and helium. The total volume of the first carbon source gas and the second carbon source gas accounts for 1-30% of the total volume percentage of the atmosphere.
The volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer. The volume ratio of the first carbon source gas to the second carbon source gas in the total atmosphere volume of each section of the heat preservation zone is referred to as R, then R would decrease or increase from R1 in the first furnace zone to Rn in the nth furnace zone as required. For example, R1 in the first furnace zone is 19, R2 in the second furnace zone is 17, R3 in the third furnace zone is 14, R4 in the fourth furnace zone is 12, R5 in the fifth furnace zone is 8, and R6 in the sixth furnace zone is 6.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas may monotonously increase or decreases at different reaction stages for forming a carbon deposition layer. The volume percentage of the first carbon source gas and the second carbon source gas may monotonically increase or decrease between 0-20. For example, R1 in the first furnace zone is 15, R2 in the second furnace zone is 12, R3 in the third furnace zone is 9, R4 in the fourth furnace zone is 6, and so on. For another example, R1 in the first furnace zone is 6, R2 in the second furnace zone is 9. R3 in the third furnace zone is 12, R4 in the fourth furnace zone is 15, and so on.
In some embodiments, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas may increase or decrease monotonously in a stepped manner in different reaction stages for forming the carbon deposition layer. The volume percentage of the first carbon source gas and the second carbon source gas may change between 0 and 20, that is, 0<R<20. For example, the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas may decrease in a gradient manner from 5-20 to 0-5, or increase in a gradient manner from 0-5 to 5-20. In the vapor deposition gas, the volume percentages of the first carbon source gas and the second carbon source gas may decrease monotonically according through 3 to 15 steps. Since the thermal insulation zone can be divided into a plurality of reaction zones (for example, 3 to 15 reaction zones) that can independently control the atmosphere, the volume percentages of the first carbon source gas and the second carbon source gas can be regarded as uniform and unchanged in the same reaction zone, and can increase or decrease monotonously between different reaction areas. For example, R1 in the first furnace zone is 15, R2 in the second furnace zone is 12, R3 in the third furnace zone is 9, R4 in the fourth furnace zone is 6, and so on. For another example, R1 in the first furnace zone is 6, R2 in the second furnace zone is 9, R3 in the third furnace zone is 12, R4 in the fourth furnace zone is 15, and so on.
The temperature of the vapor deposition heat treatment in the thermal insulation zone is from 700° C. to 1000° C., and the treatment time is from 3 to 12 hours. After the powder material is vapor-deposited and coated, the silicon-based anode material with a carbon deposition layer have a surface for changes structure can be obtained after cooling down to room temperature under an inert gas condition. The thickness of the carbon deposition layer can be from 10 nm to 150 nm.
Through the chemical vapor deposition reaction, by means of adjusting the staged atmosphere conditions in the vapor deposition reaction furnace, the present application can control the heat treatment time of the reactants under different atmosphere conditions, and achieve the preparation of a silicon material coated with a carbon deposition layer with structural changes on the surface thereof. The carbon deposition layer is tightly coated, which can effectively suppress the volume effect and conductivity of the silicon-based anode material during the battery charging and discharging processes, and thus greatly improve the cycle stability of the material.
The embodiments of the present application further provide a silicon-based anode material prepared according to the preparation method of a silicon-based anode material as provided by the present application. Since the gas composition changes in a stepped manner during the vapor deposition process, the carbon deposition layer formed will also have structural changes. The silicon-based anode material provided by the present application may include a silicon substrate material and a carbon deposition layer, the carbon deposition layer covers the silicon substrate material, where the side of the carbon deposition layer close to the silicon substrate material is more or less dense than the other side of the carbon deposition layer. The silicon substrate material may include one or more of metallurgical silicon, silicon oxide SiOx (0≤x≤1.5), and porous silicon, and the median diameter of the silicon substrate material ranges from 1 μm to 20 μm.
In some embodiments, the density of the carbon deposition layer may increases or decreases monotonously from an inner side thereof to an outer side thereof. Since the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer, the density of the carbon deposition layer formed under different gas volume ratios may also be different. The density of the carbon deposition layer may increase or decrease from the inner side to the outer side as the volume percentage of the first carbon source gas and the second carbon source gas changes.
