US11616631B2 - Integrated circuit with radio frequency interconnect - Google Patents

Integrated circuit with radio frequency interconnect Download PDF

Info

Publication number
US11616631B2
US11616631B2 US15/931,273 US202015931273A US11616631B2 US 11616631 B2 US11616631 B2 US 11616631B2 US 202015931273 A US202015931273 A US 202015931273A US 11616631 B2 US11616631 B2 US 11616631B2
Authority
US
United States
Prior art keywords
rfi
data signal
transceiver
signal
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/931,273
Other versions
US20200274685A1 (en
Inventor
Huan-Neng CHEN
William Wu Shen
Chewn-Pu Jou
Feng Wei KUO
Lan-Chou Cho
Tze-Chiang HUANG
Jack Liu
Yun-Han Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US15/931,273 priority Critical patent/US11616631B2/en
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD. reassignment TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, HUAN-NENG, CHO, LAN-CHOU, JOU, CHEWN-PU, KUO, FENG WEI, HUANG, TZE-CHIANG, LEE, YUN-HAN, LIU, JACK, SHEN, WILLIAM WU
Publication of US20200274685A1 publication Critical patent/US20200274685A1/en
Priority to US18/190,881 priority patent/US20230239129A1/en
Application granted granted Critical
Publication of US11616631B2 publication Critical patent/US11616631B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • a packaged integrated circuit there are many individual devices such as a memory, an analog-to-digital converter, wireless communication devices, an application processor, and so forth.
  • the individual devices often communicate with each other by a bus such as Serial Peripheral Interface (SPI) or Inter-Integrated Circuit (I 2 C).
  • SPI Serial Peripheral Interface
  • I 2 C Inter-Integrated Circuit
  • some devices communicate by a radio frequency interconnect (RFI).
  • RFID radio frequency interconnect
  • FIG. 1 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • FIG. 2 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • FIG. 3 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • FIG. 4 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • FIG. 5 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • FIG. 6 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • FIG. 7 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • FIG. 8 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • FIG. 9 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • FIG. 10 is a method of communicating in an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
  • first and second features are formed in direct contact
  • additional features may be formed between the first and second features, such that the first and second features may not be in direct contact
  • present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • Radio frequency interconnects are usable in integrated circuits that are packaged by a 2D, a 2.5D, or a 3D packaging technique.
  • RFI's help to conserve space by reducing a number of electrical interconnects used to couple the components with one another.
  • an integrated circuit having the features described in the discussed embodiments is capable of being physically smaller in size compared to an integrated circuit that includes components connected by other interconnection techniques.
  • RFI's help to reduce power consumption because of the reduced number of electrical interconnects used to couple the components with one another.
  • an integrated circuit having the features described in the discussed embodiments is capable of consuming a lesser amount of power compared to an integrated circuit that includes components connected by other interconnection techniques.
  • an RFI connects individual components of an integrated circuit by a transmission line or channel.
  • an RFI connects individual components of an integrated circuit by a single-ended transmission line.
  • a single device using a large bandwidth and/or being associated with having a high data transfer rate e.g., a memory
  • a processor is coupled to a processor by an RFI having a transmission line.
  • two or more devices that use a lower bandwidth and/or are associated with a lower data transfer rate compared to a larger-bandwidth device are coupled to the processor by an RFI having a transmission line.
  • the transmission line includes two conductive lines suitable to transmit a signal in a differential mode.
  • the transmission line is a coplanar waveguide.
  • FIG. 1 is a block diagram of an integrated circuit 100 having an RFI, in accordance with one or more embodiments.
  • Integrated circuit 100 comprises a first device 101 communicatively coupled with a second device 103 , a third device 105 and a fourth device 107 .
  • First device 101 is coupled with second device 103 by a first RFI 109 comprising a transceiver 109 a , a transceiver 109 b , and a first channel 109 c .
  • One of the first device 101 or second device 103 is configured to transmit or receive a first signal S 1 to the other of the first device 101 or second device 103 by first channel 109 .
  • first channel 109 c includes a differential transmission line, a single-ended transmission line or a waveguide.
  • First signal S 1 includes data, signaling or command information.
  • First device 101 is coupled with third device 105 by a second RFI 111 comprising a transceiver 111 a , a transceiver 111 b , and a second channel 115 .
  • One of the first device 101 or third device 105 is configured to transmit or receive a second signal S 2 to the other of the first device 101 or third device 105 by second channel 115 .
  • Second signal S 2 includes data, signaling or command information.
  • First device 101 is also coupled with fourth device 107 by a third RFI 113 comprising a transceiver 113 a , a transceiver 113 b , and second channel 115 .
  • Second RFI 111 and third RFI 113 are configured to share second channel 115 .
  • One of the first device 101 or fourth device 107 is configured to transmit or receive a third signal S 3 to the other of the first device 101 or fourth device 107 by second channel 115 .
  • Third signal S 3 includes data, signaling or command information.
  • Second channel 115 includes a first channel portion 111 ca / 111 cb (collectively referred to herein as channel portion 111 c ), a second channel portion 113 ca / 113 cb (collectively referred to herein as second channel portion 113 ) and a central channel portion 115 a .
  • second channel 115 includes a differential transmission line, a single-ended transmission line or a waveguide.
  • at least one of first channel portion 111 c , second channel portion 113 c or central channel portion 115 a includes a differential transmission line, a single-ended transmission line or a waveguide.
  • Second channel 115 is a channel usable by each of second RFI 111 and third RFI 113 . Because at least the second RFI 111 and the third RFI 113 share second channel 115 , integrated circuit 100 is capable of physically occupying a smaller amount of space than if integrated circuit 100 included an entirely separate channel for each individual RFI included therein.
  • First signal S 1 has a first data rate D 1
  • second signal S 2 has a second date rate D 2
  • third signal S 3 has a third data rate D 3
  • First data rate D 1 , second date rate D 2 or third data rate D 3 are associated with the corresponding second device 103 , the third device 105 , or the fourth device 107 .
  • second data rate D 2 is different from first data rate D 1
  • third data rate D 3 is different from the first data rate D 1 .
  • the first device 101 , the second device 103 , the third device 105 and the fourth device 107 are positioned over a single substrate 117 . In some embodiments, one or more of the first device 101 , the second device 103 , the third device 105 or the fourth device 107 are over one or more of separate substrates 117 a - 117 d .
  • first device 101 , second device 103 , third device 105 or fourth device 107 comprise at least one of a memory device, a wireless communication device, e.g., a Bluetooth® module, a Zigbee® module, an IEEE 802.11 wireless networking module, or another suitable wireless communication device, an analog-to-digital converter, a digital-to-analog converter, a sensor module, a discrete application processor for performing operations in a low power state, a hardware processor, a memory controller, or another suitable device.
  • a wireless communication device e.g., a Bluetooth® module, a Zigbee® module, an IEEE 802.11 wireless networking module, or another suitable wireless communication device, an analog-to-digital converter, a digital-to-analog converter, a sensor module, a discrete application processor for performing operations in a low power state, a hardware processor, a memory controller, or another suitable device.
  • first device 101 is a processor.
  • second device 103 , third device 105 , and fourth device 107 are, for example, the same or different devices configured to support different data rates compared to one another.
  • first RFI 109 is configured to support a data rate greater than second RFI 111 or third RFI 113 .
  • Second RFI 111 is configured to support a data rate that is less than, equal to or greater than third RFI 113 .
  • first RFI 109 is configured to support a data rate that is greater than about 6.93 Gbps
  • second RFI 111 is configured to support a data rate that is less than about 54 Mbps
  • third RFI 113 is configured to support a data rate that is greater than about 54 Mbps and less than about 6.93 Gbps.
  • the aforementioned values and ranges of the supported data rates are examples to demonstrate the differences in capabilities of the first RFI 109 , second RFI 111 and third RFI 113 for ease of discussion, and in no way restrict the integrated circuit 100 from including one or more RFIs or devices configured to support different data rates.
  • the transceivers 109 a , 109 b of the first RFI 109 are included as transceiver pairs in the first device 101 and the second device 103 .
  • the transceivers 111 a , 111 b of the second RFI 111 are included as transceiver pairs in the first device 101 and the third device 105 .
  • the transceivers 113 a , 113 b of the third RFI 113 are included as transceiver pairs in the first device 101 and the fourth device 107 .
  • the transceivers of the first RFI 109 , the second RFI 111 and the third RFI 113 are communicatively coupled with the first device 101 , the second device 103 , the third device 105 and the fourth device 107 .
  • one or more of the transceivers e.g., transceivers 109 a , 109 b 111 a , 111 b , 113 a or 113 b ) of the first RFI 109 , the second RFI 111 or the third RFI 113 are configured to be transmitters or receivers.
  • the integrated circuit 100 is configured such that the first RFI 109 , the second RFI 111 and the third RFI 113 are configured to facilitate uni-directional communications
  • the transceivers 109 a , 111 a , 113 a included in the first device 101 are configured as transmitters and the transceivers 109 b , 111 b , 113 b included in the corresponding second device 103 , the third device 105 and the fourth device 107 are configured as receivers.
  • one or more of the first RFI 109 , the second RFI 111 or the third RFI 113 are configured to facilitate bi-directional communications.
  • First RFI 109 is configured to carry the first signal S 1 between the first device 101 and the second device 103 .
  • Second RFI 111 is configured to carry the second signal S 2 between the first device 101 and the third device 105 .
  • Third RFI 113 is configured to carry the third signal S 3 between the first device 101 and the fourth device 109 .
  • Each of the transceivers (e.g., transceivers 109 a , 109 b 111 a , 111 b , 113 a or 113 b ) of the first RFI 109 , the second RFI 111 and the third RFI 113 comprise one or more carrier generators (not shown).
  • the transceivers 109 a , 109 b 111 a , 111 b , 113 a or 113 b of the first RFI 109 , the second RFI 111 and the third RFI 113 are configured to modulate data to be transmitted to one of the first device 101 , the second device 103 , the third device 105 or the fourth device 107 based on carrier signals generated by the one or more carrier generators.
  • the transceivers 109 a , 109 b 111 a , 111 b , 113 a or 113 b of the first RFI 109 , the second RFI 111 and the third RFI 113 are configured to demodulate a received first signal, a received second signal, or a received third signal based on carrier signals generated by the one or more carrier generators.
  • the first signal S 1 is generated based on one or more carrier signals of a set of N carrier signals, where N is an integer greater than 1.
  • the second signal S 2 is generated based on one or more carrier signals of a first set of carrier signals.
  • the third signal S 3 is generated based on one or more carrier signals of a second set of carrier signals.
  • the first set and the second set together form a set of M carrier signals, where M is an integer greater than 2.
  • the first set or the second set of carrier signals includes at least one. In some embodiments, the sum of the first set and the second set of carrier signals is equal to the set of M carrier signals.
  • the set of N carrier signals is equal to, greater than or equal to the set of M carrier signals.
  • the second set of carrier signals comprises at least one carrier signal different from a carrier signal included in the first set of carrier signals. In some embodiments, each of the carrier signals in the second set of carrier signals is different from each of the carrier signals included in the first set of carrier signals.
  • a size of the first set of carrier signals, utilized to generate the second signal S 2 is related to the data rate supported by the second RFI 111 .