In some embodiments, the density of the carbon deposition layer may increase or decrease monotonously through 3 to 15 steps. Since the thermal incubation zone can be divided into a plurality of reaction zones (for example, 3 to 15 reaction zones) that can independently control the atmosphere, the volume percentage of the first carbon source gas and the second carbon source gas can be regarded as uniform and unchanged in the same reaction zone, and may increase or decrease monotonously between different reaction areas. The density of the carbon deposition layer formed in the same reaction area can be regarded as approximately unchanged or slightly changed, and the density of the carbon deposition layer formed in different reaction areas can be regarded as having an increasing or decreasing trend.
The present application will be described in more detail in reference to Examples 1 to 6 provided below.
Example 1
(1) Silicon oxide SiO particles are crushed to D50=8 μm by mechanical grinding.
(2) The powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment. The thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, ethylene and benzene. Ethylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 8% of the total gas volume (the total gas volume is the sum of the volumes of argon, ethylene and benzene). Table 1 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone. The vapor deposition temperature is 950° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
TABLE 1
Gas content
in volume Thermal insulation zone
percentage/% 1 2 3 4 5 6 7 8 9 10 11 12
Ethylene 7.50 7.50 7.50 7.50 7.38 7.20 6.86 6.00 6.00 6.00 6.00 6.00
Benzene 0.50 0.50 0.50 0.50 0.62 0.80 1.14 2.00 2.00 2.00 2.00 2.00
R 15 15 15 15 12 9 6 3 3 3 3 3
Example 2
(1) Silicon oxide SiO particles are crushed to D50=8 μm by mechanical grinding.
(2) The powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment. The thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, ethylene and toluene. Ethylene and toluene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 10% of the total gas volume. Table 2 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone. The vapor deposition temperature is 950° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
TABLE 2
Gas content
in volume Thermal insulation zone
percentage/% 1 2 3 4 5 6 7 8 9 10 11 12
Ethylene 9.37 9.37 9.37 9.37 9.23 9.00 8.57 8.00 6.67 6.67 6.67 6.67
Toluene 0.63 0.63 0.63 0.63 0.77 1.00 1.43 2.00 3.33 3.33 3.33 3.33
R 15 15 15 15 12 9 6 4 2 2 2 2
Example 3
(1) Silicon oxide SiO particles are crushed to D50=8 μm by mechanical grinding.
(2) The powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment. The thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, acetylene and benzene. Acetylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 10% of the total gas volume. Table 3 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone. The vapor deposition temperature is 950° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
TABLE 3
Gas content
in volume Thermal insulation zone
percentage/% 1 2 3 4 5 6 7 8 9 10 11 12
Acetylene 9.00 9.00 9.00 9.00 8.57 8.57 7.50 7.50 6.00 6.00 6.00 6.00
Benzene 1.00 1.00 1.00 1.00 1.43 1.43 2.50 2.50 4.00 4.00 4.00 4.00
R 9 9 9 9 6 6 3 3 1.5 1.5 1.5 1.5
Example 4
(1) Silicon oxide SiO particles are crushed to D50=2.5 μm by mechanical grinding.
(2) The powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment. The thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, ethylene and benzene. Ethylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 16% of the total gas volume. Table 4 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone. The vapor deposition temperature is 850° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
TABLE 4
Gas content
in volume Thermal insulation zone
percentage/% 1 2 3 4 5 6 7 8 9 10 11 12
Ethylene 15.00 15.00 15.00 15.00 15.00 15.00 14.77 14.40 13.71 12.00 12.00 12.00
Benzene 1.00 1.00 1.00 1.00 1.00 1.00 1.23 1.60 2.29 4.00 4.00 4.00
R 15 15 15 15 15 15 12 9 6 3 3 3
Example 5
(1) Silicon oxide SiO particles are crushed to D50=2.5 μm by mechanical grinding.
(2) The powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment. The thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, ethylene and benzene. Ethylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 16% of the total gas volume. Table 5 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone. The vapor deposition temperature is 850° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
TABLE 5
Gas content
in volume Thermal insulation zone
percentage/% 1 2 3 4 5 6 7 8 9 10 11 12
Ethylene 15.00 15.00 15.00 15.00 15.00 15.00 14.77 14.40 13.71 12.00 12.00 12.00
Benzene 1.00 1.00 1.00 1.00 1.00 1.00 1.23 1.60 2.29 4.00 4.00 4.00
R 15 15 15 15 9 9 9 9 3 3 3 3
Example 6
(1) Silicon oxide SiO particles are crushed to D50=2.5 μm by mechanical grinding.
(2) The powder obtained in step (1) is loaded in a vapor deposition furnace for a vapor deposition coating treatment. The thermal insulation zone in the vapor deposition furnace has 12 sections with independently controlled atmosphere, and the atmosphere condition is a mixed gas of argon, acetylene and benzene. Acetylene and benzene. Ethylene and benzene are vapor deposition gases, and a total volume of the two vapor deposition gases accounts for 10% of the total gas volume. Table 6 shows the composition and corresponding R values of the 12 different stages of furnace atmosphere in the thermal insulation zone. The vapor deposition temperature is 850° C., and the axial speed of the material is adjusted so that the time for the powder to pass through the thermal insulation zone is 6 hours. After a sample is vapor-deposited and coated, the temperature is reduced to room temperature under nitrogen to obtain a silicon-based anode material with a carbon deposition layer of continuous structural changes on the surface.
TABLE 6
Gas content
in volume Thermal insulation zone
percentage/% 1 2 3 4 5 6 7 8 9 10 11 12
Acetylene 9.00 9.00 9.00 9.00 9.00 9.00 7.50 7.50 7.50 6.00 6.00 6.00
Benzene 1.00 1.00 1.00 1.00 1.00 1.00 2.50 2.50 2.50 4.00 4.00 4.00
R 9 9 9 9 9 9 3 3 3 1.5 1.5 1.5
The silicon-based anode material samples obtained in the above Examples 1 to 6 are then made into button batteries using a lithium sheet as a counter electrode, and the charge cycle test is next performed. The charge and discharge rate was 0.1 C, and the charge and discharge voltage range is from 0.01 V to 1.50 V. The test results obtained are shown in Table 7 below.
TABLE 7
First cycle First cycle Capacity
specific discharge Coulombic retention rate
Sample capacity efficiency after 10 cycles
Example 1 1660.1 76.3% 78.4%
Example 2 1645.4 76.7% 80.9%
Example 3 1670.3 77.5% 71.5%
Example 4 1464.3 74.6% 68.8%
Example 5 1476.8 74.3% 64.7%
Example 6 1512.4 73.5% 57.6%
It can be seen from the test data shown in Table 7 that in Examples 1 to 3, the volume percentages of the first carbon source gas and the second carbon source gas decrease sequentially; as a result, the density of the formed carbon deposition layer increases sequentially, and the effect of inhibiting the expansion of the internal core structure is also more significantly in this order, which is beneficial to the improvement of the cycle performance. The smooth and dense carbon deposition layer is beneficial to the formation of a stable SEI film, which is further beneficial to improve the Coulombic efficiency.
Moreover, in Example 2, as the number of sub-layer structures in the carbon deposition layer increases, the cycle performance of the silicon-based anode material becomes better. In Example 3, the volume percentage content of the second carbon source gas benzene accounts for a relatively larger percentage. As a result, a smooth and dense carbon deposition layer is formed, which is beneficial to the formation of an SEI film. Thus, it first cycle Coulombic efficiency has been improved to some extent, but its carbon deposition layer has fewer sub-layer structures, accordingly, its cycle performance is reduced compared to that of Example 2. Compared with Example 2, both the carbon content and the number of sub-layer structures in the carbon deposition layer in Example 1 are slightly lower, accordingly, its capacity is improved, but the cycle number is slightly reduced.
In Examples 5 and 6, the cycle performance of the silicon-based anode material is lower than those of Examples 1 to 3; this is due to the fact that the median diameter of their silicon substrate material particles has been changed. When the median diameter of the anode active material particle is 2.5 μm, the specific surface area increases, so the surface reaction accompanying the charge and discharge cycles increases, and the formation of the SET film would consume more Li+, thereby reducing the cycle characteristics and the first cycle Coulombic efficiency. When the median particle size is 8 μm, it can prevent the active material from cracking during the charging and discharging processes and thus the newly formed new surface is reduced. As a result, the amount of side reactions is reduced, and the cycle performance and first cycle Coulombic efficiency are improved. When comparing Example 5 with Example 6, the number of carbon sub-layer structures in Example 5 is higher than that in Example 6, and thus its cycle performance is better. In Example 6, because the median particle size of the silicon-based material is 2.5 μm, its specific surface area is larger, 10% volume fraction of carbon source coating results in low carbon content, further it has a lower number of carbon sub-layer structures. As a result, it has poorer cycle performance and lower first cycle Coulombic efficiency. However, since its Si/C ratio is higher as compared to Examples 4 and 5, its capacity has been increased accordingly.
In summary, after reading the detailed disclosure provided above, a person skilled in the art will understand that the disclosures are merely some example, and do not limit the present application. Moreover, although not explicitly stated herein, a skilled in the art will understand that the present invention is intended to cover various changes, modifications and improvements of the embodiments. These changes, modifications and improvements are intended to be proposed in the present application and are within the spirit and scope of the exemplary embodiments of the present application.
It will be appreciated by a person of ordinary skill in the art that the term “and/or” used herein includes any and all combinations of one or more of the related items listed.
It will also be appreciated by a person of ordinary skill in the art that the terms “comprise”, “comprising”. “include” and/or including, when used herein, refer to the presence of stated features, entities, steps, operations, elements and/or assemblies, but do not exclude the presence or addition of one or more other features, entities, steps, operations, elements, assemblies and/or combinations thereof.
It should also be understood that although the terms “first”, “second”, “third”, etc. may be used herein to describe various elements, these elements may not be limited by these terms. These terms are merely used to distinguish one element from another. Thus, a first element in some embodiments may be referred to as a second element in other embodiments without departing from the teachings of the present application. Moreover, the same reference symbols or reference numerals are used throughout entire disclosure to represent the same elements.
Furthermore, the exemplary embodiments are described by referring to the cross sectional and/or planar illustrations as the idealized exemplary illustration.