  • a size of the second set of carrier signals, utilized to generate the third signal S 3 is related to the data rate supported by the third RFI 113 .
  • a transceiver e.g., transceiver 109 a , 109 b , 111 a , 111 b , 113 a or 113 b
  • the one or more transceivers e.g., transceiver 109 a , 109 b , 111 a , 111 b , 113 a or 113 b
  • the first signal e.g., first signal S 1
  • the second signal e.g., second signal S 2
  • the third signal e.g., third signal S 3
  • first device 101 or second device 103 is configured to generate the first data signal S 1 based on a selected quantity of carrier signals of the one or more carrier signals included in the third set of carrier signals.
  • the selected quantity of carrier signals is based on the first data rate D 1 supported by the first RFI 109 .
  • first RFI 109 is configured to identify an output signal generated by the first device 101 or second device 103 , as being the first signal S 1 based, at least in part, on the first data rate D 1 associated with the second device 103 .
  • second RFI 111 is configured to identify an output signal generated by the first device 101 or third device 105 , as being the second signal S 2 based, at least in part, on the second data rate D 2 associated with the third device 105 .
  • third RFI 113 is configured to identify an output signal generated by the first device 101 or fourth device 107 , as being the third signal S 3 based, at least in part, on the third data rate D 3 associated with the fourth device 107 .
  • one or more of the first RFI 109 , the second RFI 111 or the third RFI 113 are configured to communicate the corresponding first signal S 1 , the second signal S 2 , or the third signal S 3 based on frequency-division duplexing (FDD).
  • the second RFI 111 and the third RFI 113 are configured to share second channel 115 based on FDD.
  • the second RFI 111 is configured to communicate the second signal S 2 between the first device 101 and the third device 105
  • the third RFI 113 is configured to communicate the third data S 3 signal between the first device 101 and the fourth device 107 based on FDD.
  • a fundamental frequency of the second signal S 2 is not equal to a fundamental frequency of the third signal S 3 .
  • FDD allows for bi-directional communication through one or more of the first RFI 109 , the second RFI 111 or the third RFI 113 .
  • the transceivers 111 a , 111 b of the second RFI 111 or the transceivers 113 a , 113 b of the third RFI 113 are configured to distinguish between the second signal S 2 and the third signal S 3 transmitted through second channel 115 based on a fundamental frequency of the second signal S 2 and the third signal S 3 .
  • the second RFI 111 and the third RFI 113 are configured to distinguish between the second signal S 2 and the third signal S 3 communicated through second channel 115 based on a frequency of the second signal S 2 and a frequency of the third signal S 3 .
  • the frequency of the second signal S 2 is based on at least one of the carrier signals of the first set of carrier signals
  • the frequency of the third signal S 3 is based on at least one of the carrier signals of the second set of carrier signals.
  • one or more of the first RFI 109 , the second RFI 111 or the third RFI 113 is configured to cause the first signal S 1 , the second signal S 2 or the third signal S 3 to be communicated from a transmitting device to an intended receiving device based on the frequency of the data signal.
  • the second RFI 111 is configured to cause the second signal S 2 to be communicated between the first device 101 and the third device 105 based on the frequency of the second signal S 2
  • the third RFI 113 is configured to cause the third signal S 3 to be communicated between the first device 101 and the fourth device 107 based on the frequency of the third signal S 3 .
  • second RFI 111 and third RFI 113 are configured to share second channel 115 based on time-division duplexing (TDD).
  • TDD time-division duplexing
  • a time of transmission of the second signal S 2 is not equal to a time of transmission of the third signal S 3 .
  • the transceivers 109 a , 109 b of first RFI 111 are configured to share second channel 115 based on TDD.
  • one or more of the first RFI 109 , the second RFI 111 or the third RFI 113 comprise switches.
  • the second RFI 111 and the third RFI 113 comprise a plurality of switches configured to selectively cause the second signal S 2 to be communicated between the first device 101 and the third device 105 over second channel 115 , or to selectively cause the third signal S 3 to be communicated between the first device 101 and the fourth device 107 over second channel 115 .
  • the switches are controlled by way of a control signal (shown in FIG. 4 ).
  • the second RFI 111 and the third RFI 113 are configured to control the switches of the plurality of switches based on a control signal associated with a timing of communicating the second signal S 2 or the third signal S 3 .
  • TDD makes it possible to coordinate a direction of communication through the second channel 115 .
  • the second channel 115 shared by the second RFI 111 and the third RFI 113 comprises a first unidirectional coupler configured to facilitate a transmission from the first device 101 to the third device 105 and from the first device 101 to the fourth device 107 , and a second unidirectional coupler configured to facilitate a transmission from the third device 105 to the first device 101 and from the fourth device 107 to the first device 101 .
  • the first RFI 109 , the second RFI 111 and the third RFI 113 are configured to communicate the first signal S 1 between the first device 101 and the second device 103 , to communicate the second signal S 2 between the first device 101 and the third device 105 , or to communicate the third signal S 3 between the first device 101 and the fourth device 107 based on a handshake.
  • the handshake is utilized to identify a transmitting transceiver (e.g., transceiver 109 a , 109 b , 111 a , 111 b , 113 a or 113 b ) of one of the first device 101 , the second device 103 , the third device 105 or the fourth device 107 , and identify a receiving transceiver as a different one of the first device 101 , the second device 103 , the third device 105 or the fourth device 107 .
  • a transmitting transceiver e.g., transceiver 109 a , 109 b , 111 a , 111 b , 113 a or 113 b
  • second channel 115 comprises a plurality of junctions configured to direct the second signal S 2 or the third signal S 3 to an intended receiver of the first device 101 , the third device 105 , or the fourth device 107 based, at least in part, on the frequency of the second signal S 2 , or the frequency of the third signal S 3 .
  • first channel 109 comprises a plurality of junctions configured to direct the first signal S 1 to an intended receiver of the first device 101 based, at least in part, on the frequency of the first signal S 1 .
  • the second channel 115 is divided into two channels (e.g., a first separate channel and a second separate channel) such that the second RFI 111 and the third RFI 113 do not share a common channel (e.g., second channel 115 ).
  • the second RFI 111 includes the first separate channel and the third RFI 113 includes the second separate channel.
  • the second RFI 111 or the third RFI 113 is configured in a manner similar to that of the first RFI 109 .
  • the transceivers of the first RFI 109 , the second RFI 111 or the third RFI 113 are configured in a manner to support FDD or TDD.
  • FIG. 2 is a block diagram of an integrated circuit 200 having an RFI, in accordance with one or more embodiments.
  • Integrated circuit 200 comprises features similar to the features discussed with respect to integrated circuit 100 ( FIG. 1 ), with the reference numerals increased by 100.
  • Integrated circuit 200 differs from integrated circuit 100 in that the first RFI 209 , the second RFI 211 and the third RFI 213 are configured to facilitate uni-directional communications.
  • first RFI 209 includes a first transmitter 209 a , a first receiver 209 b and a first channel 209 c
  • second RFI 211 includes a second transmitter 211 a , a second receiver 211 b and a second channel 215
  • third RFI 213 includes a third receiver 213 a , a third receiver 213 b and a second channel 215 .
  • integrated circuit 200 is capable of physically occupying a smaller amount of space than if integrated circuit 200 included an entirely separate channel for each individual RFI included therein.
  • First transmitter 209 a is configured to transmit first signal S 1 to first receiver 209 b by channel 209 .
  • Second transmitter 211 a is configured to transmit second signal S 2 to second receiver 211 b by second channel 215 .
  • Third transmitter 213 a is configured to transmit third signal S 3 to third receiver 213 b by second channel 215 .
  • FIG. 3 is a block diagram of an integrated circuit 300 having an RFI, in accordance with one or more embodiments.
  • Integrated circuit 300 comprises features similar to the features discussed with respect to integrated circuit 100 ( FIG. 1 ), with the reference numerals increased by 200.
  • the first RFI 309 , the second RFI 311 and the third RFI 313 are configured to facilitate bi-directional communications.
  • integrated circuit 300 is capable of physically occupying a smaller amount of space than if integrated circuit 300 included an entirely separate channel for each individual RFI included therein.
  • FIG. 4 is a block diagram of an integrated circuit 400 having an RFI, in accordance with one or more embodiments.
  • Integrated circuit 400 comprises features similar to the features discussed with respect to integrated circuit 100 ( FIG. 1 ), with the reference numerals increased by 300.
  • Integrated circuit 400 differs from integrated circuit 100 in that the first RFI 409 , the second RFI 411 and the third RFI 413 comprise switches 419 a - 419 f.
  • Switches 419 a - 419 b are configured to be selectively controlled based on a corresponding control signal CSa, CSb to coordinate the transmission of the first signal S 1 through first channel 409 c based on TDD.
  • Switches 419 c - 419 f are configured to be selectively controlled based on a corresponding control signal CSc, CSd, CSe, CSf to coordinate the transmission of second signal S 2 through second channel 415 , and the transmission of third signal S 3 through second channel 415 based on TDD.
  • TDD makes it possible to coordinate a direction of communication through the first channel 409 c and the second channel 415 .
  • First channel 409 c is a first differential transmission line 421 a and second channel 415 is a second differential transmission line 421 b .
  • first channel 409 c or second channel 415 is a waveguide.
  • first channel 409 c or second channel 415 is a single-ended transmission line.
  • integrated circuit 400 is capable of physically occupying a smaller amount of space than if integrated circuit 400 included an entirely separate channel for each individual RFI included therein.
  • the second channel 415 is divided into two channels (e.g., a first separate channel and a second separate channel) such that the second RFI 411 and the third RFI 413 do not share a common channel (e.g., second channel 415 ).
  • the second RFI 411 includes the first separate channel and the third RFI 413 includes the second separate channel.
  • the second RFI 411 or the third RFI 413 is configured in a manner similar to that of the first RFI 409 (as described above).
  • FIG. 5 is a diagram of an integrated circuit 500 having an RFI, in accordance with one or more embodiments.
  • Integrated circuit 500 comprises features similar to the features discussed with respect to integrated circuit 400 ( FIG. 4 ), with the reference numerals increased by 100.
  • Integrated circuit 500 differs from integrated circuit 400 in that the first RFI 409 is not included.
  • Transceiver 511 a is configured to transmit second signal S 2 to transceiver 511 b of second RFI 511 .
  • Transceiver 513 a is configured to transmit third signal S 3 to transceiver 513 b of third RFI 513 .
  • second signal S 2 is generated based on a first carrier signal and a second carrier signal.
  • third signal S 3 is generated based on a fifth carrier signal.
  • Switches 519 b - 519 c and 519 e - 519 f are configured to be selectively controlled based on a control signal (shown in FIG. 4 ) to coordinate the transmission of second signal S 2 and third signal S 3 through second channel 515 based on TDD.
  • Switches 519 b and 519 e are closed to couple a transmitter portion of transceiver 511 a with a receiver portion of transceiver 511 b .
  • Switches 519 c and 519 f are closed to couple a transmitter portion of transceiver 513 a with a receiver portion of transceiver 513 b.
  • Second channel 515 is a differential transmission line 521 b .
  • second channel 515 is a waveguide or a single-ended transmission line.
  • FIG. 6 is a block diagram of an integrated circuit 600 having an RFI, in accordance with one or more embodiments.
  • Integrated circuit 600 comprises features similar to the features discussed with respect to integrated circuit 300 ( FIG. 3 ), with the reference numerals increased by 300.
  • the first RFI 609 comprises channels 609 ca and 609 cb .
  • Channel 609 ca communicatively couples a transmitter portion of transceiver 609 a with a receiver portion of transceiver 609 b .
  • Channel 609 cb communicatively couples a receiver portion of transceiver 609 a with a transmitter portion of transceiver 609 b .