Claims (13)

What is claimed is:
1. A method for preparing a silicon-based anode material, comprising:
passing a silicon substrate material through a vapor deposition gas to coat a surface of the silicon substrate material with a carbon deposition layer of a certain thickness, wherein the vapor deposition gas includes a first carbon source gas and a second carbon source gas,
wherein, a volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas increases or decreases at different reaction stages for forming the carbon deposition layer, a side of the carbon deposited layer close to the silicon base material is more or less dense than the other side of the carbon deposited layer.
2. The method for preparing a silicon-based anode material according to claim 1, characterized in that the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases at different reaction stages for forming the carbon deposition layer.
3. The method for preparing a silicon-based anode material according to claim 1, characterized in that the volume percentage of the first carbon source gas and the second carbon source gas in the vapor-deposited gas increases or decreases in a stepped manner at different reaction stages for forming the carbon deposition layer.
4. The method for preparing a silicon-based anode material according to any one of claim 1, characterized in that the first carbon source gas is acetylene, ethylene or a combination thereof, and the second carbon source gas is benzene, toluene or a combination thereof.
5. The method for preparing a silicon-based anode material according to claim 1, characterized in that the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas varies between 0 and 20.
6. The method for preparing a silicon-based anode material according to claim 1, characterized in that the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas monotonously increases or decreases between 0 and 20.
7. The method for preparing a silicon-based anode material according to claim 1, characterized in that the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases in a gradient manner from 5-20 to 0-5, or increases in a gradient manner from 0-5 to 5-20.
8. The method for preparing a silicon-based anode material according to claim 1, characterized in that the volume percentage of the first carbon source gas and the second carbon source gas in the vapor deposition gas decreases monotonically through 3 to 15 steps.
9. The method for preparing a silicon-based anode material according to claim 1, characterized in that the method is performed in an inert atmosphere, and the volume of the first carbon source gas and the second carbon source gas accounts for 1-30% of the volume percentage of the atmosphere in total.
10. The method for preparing a silicon-based anode material according to claim 1, characterized in that the silicon substrate material is selected from the group consisting of a metallurgical silicon, a silicon oxide SiOx (0≤x≤1.5), a porous silicon and a mixture thereof, and a median diameter of the silicon substrate material ranges from 1 μm to 20 μm.
11. The method for preparing a silicon-based anode material according to claim 10, characterized in that the silicon substrate material further includes a compound of the general formula MSiOy, wherein 0.85<y≤3; M is any one or more of Li, Na, Mg, Al, Fe and Ca.
12. The method for preparing a silicon-based anode material according to claim 1, characterized in that a reaction temperature of the method is 700° C. to 1000° C., and a reaction time thereof is 3 to 12h.
13. The method for preparing a silicon-based anode material according to claim 1, characterized in that a thickness of the carbon deposition layer is 10 nm to 150 nm.
US16/954,513 2019-12-30 2019-12-30 Silicon-based anode material and preparation method thereof, lithium ion battery Active US11658292B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129889 WO2021134198A1 (en) 2019-12-30 2019-12-30 Silicon-based negative electrode material and preparation method therefor and lithium-ion battery