  • Channel 609 ca is a first differential transmission line 621 a and channel 609 cb is a second differential transmission line 621 b .
  • channel 609 ca or channel 609 cb is a waveguide.
  • channel 609 ca or channel 609 cb is a single-ended transmission line.
  • the second channel 615 is divided into two uni-directional channels (e.g., first uni-directional channel 616 and second uni-directional channel 617 .
  • First uni-directional channel 616 communicatively couples transmitter portions of transceiver 611 a and transceiver 613 a with receiver portions of transceiver 611 b and transceiver 613 b .
  • First uni-directional channel 616 comprises a first shared channel portion 615 a and first channel portion 611 ca / 611 cb (collectively referred to herein as channel portion 611 c ).
  • Second uni-directional channel 617 communicatively couples transmitter portions of the transceiver 611 b and the transceiver 613 b with receiver portions of the transceiver 611 a and the transceiver 613 a .
  • Second uni-directional channel 617 comprises a second shared channel portion 615 b and a second channel portion 613 ca / 613 cb (collectively referred to herein as channel portion 613 c ).
  • the first RFI 609 , the second RFI 611 and the third RFI 613 are configured to communicate the first signal S 1 , the second signal S 2 and the third signal S 3 using FDD.
  • First uni-directional channel 616 is a third differential transmission line 621 c and second uni-directional channel 617 is a fourth differential transmission line 621 d .
  • first uni-directional channel 616 or second uni-directional channel 617 is a waveguide.
  • first uni-directional channel 616 or second uni-directional channel 617 is a single-ended transmission line.
  • integrated circuit 600 is capable of physically occupying a smaller amount of space than if integrated circuit 600 included an entirely separate transmission channel for each individual RFI included therein.
  • FIG. 7 is a block diagram of an integrated circuit 700 having an RFI, in accordance with one or more embodiments.
  • Integrated circuit 700 comprises features similar to the features discussed with respect to integrated circuit 600 ( FIG. 6 ), with the reference numerals increased by 100.
  • Integrated circuit 700 differs from integrated circuit 600 in that the second RFI 711 and the third RFI 713 are configured to facilitate bi-directional communication through a shared channel 715 .
  • Integrated circuit 700 is capable of saving even more space than integrated circuit 600 , at least because integrated circuit 700 includes one shared channel instead of two.
  • FIG. 8 is a diagram of an integrated circuit 800 having a radio frequency interconnect, in accordance with one or more embodiments.
  • Integrated circuit 800 comprises features similar to integrated circuit 500 ( FIG. 5 ), with the reference numerals increased by 300).
  • Integrated circuit 800 differs from integrated circuit 500 in that first RFI 809 , second RFI 811 and third RFI 813 are configured to simultaneously send/receive first signal S 1 or second signal S 2 through shared channel 815 by FDD.
  • transceiver 811 a is configured to transmit second signal S 2 to transceiver 811 b over shared channel 815
  • transceiver 813 b is configured to transmit third signal S 3 to transceiver 813 a over shared channel 815 .
  • FIG. 9 is a block diagram of an integrated circuit 900 having an RFI, in accordance with one or more embodiments.
  • Integrated circuit 900 comprises features similar to integrated circuit 100 ( FIG. 1 ), with the reference numerals increased by 800.
  • Integrated circuit 900 includes first RFI 909 having transceivers 909 a and 909 b , second RFI 911 having transceivers 911 a and 911 b , and additional RFI's 923 having transceivers 923 a and 923 b .
  • Additional RFI's 923 provide for a total quantity of X RFI's, where X is an integer greater than 1.
  • Integrated circuit 900 is capable of having a greater quantity or a lesser quantity of devices in comparison to the number of RFI devices included in integrated circuit 900 .
  • Each of the RFI's is configured to share channel 915 .
  • channel 915 is a differential transmission line.
  • channel 915 is a single-ended transmission line or a waveguide.
  • Each of the transceivers 909 a , 909 b , 911 a , 911 b , 923 a , 923 b comprise or have connectivity to corresponding carrier generators 925 a - 925 f that are configured to generate the carrier signals upon which data signals such as first signal S 1 , second signal S 2 and third signal S 3 are generated.
  • each of the RFI's 909 , 911 and 923 is configured to share channel 915 based on FDD.
  • the carrier generator for each RFI is configured to generate a different carrier frequency from each other.
  • channel 915 comprises one or more T-junction transmission lines 927 a , one or more cross-junction transmission lines 927 b , one or more other suitable junction types, or a combination thereof.
  • At least one device associated with the RFI's, or at least one of the transceivers 909 a , 909 b , 911 a , 911 b , 923 a or 923 b is configured to identify a transmitting device and identify a receiving device based on a handshake.
  • integrated circuit 900 is capable of physically occupying a smaller amount of space than if integrated circuit 900 included an entirely separate channel for each individual RFI included therein.
  • FIG. 10 is a method 1000 of communicating in an integrated circuit having an RFI, in accordance with one or more embodiments.
  • Method 1000 is performed by way of an integrated circuit such as integrated circuit 100 ( FIG. 1 ).
  • one or more transceivers (e.g., transceivers 109 a , 109 b , 111 a , 111 b , 113 a , 113 b ( FIG. 1 )) generate one or more of a first signal (e.g., first signal S 1 ), a second signal (e.g., second signal S 2 ) or a third signal (e.g., third signal S 3 ) to be communicated between a first device (e.g., first device 101 ) and a second device (e.g., second device 103 ), the first device (e.g., first device 101 ) and a third device (e.g., third device 105 ), or the first device (e.g., first device 101 ) and a fourth device (e.g., fourth device 107 ), respectively.
  • a first signal e.g., first signal S 1
  • a second signal e.g., second signal S 2
  • a third signal e
  • the generated first signal (e.g., first signal S 1 ) has a first data rate (e.g., D 1 ), the second signal (e.g., second signal S 2 ) has a second date rate (e.g., D 2 ) or the third signal (e.g., third signal S 3 ) has a third data rate (e.g., D 3 ).
  • the first data rate (e.g., D 1 ), the second date rate (e.g., D 2 ) or the third data rate (e.g., D 3 ) are associated with the corresponding second device (e.g., second device 103 ), the third device (e.g., third device 105 ), or the fourth device (e.g., fourth device 107 ).
  • the first RFI (e.g., first RFI 109 ) is configured to support a first data rate (e.g., D 1 )
  • the second RFI (e.g., second RFI 111 ) is configured to support a second data rate (e.g., D 2 )
  • the third RFI (e.g., third RFI 113 ) is configured to support a third data rate (e.g., D 3 ).
  • the first data rate (e.g., D 1 ) being greater than the second data rate (e.g., D 2 ) or the third data rate (e.g., D 3 )
  • the second data rate (e.g., D 2 ) being greater than the third data rate (e.g., D 3 ).
  • the second signal (e.g., second signal S 2 ) is generated based on one or more carrier signals of a first set of carrier signals
  • the third signal (e.g., second signal S 3 ) is generated based on one or more carrier signals of a second set of carrier signals comprising at least one carrier signal different from a carrier signal included in the first set of carrier signals.
  • the first signal (e.g., first signal S 1 ) is generated based on one or more carrier signals of a third set of carrier signals comprising at least one carrier signal different from a carrier signal included in the first set of carrier signals and the second set of carrier signals.
  • a transceiver e.g., transceiver 109 a , 109 b , 111 a , 111 b , 113 a or 113 b
  • the one or more transceivers e.g., transceiver 109 a , 109 b , 111 a , 111 b , 113 a or 113 b
  • the first signal e.g., first signal S 1
  • the second signal e.g., second signal S 2
  • the third signal e.g., third signal S 3
  • the quantity of carrier signals used to modulate the data to be transmitted increases.
  • the first signal (e.g., first signal S 1 ) is communicated between the first device (e.g., first device 101 ) and the second device (e.g., second device 103 ) by way of a first RFI (e.g., first RFI 109 ) configured to carry the first signal (e.g., first signal S 1 ) between the first device (e.g., first device 101 ) and the second device (e.g., second device 103 ), the second signal (e.g., second signal S 2 ) communicated between the first device (e.g., first device 101 ) and the third device (e.g., third device 105 ) by way of a second RFI (e.g., second RFI 111 ) configured to carry the second signal (e.g., second signal S 2 ) between the first device (e.g., first device 101 ) and the third device (e.g., third device 105 ), or the third signal (e.g., third signal (e.g.
  • At least one of the devices of the integrated circuit causes the first signal (e.g., first signal S 1 ) to be communicated between the first device (e.g., first device 101 ) and the second device (e.g., second device 103 ), the second signal (e.g., second signal S 2 ) to be communicated between the first device (e.g., first device 101 ) and the third device (e.g., third device 105 ), or the third signal (e.g., third signal S 3 ) to be communicated between the first device (e.g., first device 101 ) and the fourth device (e.g., fourth device 107 ) by selectively controlling a combination of switches of a plurality of switches (e.g., 419 a - 419 f ( FIG.
  • the control signal (e.g., control signal CSa, CSb, CSc, CSd, CSe, CSf or CSg) is communicated from a transmitting device to a receiving device to coordinate reception of the transmitted data signal.
  • the channel (e.g., channel 915 ( FIG. 9 )) is further shared by the first RFI.
  • At least one device of the integrated circuit issues a handshake to cause the first RFI, the second RFI or the third RFI to communicate the first signal between the first device and the second device, to communicate the second signal between the first device and the third device, or to communicate the third signal between the first device and the fourth device by way of the shared channel.
  • the handshake comprises information identifying a transmitting device as one of the first device, the second device, the third device or the fourth device, and identifying a receiving device as a different one of the first device, the second device, the third device or the fourth device.
  • an integrated circuit includes a first device positioned over a substrate, the first device including first through third transceivers, a second device positioned over the substrate, the second device including a fourth transceiver, a third device positioned over the substrate, the third device including a fifth transceiver, and a fourth device positioned over the substrate, the fourth device including a sixth transceiver.
  • a first RFI includes the first transceiver coupled to the fourth transceiver through a first guided transmission medium
  • a second RFI includes the second transceiver coupled to the fifth transceiver through a second guided transmission medium
  • a third RFI includes the third transceiver coupled to the sixth transceiver by the second guided transmission medium.
  • an integrated circuit includes a first device positioned over a substrate, the first device including first through third transmitters, a second device positioned over the substrate, the second device including a first receiver, a third device positioned over the substrate, the third device including a second receiver, and a fourth device positioned over the substrate, the fourth device including a third receiver.
  • a first RFI includes the first transmitter coupled to the first receiver through a first guided transmission medium
  • a second RFI includes the second transmitter coupled to the second receiver through a second guided transmission medium
  • a third RFI includes the third transmitter coupled to the third receiver by the second guided transmission medium.
  • a method includes generating one or more of a first data signal, a second data signal or a third data signal to be communicated between a first device and a second device, the first device and a third device, or the first device and a fourth device, respectively, communicating the first data signal between the first device and the second device by way of a first RFI including a first channel and configured to carry the first data signal between the first device and the second device, and communicating one or more of the second data signal between the first device and the third device by way of a second RFI comprising a second channel and configured to carry the second data signal between the first device and the third device, or the third data signal between the first device and the fourth device by way of a third RFI comprising the second channel and configured to carry the third data signal between the first device and the fourth device.
  • Communicating the one or more of the second data signal or the third data signal includes distinguishing between the second and third data signals based on a frequency of the second data signal and a frequency of the third data signal, or communicating a control signal to coordinate the communicating the one or more of the second data signal or the third data signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)