Publications (2)

Publication Number Publication Date
US20220328806A1 US20220328806A1 (en) 2022-10-13
US11658292B2 true US11658292B2 (en) 2023-05-23

Family

ID=70507773

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/954,513 Active US11658292B2 (en) 2019-12-30 2019-12-30 Silicon-based anode material and preparation method thereof, lithium ion battery

Country Status (4)

Country Link
US (1) US11658292B2 (en)
CN (1) CN111133614B (en)
CA (1) CA3203562C (en)
WO (1) WO2021134198A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363479A (en) * 2021-03-31 2021-09-07 万向一二三股份公司 Double-layer carbon-coated silicon oxide negative electrode material and preparation method and application thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153384A (en) 2006-09-28 2008-04-02 中南大学 Method for manufacturing unit doublet carbide codeposition fibre-reinforced composite
CN101215182A (en) * 2008-01-09 2008-07-09 西安航天复合材料研究所 Device and method for preparing carbon/carbon composite material with gradient distribution density
CN103390750A (en) 2013-07-26 2013-11-13 合肥国轩高科动力能源股份公司 Method for preparing lithium iron phosphate positive material
CN103700819A (en) 2013-12-30 2014-04-02 合肥国轩高科动力能源股份公司 Preparation method of silicon composite anode material provided with gradient change coating layer on surface
CN104488126A (en) 2012-08-01 2015-04-01 株式会社Lg化学 Electrode assembly for secondary battery and lithium secondary battery comprising same
CN105742613A (en) 2016-04-18 2016-07-06 宁德新能源科技有限公司 Negative pole piece and lithium-ion battery
KR20160122937A (en) 2015-04-14 2016-10-25 한경대학교 산학협력단 Electrospun carbon nanofibers for anode material for lithium ion secondary batteries and method for preparing the same
CN107293719A (en) 2017-06-26 2017-10-24 合肥国轩高科动力能源有限公司 A kind of Si-C composite material preparation method for negative electrode of lithium ion battery
CN107845785A (en) 2016-09-19 2018-03-27 三星电子株式会社 Porous silicon compound cluster, its preparation method and its carbon complex and each include its electrode, lithium battery and device
JP2018081923A (en) 2017-12-25 2018-05-24 戸田工業株式会社 Silicon-containing amorphous carbon material and lithium ion secondary battery
US20180145316A1 (en) 2016-11-18 2018-05-24 Samsung Electronics Co., Ltd. Porous silicon composite cluster structure, method of preparing the same, carbon composite using the same, and electrode, lithium battery, and device each including the same
CN109994717A (en) 2018-01-03 2019-07-09 三星电子株式会社 Containing silicon compound and preparation method thereof, respectively including its carbon complex, electrode, lithium battery and equipment
CN110085856A (en) * 2018-01-26 2019-08-02 三星电子株式会社 Containing silicon structure body, preparation method, using its carbon complex and respectively including its electrode, lithium battery and equipment
CN110380029A (en) 2019-07-10 2019-10-25 泽晖新能源材料研究院(珠海)有限公司 Lithium battery silicon based anode material and preparation method thereof
CN110400930A (en) 2019-08-15 2019-11-01 马鞍山科达普锐能源科技有限公司 A kind of lithium-ion battery silicon-carbon anode material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1573835B1 (en) * 2002-11-26 2017-05-03 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
CN108232145B (en) * 2017-10-23 2020-09-15 中航锂电(洛阳)有限公司 Silicon oxide composite material with space buffering and lithium doping functions, preparation method of silicon oxide composite material and lithium ion battery