Abstract

An integrated circuit includes a first through fourth devices positioned over a substrate, the first device including first through third transceivers, the second device including a fourth transceiver, the third device including a fifth transceiver, and the fourth device including a sixth transceiver. A first radio frequency interconnect (RFI) includes the first transceiver coupled to the fourth transceiver through a first guided transmission medium, a second RFI includes the second transceiver coupled to the fifth transceiver through a second guided transmission medium, and a third RFI includes the third transceiver coupled to the sixth transceiver by the second guided transmission medium.

Description

PRIORITY CLAIM
The present application is a continuation of U.S. application Ser. No. 14/921,205, filed Oct. 23, 2015, which is incorporated herein by reference in its entirety.
BACKGROUND
In a packaged integrated circuit, there are many individual devices such as a memory, an analog-to-digital converter, wireless communication devices, an application processor, and so forth. The individual devices often communicate with each other by a bus such as Serial Peripheral Interface (SPI) or Inter-Integrated Circuit (I2C). Alternatively, some devices communicate by a radio frequency interconnect (RFI).
BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
FIG. 1 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
FIG. 2 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
FIG. 3 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
FIG. 4 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
FIG. 5 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
FIG. 6 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
FIG. 7 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
FIG. 8 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
FIG. 9 is a block diagram of an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
FIG. 10 is a method of communicating in an integrated circuit having a radio frequency interconnect, in accordance with one or more embodiments.
DETAILED DESCRIPTION
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Radio frequency interconnects (RFI's) are usable in integrated circuits that are packaged by a 2D, a 2.5D, or a 3D packaging technique. Compared to other types of interconnection techniques, such as coupling components of an integrated circuit by a bus, RFI's help to conserve space by reducing a number of electrical interconnects used to couple the components with one another. Accordingly, an integrated circuit having the features described in the discussed embodiments is capable of being physically smaller in size compared to an integrated circuit that includes components connected by other interconnection techniques. Compared to other types of interconnection techniques, such as coupling components of an integrated circuit by a bus, RFI's help to reduce power consumption because of the reduced number of electrical interconnects used to couple the components with one another. Accordingly, an integrated circuit having the features described in the discussed embodiments is capable of consuming a lesser amount of power compared to an integrated circuit that includes components connected by other interconnection techniques.
An RFI, as discussed herein, connects individual components of an integrated circuit by a transmission line or channel. In some embodiments, an RFI connects individual components of an integrated circuit by a single-ended transmission line. In some embodiments, a single device using a large bandwidth and/or being associated with having a high data transfer rate, e.g., a memory, is coupled to a processor by an RFI having a transmission line. In some embodiments, two or more devices that use a lower bandwidth and/or are associated with a lower data transfer rate compared to a larger-bandwidth device are coupled to the processor by an RFI having a transmission line. In some embodiments, the transmission line includes two conductive lines suitable to transmit a signal in a differential mode. In some embodiments, the transmission line is a coplanar waveguide.
FIG. 1 is a block diagram of an integrated circuit 100 having an RFI, in accordance with one or more embodiments. Integrated circuit 100 comprises a first device 101 communicatively coupled with a second device 103, a third device 105 and a fourth device 107.
First device 101 is coupled with second device 103 by a first RFI 109 comprising a transceiver 109 a, a transceiver 109 b, and a first channel 109 c. One of the first device 101 or second device 103 is configured to transmit or receive a first signal S1 to the other of the first device 101 or second device 103 by first channel 109. In some embodiments, first channel 109 c includes a differential transmission line, a single-ended transmission line or a waveguide. First signal S1 includes data, signaling or command information.
First device 101 is coupled with third device 105 by a second RFI 111 comprising a transceiver 111 a, a transceiver 111 b, and a second channel 115. One of the first device 101 or third device 105 is configured to transmit or receive a second signal S2 to the other of the first device 101 or third device 105 by second channel 115. Second signal S2 includes data, signaling or command information.
First device 101 is also coupled with fourth device 107 by a third RFI 113 comprising a transceiver 113 a, a transceiver 113 b, and second channel 115. Second RFI 111 and third RFI 113 are configured to share second channel 115. One of the first device 101 or fourth device 107 is configured to transmit or receive a third signal S3 to the other of the first device 101 or fourth device 107 by second channel 115. Third signal S3 includes data, signaling or command information.
Second channel 115 includes a first channel portion 111 ca/111 cb (collectively referred to herein as channel portion 111 c), a second channel portion 113 ca/113 cb (collectively referred to herein as second channel portion 113) and a central channel portion 115 a. In some embodiments, second channel 115 includes a differential transmission line, a single-ended transmission line or a waveguide. In some embodiments, at least one of first channel portion 111 c, second channel portion 113 c or central channel portion 115 a includes a differential transmission line, a single-ended transmission line or a waveguide.
Second channel 115 is a channel usable by each of second RFI 111 and third RFI 113. Because at least the second RFI 111 and the third RFI 113 share second channel 115, integrated circuit 100 is capable of physically occupying a smaller amount of space than if integrated circuit 100 included an entirely separate channel for each individual RFI included therein.
First signal S1 has a first data rate D1, second signal S2 has a second date rate D2 or third signal S3 has a third data rate D3. First data rate D1, second date rate D2 or third data rate D3 are associated with the corresponding second device 103, the third device 105, or the fourth device 107. In some embodiments, second data rate D2 is different from first data rate D1. In some embodiments, third data rate D3 is different from the first data rate D1.
In some embodiments, the first device 101, the second device 103, the third device 105 and the fourth device 107 are positioned over a single substrate 117. In some embodiments, one or more of the first device 101, the second device 103, the third device 105 or the fourth device 107 are over one or more of separate substrates 117 a-117 d. In some embodiments, at least one of first device 101, second device 103, third device 105 or fourth device 107 comprise at least one of a memory device, a wireless communication device, e.g., a Bluetooth® module, a Zigbee® module, an IEEE 802.11 wireless networking module, or another suitable wireless communication device, an analog-to-digital converter, a digital-to-analog converter, a sensor module, a discrete application processor for performing operations in a low power state, a hardware processor, a memory controller, or another suitable device.
In some embodiments, first device 101 is a processor. In some embodiments, second device 103, third device 105, and fourth device 107 are, for example, the same or different devices configured to support different data rates compared to one another. In some embodiments, first RFI 109 is configured to support a data rate greater than second RFI 111 or third RFI 113. Second RFI 111 is configured to support a data rate that is less than, equal to or greater than third RFI 113. In some embodiments, first RFI 109 is configured to support a data rate that is greater than about 6.93 Gbps, second RFI 111 is configured to support a data rate that is less than about 54 Mbps, and third RFI 113 is configured to support a data rate that is greater than about 54 Mbps and less than about 6.93 Gbps. The aforementioned values and ranges of the supported data rates are examples to demonstrate the differences in capabilities of the first RFI 109, second RFI 111 and third RFI 113 for ease of discussion, and in no way restrict the integrated circuit 100 from including one or more RFIs or devices configured to support different data rates.
The transceivers 109 a, 109 b of the first RFI 109 are included as transceiver pairs in the first device 101 and the second device 103. The transceivers 111 a, 111 b of the second RFI 111 are included as transceiver pairs in the first device 101 and the third device 105. The transceivers 113 a, 113 b of the third RFI 113 are included as transceiver pairs in the first device 101 and the fourth device 107. In some embodiments, the transceivers of the first RFI 109, the second RFI 111 and the third RFI 113 are communicatively coupled with the first device 101, the second device 103, the third device 105 and the fourth device 107.
In some embodiments, one or more of the transceivers (e.g., transceivers 109 a, 109 b 111 a, 111 b, 113 a or 113 b) of the first RFI 109, the second RFI 111 or the third RFI 113 are configured to be transmitters or receivers. If, for example, the integrated circuit 100 is configured such that the first RFI 109, the second RFI 111 and the third RFI 113 are configured to facilitate uni-directional communications, then in such an embodiment, the transceivers 109 a, 111 a, 113 a included in the first device 101 are configured as transmitters and the transceivers 109 b, 111 b, 113 b included in the corresponding second device 103, the third device 105 and the fourth device 107 are configured as receivers. In some embodiments, one or more of the first RFI 109, the second RFI 111 or the third RFI 113 are configured to facilitate bi-directional communications.
First RFI 109 is configured to carry the first signal S1 between the first device 101 and the second device 103. Second RFI 111 is configured to carry the second signal S2 between the first device 101 and the third device 105. Third RFI 113 is configured to carry the third signal S3 between the first device 101 and the fourth device 109.
Each of the transceivers (e.g., transceivers 109 a, 109 b 111 a, 111 b, 113 a or 113 b) of the first RFI 109, the second RFI 111 and the third RFI 113 comprise one or more carrier generators (not shown). The transceivers 109 a, 109 b 111 a, 111 b, 113 a or 113 b of the first RFI 109, the second RFI 111 and the third RFI 113, if operating as a transmission device, are configured to modulate data to be transmitted to one of the first device 101, the second device 103, the third device 105 or the fourth device 107 based on carrier signals generated by the one or more carrier generators. The transceivers 109 a, 109 b 111 a, 111 b, 113 a or 113 b of the first RFI 109, the second RFI 111 and the third RFI 113, if operating as a receiving device, are configured to demodulate a received first signal, a received second signal, or a received third signal based on carrier signals generated by the one or more carrier generators.
The first signal S1 is generated based on one or more carrier signals of a set of N carrier signals, where N is an integer greater than 1. The second signal S2 is generated based on one or more carrier signals of a first set of carrier signals. The third signal S3 is generated based on one or more carrier signals of a second set of carrier signals. The first set and the second set together form a set of M carrier signals, where M is an integer greater than 2. The first set or the second set of carrier signals includes at least one. In some embodiments, the sum of the first set and the second set of carrier signals is equal to the set of M carrier signals. The set of N carrier signals is equal to, greater than or equal to the set of M carrier signals. In some embodiments, the second set of carrier signals comprises at least one carrier signal different from a carrier signal included in the first set of carrier signals. In some embodiments, each of the carrier signals in the second set of carrier signals is different from each of the carrier signals included in the first set of carrier signals.
In some embodiments, a size of the first set of carrier signals, utilized to generate the second signal S2, is related to the data rate supported by the second RFI 111. In some embodiments, a size of the second set of carrier signals, utilized to generate the third signal S3, is related to the data rate supported by the third RFI 113.
In some embodiments, based on the data rate (e.g., data rate D1, D2 or D3) associated with the second device (e.g., second device 103), the third device (e.g., third device 105), or the fourth device (e.g., fourth device 107), a transceiver (e.g., transceiver 109 a, 109 b, 111 a, 111 b, 113 a or 113 b) of the one or more transceivers (e.g., transceiver 109 a, 109 b, 111 a, 111 b, 113 a or 113 b) is configured to select a quantity of carriers to use for modulating data to generate the first signal (e.g., first signal S1), the second signal (e.g., second signal S2) or the third signal (e.g., third signal S3). For example, as a data rate or bandwidth associated with a device (e.g., second device 103, third device 105, or fourth device 107) of the integrated circuit (e.g., integrated circuit 100) increases, the quantity of carrier signals used to modulate the data to be transmitted increases. In some embodiments, first device 101 or second device 103 is configured to generate the first data signal S1 based on a selected quantity of carrier signals of the one or more carrier signals included in the third set of carrier signals. In some embodiments, the selected quantity of carrier signals is based on the first data rate D1 supported by the first RFI 109.
In some embodiments, first RFI 109 is configured to identify an output signal generated by the first device 101 or second device 103, as being the first signal S1 based, at least in part, on the first data rate D1 associated with the second device 103. In some embodiments, second RFI 111 is configured to identify an output signal generated by the first device 101 or third device 105, as being the second signal S2 based, at least in part, on the second data rate D2 associated with the third device 105. In some embodiments, third RFI 113 is configured to identify an output signal generated by the first device 101 or fourth device 107, as being the third signal S3 based, at least in part, on the third data rate D3 associated with the fourth device 107.
In some embodiments, one or more of the first RFI 109, the second RFI 111 or the third RFI 113 are configured to communicate the corresponding first signal S1, the second signal S2, or the third signal S3 based on frequency-division duplexing (FDD). In some embodiments, the second RFI 111 and the third RFI 113 are configured to share second channel 115 based on FDD. In some embodiments, the second RFI 111 is configured to communicate the second signal S2 between the first device 101 and the third device 105, and the third RFI 113 is configured to communicate the third data S3 signal between the first device 101 and the fourth device 107 based on FDD.
In some embodiments, where the second RFI 111 and the third RFI 113 are configured to share second channel 115 based on FDD, a fundamental frequency of the second signal S2 is not equal to a fundamental frequency of the third signal S3. In some embodiments, FDD allows for bi-directional communication through one or more of the first RFI 109, the second RFI 111 or the third RFI 113.
In some embodiments, the transceivers 111 a, 111 b of the second RFI 111 or the transceivers 113 a, 113 b of the third RFI 113 are configured to distinguish between the second signal S2 and the third signal S3 transmitted through second channel 115 based on a fundamental frequency of the second signal S2 and the third signal S3. In some embodiments, for example, the second RFI 111 and the third RFI 113 are configured to distinguish between the second signal S2 and the third signal S3 communicated through second channel 115 based on a frequency of the second signal S2 and a frequency of the third signal S3. The frequency of the second signal S2 is based on at least one of the carrier signals of the first set of carrier signals, and the frequency of the third signal S3 is based on at least one of the carrier signals of the second set of carrier signals.
In some embodiments, one or more of the first RFI 109, the second RFI 111 or the third RFI 113 is configured to cause the first signal S1, the second signal S2 or the third signal S3 to be communicated from a transmitting device to an intended receiving device based on the frequency of the data signal. In some embodiments, for example, the second RFI 111 is configured to cause the second signal S2 to be communicated between the first device 101 and the third device 105 based on the frequency of the second signal S2, and the third RFI 113 is configured to cause the third signal S3 to be communicated between the first device 101 and the fourth device 107 based on the frequency of the third signal S3.
In some embodiments, second RFI 111 and third RFI 113 are configured to share second channel 115 based on time-division duplexing (TDD). In some embodiments, where the second RFI 111 and the third RFI 113 are configured to share second channel 115 based on TDD, a time of transmission of the second signal S2 is not equal to a time of transmission of the third signal S3. In some embodiments, the transceivers 109 a, 109 b of first RFI 111 are configured to share second channel 115 based on TDD.
In some embodiments, to facilitate the transmission of a data signal based on TDD such that an intended receiving device receives the transmitted data signal, one or more of the first RFI 109, the second RFI 111 or the third RFI 113 comprise switches. In some embodiments, for example, the second RFI 111 and the third RFI 113 comprise a plurality of switches configured to selectively cause the second signal S2 to be communicated between the first device 101 and the third device 105 over second channel 115, or to selectively cause the third signal S3 to be communicated between the first device 101 and the fourth device 107 over second channel 115.
In some embodiments, the switches (shown in FIG. 4 ) are controlled by way of a control signal (shown in FIG. 4 ). In some embodiments, for example, the second RFI 111 and the third RFI 113 are configured to control the switches of the plurality of switches based on a control signal associated with a timing of communicating the second signal S2 or the third signal S3. In some embodiments, TDD makes it possible to coordinate a direction of communication through the second channel 115.
In some embodiments, the second channel 115 shared by the second RFI 111 and the third RFI 113 comprises a first unidirectional coupler configured to facilitate a transmission from the first device 101 to the third device 105 and from the first device 101 to the fourth device 107, and a second unidirectional coupler configured to facilitate a transmission from the third device 105 to the first device 101 and from the fourth device 107 to the first device 101.
In some embodiments, the first RFI 109, the second RFI 111 and the third RFI 113 are configured to communicate the first signal S1 between the first device 101 and the second device 103, to communicate the second signal S2 between the first device 101 and the third device 105, or to communicate the third signal S3 between the first device 101 and the fourth device 107 based on a handshake. In some embodiments, the handshake is utilized to identify a transmitting transceiver (e.g., transceiver 109 a, 109 b, 111 a, 111 b, 113 a or 113 b) of one of the first device 101, the second device 103, the third device 105 or the fourth device 107, and identify a receiving transceiver as a different one of the first device 101, the second device 103, the third device 105 or the fourth device 107.
In some embodiments, second channel 115 comprises a plurality of junctions configured to direct the second signal S2 or the third signal S3 to an intended receiver of the first device 101, the third device 105, or the fourth device 107 based, at least in part, on the frequency of the second signal S2, or the frequency of the third signal S3. In some embodiments, first channel 109 comprises a plurality of junctions configured to direct the first signal S1 to an intended receiver of the first device 101 based, at least in part, on the frequency of the first signal S1.
In some embodiments, the second channel 115 is divided into two channels (e.g., a first separate channel and a second separate channel) such that the second RFI 111 and the third RFI 113 do not share a common channel (e.g., second channel 115). In these embodiments, the second RFI 111 includes the first separate channel and the third RFI 113 includes the second separate channel. In these embodiments, the second RFI 111 or the third RFI 113 is configured in a manner similar to that of the first RFI 109. In these embodiments, the transceivers of the first RFI 109, the second RFI 111 or the third RFI 113 are configured in a manner to support FDD or TDD.
FIG. 2 is a block diagram of an integrated circuit 200 having an RFI, in accordance with one or more embodiments. Integrated circuit 200 comprises features similar to the features discussed with respect to integrated circuit 100 (FIG. 1 ), with the reference numerals increased by 100.
Integrated circuit 200 differs from integrated circuit 100 in that the first RFI 209, the second RFI 211 and the third RFI 213 are configured to facilitate uni-directional communications. As such, first RFI 209 includes a first transmitter 209 a, a first receiver 209 b and a first channel 209 c, second RFI 211 includes a second transmitter 211 a, a second receiver 211 b and a second channel 215, and third RFI 213 includes a third receiver 213 a, a third receiver 213 b and a second channel 215.
Because at least the second RFI 211 and the third RFI 213 share second channel 215, integrated circuit 200 is capable of physically occupying a smaller amount of space than if integrated circuit 200 included an entirely separate channel for each individual RFI included therein.
First transmitter 209 a is configured to transmit first signal S1 to first receiver 209 b by channel 209. Second transmitter 211 a is configured to transmit second signal S2 to second receiver 211 b by second channel 215. Third transmitter 213 a is configured to transmit third signal S3 to third receiver 213 b by second channel 215.
FIG. 3 is a block diagram of an integrated circuit 300 having an RFI, in accordance with one or more embodiments. Integrated circuit 300 comprises features similar to the features discussed with respect to integrated circuit 100 (FIG. 1 ), with the reference numerals increased by 200. In integrated circuit 300, the first RFI 309, the second RFI 311 and the third RFI 313 are configured to facilitate bi-directional communications.
Because at least the second RFI 311 and the third RFI 313 share second channel 315, integrated circuit 300 is capable of physically occupying a smaller amount of space than if integrated circuit 300 included an entirely separate channel for each individual RFI included therein.
FIG. 4 is a block diagram of an integrated circuit 400 having an RFI, in accordance with one or more embodiments. Integrated circuit 400 comprises features similar to the features discussed with respect to integrated circuit 100 (FIG. 1 ), with the reference numerals increased by 300. Integrated circuit 400 differs from integrated circuit 100 in that the first RFI 409, the second RFI 411 and the third RFI 413 comprise switches 419 a-419 f.
Switches 419 a-419 b are configured to be selectively controlled based on a corresponding control signal CSa, CSb to coordinate the transmission of the first signal S1 through first channel 409 c based on TDD. Switches 419 c-419 f are configured to be selectively controlled based on a corresponding control signal CSc, CSd, CSe, CSf to coordinate the transmission of second signal S2 through second channel 415, and the transmission of third signal S3 through second channel 415 based on TDD. In some embodiments, TDD makes it possible to coordinate a direction of communication through the first channel 409 c and the second channel 415.
First channel 409 c is a first differential transmission line 421 a and second channel 415 is a second differential transmission line 421 b. In some embodiments, first channel 409 c or second channel 415 is a waveguide. In some embodiments, first channel 409 c or second channel 415 is a single-ended transmission line.
Because at least the second RFI 411 and the third RFI 413 share second channel 415, integrated circuit 400 is capable of physically occupying a smaller amount of space than if integrated circuit 400 included an entirely separate channel for each individual RFI included therein.
In some embodiments, the second channel 415 is divided into two channels (e.g., a first separate channel and a second separate channel) such that the second RFI 411 and the third RFI 413 do not share a common channel (e.g., second channel 415). In these embodiments, the second RFI 411 includes the first separate channel and the third RFI 413 includes the second separate channel. In these embodiments, the second RFI 411 or the third RFI 413 is configured in a manner similar to that of the first RFI 409 (as described above).
FIG. 5 is a diagram of an integrated circuit 500 having an RFI, in accordance with one or more embodiments. Integrated circuit 500 comprises features similar to the features discussed with respect to integrated circuit 400 (FIG. 4 ), with the reference numerals increased by 100. Integrated circuit 500 differs from integrated circuit 400 in that the first RFI 409 is not included.
Transceiver 511 a is configured to transmit second signal S2 to transceiver 511 b of second RFI 511. Transceiver 513 a is configured to transmit third signal S3 to transceiver 513 b of third RFI 513. In this embodiment, second signal S2 is generated based on a first carrier signal and a second carrier signal. In this embodiment, third signal S3 is generated based on a fifth carrier signal.
Switches 519 b-519 c and 519 e-519 f are configured to be selectively controlled based on a control signal (shown in FIG. 4 ) to coordinate the transmission of second signal S2 and third signal S3 through second channel 515 based on TDD. Switches 519 b and 519 e are closed to couple a transmitter portion of transceiver 511 a with a receiver portion of transceiver 511 b. Switches 519 c and 519 f are closed to couple a transmitter portion of transceiver 513 a with a receiver portion of transceiver 513 b.
Second channel 515 is a differential transmission line 521 b. In some embodiments, second channel 515 is a waveguide or a single-ended transmission line.
FIG. 6 is a block diagram of an integrated circuit 600 having an RFI, in accordance with one or more embodiments. Integrated circuit 600 comprises features similar to the features discussed with respect to integrated circuit 300 (FIG. 3 ), with the reference numerals increased by 300.
In integrated circuit 600, the first RFI 609 comprises channels 609 ca and 609 cb. Channel 609 ca communicatively couples a transmitter portion of transceiver 609 a with a receiver portion of transceiver 609 b. Channel 609 cb communicatively couples a receiver portion of transceiver 609 a with a transmitter portion of transceiver 609 b. Channel 609 ca is a first differential transmission line 621 a and channel 609 cb is a second differential transmission line 621 b. In some embodiments, channel 609 ca or channel 609 cb is a waveguide. In some embodiments, channel 609 ca or channel 609 cb is a single-ended transmission line.
In integrated circuit 600, the second channel 615 is divided into two uni-directional channels (e.g., first uni-directional channel 616 and second uni-directional channel 617.
First uni-directional channel 616 communicatively couples transmitter portions of transceiver 611 a and transceiver 613 a with receiver portions of transceiver 611 b and transceiver 613 b. First uni-directional channel 616 comprises a first shared channel portion 615 a and first channel portion 611 ca/611 cb (collectively referred to herein as channel portion 611 c).