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153384A (en) 2006-09-28 2008-04-02 中南大学 Method for manufacturing unit doublet carbide codeposition fibre-reinforced composite
CN101215182A (en) * 2008-01-09 2008-07-09 西安航天复合材料研究所 Device and method for preparing carbon/carbon composite material with gradient distribution density
CN104488126A (en) 2012-08-01 2015-04-01 株式会社Lg化学 Electrode assembly for secondary battery and lithium secondary battery comprising same
CN103390750A (en) 2013-07-26 2013-11-13 合肥国轩高科动力能源股份公司 Method for preparing lithium iron phosphate positive material
CN103700819A (en) 2013-12-30 2014-04-02 合肥国轩高科动力能源股份公司 Preparation method of silicon composite anode material provided with gradient change coating layer on surface
KR20160122937A (en) 2015-04-14 2016-10-25 한경대학교 산학협력단 Electrospun carbon nanofibers for anode material for lithium ion secondary batteries and method for preparing the same
CN105742613A (en) 2016-04-18 2016-07-06 宁德新能源科技有限公司 Negative pole piece and lithium-ion battery
CN107845785A (en) 2016-09-19 2018-03-27 三星电子株式会社 Porous silicon compound cluster, its preparation method and its carbon complex and each include its electrode, lithium battery and device
US20180145316A1 (en) 2016-11-18 2018-05-24 Samsung Electronics Co., Ltd. Porous silicon composite cluster structure, method of preparing the same, carbon composite using the same, and electrode, lithium battery, and device each including the same
CN108075117A (en) 2016-11-18 2018-05-25 三星电子株式会社 Porous silicon compound clustering architecture body, its preparation method, the carbon complex with it and its each self-contained electrode, lithium battery and device
CN107293719A (en) 2017-06-26 2017-10-24 合肥国轩高科动力能源有限公司 A kind of Si-C composite material preparation method for negative electrode of lithium ion battery
JP2018081923A (en) 2017-12-25 2018-05-24 戸田工業株式会社 Silicon-containing amorphous carbon material and lithium ion secondary battery
CN109994717A (en) 2018-01-03 2019-07-09 三星电子株式会社 Containing silicon compound and preparation method thereof, respectively including its carbon complex, electrode, lithium battery and equipment
CN110085856A (en) * 2018-01-26 2019-08-02 三星电子株式会社 Containing silicon structure body, preparation method, using its carbon complex and respectively including its electrode, lithium battery and equipment
CN110380029A (en) 2019-07-10 2019-10-25 泽晖新能源材料研究院(珠海)有限公司 Lithium battery silicon based anode material and preparation method thereof
CN110400930A (en) 2019-08-15 2019-11-01 马鞍山科达普锐能源科技有限公司 A kind of lithium-ion battery silicon-carbon anode material and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Feng Xuejiao, Yang Jun, Nuli Yanna, Wang Jiulin: "Synthesis and Lithium Storage Performance of Porous Silicon/Carbon Composite Material from SiCl4" in: "Chinese Journal of Inorganic Chemistry", Nov. 10, 2013 (Nov. 10, 2013), vol. 29 No. 11.
Liu Bonan, Xu Quan, Chu Geng, Lu Hao, Yin Yaxia, Luo Fei, Zheng Jieyun, Guo Yuguo, Li Hong: "Research progress on the nano-Si/C materials with high capacity for lithium-iom battery" in: "Energy Storage Science and Technology", Jun. 29, 2016 (Jun. 29, 2016), vol. 5 No.4.
Notification of Second Office Action (in China), dated Feb. 15, 2023.