Second uni-directional channel 617 communicatively couples transmitter portions of the transceiver 611 b and the transceiver 613 b with receiver portions of the transceiver 611 a and the transceiver 613 a. Second uni-directional channel 617 comprises a second shared channel portion 615 b and a second channel portion 613 ca/613 cb (collectively referred to herein as channel portion 613 c).
The first RFI 609, the second RFI 611 and the third RFI 613 are configured to communicate the first signal S1, the second signal S2 and the third signal S3 using FDD. First uni-directional channel 616 is a third differential transmission line 621 c and second uni-directional channel 617 is a fourth differential transmission line 621 d. In some embodiments, first uni-directional channel 616 or second uni-directional channel 617 is a waveguide. In some embodiments, first uni-directional channel 616 or second uni-directional channel 617 is a single-ended transmission line.
Because at least the second RFI 611 and the third RFI 613 share channels 615 a and 615 b, integrated circuit 600 is capable of physically occupying a smaller amount of space than if integrated circuit 600 included an entirely separate transmission channel for each individual RFI included therein.
FIG. 7 is a block diagram of an integrated circuit 700 having an RFI, in accordance with one or more embodiments. Integrated circuit 700 comprises features similar to the features discussed with respect to integrated circuit 600 (FIG. 6 ), with the reference numerals increased by 100. Integrated circuit 700 differs from integrated circuit 600 in that the second RFI 711 and the third RFI 713 are configured to facilitate bi-directional communication through a shared channel 715. Integrated circuit 700 is capable of saving even more space than integrated circuit 600, at least because integrated circuit 700 includes one shared channel instead of two.
FIG. 8 is a diagram of an integrated circuit 800 having a radio frequency interconnect, in accordance with one or more embodiments. Integrated circuit 800 comprises features similar to integrated circuit 500 (FIG. 5 ), with the reference numerals increased by 300). Integrated circuit 800 differs from integrated circuit 500 in that first RFI 809, second RFI 811 and third RFI 813 are configured to simultaneously send/receive first signal S1 or second signal S2 through shared channel 815 by FDD.
As such, integrated circuit 809 does not utilize switches 519 a-519 f (FIG. 5 ). In this example, transceiver 811 a is configured to transmit second signal S2 to transceiver 811 b over shared channel 815, and transceiver 813 b is configured to transmit third signal S3 to transceiver 813 a over shared channel 815.
FIG. 9 is a block diagram of an integrated circuit 900 having an RFI, in accordance with one or more embodiments. Integrated circuit 900 comprises features similar to integrated circuit 100 (FIG. 1 ), with the reference numerals increased by 800.
Integrated circuit 900 includes first RFI 909 having transceivers 909 a and 909 b, second RFI 911 having transceivers 911 a and 911 b, and additional RFI's 923 having transceivers 923 a and 923 b. Additional RFI's 923 provide for a total quantity of X RFI's, where X is an integer greater than 1. Integrated circuit 900 is capable of having a greater quantity or a lesser quantity of devices in comparison to the number of RFI devices included in integrated circuit 900. Each of the RFI's is configured to share channel 915. In some embodiments, channel 915 is a differential transmission line. In some embodiments, channel 915 is a single-ended transmission line or a waveguide. Each of the transceivers 909 a, 909 b, 911 a, 911 b, 923 a, 923 b comprise or have connectivity to corresponding carrier generators 925 a-925 f that are configured to generate the carrier signals upon which data signals such as first signal S1, second signal S2 and third signal S3 are generated.
In some embodiments, each of the RFI's 909, 911 and 923 is configured to share channel 915 based on FDD. In these embodiments, the carrier generator for each RFI is configured to generate a different carrier frequency from each other.
In some embodiments, to facilitate the communication of data signals from a transmitter to an intended receiver of integrated circuit 900, channel 915 comprises one or more T-junction transmission lines 927 a, one or more cross-junction transmission lines 927 b, one or more other suitable junction types, or a combination thereof.
In some embodiments, to facilitate the communication of data signals from a transmitter to an intended receiver of integrated circuit 900, at least one device associated with the RFI's, or at least one of the transceivers 909 a, 909 b, 911 a, 911 b, 923 a or 923 b is configured to identify a transmitting device and identify a receiving device based on a handshake.
Because the first RFI 109, the second RFI 111 and the third RFI 513 share channel 915, integrated circuit 900 is capable of physically occupying a smaller amount of space than if integrated circuit 900 included an entirely separate channel for each individual RFI included therein.
FIG. 10 is a method 1000 of communicating in an integrated circuit having an RFI, in accordance with one or more embodiments. Method 1000 is performed by way of an integrated circuit such as integrated circuit 100 (FIG. 1 ).
In step 1001, one or more transceivers (e.g., transceivers 109 a, 109 b, 111 a, 111 b, 113 a, 113 b (FIG. 1 )) generate one or more of a first signal (e.g., first signal S1), a second signal (e.g., second signal S2) or a third signal (e.g., third signal S3) to be communicated between a first device (e.g., first device 101) and a second device (e.g., second device 103), the first device (e.g., first device 101) and a third device (e.g., third device 105), or the first device (e.g., first device 101) and a fourth device (e.g., fourth device 107), respectively.
The generated first signal (e.g., first signal S1) has a first data rate (e.g., D1), the second signal (e.g., second signal S2) has a second date rate (e.g., D2) or the third signal (e.g., third signal S3) has a third data rate (e.g., D3). The first data rate (e.g., D1), the second date rate (e.g., D2) or the third data rate (e.g., D3) are associated with the corresponding second device (e.g., second device 103), the third device (e.g., third device 105), or the fourth device (e.g., fourth device 107). The first RFI (e.g., first RFI 109) is configured to support a first data rate (e.g., D1), the second RFI (e.g., second RFI 111) is configured to support a second data rate (e.g., D2), and the third RFI (e.g., third RFI 113) is configured to support a third data rate (e.g., D3). The first data rate (e.g., D1) being greater than the second data rate (e.g., D2) or the third data rate (e.g., D3), and the second data rate (e.g., D2) being greater than the third data rate (e.g., D3).
The second signal (e.g., second signal S2) is generated based on one or more carrier signals of a first set of carrier signals, and the third signal (e.g., second signal S3) is generated based on one or more carrier signals of a second set of carrier signals comprising at least one carrier signal different from a carrier signal included in the first set of carrier signals. The first signal (e.g., first signal S1) is generated based on one or more carrier signals of a third set of carrier signals comprising at least one carrier signal different from a carrier signal included in the first set of carrier signals and the second set of carrier signals.
In some embodiments, based on the data rate (e.g., data rate D1, D2 or D3) associated with the second device (e.g., second device 103), the third device (e.g., third device 105), or the fourth device (e.g., fourth device 107), a transceiver (e.g., transceiver 109 a, 109 b, 111 a, 111 b, 113 a or 113 b) of the one or more transceivers (e.g., transceiver 109 a, 109 b, 111 a, 111 b, 113 a or 113 b) is configured to select a quantity of carriers to use for modulating data to generate the first signal (e.g., first signal S1), the second signal (e.g., second signal S2) or the third signal (e.g., third signal S3). For example, as a data rate or bandwidth associated with a device (e.g., second device 103, third device 105, or fourth device 107) of the integrated circuit (e.g., integrated circuit 100) increases, the quantity of carrier signals used to modulate the data to be transmitted increases.
In step 1003, the first signal (e.g., first signal S1) is communicated between the first device (e.g., first device 101) and the second device (e.g., second device 103) by way of a first RFI (e.g., first RFI 109) configured to carry the first signal (e.g., first signal S1) between the first device (e.g., first device 101) and the second device (e.g., second device 103), the second signal (e.g., second signal S2) communicated between the first device (e.g., first device 101) and the third device (e.g., third device 105) by way of a second RFI (e.g., second RFI 111) configured to carry the second signal (e.g., second signal S2) between the first device (e.g., first device 101) and the third device (e.g., third device 105), or the third signal (e.g., third signal S3) is communicated between the first device (e.g., first device 101) and the fourth device (e.g., fourth device 107) by way of a third RFI (e.g., third RFI 113) configured to carry the third signal (e.g., third signal S3) between the first device (e.g., first device 101) and the fourth device (e.g., fourth device 107). At least the second RFI (e.g., second RFI 111) and the third RFI (e.g., third RFI 113) share a channel (e.g., second channel 115) based on FDD or TDD.
In some embodiments, at least one of the devices of the integrated circuit (e.g., integrated circuit 100) causes the first signal (e.g., first signal S1) to be communicated between the first device (e.g., first device 101) and the second device (e.g., second device 103), the second signal (e.g., second signal S2) to be communicated between the first device (e.g., first device 101) and the third device (e.g., third device 105), or the third signal (e.g., third signal S3) to be communicated between the first device (e.g., first device 101) and the fourth device (e.g., fourth device 107) by selectively controlling a combination of switches of a plurality of switches (e.g., 419 a-419 f (FIG. 4 )) included in the first RFI (e.g., first RFI 109 (FIG. 1 )), the second RFI (e.g., second RFI 111) and the third RFI (e.g., third RFI 113) based on a control signal (e.g., control signal CSa, CSb, CSc, CSd, CSe, CSf or CSg). In some embodiments, the control signal (e.g., control signal CSa, CSb, CSc, CSd, CSe, CSf or CSg) is communicated from a transmitting device to a receiving device to coordinate reception of the transmitted data signal. In some embodiments, the channel (e.g., channel 915 (FIG. 9 )) is further shared by the first RFI.
In some embodiments, at least one device of the integrated circuit issues a handshake to cause the first RFI, the second RFI or the third RFI to communicate the first signal between the first device and the second device, to communicate the second signal between the first device and the third device, or to communicate the third signal between the first device and the fourth device by way of the shared channel. In some embodiments, the handshake comprises information identifying a transmitting device as one of the first device, the second device, the third device or the fourth device, and identifying a receiving device as a different one of the first device, the second device, the third device or the fourth device.
In some embodiments, an integrated circuit includes a first device positioned over a substrate, the first device including first through third transceivers, a second device positioned over the substrate, the second device including a fourth transceiver, a third device positioned over the substrate, the third device including a fifth transceiver, and a fourth device positioned over the substrate, the fourth device including a sixth transceiver. A first RFI includes the first transceiver coupled to the fourth transceiver through a first guided transmission medium, a second RFI includes the second transceiver coupled to the fifth transceiver through a second guided transmission medium, and a third RFI includes the third transceiver coupled to the sixth transceiver by the second guided transmission medium.
In some embodiments, an integrated circuit includes a first device positioned over a substrate, the first device including first through third transmitters, a second device positioned over the substrate, the second device including a first receiver, a third device positioned over the substrate, the third device including a second receiver, and a fourth device positioned over the substrate, the fourth device including a third receiver. A first RFI includes the first transmitter coupled to the first receiver through a first guided transmission medium, a second RFI includes the second transmitter coupled to the second receiver through a second guided transmission medium, and a third RFI includes the third transmitter coupled to the third receiver by the second guided transmission medium.
In some embodiments, a method includes generating one or more of a first data signal, a second data signal or a third data signal to be communicated between a first device and a second device, the first device and a third device, or the first device and a fourth device, respectively, communicating the first data signal between the first device and the second device by way of a first RFI including a first channel and configured to carry the first data signal between the first device and the second device, and communicating one or more of the second data signal between the first device and the third device by way of a second RFI comprising a second channel and configured to carry the second data signal between the first device and the third device, or the third data signal between the first device and the fourth device by way of a third RFI comprising the second channel and configured to carry the third data signal between the first device and the fourth device. Communicating the one or more of the second data signal or the third data signal includes distinguishing between the second and third data signals based on a frequency of the second data signal and a frequency of the third data signal, or communicating a control signal to coordinate the communicating the one or more of the second data signal or the third data signal.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims (20)

What is claimed is:
1. An integrated circuit, comprising:
a first device positioned over a substrate, the first device comprising first through third transceivers;
a second device positioned over the substrate, the second device comprising a fourth transceiver;
a third device positioned over the substrate, the third device comprising a fifth transceiver; and
a fourth device positioned over the substrate, the fourth device comprising a sixth transceiver,
wherein
a first radio frequency interconnect (RFI) comprises the first transceiver coupled to the fourth transceiver through a first guided transmission medium,
a second RFI comprises the second transceiver coupled to the fifth transceiver through a second guided transmission medium, [[and]]
a third RFI comprises the third transceiver coupled to the sixth transceiver by the second guided transmission medium, and
each of the second transceiver and the third transceiver is coupled to each of the fifth transceiver and the sixth transceiver by the second guided transmission medium.
2. The integrated circuit of claim 1, wherein the second guided transmission medium comprises:
a first unidirectional coupler configured to facilitate a transmission from the first device to the third device and from the first device to the fourth device; and
a second unidirectional coupler configured to facilitate a transmission from the third device to the first device and from the fourth device to the first device.
3. The integrated circuit of claim 1, wherein
each of the first transceiver and the fourth transceiver is configured to generate a first data signal based on a first number of carrier signals,
each of the second transceiver and the fifth transceiver is configured to generate a second data signal based on a second number of carrier signals, and
each of the third transceiver and the sixth transceiver is configured to generate a third data signal based on a third number of carrier signals.
4. The integrated circuit of claim 3, wherein
the first number of carrier signals is based on a data rate associated with the second device,
the second number of carrier signals is based on a data rate associated with the third device, and
the third number of carrier signals is based on a data rate associated with the fourth device.
5. The integrated circuit of claim 4, wherein the first number of carriers is greater than a sum of the second number of carriers and the third number of carriers.
6. The integrated circuit of claim 1, wherein
the second RFI comprises a first plurality of switches configured to selectively connect the second guided transmission medium to each of the second transceiver and the fifth transceiver, and
the third RFI comprises a second plurality of switches configured to selectively connect the second guided transmission medium to each of the third transceiver and the sixth transceiver.
7. The integrated circuit of claim 6, wherein the first plurality of switches and the second plurality of switches are configured to be selectively controlled based on a corresponding plurality of control signals to coordinate signal transmission through the second guided transmission medium based on time-division duplexing (TDD).
8. The integrated circuit of claim 1, wherein at least one of
the second RFI is configured to identify an output signal generated by the first device or the third device based on a first data rate associated with the third device, or
the third RFI is configured to identify an output signal generated by the first device or the fourth device based on a second data rate associated with the fourth device.
9. The integrated circuit of claim 1, wherein
the first device comprises a processor, and
the second device comprises a memory device.
10. The integrated circuit of claim 9, wherein at least one of the third device or the fourth device comprises a wireless communication device.
11. An integrated circuit, comprising:
a first device positioned over a substrate, the first device comprising first through third transmitters;
a second device positioned over the substrate, the second device comprising a first receiver;
a third device positioned over the substrate, the third device comprising a second receiver; and
a fourth device positioned over the substrate, the fourth device comprising a third receiver,
wherein
a first radio frequency interconnect (RFI) comprises the first transmitter coupled to the first receiver through a first guided transmission medium,
a second RFI comprises the second transmitter coupled to the second receiver through a second guided transmission medium,
a third RFI comprises the third transmitter coupled to the third receiver by the second guided transmission medium, and
each of the second transmitter and the third transmitter is coupled to each of the second receiver and the third receiver by the second guided transmission medium.
12. The integrated circuit of claim 11, wherein
the first device comprises fourth through sixth receivers,
the second device comprises a fourth transmitter,
the third device comprises a fifth transmitter,
the fourth device comprises a sixth transmitter,
the first RFI comprises the fourth transmitter coupled to the fourth receiver through a third guided transmission medium,
the second RFI comprises the fifth transmitter coupled to the fifth receiver through a fourth guided transmission medium, and
the third RFI comprises the sixth transmitter coupled to the sixth receiver by the fourth guided transmission medium.
13. The integrated circuit of claim 12, wherein each of the first guided transmission medium, the second guided transmission medium, the third guided transmission medium, and the fourth guided transmission medium comprises a differential transmission line.
14. The integrated circuit of claim 11, wherein
the first device comprises a processor,
the second device comprises a memory device, and
at least one of the third device or the fourth device comprises a wireless communication device.
15. A method, comprising:
generating one or more of a first data signal, a second data signal or a third data signal to be communicated between a first device and a second device, the first device and a third device, or the first device and a fourth device, respectively;
communicating the first data signal between the first device and the second device by way of a first radio frequency interconnect (RFI) comprising a first channel and configured to carry the first data signal between the first device and the second device; and
communicating one or more of:
the second data signal between the first device and the third device by way of a second RFI comprising a second channel and configured to carry the second data signal between the first device and the third device, or
the third data signal between the first device and the fourth device by way of a third RFI comprising the second channel and configured to carry the third data signal between the first device and the fourth device,
wherein the communicating the one or more of the second data signal or the third data signal comprises:
distinguishing between the second and third data signals based on a frequency of the second data signal and a frequency of the third data signal, or
communicating a control signal to coordinate the communicating the one or more of the second data signal or the third data signal.
16. The method of claim 15, wherein the distinguishing between the second and third data signals based on a frequency of the second data signal and a frequency of the third data signal comprises:
the frequency of the second data signal being based on a first carrier signal of a first set of carrier signals; and
the frequency of the third data signal being based on a second carrier signal of a second set of carrier signals.
17. The method of claim 16, wherein the communicating the one or more of the second data signal or the third data signal comprises coordinating transmission of the second data signal and the third data signal through the second channel using frequency-division duplexing (FDD) based on the first set of carrier signals and the second set of carrier signals.
18. The method of claim 15, wherein the communicating the control signal to coordinate the communicating the one or more of the second data signal or the third data signal comprises communicating a plurality of control signals to coordinate transmission of the second data signal and the third data signal through the second channel based on time-division duplexing (TDD).
19. The method of claim 18, wherein the communicating the plurality of control signals to coordinate the transmission of the second data signal and the third data signal through the second channel comprises coordinating a direction of the communicating the one or more of the second data signal or the third data signal through the second channel.
20. The method of claim 18, wherein the communicating the plurality of control signals to coordinate the transmission of the second data signal and the third data signal through the second channel comprises selectively controlling a plurality of switches included in the second RFI and the third RFI.
US15/931,273 2015-10-23 2020-05-13 Integrated circuit with radio frequency interconnect Active 2036-01-30 US11616631B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/931,273 US11616631B2 (en) 2015-10-23 2020-05-13 Integrated circuit with radio frequency interconnect
US18/190,881 US20230239129A1 (en) 2015-10-23 2023-03-27 Integrated circuit with radio frequency interconnect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/921,205 US10673603B2 (en) 2015-10-23 2015-10-23 Integrated circuit with radio frequency interconnect
US15/931,273 US11616631B2 (en) 2015-10-23 2020-05-13 Integrated circuit with radio frequency interconnect