Also Published As

Publication number Publication date
CA3203562A1 (en) 2021-07-08
CN111133614A (en) 2020-05-08
US20220328806A1 (en) 2022-10-13
CN111133614B (en) 2024-02-23
CA3203562C (en) 2024-03-19
WO2021134198A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
EP3907792A1 (en) Silicon composite negative electrode material and preparation method therefor, and lithium ion battery
CN111653737B (en) Silicon oxide composite material with gradient pre-lithiation structure and preparation method and application thereof
CN108232141B (en) High-compaction lithium ion battery silicon-carbon composite negative electrode material and preparation method thereof
KR101348547B1 (en) Surface coated lithium titanate powder and fabricating method thereof
CN109449406B (en) SiO with multi-layer structurexNegative electrode material and preparation method and application thereof
WO2022205667A1 (en) Silicon-based negative electrode material, and preparation method therefor and application thereof
CN110224118A (en) Compound manganese and oxygen compound film and the preparation method and application thereof
CN109148851B (en) Silicon-carbon composite negative electrode material modified by double carbon structure and preparation method thereof
CN113023734A (en) Porous nitrogen-doped silicon-based negative electrode material and preparation method thereof, negative electrode plate and lithium ion battery
CN108336301A (en) A kind of high-performance sodium-ion battery cathode and preparation method thereof
CN113363479A (en) Double-layer carbon-coated silicon oxide negative electrode material and preparation method and application thereof
US11658292B2 (en) Silicon-based anode material and preparation method thereof, lithium ion battery
CN113346192B (en) Lithium ion battery composite diaphragm and preparation method and application thereof
CN110783556A (en) Composite three-dimensional composite structure film and preparation method and application thereof
CN114843491A (en) High-capacity and high-cycle-stability cathode material and preparation method thereof
CN109935781B (en) Positive electrode structure, preparation method thereof and lithium battery
CN114864897A (en) Quick-charging graphite composite material and preparation method thereof
CN114464785A (en) Carbon-coated silicon monoxide negative electrode material, preparation method thereof and lithium ion battery
CN114497507A (en) Quick-filling graphite composite material and preparation method thereof
KR101298128B1 (en) Fabrication method of Li-ion battery anode using Sn-SnO hybrid nanostructures
CN111925232A (en) Graphite surface silicon/carbon double-layer coated negative electrode material and preparation method thereof
KR102616046B1 (en) Core-shell anode active material having multi-layer structure and manufacturing method thereof
CN114552032B (en) Manufacturing and using method of positive electrode pre-lithiation additive of lithium ion energy storage device
CN113224303B (en) Preparation method of iron cyanamide material for realizing graphitized carbon coating by in-situ autocatalysis
CN109920997B (en) Cobalt lithium phosphate material for all-solid-state battery and manufacturing method thereof

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: EX PARTE QUAYLE ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO EX PARTE QUAYLE ACTION ENTERED AND FORWARDED TO EXAMINER

STCF Information on status: patent grant

Free format text: PATENTED CASE