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/921,205 Continuation US10673603B2 (en) 2015-10-23 2015-10-23 Integrated circuit with radio frequency interconnect

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/190,881 Continuation US20230239129A1 (en) 2015-10-23 2023-03-27 Integrated circuit with radio frequency interconnect

Publications (2)

Publication Number Publication Date
US20200274685A1 US20200274685A1 (en) 2020-08-27
US11616631B2 true US11616631B2 (en) 2023-03-28

Family

ID=58559394

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/921,205 Active 2035-12-02 US10673603B2 (en) 2015-10-23 2015-10-23 Integrated circuit with radio frequency interconnect
US15/931,273 Active 2036-01-30 US11616631B2 (en) 2015-10-23 2020-05-13 Integrated circuit with radio frequency interconnect
US18/190,881 Pending US20230239129A1 (en) 2015-10-23 2023-03-27 Integrated circuit with radio frequency interconnect

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/921,205 Active 2035-12-02 US10673603B2 (en) 2015-10-23 2015-10-23 Integrated circuit with radio frequency interconnect

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/190,881 Pending US20230239129A1 (en) 2015-10-23 2023-03-27 Integrated circuit with radio frequency interconnect

Country Status (3)

Country Link
US (3) US10673603B2 (en)
CN (1) CN106612127A (en)
TW (1) TW201722093A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543993B1 (en) * 2015-11-30 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Radio frequency interconnect
US10284307B2 (en) * 2015-12-30 2019-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Radio frequency interconnect including calibration system and method of using

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040252755A1 (en) 1999-08-13 2004-12-16 Broadcom Corporation Decision feedback equalizer and precoder ramping circuit
US20060083321A1 (en) 2004-10-15 2006-04-20 Hossein Sedarat Multi-carrier communication bit-loading in presence of radio-frequency interferers
US20060256964A1 (en) * 2005-02-18 2006-11-16 The Regents Of The University Of California Self-synchronized radio frequency interconnect for three-dimensional circuit integration
US20080089692A1 (en) * 2006-10-11 2008-04-17 Novera Optics, Inc. Mutual wavelength locking in WDM-PONs
US20090285135A1 (en) 2008-05-19 2009-11-19 Nokia Corporation Apparatus method and computer program for radio-frequency path selection and tuning
US20100022204A1 (en) * 2007-06-14 2010-01-28 Broadcom Corporation Fully integrated micro-strip vco
US20100104056A1 (en) * 2008-10-28 2010-04-29 Teranetics, Inc. Controlling activation of electronic circuitry of data ports of a communication system
US20100165892A1 (en) 2006-02-28 2010-07-01 Posdata Co., Ltd. Apparatus and method for implementing efficient redundancy and widened service coverage in radio access station system
US20100257391A1 (en) * 2009-04-02 2010-10-07 Teranetics, Inc. Interfacing media access control (MAC) with a low-power physical layer (PHY) control
US20120082194A1 (en) * 2009-06-10 2012-04-05 The Regents Of The University Of California Milli-meter-wave-wireless-interconnect (m2w2 - interconnect) method for short-range communications with ultra-high data capability
US20120092230A1 (en) 2010-10-14 2012-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. On-chip helix antenna
US8270316B1 (en) 2009-01-30 2012-09-18 The Regents Of The University Of California On-chip radio frequency (RF) interconnects for network-on-chip designs
US8279008B2 (en) 2010-08-06 2012-10-02 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS millimeter-wave variable-gain low-noise amplifier
US20130023214A1 (en) 2010-04-06 2013-01-24 Koninklijke Philips Electronics N.V. Centralized dynamic channel allocation for medical body area networks
US20130039315A1 (en) 2010-04-01 2013-02-14 Lg Electronics Inc. Method for efficient channel use
US8427240B2 (en) 2010-08-06 2013-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Low-noise amplifier with gain enhancement
US20130215951A1 (en) * 2012-02-17 2013-08-22 Alcatel-Lucent Usa Inc. Methods and systems for reducing crosstalk
US20130215935A1 (en) * 2012-02-17 2013-08-22 Alcatel-Lucent Bell N.V. Methods And Systems For Reducing Crosstalk
US20130234305A1 (en) 2012-03-09 2013-09-12 Taiwan Semiconductor Manufacturing Co., Ltd. 3d transmission lines for semiconductors
US8593206B2 (en) 2011-04-12 2013-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Up-conversion mixer having a reduced third order harmonic
US8610494B1 (en) 2012-06-12 2013-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. Low power active filter
US8618631B2 (en) 2012-02-14 2013-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. On-chip ferrite bead inductor
US8718054B2 (en) 2010-11-03 2014-05-06 Broadcom Corporation Bridge routing module
US20140132333A1 (en) 2012-11-09 2014-05-15 Taiwan Semiconductor Manufacturing Company, Ltd. Switch circuit and method of operating the switch circuit
US20140217546A1 (en) 2013-02-06 2014-08-07 Taiwan Semiconductor Manufacturing Co., Ltd. Helical spiral inductor between stacking die
US20140253391A1 (en) 2013-03-07 2014-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Bond Wire Antenna
US20140253262A1 (en) 2013-03-07 2014-09-11 Taiwan Semiconductor Manufacturing Company Limited Rf choke device for integrated circuits
US20150155891A1 (en) * 2013-12-03 2015-06-04 Qualcomm Incorporated Dual mode wwan and wlan transceiver systems and methods
US20150215105A1 (en) 2014-01-27 2015-07-30 Silicon Image, Inc. Apparatus, method and system for asymmetric, full-duplex communication
US20170033834A1 (en) * 2015-07-31 2017-02-02 At&T Intellectual Property I, Lp Method and apparatus for communications management in a neighborhood network

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040252755A1 (en) 1999-08-13 2004-12-16 Broadcom Corporation Decision feedback equalizer and precoder ramping circuit
US20060083321A1 (en) 2004-10-15 2006-04-20 Hossein Sedarat Multi-carrier communication bit-loading in presence of radio-frequency interferers
US20060256964A1 (en) * 2005-02-18 2006-11-16 The Regents Of The University Of California Self-synchronized radio frequency interconnect for three-dimensional circuit integration
US20100165892A1 (en) 2006-02-28 2010-07-01 Posdata Co., Ltd. Apparatus and method for implementing efficient redundancy and widened service coverage in radio access station system
US20080089692A1 (en) * 2006-10-11 2008-04-17 Novera Optics, Inc. Mutual wavelength locking in WDM-PONs
US20100022204A1 (en) * 2007-06-14 2010-01-28 Broadcom Corporation Fully integrated micro-strip vco
US20090285135A1 (en) 2008-05-19 2009-11-19 Nokia Corporation Apparatus method and computer program for radio-frequency path selection and tuning
US20100104056A1 (en) * 2008-10-28 2010-04-29 Teranetics, Inc. Controlling activation of electronic circuitry of data ports of a communication system
US8270316B1 (en) 2009-01-30 2012-09-18 The Regents Of The University Of California On-chip radio frequency (RF) interconnects for network-on-chip designs
US20100257391A1 (en) * 2009-04-02 2010-10-07 Teranetics, Inc. Interfacing media access control (MAC) with a low-power physical layer (PHY) control
US20120082194A1 (en) * 2009-06-10 2012-04-05 The Regents Of The University Of California Milli-meter-wave-wireless-interconnect (m2w2 - interconnect) method for short-range communications with ultra-high data capability
US20130039315A1 (en) 2010-04-01 2013-02-14 Lg Electronics Inc. Method for efficient channel use
US20130023214A1 (en) 2010-04-06 2013-01-24 Koninklijke Philips Electronics N.V. Centralized dynamic channel allocation for medical body area networks
US8427240B2 (en) 2010-08-06 2013-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Low-noise amplifier with gain enhancement
US8279008B2 (en) 2010-08-06 2012-10-02 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS millimeter-wave variable-gain low-noise amplifier
US20120092230A1 (en) 2010-10-14 2012-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. On-chip helix antenna
US8718054B2 (en) 2010-11-03 2014-05-06 Broadcom Corporation Bridge routing module
US8593206B2 (en) 2011-04-12 2013-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Up-conversion mixer having a reduced third order harmonic
US8618631B2 (en) 2012-02-14 2013-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. On-chip ferrite bead inductor
US20130215951A1 (en) * 2012-02-17 2013-08-22 Alcatel-Lucent Usa Inc. Methods and systems for reducing crosstalk
US20130215935A1 (en) * 2012-02-17 2013-08-22 Alcatel-Lucent Bell N.V. Methods And Systems For Reducing Crosstalk
US20130234305A1 (en) 2012-03-09 2013-09-12 Taiwan Semiconductor Manufacturing Co., Ltd. 3d transmission lines for semiconductors
US8610494B1 (en) 2012-06-12 2013-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. Low power active filter
US20140132333A1 (en) 2012-11-09 2014-05-15 Taiwan Semiconductor Manufacturing Company, Ltd. Switch circuit and method of operating the switch circuit
US20140217546A1 (en) 2013-02-06 2014-08-07 Taiwan Semiconductor Manufacturing Co., Ltd. Helical spiral inductor between stacking die
US20140253391A1 (en) 2013-03-07 2014-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Bond Wire Antenna
US20140253262A1 (en) 2013-03-07 2014-09-11 Taiwan Semiconductor Manufacturing Company Limited Rf choke device for integrated circuits
US20150155891A1 (en) * 2013-12-03 2015-06-04 Qualcomm Incorporated Dual mode wwan and wlan transceiver systems and methods
US20150215105A1 (en) 2014-01-27 2015-07-30 Silicon Image, Inc. Apparatus, method and system for asymmetric, full-duplex communication
US20170033834A1 (en) * 2015-07-31 2017-02-02 At&T Intellectual Property I, Lp Method and apparatus for communications management in a neighborhood network

Also Published As

Publication number Publication date
CN106612127A (en) 2017-05-03
US20200274685A1 (en) 2020-08-27
US20230239129A1 (en) 2023-07-27
TW201722093A (en) 2017-06-16
US20170117932A1 (en) 2017-04-27
US10673603B2 (en) 2020-06-02

Similar Documents

Publication Publication Date Title
US20230239129A1 (en) Integrated circuit with radio frequency interconnect
US11822369B2 (en) Efficient signaling scheme for high-speed ultra short reach interfaces
CN109904141A (en) Integrated antenna package with electric light interconnection circuit
US10983942B1 (en) Multi-master hybrid bus apparatus
CN106649171B (en) Single-bus full-duplex data communication method and system
JP5724538B2 (en) Signal transmission device, communication device, electronic device, and signal transmission method
KR20160014480A (en) Method and apparatus for serial bus communication based on orthogonal signal waveform
US20160259745A1 (en) High frequency apparatus and method for controlling high frequency apparatus
CN104584664A (en) Deciding transmission parameters
CN106612126B (en) Transceiver group and associated router
US10305281B2 (en) Semiconductor device
CN111884987A (en) Electronic device and method for electronic device
CN104639201A (en) Radio-frequency front end of base station, and base station
CN211826943U (en) Communication control circuit and device
US20090225673A1 (en) Hardware efficient monitoring of input/output signals
US11507529B2 (en) Multi-chip module with configurable multi-mode serial link interfaces
CN214675488U (en) Radio frequency coupling access double-carrier distributed base station system
CN217509042U (en) Wireless transmission system
WO2023065325A1 (en) Orbital angular momentum-based shared channel transmission method and apparatus
CN103209068A (en) Full-duplex signal transmission circuit and method
CN116600072A (en) Wireless communication device
CN103619079A (en) TD-SCDMA base station applied to cable tunnel
CN203775426U (en) TD-SCDMA base station applied to cable tunnel
US7610420B2 (en) Data aggregation-distribution apparatus, date transmission system and method thereof
CN106130652A (en) Optical transmitter and transmission method

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, HUAN-NENG;SHEN, WILLIAM WU;JOU, CHEWN-PU;AND OTHERS;SIGNING DATES FROM 20151203 TO 20151207;REEL/FRAME:052653/0444

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE