US11435364B2 - Methods of treating patients at risk for renal injury and renal failure - Google Patents

Methods of treating patients at risk for renal injury and renal failure Download PDF

Info

Publication number
US11435364B2
US11435364B2 US16/422,156 US201916422156A US11435364B2 US 11435364 B2 US11435364 B2 US 11435364B2 US 201916422156 A US201916422156 A US 201916422156A US 11435364 B2 US11435364 B2 US 11435364B2
Authority
US
United States
Prior art keywords
patient
kidney
cyclin
dependent kinase
kinase inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/422,156
Other versions
US20200057076A1 (en
Inventor
Richard A. Zager
Donald Jeffrey Keyser
Alvaro F. GUILLEM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renibus Therapeutics Inc
Original Assignee
Renibus Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renibus Therapeutics Inc filed Critical Renibus Therapeutics Inc
Priority to US16/422,156 priority Critical patent/US11435364B2/en
Assigned to RENIBUS THERAPEUTICS, INC. reassignment RENIBUS THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUILLEM, ALVARO F., KEYSER, DONALD JEFFREY, ZAGER, Richard A.
Publication of US20200057076A1 publication Critical patent/US20200057076A1/en
Priority to US17/873,968 priority patent/US11965896B2/en
Application granted granted Critical
Publication of US11435364B2 publication Critical patent/US11435364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6875Nucleoproteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/409Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/76Assays involving albumins other than in routine use for blocking surfaces or for anchoring haptens during immunisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/34Genitourinary disorders
    • G01N2800/347Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/54Determining the risk of relapse

Definitions

  • the kidney is responsible for water and solute excretion from the body. Its functions include maintenance of acid-base balance, regulation of electrolyte concentrations, control of blood volume, and regulation of blood pressure. Kidneys also help maintain blood hemoglobin/hematocrit by producing erythropoietin and also produce activated vitamin D. As such, loss of kidney function through injury and/or disease results in substantial morbidity and mortality. A detailed discussion of renal injuries is provided in Harrison's Principles of Internal Medicine, 17.sup.th Ed., McGraw Hill, New York, pages 1741-1830, which are hereby incorporated by reference in their entirety. Renal disease and/or injury may be acute or chronic.
  • Acute and chronic kidney disease are described as follows (from Current Medical Diagnosis & Treatment 2008, 47 th Ed, McGraw Hill, New York, pages 785-815, which are hereby incorporated by reference in their entirety): “Acute renal failure is worsening of renal function over hours to days, resulting in the retention of nitrogenous wastes (such as urea nitrogen) and creatinine in the blood. Retention of these substances is called azotemia.
  • Chronic renal failure results from an abnormal loss of renal function over months to years”.
  • Acute renal failure also known as acute kidney injury, or AKI
  • AKI acute kidney injury
  • the Astute Medical NEPHROCHECK®® Test System is intended to be used in conjunction with clinical evaluation in patients who currently have or have had within the past 24 hours acute cardiovascular and or respiratory compromise and are ICU patients as an aid in the risk assessment for moderate or severe acute kidney injury (AKI) within 12 hours of patient assessment.
  • the NEPHROCHECK®® Test System is intended to be used in patients 21 years of age or older.
  • the FDA has approved NEPHROCHECK®® for detection of “renal stress.”
  • TIMP-2 and IGFBP-7 as biomarkers for kidney stress or kidney injury are not made in the kidney in response to injury. Rather, their elevation in urine reflects a failure to reabsorb these proteins following their filtration from plasma, and from their loss from kidney tubule cells. Furthermore, their utility has not been demonstrated to be superior to urinary albumin, long recognized standard for measuring kidney damage. While the NEPHROCHECK® test has been proposed as a cell cycle arrest test, this is unlikely to be accurate, because the NEPHROCHECK® markers are lost from the kidney, making it highly unlikely that they could trigger the cell cycle arrest/senescence process. Because these processes cause progressive kidney (as well as other organ) damage, it is critical to develop markers of these processes that will allow physicians to introduce new therapies.
  • the present invention relates to methods of treating patients at risk for having suffered kidney injury or kidney disease, including kidney disease progression, or have undergone a kidney transplant.
  • the methods generally relate to (a) performing an assay to determine the level of p21 in the patient; and (b) if the patient exhibits an elevated level of p21, treating the patient to reduce the risk of further kidney injury.
  • the treatment may include one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, Angiotensin II receptor blockers, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration.
  • the treatment may include administration of one or more steroids, cellular senescence blocking agents, ACE inhibitors, NRF2 activators, angiotensin II receptor blockers, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments.
  • a patient may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP).
  • an iron complex e.g., iron sucrose
  • a heme protein degradation inhibitor tin protoporphyrin, SnPP
  • the patient may be treated with a circuminoid formulation.
  • the patient may be treated with bardoxolone methyl.
  • the step (a) of performing an assay to determine the level of p21 in the patient also comprises performing an assay to determine the level of microalbumin, ferritin, hemopexin, and haptoglobin in the patient.
  • the invention may include a method of determining the risk of progression of acute or chronic kidney disease and tissue senescence comprising: (a) performing an assay to determine the level of organ senescence as shown by the level of serum, urine, or plasma p21 levels in the patient; and (b) if the patient exhibits an elevated level of p21, administer a dosage of a drug known to treat senescence in the patient. In certain embodiments, the dosage of the drug known to treat senescence is increased upon determination that the level of p21 is increased.
  • the invention may include a method of treating a patient determined to be at risk for future kidney injury comprising: (a) performing an assay to determine the level of p21 in the patient; (b) performing an assay to determine the level of urinary albumin in the patient; and (c) if the patient exhibits elevated levels of p21 and albumin, treating the patient to reduce the risk of further kidney injury, wherein the treatment comprises one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration.
  • the treatment comprises one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists
  • a patient may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP).
  • an iron complex e.g., iron sucrose
  • a heme protein degradation inhibitor tin protoporphyrin, SnPP
  • the patient may be treated with a circuminoid formulation.
  • the patient may be treated with bardoxolone methyl.
  • the step (a) of performing an assay to determine the level of p21 in the patient also comprises performing an assay to determine the level of microalbumin, ferritin, hemopexin, and haptoglobin in the patient.
  • the invention may include a method for evaluating renal status in a subject, comprising: (a) performing one or more assays configured to detect a kidney injury marker including measuring p21 present in a body fluid sample obtained from the subject, (b) correlating the measured p21 level to a likelihood that the subject is at risk of a future acute renal injury within 72 hours of the time at which the body fluid sample is obtained from the subject by using the assay result to assign the subject to a predetermined subpopulation of individuals having a known predisposition of a future acute renal injury within 72 hours; and (c) treating the subject based on the predetermined subpopulation of individuals to which the patient is assigned, wherein the treatment comprises one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of
  • a patient may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP).
  • the patient may be treated with a circuminoid (e.g., tetrahydrocurcumin) formulation.
  • the patient may be treated with bardoxolone methyl.
  • the invention may include a method of treating a patient at risk for having suffered kidney injury or kidney disease progression comprising: (a) performing an assay to determine the level of p16ink4a, p19, and p21 in the patient; (b) determining by considering the relative levels of p16ink4a, p19, and p21 whether the patient is suffering from kidney injury or kidney disease; and (c) if the patient is determined to be suffering from kidney injury or kidney disease, treating the patient to reduce the risk of further kidney injury, wherein the treatment comprises one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration.
  • the patient comprises
  • a patient may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP).
  • the patient may be treated with a circuminoid (e.g., tetrahydrocurcumin) formulation.
  • the patient may be treated with bardoxolone methyl.
  • the step (a) of performing an assay to determine the level of p21 in the patient also comprises performing an assay to determine the level of microalbumin, ferritin, hemopexin, and haptoglobin in the patient.
  • the invention may include a method of treating a patient comprising: (a) performing an assay to determine the level of p16ink4a, p19, and p21 in the patient; (b) determining by considering the relative levels of p16ink4a, p19, and p21 whether the patient is suffering liver, kidney, heart or brain dysfunction, injury or senescence.
  • the assay may include (i) obtaining a body fluid sample from the patient, (ii) contacting all or a portion of the body fluid sample with a binding reagent which specifically binds for detection of p21, and determining an assay result indicative of binding of the p21 to the binding reagent to provide one or more assay results.
  • the invention may include a method of treating a patient suffering from kidney injury comprising administering an effective amount of human p21 to a patient suffering from kidney injury.
  • the human p21 may be recombinant human p21.
  • the invention may include a method of treating a patient suffering from kidney injury comprising administering an effective amount of human p21 activator to a patient suffering from kidney injury.
  • the human p21 activator may include Tenovin-1.
  • FIG. 1 shows increases in p21 elevated in several body fluids following kidney injury.
  • FIG. 2 shows increases in p21 over time following kidney injury.
  • FIG. 3 shows increasing p21 with age.
  • FIG. 4 shows p21 compared with liver senescence biomarkers following kidney injury.
  • FIG. 5 shows p21 compared with kidney senescence biomarkers following kidney injury.
  • FIG. 6 shows p21 compared with heart senescence biomarkers following kidney injury.
  • FIG. 7 shows p21 compared with brain senescence biomarkers following kidney injury.
  • FIG. 8 shows p21 expression in the heart and brain associated with kidney injury.
  • CKI cyclin-dependent kinase inhibitor
  • P21 represents a major target of p53 activity and thus is associated with linking DNA damage to cell cycle arrest. This makes p21 a promising diagnostic molecule to test for this process.
  • the present invention relates to the use of the p21 biomarker in the early detection and treatment of acute renal injury or failure, and associated cell cycle arrest, as well as testing kits for the p21 biomarker, preferably in both plasma and urine.
  • the present inventors have found that p21 may be therapeutically used to treat conditions, particularly conditions affecting the kidney, including AKI.
  • the present invention was based on the surprising discovery by the inventors that p21 is elevated in several body fluids, including urine, as early as 2 hours post injury and is sustained for at least 24 hours following ischemic injury.
  • an increase in p21 mRNA indicates increased production of p21 following kidney injury.
  • This increase in production of p21 protein leads to increased renal cortical levels and hence increased urinary levels of p21.
  • Some of the p21 makes it into plasma.
  • the urinary and plasma levels were unexpectedly dramatic which underscores their utility as a kidney cell injury/cell cycle arrest biomarker. That p21 a cell nuclear protein would be leaked into the urine absent cell death is quite unexpected.
  • the transport of p21 into urine presumptively occurs by a cellular process, exocytosis, whereby cells package protein products and then transport them out of the cell entering the urine.
  • the ability to detect the p21 biomarker in both the plasma and the urine makes it particularly advantageous as a biomarker for renal injury, since urine samples are routinely utilized in diagnosis of kidney conditions.
  • the p21 biomarker can be measured using ELISA in plasma, serum and urine.
  • the test can be on a test strip.
  • p21 is measured using a plate that includes a first antibody that is fixed to a plate in order to capture p21. A second antibody is applied later to detect p21 captured on the plate.
  • the detection antibody has a visible marker (e.g., horse radish peroxidase) on it that can be quantified using an ELISA plate reader.
  • the antibody pair in one preferred aspect is Abcam #ab212072 which includes Mouse p21 Capture Antibody part #3200086 and Mouse p21 Detector Antibody part #3200087.
  • the test strip may be used to detect p21 in blood, urine or other bodily fluids.
  • the p21 biomarker increases with time post AKI, making a potential marker of renal disease progression due at least in part to the senescence process as shown in FIG. 2 .
  • p21 is that the baseline level for p21 increases with age as shown in FIG. 3 . These data show the level of plasma p21 increasing over time in healthy mice. The data also show that plasma p21 is tightly correlated with renal cortical p21. This information may be considered in determining whether a particular value of measured p21 is indicative of kidney injury.
  • the increase in p21 with age also makes the biomarker useful in detecting senescence in healthy individuals.
  • the baseline level of p21 may be utilized in determining a biological age of an individual that could differ from chronological age. All being equal, two people of the same chronological age who have greatly different levels of p21 may be seen as having a different biological age. This could be useful in assessing the ability of particular patients to tolerate more aggressive treatment options. Accordingly, one may utilize the p21 assay to determine the biological age of a patient, and utilize that information to select among treatment options for a particular patient.
  • the p21 biomarker may be utilized in conjunction with other biomarkers of senescence including p16 and p19 assays.
  • the following data shows progression of these biomarkers for senescence in the brain, kidney, heart and liver of healthy mice as reflected by their mRNAs. See FIGS. 4-7 below.
  • the invention relates to testing a patient's levels of at least three biomarkers including p16ink4a, p19, and p21, and determining based on the patent's profile for these biomarkers whether the patient is subject to liver, kidney, heart and/or brain injury or senescence. As shown in the following figures, the response of these three biomarkers varies depending upon whether injury is in the liver, kidney, heart or brain.
  • the invention relies on p21 as a unique marker of organ injury and its transition to cellular senescence and cell cycle arrest. At present, there are no reliable methods to make these determinations. Concomitant measurement of p16 and p19 provides supportive data for the p21 results, as they are also markers of the senescence process. Different tissues express different ratios of p21, p16 and p19 while they are undergoing senescence. Thus, the ratios of these proteins in plasma, serum or urine can help localize the senescence process to the kidney, vs. non kidney tissues (e.g., heart and brain). By so doing, these assays can provide insights into which therapeutic agents should be used for specific organ targeting.
  • the invention relates to reviewing the profile of three biomarkers to determine whether injury or senescence is related to a kidney disfunction. Because ongoing kidney injury may be difficult to determine using conventional techniques, the ability to determine whether observed p21 activity is related to kidney disfunction is particularly useful. As shown in the charts above, kidney disfunction resulting from ischemic injury shows an increase in presence of all three biomarkers whereas other organ injury results in the presence of elevated levels of less than all three biomarkers. Accordingly, an analysis of all three biomarkers can point to kidney disfunction relative generalized organ disfunction or p21 activity related to other organ injury.
  • the combination of biomarkers used to diagnose a patient with kidney injury includes an assay to determine the level of p21 in the patient, as well as assays to determine the level of microalbumin, ferritin, hemopexin, and haptoglobin in the patient.
  • the patient may be treated to reduce the risk of further kidney injury.
  • the treatment may include one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists, Angiotensin II receptor blockers (ARBs), anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration.
  • Suitable steroids may include methylprednisolone and prednisolone.
  • Suitable ACE inhibitors include benazepril (Lotensin), captopril (Capoten-discontinued brand), enalapril (Vasotec, Epaned), fosinopril (Monopril-Discontinued brand), lisinopril (Prinivil, Zestril, Qbrelis), moexipril (Univasc-Discontinued brand), perindopril (Aceon), quinapril (Accupril), ramipril (Altace), trandolapril (Mavik).
  • Suitable NRF2 activators include bardoxolone and Sulforaphane (an isothiocyanate).
  • Suitable antioxidants include Vitamin C, Vitamin E, alpha lipoic acid, selenium, and carotenoids, such as beta-carotene, lycopene, lutein, and zeaxanthin, and circuminoids (tetrahydrocurcumin, turmeric).
  • Suitable aldosterone antagonists include eplerenone (Inspira) and spironolactone (Aldactone, CaroSpir).
  • Suitable Angiotensin II receptor blockers include Azilsartan (Edarbi), Candesartan (Atacand), Eprosartan, Irbesartan (Avapro), Losartan (Cozaar), Olmesartan (Benicar), Telmisartan (Micardis), Valsartan (Diovan).
  • Suitable ACE Inhibitors include Benazepril (Lotensin), Captopril, Enalapril (Vasotec), Fosinopril, Lisinopril (Prinivil, Zestril), Moexipril, Perindopril (Aceon), Quinapril (Accupril), Ramipril (Altace), or Trandolapril (Mavik).
  • Suitable anti-inflammatory agents include ibuprofen, naproxen and celecoxib.
  • Suitable anti-fibrotic agents include pifrenidone and nintedanib.
  • Suitable vasopressin antagonists include tolvaptan and conivaptan.
  • Suitable SGLT-2 inhibitors include canagliflozin (Invokana), dapagliflozin (Farxiga), empagliflozin (Jardiance), empagliflozin/linagliptin (Glyxambi), empagliflozin/metformin (Synjardy), and dapagliflozin/metformin (Xigduo XR).
  • Suitable immunosuppressive agents can include corticosteroids, Janus kinase inhibitors, Calcineurin inhibitors, mTOR inhibitors, IMDH inhibitors, Biologics, and Monoclonal antibodies.
  • immunosuppressive agents can include prednisone (Deltasone, Orasone), budesonide (Entocort EC), prednisolone (Millipred), tofacitinib (Xeljanz), cyclosporine (Neoral, Sandimmune, SangCya), tacrolimus (Astagraf XL, Envarsus XR, Prograf), azathioprine (Azasan, Imuran), leflunomide (Arava), mycophenolate (CellCept, Myfortic), abatacept (Orencia), adalimumab (Humira), anakinra (Kineret), certolizumab (Cimzia), etanercept (Enbrel), golimumab (Simponi), infliximab (Remicade), ixekizumab (Taltz), natalizumab (Tysabri), rit
  • Suitable organ protection agents are preferably renoprotective agents, which can include Frusemide, Dopamine, Theophylline, Mannitol, Calcium channel blockers, ⁇ 2 Adrenergic receptor agonists, cardiac glycosides, natriuretic peptides, prostaglandins (PGE2, Prostacyclin, Mistoprostol), Nitric oxide synthetase inhibitors (L-NMMA), Catecholamines (Adrenaline, Noradrenaline, Dobutamine, Dopexamine), intravascular volume loading, and other agents including growth factors (IGF1, Epidermal growth factor, Hepatocyte growth factor), Bradykinin, Magnesium, Endothelin-1 antagonists, and low dose endothelin-1.
  • renoprotective agents can include Frusemide, Dopamine, Theophylline, Mannitol, Calcium channel blockers, ⁇ 2 Adrenergic receptor agonists, cardiac glycosides, natriuretic peptides, pros
  • Suitable acute kidney injury treatments include many of the above agents as well as Antiapoptosis/Necrosis Agents (Caspase Inhibitors, Minocycline, Guanosine and Pifithrin- ⁇ (p53 Inhibitor), Poly ADP-Ribose Polymerase Inhibitor), Free Radical Scavengers (Deferoxamine), Antisepsis (Ethyl Pyruvate, Activated Protein C, Insulin), Growth Factors (Recombinant Erythropoietin, Hepatocyte Growth Factor), Vasodilators (Carbon Monoxide Release Compounds and Bilirubin, Endothelin Antagonist), anti-inflammatory drugs (e.g., Sphingosine 1 phosphate (S1P) analogs, selective A2AR agonist, Inducible Nitric Oxide Synthase Inhibitors), and other compounds including neutrophil gelatinase-associated lipocalin, IL-6 and C5a antagonist
  • Suitable ARBs include Azilsartan (Edarbi), Candesartan (Atacand), Eprosartan, Irbesartan (Avapro), Losartan (Cozaar), Olmesartan (Benicar), Telmisartan (Micardis), Valsartan (Diovan).
  • Suitable ACE Inhibitors include Benazepril (Lotensin), Captopril, Enalapril (Vasotec), Fosinopril, Lisinopril (Prinivil, Zestril), Moexipril, Perindopril (Aceon), Quinapril (Accupril), Ramipril (Altace), or Trandolapril (Mavik).
  • a patient upon detection of kidney injury in accordance with the above methods may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP).
  • iron or an iron complex e.g., iron sucrose
  • heme protein degradation inhibitor tin protoporphyrin, SnPP
  • SnPP heme protein degradation inhibitor
  • the patient upon detection of kidney injury in accordance with the above methods may be treated with a circuminoid (e.g., tetrahydrocurcumin) formulation.
  • a circuminoid e.g., tetrahydrocurcumin
  • THCu tetrahydrocurcumin
  • the THCu is formulated in a liposome.
  • the patient upon detection of kidney injury in accordance with the above methods may be treated with bardoxolone methyl (RTA 402).
  • RTA 402 bardoxolone methyl
  • This compound is described in U.S. Pat. No. 8,455,544, entitled “Synthetic triterpenoids and method of use in the treatment of disease.”
  • Bardoxolone methyl is an Antioxidant Inflammation Modulator (AIM) in clinical development for inflammation and cancer-related indications that inhibits immune-mediated inflammation by restoring redox homeostasis in inflamed tissues. It induces the cytoprotective transcription factor Nrf2 and suppresses the activities of the pro-oxidant and pro-inflammatory transcription factors NF- ⁇ B and STAT3.
  • AIM Antioxidant Inflammation Modulator
  • RTA 402 has demonstrated significant single agent anti-inflammatory activity in several animal models of inflammation such as renal damage in the cisplatin model and acute renal injury in the ischemia-reperfusion model. In addition, significant reductions in serum creatinine have been observed in patients treated with RTA 402.
  • kidney injury Another aspect of the p21 biomarker is that its presence naturally increases with aging. Therefore, the patient's age may be taken into consideration in determining the baseline level of p21 above which kidney injury is considered likely. For example a younger patient may be considered as potentially suffering from kidney injury where p21 plasma levels are above 200 pg/ml, whereas an older patient may require p21 plasma levels above 400 pg/ml before kidney injury is considered likely. In either case, p21 levels should rise to levels that dwarf the baseline levels within several hours after kidney injury. For example, levels in the range of greater than 700 pg/ml or 2000 pg/ml can be expected in the case of injury. Alternatively, the baseline level of p21 where kidney injury is considered likely may be set by natural levels observed in older patients.
  • the level of intervention could be keyed to the level of p21 biomarker measured.
  • the intervention may be limited to withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration.
  • the treatment may include administration of one or more steroids, ACE inhibitors, NRF2 activators Angiotensin II receptor blockers, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments or could also involve initiating renal replacement therapy.
  • kidney injury has been associated with kidney injury as shown in FIG. 8 .
  • Renal ischemia was induced by reperfusion or sham surgery, i.e., surgery in the absence of kidney injury.
  • the p21 levels in three organs were measured 18 hours after the reperfusion or sham surgery.
  • Ischemia increased kidney p21 by 6 fold.
  • the renal failure denoted by the increases in BUN and creatinine (Cr)
  • kidney injury evokes p21 gene activation in nonrenal organs.
  • Proximal tubules were isolated from a mouse kidney and incubated. Through exposure to oxygen deprivation, simulated ischemic injury was induced. A three-fold increase in p21 leakage occurred out of the isolated cells within 30 min and the degree of leakage correlates well with the extent of cell death. It is believed that depleting the cells of ATP made it impossible for the nucleus to retain p21, which presumably is an energy dependent process. The following chart shows increase percentage p21 release after ischemic injury.
  • the present invention also includes a urine testing device for measuring levels of p21 in a patient's urine.
  • a urine testing device for measuring levels of p21 in a patient's urine.
  • the urine testing device includes a test strip which includes two antibodies. Each antibody would be directed to different sites on the p21 protein. One antibody is embedded in the dipstick and binds or captures the p21 in the plasma, serum or urine sample.
  • the dipstick After exposing the dipstick to the sample for a few minutes, allowing binding of p21, the dipstick would be washed (dunked in saline for a second or two) and then the stick would be put into a solution containing the second antibody which has a detectable readout bound to it (to be defined).
  • the readout molecule e.g. a fluorescent signal
  • the present invention also includes a blood testing device for measuring levels of p21 in a patient's blood.
  • a blood testing device for measuring levels of p21 in a patient's blood.
  • the device can work with a blood droplet or utilize a pin prick similar to known devices for measuring blood glucose levels for diabetics.
  • the blood testing device includes a test strip which includes two antibodies as described above. Alternatively, the levels of p21 could be done in a clinical lab using nephilometry in situations where a clinical lab is available.
  • the p21 biomarker may be combined with known AKI biomarkers.
  • known AKI biomarkers fall into three categories.
  • the first group includes constitutively expressed proximal tubular proteins that are released into urine in response to early AKI. Examples include, lysosomal enzyme N-acetyl ⁇ -glucosaminidase (NAG), the cytosolic protein lactate dehydrogenase, or the brush border protein gp330 (previously referred to as the renal tubular epithelial antigen).
  • the second group includes tubule “stress molecules,” which respond to injury with increased gene transcription (mRNA elevations), protein translation, and ultimately, protein release into the urinary space.
  • Neutrophil gelatinase-associated lipcalin and KIM-1 are perhaps the best known molecules within this category, although other examples exist (heme oxygenase 1 [HO-1], ⁇ -fetoprotein, and haptoglobin).
  • the third category include low molecular mass proteins (e.g., ⁇ 2-microglobulin, lysozyme, ⁇ 1-microglobulin, light chains, cystatin c) that are freely filtered by the glomerulus. Because these biomarkers reflect different pathophysiologic pathways, they may be advantageously used in combination with p21 as combination biomarkers.
  • the p21 protein may also be used as a therapeutic agent to treat various kidney diseases.
  • human p21 protein may be produced using recombinant technology and administered via intravenous or intramuscular route in order to treat kidney disease.
  • the therapeutically effective dose should be such that upon administration, the patient's level of renal tubular p21 is elevated above the levels naturally present at the time of injury to mitigate its expression.
  • the administration can be made immediately before injury such as in the case of surgery, or may be used to generally raise the p21 levels in the organ where injury is occurring or anticipated. This is because cells make p21 as a protective protein.
  • Recombinant p21 is available, for example, from abcam, 1 Kendall Square, Suite B2304, Cambridge, Mass. 02139-1517 USA.
  • the p21 protein may also be induced by administration of an agent that causes elevated levels of p21 production in kidney cells.
  • Tenovin-1 is a p21 activator and inducer of cell cycle arrest. Wilking, M. J., Singh, C., Nihal, M., Zhong, W. & Ahmad, N. SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation. Arch. Biochem. Biophys. 563, 94-100 (2014).
  • the present embodiment involves administering Tenovin-1 in a therapeutically effective amount to a patient in need thereof to treat the patient's kidney disease.

Abstract

The p21 biomarker is utilized in the evaluation of whether a patient is suffering from kidney injury or failure, and can be used in methods of treating kidney injury or failure by determining the appropriateness of one or more of initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration.

Description

RELATED APPLICATIONS
The present application claims benefit from U.S. Provisional Patent Application Ser. Nos. 62/676,157 filed May 24, 2018, and 62/715,508 filed Aug. 7, 2018, each of which are incorporated by reference herein in their entirety.
BACKGROUND OF THE INVENTION
The kidney is responsible for water and solute excretion from the body. Its functions include maintenance of acid-base balance, regulation of electrolyte concentrations, control of blood volume, and regulation of blood pressure. Kidneys also help maintain blood hemoglobin/hematocrit by producing erythropoietin and also produce activated vitamin D. As such, loss of kidney function through injury and/or disease results in substantial morbidity and mortality. A detailed discussion of renal injuries is provided in Harrison's Principles of Internal Medicine, 17.sup.th Ed., McGraw Hill, New York, pages 1741-1830, which are hereby incorporated by reference in their entirety. Renal disease and/or injury may be acute or chronic. Acute and chronic kidney disease are described as follows (from Current Medical Diagnosis & Treatment 2008, 47th Ed, McGraw Hill, New York, pages 785-815, which are hereby incorporated by reference in their entirety): “Acute renal failure is worsening of renal function over hours to days, resulting in the retention of nitrogenous wastes (such as urea nitrogen) and creatinine in the blood. Retention of these substances is called azotemia. Chronic renal failure (chronic kidney disease) results from an abnormal loss of renal function over months to years”.
Acute renal failure (ARF, also known as acute kidney injury, or AKI) is an abrupt (typically detected within about 48 hours to 1 week) reduction in glomerular filtration. This loss of filtration capacity results in retention of nitrogenous (urea and creatinine) and non-nitrogenous waste products that are normally excreted by the kidney, a reduction in urine output, or both. It is reported that ARF complicates about 5% of hospital admissions, 15-30% of cardiopulmonary bypass surgeries, and up to 35% of intensive care admissions. ARF may be categorized as prerenal, intrinsic renal, or post-renal in causation. Intrinsic renal disease can be further divided into glomerular, tubular, interstitial, and vascular abnormalities. Major causes of ARF are described in the following table, which is adapted from the Merck Manual, 17.sup.th ed., Chapter 222, and which is hereby incorporated by reference in their entirety:
There is interest in developing methods for early diagnosis and prognosis of renal injury and renal failure that would make timely intervention to prevent progression to chronic kidney damage. One such test relies on biomarkers TIMP-2 (tissue inhibitor of metalloproteinases 2) and IGFBP-7 (insulin-like growth factor-binding protein 7), and is marketed as NEPHROCHECK®® by Astute Medical of San Diego, Calif. The patents include, for example, U.S. Pat. No. 8,778,615, entitled “Methods and compositions for diagnosis and prognosis of renal injury and renal failure,” issued to Joseph Anderberg et al. and assigned to Astute Medical, Inc. The '615 patent discloses diagnosis of kidney injury and kidney failure using a combination of several biomarkers. Other related patents include U.S. Pat. Nos. 9,879,091; 9,822,172; 9,784,750; 9,733,261; 9,696,322; 9,470,695; 9,459,261; 9,417,250; 9,366,683; 9,360,488; 9,229,010; 9,057,735; 9,029,093; 8,993,250; and 8,871,459.
The Astute Medical NEPHROCHECK®® Test System is intended to be used in conjunction with clinical evaluation in patients who currently have or have had within the past 24 hours acute cardiovascular and or respiratory compromise and are ICU patients as an aid in the risk assessment for moderate or severe acute kidney injury (AKI) within 12 hours of patient assessment. The NEPHROCHECK®® Test System is intended to be used in patients 21 years of age or older. The FDA has approved NEPHROCHECK®® for detection of “renal stress.”
One problem with TIMP-2 and IGFBP-7 as biomarkers for kidney stress or kidney injury is that they are not made in the kidney in response to injury. Rather, their elevation in urine reflects a failure to reabsorb these proteins following their filtration from plasma, and from their loss from kidney tubule cells. Furthermore, their utility has not been demonstrated to be superior to urinary albumin, long recognized standard for measuring kidney damage. While the NEPHROCHECK® test has been proposed as a cell cycle arrest test, this is unlikely to be accurate, because the NEPHROCHECK® markers are lost from the kidney, making it highly unlikely that they could trigger the cell cycle arrest/senescence process. Because these processes cause progressive kidney (as well as other organ) damage, it is critical to develop markers of these processes that will allow physicians to introduce new therapies.
Still a need exists to develop treatments for further kidney injury based on more stable biomarkers that are indicative of early kidney injury. In particular, there is a need to identify urinary markers of a post injury process known as “cell cycle arrest.” This is a process that can lead to “premature tissue aging”, known as “senescence.”
SUMMARY OF THE INVENTION
The present invention relates to methods of treating patients at risk for having suffered kidney injury or kidney disease, including kidney disease progression, or have undergone a kidney transplant. The methods generally relate to (a) performing an assay to determine the level of p21 in the patient; and (b) if the patient exhibits an elevated level of p21, treating the patient to reduce the risk of further kidney injury. The treatment may include one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, Angiotensin II receptor blockers, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration. In certain cases the treatment may include administration of one or more steroids, cellular senescence blocking agents, ACE inhibitors, NRF2 activators, angiotensin II receptor blockers, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments.
In one aspect, a patient may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP). In another aspect, the patient may be treated with a circuminoid formulation. In yet another aspect, the patient may be treated with bardoxolone methyl.
In one aspect, the step (a) of performing an assay to determine the level of p21 in the patient, also comprises performing an assay to determine the level of microalbumin, ferritin, hemopexin, and haptoglobin in the patient.
In one embodiment, the invention may include a method of determining the risk of progression of acute or chronic kidney disease and tissue senescence comprising: (a) performing an assay to determine the level of organ senescence as shown by the level of serum, urine, or plasma p21 levels in the patient; and (b) if the patient exhibits an elevated level of p21, administer a dosage of a drug known to treat senescence in the patient. In certain embodiments, the dosage of the drug known to treat senescence is increased upon determination that the level of p21 is increased.
In one embodiment, the invention may include a method of treating a patient determined to be at risk for future kidney injury comprising: (a) performing an assay to determine the level of p21 in the patient; (b) performing an assay to determine the level of urinary albumin in the patient; and (c) if the patient exhibits elevated levels of p21 and albumin, treating the patient to reduce the risk of further kidney injury, wherein the treatment comprises one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration.
In one aspect, a patient may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP). In another aspect, the patient may be treated with a circuminoid formulation.
In yet another aspect, the patient may be treated with bardoxolone methyl. In one aspect, the step (a) of performing an assay to determine the level of p21 in the patient, also comprises performing an assay to determine the level of microalbumin, ferritin, hemopexin, and haptoglobin in the patient.
In one embodiment, the invention may include a method for evaluating renal status in a subject, comprising: (a) performing one or more assays configured to detect a kidney injury marker including measuring p21 present in a body fluid sample obtained from the subject, (b) correlating the measured p21 level to a likelihood that the subject is at risk of a future acute renal injury within 72 hours of the time at which the body fluid sample is obtained from the subject by using the assay result to assign the subject to a predetermined subpopulation of individuals having a known predisposition of a future acute renal injury within 72 hours; and (c) treating the subject based on the predetermined subpopulation of individuals to which the patient is assigned, wherein the treatment comprises one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration. In one aspect, a patient may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP). In another aspect, the patient may be treated with a circuminoid (e.g., tetrahydrocurcumin) formulation. In yet another aspect, the patient may be treated with bardoxolone methyl.
In one embodiment, the invention may include a method of treating a patient at risk for having suffered kidney injury or kidney disease progression comprising: (a) performing an assay to determine the level of p16ink4a, p19, and p21 in the patient; (b) determining by considering the relative levels of p16ink4a, p19, and p21 whether the patient is suffering from kidney injury or kidney disease; and (c) if the patient is determined to be suffering from kidney injury or kidney disease, treating the patient to reduce the risk of further kidney injury, wherein the treatment comprises one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration. The patient may be a patient who has undergone a kidney transplant.
In one aspect, a patient may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP). In another aspect, the patient may be treated with a circuminoid (e.g., tetrahydrocurcumin) formulation. In yet another aspect, the patient may be treated with bardoxolone methyl.
In one aspect, the step (a) of performing an assay to determine the level of p21 in the patient, also comprises performing an assay to determine the level of microalbumin, ferritin, hemopexin, and haptoglobin in the patient.
In one embodiment, the invention may include a method of treating a patient comprising: (a) performing an assay to determine the level of p16ink4a, p19, and p21 in the patient; (b) determining by considering the relative levels of p16ink4a, p19, and p21 whether the patient is suffering liver, kidney, heart or brain dysfunction, injury or senescence.
In any of the assay steps, the assay may include (i) obtaining a body fluid sample from the patient, (ii) contacting all or a portion of the body fluid sample with a binding reagent which specifically binds for detection of p21, and determining an assay result indicative of binding of the p21 to the binding reagent to provide one or more assay results.
In one embodiment, the invention may include a method of treating a patient suffering from kidney injury comprising administering an effective amount of human p21 to a patient suffering from kidney injury. The human p21 may be recombinant human p21.
In one embodiment, the invention may include a method of treating a patient suffering from kidney injury comprising administering an effective amount of human p21 activator to a patient suffering from kidney injury. The human p21 activator may include Tenovin-1.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows increases in p21 elevated in several body fluids following kidney injury.
FIG. 2 shows increases in p21 over time following kidney injury.
FIG. 3 shows increasing p21 with age.
FIG. 4 shows p21 compared with liver senescence biomarkers following kidney injury.
FIG. 5 shows p21 compared with kidney senescence biomarkers following kidney injury.
FIG. 6 shows p21 compared with heart senescence biomarkers following kidney injury.
FIG. 7 shows p21 compared with brain senescence biomarkers following kidney injury.
FIG. 8 shows p21 expression in the heart and brain associated with kidney injury.
DETAILED DESCRIPTION OF THE INVENTION
Also known as cyclin-dependent kinase inhibitor 1, or CDK-interacting protein 1, p21 is a cyclin-dependent kinase inhibitor (CKI) that is capable of inhibiting all cyclin/CDK complexes. The amino acid sequences for human p21 is as follows:
MSEPAGDVRQNPCGSKACRRLFGPVDSEQLSRDCDALMAGCIQEARERWN
FDFVTETPLEGDFAWERVRGLGLPKLYLPTGPRRGRDELGGGRRPGTSPA
LLQGTAEEDHVDLSLSCTLVPRSGEQAEGSPGGPGDSQGRKRRQTSMTDF
YHSKRRLIFSKRKP
P21 represents a major target of p53 activity and thus is associated with linking DNA damage to cell cycle arrest. This makes p21 a promising diagnostic molecule to test for this process. The present invention relates to the use of the p21 biomarker in the early detection and treatment of acute renal injury or failure, and associated cell cycle arrest, as well as testing kits for the p21 biomarker, preferably in both plasma and urine. The present inventors have found that p21 may be therapeutically used to treat conditions, particularly conditions affecting the kidney, including AKI.
The present invention was based on the surprising discovery by the inventors that p21 is elevated in several body fluids, including urine, as early as 2 hours post injury and is sustained for at least 24 hours following ischemic injury. As shown in FIG. 1, an increase in p21 mRNA indicates increased production of p21 following kidney injury. This increase in production of p21 protein leads to increased renal cortical levels and hence increased urinary levels of p21. Some of the p21 makes it into plasma. Surprisingly, the urinary and plasma levels were unexpectedly dramatic which underscores their utility as a kidney cell injury/cell cycle arrest biomarker. That p21 a cell nuclear protein would be leaked into the urine absent cell death is quite unexpected. Without wishing to be bound by theory, the transport of p21 into urine presumptively occurs by a cellular process, exocytosis, whereby cells package protein products and then transport them out of the cell entering the urine.
The ability to detect the p21 biomarker in both the plasma and the urine makes it particularly advantageous as a biomarker for renal injury, since urine samples are routinely utilized in diagnosis of kidney conditions. The p21 biomarker can be measured using ELISA in plasma, serum and urine. Alternatively, the test can be on a test strip. In a preferred embodiment, p21 is measured using a plate that includes a first antibody that is fixed to a plate in order to capture p21. A second antibody is applied later to detect p21 captured on the plate. The detection antibody has a visible marker (e.g., horse radish peroxidase) on it that can be quantified using an ELISA plate reader. The antibody pair in one preferred aspect is Abcam #ab212072 which includes Mouse p21 Capture Antibody part #3200086 and Mouse p21 Detector Antibody part #3200087. The test strip may be used to detect p21 in blood, urine or other bodily fluids.
The p21 biomarker increases with time post AKI, making a potential marker of renal disease progression due at least in part to the senescence process as shown in FIG. 2.
One aspect of p21 is that the baseline level for p21 increases with age as shown in FIG. 3. These data show the level of plasma p21 increasing over time in healthy mice. The data also show that plasma p21 is tightly correlated with renal cortical p21. This information may be considered in determining whether a particular value of measured p21 is indicative of kidney injury.
The increase in p21 with age also makes the biomarker useful in detecting senescence in healthy individuals. For example, the baseline level of p21 may be utilized in determining a biological age of an individual that could differ from chronological age. All being equal, two people of the same chronological age who have greatly different levels of p21 may be seen as having a different biological age. This could be useful in assessing the ability of particular patients to tolerate more aggressive treatment options. Accordingly, one may utilize the p21 assay to determine the biological age of a patient, and utilize that information to select among treatment options for a particular patient.
The p21 biomarker may be utilized in conjunction with other biomarkers of senescence including p16 and p19 assays. The following data shows progression of these biomarkers for senescence in the brain, kidney, heart and liver of healthy mice as reflected by their mRNAs. See FIGS. 4-7 below.
In another embodiment, the invention relates to testing a patient's levels of at least three biomarkers including p16ink4a, p19, and p21, and determining based on the patent's profile for these biomarkers whether the patient is subject to liver, kidney, heart and/or brain injury or senescence. As shown in the following figures, the response of these three biomarkers varies depending upon whether injury is in the liver, kidney, heart or brain.
The invention relies on p21 as a unique marker of organ injury and its transition to cellular senescence and cell cycle arrest. At present, there are no reliable methods to make these determinations. Concomitant measurement of p16 and p19 provides supportive data for the p21 results, as they are also markers of the senescence process. Different tissues express different ratios of p21, p16 and p19 while they are undergoing senescence. Thus, the ratios of these proteins in plasma, serum or urine can help localize the senescence process to the kidney, vs. non kidney tissues (e.g., heart and brain). By so doing, these assays can provide insights into which therapeutic agents should be used for specific organ targeting.
In one aspect, the invention relates to reviewing the profile of three biomarkers to determine whether injury or senescence is related to a kidney disfunction. Because ongoing kidney injury may be difficult to determine using conventional techniques, the ability to determine whether observed p21 activity is related to kidney disfunction is particularly useful. As shown in the charts above, kidney disfunction resulting from ischemic injury shows an increase in presence of all three biomarkers whereas other organ injury results in the presence of elevated levels of less than all three biomarkers. Accordingly, an analysis of all three biomarkers can point to kidney disfunction relative generalized organ disfunction or p21 activity related to other organ injury.
In one aspect, the combination of biomarkers used to diagnose a patient with kidney injury includes an assay to determine the level of p21 in the patient, as well as assays to determine the level of microalbumin, ferritin, hemopexin, and haptoglobin in the patient.
Upon detection of kidney injury, the patient may be treated to reduce the risk of further kidney injury. The treatment may include one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists, Angiotensin II receptor blockers (ARBs), anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments, initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration.
Suitable steroids may include methylprednisolone and prednisolone. Suitable ACE inhibitors include benazepril (Lotensin), captopril (Capoten-discontinued brand), enalapril (Vasotec, Epaned), fosinopril (Monopril-Discontinued brand), lisinopril (Prinivil, Zestril, Qbrelis), moexipril (Univasc-Discontinued brand), perindopril (Aceon), quinapril (Accupril), ramipril (Altace), trandolapril (Mavik). Suitable NRF2 activators include bardoxolone and Sulforaphane (an isothiocyanate). Suitable antioxidants include Vitamin C, Vitamin E, alpha lipoic acid, selenium, and carotenoids, such as beta-carotene, lycopene, lutein, and zeaxanthin, and circuminoids (tetrahydrocurcumin, turmeric). Suitable aldosterone antagonists include eplerenone (Inspira) and spironolactone (Aldactone, CaroSpir). Suitable Angiotensin II receptor blockers (ARBs) include Azilsartan (Edarbi), Candesartan (Atacand), Eprosartan, Irbesartan (Avapro), Losartan (Cozaar), Olmesartan (Benicar), Telmisartan (Micardis), Valsartan (Diovan). Suitable ACE Inhibitors include Benazepril (Lotensin), Captopril, Enalapril (Vasotec), Fosinopril, Lisinopril (Prinivil, Zestril), Moexipril, Perindopril (Aceon), Quinapril (Accupril), Ramipril (Altace), or Trandolapril (Mavik). Suitable anti-inflammatory agents include ibuprofen, naproxen and celecoxib. Suitable anti-fibrotic agents include pifrenidone and nintedanib. Suitable vasopressin antagonists include tolvaptan and conivaptan. Suitable SGLT-2 inhibitors include canagliflozin (Invokana), dapagliflozin (Farxiga), empagliflozin (Jardiance), empagliflozin/linagliptin (Glyxambi), empagliflozin/metformin (Synjardy), and dapagliflozin/metformin (Xigduo XR). Suitable immunosuppressive agents can include corticosteroids, Janus kinase inhibitors, Calcineurin inhibitors, mTOR inhibitors, IMDH inhibitors, Biologics, and Monoclonal antibodies. Specific examples of immunosuppressive agents can include prednisone (Deltasone, Orasone), budesonide (Entocort EC), prednisolone (Millipred), tofacitinib (Xeljanz), cyclosporine (Neoral, Sandimmune, SangCya), tacrolimus (Astagraf XL, Envarsus XR, Prograf), azathioprine (Azasan, Imuran), leflunomide (Arava), mycophenolate (CellCept, Myfortic), abatacept (Orencia), adalimumab (Humira), anakinra (Kineret), certolizumab (Cimzia), etanercept (Enbrel), golimumab (Simponi), infliximab (Remicade), ixekizumab (Taltz), natalizumab (Tysabri), rituximab (Rituxan), secukinumab (Cosentyx), tocilizumab (Actemra), ustekinumab (Stelara), vedolizumab (Entyvio), basiliximab (Simulect), and daclizumab (Zinbryta). Suitable organ protection agents are preferably renoprotective agents, which can include Frusemide, Dopamine, Theophylline, Mannitol, Calcium channel blockers, α2 Adrenergic receptor agonists, cardiac glycosides, natriuretic peptides, prostaglandins (PGE2, Prostacyclin, Mistoprostol), Nitric oxide synthetase inhibitors (L-NMMA), Catecholamines (Adrenaline, Noradrenaline, Dobutamine, Dopexamine), intravascular volume loading, and other agents including growth factors (IGF1, Epidermal growth factor, Hepatocyte growth factor), Bradykinin, Magnesium, Endothelin-1 antagonists, and low dose endothelin-1. Suitable acute kidney injury treatments include many of the above agents as well as Antiapoptosis/Necrosis Agents (Caspase Inhibitors, Minocycline, Guanosine and Pifithrin-α (p53 Inhibitor), Poly ADP-Ribose Polymerase Inhibitor), Free Radical Scavengers (Deferoxamine), Antisepsis (Ethyl Pyruvate, Activated Protein C, Insulin), Growth Factors (Recombinant Erythropoietin, Hepatocyte Growth Factor), Vasodilators (Carbon Monoxide Release Compounds and Bilirubin, Endothelin Antagonist), anti-inflammatory drugs (e.g., Sphingosine 1 phosphate (S1P) analogs, selective A2AR agonist, Inducible Nitric Oxide Synthase Inhibitors), and other compounds including neutrophil gelatinase-associated lipocalin, IL-6 and C5a antagonists, IL-10, and α-melanocyte-stimulating hormone. Suitable ARBs include Azilsartan (Edarbi), Candesartan (Atacand), Eprosartan, Irbesartan (Avapro), Losartan (Cozaar), Olmesartan (Benicar), Telmisartan (Micardis), Valsartan (Diovan). Suitable ACE Inhibitors include Benazepril (Lotensin), Captopril, Enalapril (Vasotec), Fosinopril, Lisinopril (Prinivil, Zestril), Moexipril, Perindopril (Aceon), Quinapril (Accupril), Ramipril (Altace), or Trandolapril (Mavik).
In one aspect, a patient upon detection of kidney injury in accordance with the above methods may be treated with a combination of iron or an iron complex (e.g., iron sucrose), and a heme protein degradation inhibitor (tin protoporphyrin, SnPP). These treatments are further described in U.S. Pat. No. 9,844,563, entitled Compositions, Kits and Methods to Induce Acquired Cytoresistance Using Stress Protein Inducers, which is incorporated by reference herein in its entirety. The treatment described in the '563 patent allows for protection of an organ before scheduled injury. Where a patent is diagnosed with kidney injury the iron sucrose and SnPP, for example, may be administered to reduce risk of further injury.
In another aspect, the patient upon detection of kidney injury in accordance with the above methods may be treated with a circuminoid (e.g., tetrahydrocurcumin) formulation. These treatments are further described in U.S. Pat. No. 9,375,408, entitled Deuterated or a Non-Deuterated Molecule and Pharmaceutical Formulations. The treatment described in the '408 patent allows one to prevent or slow the progression of kidney injury by administering a tetrahydrocurcumin (THCu) formulation. In one aspect, the THCu is formulated in a liposome.
In yet another aspect, the patient upon detection of kidney injury in accordance with the above methods may be treated with bardoxolone methyl (RTA 402). This compound is described in U.S. Pat. No. 8,455,544, entitled “Synthetic triterpenoids and method of use in the treatment of disease.” Bardoxolone methyl is an Antioxidant Inflammation Modulator (AIM) in clinical development for inflammation and cancer-related indications that inhibits immune-mediated inflammation by restoring redox homeostasis in inflamed tissues. It induces the cytoprotective transcription factor Nrf2 and suppresses the activities of the pro-oxidant and pro-inflammatory transcription factors NF-κB and STAT3. In vivo, RTA 402 has demonstrated significant single agent anti-inflammatory activity in several animal models of inflammation such as renal damage in the cisplatin model and acute renal injury in the ischemia-reperfusion model. In addition, significant reductions in serum creatinine have been observed in patients treated with RTA 402.
Another aspect of the p21 biomarker is that its presence naturally increases with aging. Therefore, the patient's age may be taken into consideration in determining the baseline level of p21 above which kidney injury is considered likely. For example a younger patient may be considered as potentially suffering from kidney injury where p21 plasma levels are above 200 pg/ml, whereas an older patient may require p21 plasma levels above 400 pg/ml before kidney injury is considered likely. In either case, p21 levels should rise to levels that dwarf the baseline levels within several hours after kidney injury. For example, levels in the range of greater than 700 pg/ml or 2000 pg/ml can be expected in the case of injury. Alternatively, the baseline level of p21 where kidney injury is considered likely may be set by natural levels observed in older patients.
In another embodiment, the level of intervention could be keyed to the level of p21 biomarker measured. For example, in patients where p21 levels are slightly elevated above the baseline, the intervention may be limited to withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration. Where further kidney injury is indicated by higher levels of p21, such as levels above 60 pg/ml in the plasma, the treatment may include administration of one or more steroids, ACE inhibitors, NRF2 activators Angiotensin II receptor blockers, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection, or acute kidney injury treatments or could also involve initiating renal replacement therapy.
P21 expression in the heart and brain has been associated with kidney injury as shown in FIG. 8. Renal ischemia was induced by reperfusion or sham surgery, i.e., surgery in the absence of kidney injury. The p21 levels in three organs were measured 18 hours after the reperfusion or sham surgery. Ischemia increased kidney p21 by 6 fold. Surprisingly, however, the renal failure (denoted by the increases in BUN and creatinine (Cr)) also doubled p21 mRNA in heart and brain. So kidney injury evokes p21 gene activation in nonrenal organs.
Proximal tubules were isolated from a mouse kidney and incubated. Through exposure to oxygen deprivation, simulated ischemic injury was induced. A three-fold increase in p21 leakage occurred out of the isolated cells within 30 min and the degree of leakage correlates well with the extent of cell death. It is believed that depleting the cells of ATP made it impossible for the nucleus to retain p21, which presumably is an energy dependent process. The following chart shows increase percentage p21 release after ischemic injury.
% p21 Release
Date Control Hypoxia
Jun. 19, 2018 0.52 0.94
Jun. 19, 2018 0.19 0.81
Jun. 19, 2018 0.40 1.44
Jun. 19, 2018 0.28 1.00
Average 0.35 1.05
Std Error 0.07 0.14
These data prove that cell injury causes tubular cell release of p21 from the nucleus of cells into the extracellular (urinary) space. Because p21 is released from the nucleus and makes its way into blood as well as urine is remarkable and distinguishes it from other biomarkers in its ability to indicate damage to the cell nucleus, and presumably its DNA. Moreover, the detectability of p21 in the blood as well as urine enable point of care detection and quantification.
The present invention also includes a urine testing device for measuring levels of p21 in a patient's urine. As noted above, the ability to detect the p21 biomarker in urine makes it particularly advantageous as a biomarker for renal injury, since urine samples are routinely utilized in diagnosis of kidney conditions. The urine testing device includes a test strip which includes two antibodies. Each antibody would be directed to different sites on the p21 protein. One antibody is embedded in the dipstick and binds or captures the p21 in the plasma, serum or urine sample. After exposing the dipstick to the sample for a few minutes, allowing binding of p21, the dipstick would be washed (dunked in saline for a second or two) and then the stick would be put into a solution containing the second antibody which has a detectable readout bound to it (to be defined). The readout molecule (e.g. a fluorescent signal) would then be quantified in a device that can read the fluorescent signal.
The present invention also includes a blood testing device for measuring levels of p21 in a patient's blood. As noted above, the ability to detect the p21 biomarker in blood makes it particularly advantageous as a biomarker for renal injury, since blood samples are routinely utilized in diagnosis of kidney conditions. The device can work with a blood droplet or utilize a pin prick similar to known devices for measuring blood glucose levels for diabetics. The blood testing device includes a test strip which includes two antibodies as described above. Alternatively, the levels of p21 could be done in a clinical lab using nephilometry in situations where a clinical lab is available.
In another aspect, the p21 biomarker may be combined with known AKI biomarkers. Known AKI biomarkers fall into three categories. The first group includes constitutively expressed proximal tubular proteins that are released into urine in response to early AKI. Examples include, lysosomal enzyme N-acetyl β-glucosaminidase (NAG), the cytosolic protein lactate dehydrogenase, or the brush border protein gp330 (previously referred to as the renal tubular epithelial antigen). The second group includes tubule “stress molecules,” which respond to injury with increased gene transcription (mRNA elevations), protein translation, and ultimately, protein release into the urinary space. Neutrophil gelatinase-associated lipcalin (NGAL) and KIM-1 are perhaps the best known molecules within this category, although other examples exist (heme oxygenase 1 [HO-1], α-fetoprotein, and haptoglobin). The third category include low molecular mass proteins (e.g., β2-microglobulin, lysozyme, α1-microglobulin, light chains, cystatin c) that are freely filtered by the glomerulus. Because these biomarkers reflect different pathophysiologic pathways, they may be advantageously used in combination with p21 as combination biomarkers.
The p21 protein may also be used as a therapeutic agent to treat various kidney diseases. In this case, human p21 protein may be produced using recombinant technology and administered via intravenous or intramuscular route in order to treat kidney disease. The therapeutically effective dose should be such that upon administration, the patient's level of renal tubular p21 is elevated above the levels naturally present at the time of injury to mitigate its expression. The administration can be made immediately before injury such as in the case of surgery, or may be used to generally raise the p21 levels in the organ where injury is occurring or anticipated. This is because cells make p21 as a protective protein. Recombinant p21 is available, for example, from abcam, 1 Kendall Square, Suite B2304, Cambridge, Mass. 02139-1517 USA.
The p21 protein may also be induced by administration of an agent that causes elevated levels of p21 production in kidney cells. Tenovin-1 is a p21 activator and inducer of cell cycle arrest. Wilking, M. J., Singh, C., Nihal, M., Zhong, W. & Ahmad, N. SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation. Arch. Biochem. Biophys. 563, 94-100 (2014). The present embodiment involves administering Tenovin-1 in a therapeutically effective amount to a patient in need thereof to treat the patient's kidney disease.
Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all U.S. and foreign patents and patent applications, are specifically and entirely hereby incorporated herein by reference. It is intended that the specification and examples be considered exemplary only, with the true scope and spirit of the invention indicated by the following claims.

Claims (13)

What is claimed is:
1. A method of treating a patient at risk for having suffered kidney injury or kidney disease progression comprising:
(a) performing an assay to determine the level of cyclin-dependent kinase inhibitor p21 in the patient; and
(b) if the patient exhibits an elevated level of the cyclin-dependent kinase inhibitor p21, treating the patient to reduce the risk of further kidney injury, wherein the treatment comprises one or more of administration of one or more steroids, ACE inhibitors, nuclear factor erythroid 2-related factor 2 (NRF2) activators, Angiotensin II receptor blockers, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, Sodium-glucose Cotransporter-2 (SGLT-2) inhibitors, immunosuppressive agents, organ protection with a combination of iron or iron sucrose and a heme protein degradation inhibitor; or the treatment comprises one or more of initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration, wherein the cyclin-dependent kinase inhibitor p21 is of SEQ ID NO. 1.
2. The method of claim 1 wherein the assay comprises: (i) obtaining a body fluid sample from the patient, (ii) contacting all or a portion of the body fluid sample with a binding reagent which specifically binds for detection of the cyclin-dependent kinase inhibitor p21, and determining an assay result indicative of binding of the cyclin-dependent kinase inhibitor p21 to the binding reagent to provide one or more assay results.
3. The method of claim 1 wherein the treatment comprises administration of one or more steroids, cellular senescence blocking agents, ACE inhibitors, NRF2 activators, Angiotensin II receptor blockers, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection with a combination of iron or iron sucrose and a heme protein degradation inhibitor.
4. The method of claim 1, wherein the patient is treated with a combination of iron or an iron complex, and a heme protein degradation inhibitor.
5. The method of claim 1, wherein the patient is treated with a combination of iron sucrose and tin protoporphyrin.
6. The method of claim 1, wherein the patient is treated with a circuminoid formulation.
7. The method of claim 1, wherein the patient is treated with bardoxolone methyl.
8. A method of determining the risk of progression of acute or chronic kidney disease and tissue senescence comprising:
(a) performing an assay to determine the level of organ senescence as shown by the level of serum, urine, or plasma the cyclin-dependent kinase inhibitor p21 levels in the patient; and
(b) if the patient exhibits an elevated level of the cyclin-dependent kinase inhibitor p21, administer a dosage of a drug known to treat senescence in the patient, wherein the cyclin-dependent kinase inhibitor p21 is of SEQ ID NO. 1.
9. The method of claim 8, wherein the assay comprises: (i) obtaining a body fluid sample from the patient, (ii) contacting all or a portion of the body fluid sample with a binding reagent which specifically binds for detection of the cyclin-dependent kinase inhibitor p21, and determining an assay result indicative of binding of the cyclin-dependent kinase inhibitor p21 to the binding reagent to provide one or more assay results.
10. The method of claim 8, wherein the dosage of the drug known to treat senescence is increased upon determination that the level of the cyclin-dependent kinase inhibitor p21 is increased.
11. A method of treating a patient determined to be at risk for future kidney injury comprising:
(a) performing an assay to determine the level of the cyclin-dependent kinase inhibitor p21 in the patient;
(b) performing an assay to determine the level of urinary albumin in the patient; and
(c) if the patient exhibits elevated levels of the cyclin-dependent kinase inhibitor p21 and albumin, treating the patient to reduce the risk of further kidney injury, wherein the treatment comprises one or more of administration of one or more steroids, ACE inhibitors, NRF2 activators, antioxidants, aldosterone antagonists, anti-inflammatory, anti-fibrotic, vasopressin antagonists, SGLT-2 inhibitors, immunosuppressive agents, organ protection with a combination of iron or iron sucrose and a heme protein degradation inhibitor; or the treatment comprises one or more of initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration, wherein the cyclin-dependent kinase inhibitor p21 is of SEQ ID NO. 1.
12. The method of claim 11, wherein the patient is treated with a combination of iron or an iron complex, and a heme protein degradation inhibitor.
13. The method of claim 11, wherein the cyclin-dependent kinase inhibitor p21 is recombinant human cyclin-dependent kinase inhibitor p21.
US16/422,156 2018-05-24 2019-05-24 Methods of treating patients at risk for renal injury and renal failure Active US11435364B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/422,156 US11435364B2 (en) 2018-05-24 2019-05-24 Methods of treating patients at risk for renal injury and renal failure
US17/873,968 US11965896B2 (en) 2018-05-24 2022-07-26 Methods of treating patients at risk for renal injury and renal failure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862676157P 2018-05-24 2018-05-24
US201862715508P 2018-08-07 2018-08-07
US16/422,156 US11435364B2 (en) 2018-05-24 2019-05-24 Methods of treating patients at risk for renal injury and renal failure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/873,968 Continuation US11965896B2 (en) 2018-05-24 2022-07-26 Methods of treating patients at risk for renal injury and renal failure

Publications (2)

Publication Number Publication Date
US20200057076A1 US20200057076A1 (en) 2020-02-20
US11435364B2 true US11435364B2 (en) 2022-09-06

Family

ID=66867810

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/422,156 Active US11435364B2 (en) 2018-05-24 2019-05-24 Methods of treating patients at risk for renal injury and renal failure
US17/873,968 Active US11965896B2 (en) 2018-05-24 2022-07-26 Methods of treating patients at risk for renal injury and renal failure

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/873,968 Active US11965896B2 (en) 2018-05-24 2022-07-26 Methods of treating patients at risk for renal injury and renal failure

Country Status (13)

Country Link
US (2) US11435364B2 (en)
EP (1) EP3803409A1 (en)
JP (1) JP2021526221A (en)
KR (1) KR20210019459A (en)
CN (1) CN112384807A (en)
AU (1) AU2019272960A1 (en)
BR (1) BR112020023943A2 (en)
CA (1) CA3101470A1 (en)
IL (1) IL278925A (en)
MX (1) MX2020012637A (en)
SG (1) SG11202011502VA (en)
WO (1) WO2019227055A1 (en)
ZA (1) ZA202007317B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210322340A1 (en) * 2020-03-23 2021-10-21 Renibus Therapeutics, Inc. Stress test and treatment of chronic kidney disease
US20230314448A1 (en) * 2018-05-24 2023-10-05 Renibus Therapeutics, Inc. Methods of treating patients at risk for renal injury and renal failure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130324599A1 (en) * 2012-04-27 2013-12-05 Reata Pharmaceuticals, Inc. 2,2-difluoropropionamide derivatives of bardoxolone methyl, polymorphic forms and methods of use thereof
WO2014113558A1 (en) 2013-01-17 2014-07-24 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US20160228394A1 (en) * 2013-09-30 2016-08-11 Calscience International Ltd Compositions Comprising A Conjugate of Quinic Acid Wth Caffeic Acid, Cosmetic And Therapeutic Uses
US20170112869A1 (en) * 2014-09-29 2017-04-27 Fred Hutchinson Cancer Research Center Compositions, kits, and methods to induce acquired cytoresistance using stress protein inducers
US20170290863A1 (en) * 2007-05-25 2017-10-12 Xon Cells, Inc. Endometrial stem cells and methods of making and using same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS58486B1 (en) 2008-01-11 2019-04-30 Reata Pharmaceuticals Inc Synthetic triterpenoids and methods of use in the treatment of disease
WO2010025434A1 (en) 2008-08-29 2010-03-04 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
CN104399089B (en) 2008-10-21 2017-04-19 阿斯图特医药公司 Methods and compositions for diagnosis and prognosis of renal injury and renal failure
NZ592488A (en) 2008-11-10 2012-10-26 Astute Medical Inc Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US9229010B2 (en) 2009-02-06 2016-01-05 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
NZ598034A (en) 2009-08-07 2014-06-27 Astute Medical Inc Methods and compositions for diagnosis and prognosis of renal injury and renal failure
CN102792161B (en) 2009-08-28 2014-11-12 阿斯图特医药公司 Methods and compositions for diagnosis and prognosis of renal injury and renal failure
KR20140051754A (en) 2010-02-26 2014-05-02 아스튜트 메디컬 인코포레이티드 Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US9459261B2 (en) 2011-08-26 2016-10-04 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2841945A4 (en) 2012-04-24 2016-04-27 Astute Medical Inc Methods and compositions for diagnosis and prognosis of stroke or other cerebral injury
CA2920521A1 (en) 2013-08-07 2015-02-12 Astute Medical, Inc. Assays for timp2 having improved performance in biological samples
CN105793439B (en) 2013-11-06 2020-09-04 阿斯图特医药公司 Assays with improved performance against IGFBP7 with biological samples
MX2016009753A (en) * 2014-01-28 2017-07-07 Buck Inst For Res On Aging Methods and compositions for killing senescent cells and for treating senescence-associated diseases and disorders.
WO2015147369A1 (en) * 2014-03-27 2015-10-01 전북대학교산학협력단 Pharmaceutical composition containing sirt2 inhibitor
EP3628640B1 (en) * 2014-09-02 2023-08-09 Hub Therapeutics Methods of making a deuterated or a non-deuterated molecule and pharmaceutical formulations for treatment
CA3101470A1 (en) * 2018-05-24 2019-11-28 Renibus Therapeutics, Inc. Methods of treating patients at risk for renal injury and renal failure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170290863A1 (en) * 2007-05-25 2017-10-12 Xon Cells, Inc. Endometrial stem cells and methods of making and using same
US20130324599A1 (en) * 2012-04-27 2013-12-05 Reata Pharmaceuticals, Inc. 2,2-difluoropropionamide derivatives of bardoxolone methyl, polymorphic forms and methods of use thereof
WO2014113558A1 (en) 2013-01-17 2014-07-24 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US20160228394A1 (en) * 2013-09-30 2016-08-11 Calscience International Ltd Compositions Comprising A Conjugate of Quinic Acid Wth Caffeic Acid, Cosmetic And Therapeutic Uses
US20170112869A1 (en) * 2014-09-29 2017-04-27 Fred Hutchinson Cancer Research Center Compositions, kits, and methods to induce acquired cytoresistance using stress protein inducers

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Andrade et al., "Acute Kidney Injury as a Condition of Renal Senescence," Cell Transplantation, vol. 27(5), 2018, pp. 739-753.
He et al., "Inhibition of SIRT2 Alleviates Fibroblast Activation and Renal Tubulointerstitial Fibrosis via MDM2," Cellular Physiology and Biochemistry, vol. 46, 2018, pp. 451-460.
International Search Report and Written Opinion issued in PCT/US2019/034018, dated Nov. 5, 2019.
J.L. Bos, "p21ras: An Oncoprotein Functioning in Growth Factor-induced Signal Transduction" in European Journal of Cancer, vol. 31A, pp. 1051-1054, 1995 (Year: 1995). *
Johnson et al., "Mechanisms and consequences of oxidant-induced renal preconditioning: an Nrf2-dependent, P21-independent, anti-senescence pathway," Nephrol Dial Transplant, vol. 33, 2018, pp. 1927-1941.
Kivinen et al., "Ras induces p21 Cip1/Waf1 cyclin kinase inhibitor transcriptionally through Sp1-binding Sites" in Oncogen 1999 18, 6252-6261; https://www.nature.com/articles/1203000.pdf (Year: 1999). *
Pena et al. ("Biomarkers Predicting Outcome in Patients with Advanced Renal Cell Carcinoma: Results from Sorafenib Phase III Treatment Approaches in Renal Cancer Global Evaluation Trial," in American Association for cancer Research, Jul. 22, 2010). *
Price et al., "The cell cycle and acute kidney injury," Kidney International, vol. 76, 2009, pp. 604-613.
Vijayan et al., ("Clinical Use of the URIN Biomaker [TIMP-2] X [IGFBP7] for acute Kidney Injury Risk Assessment," in Americ Journal of Kidney disease 2016, vol. 8, No. 1, 19-28). *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230314448A1 (en) * 2018-05-24 2023-10-05 Renibus Therapeutics, Inc. Methods of treating patients at risk for renal injury and renal failure
US11965896B2 (en) * 2018-05-24 2024-04-23 Renibus Therapeutics, Inc. Methods of treating patients at risk for renal injury and renal failure
US20210322340A1 (en) * 2020-03-23 2021-10-21 Renibus Therapeutics, Inc. Stress test and treatment of chronic kidney disease
US11883371B2 (en) * 2020-03-23 2024-01-30 Renibus Therapeutics, Inc. Stress test and treatment of chronic kidney disease

Also Published As

Publication number Publication date
AU2019272960A1 (en) 2020-12-10
EP3803409A1 (en) 2021-04-14
BR112020023943A2 (en) 2021-02-09
MX2020012637A (en) 2021-04-28
ZA202007317B (en) 2022-08-31
WO2019227055A1 (en) 2019-11-28
SG11202011502VA (en) 2020-12-30
JP2021526221A (en) 2021-09-30
CN112384807A (en) 2021-02-19
KR20210019459A (en) 2021-02-22
US11965896B2 (en) 2024-04-23
IL278925A (en) 2021-01-31
US20200057076A1 (en) 2020-02-20
US20230314448A1 (en) 2023-10-05
CA3101470A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
US11965896B2 (en) Methods of treating patients at risk for renal injury and renal failure
CN105917229B (en) The method and composition of diagnosis and prognosis for injury of kidney and kidney failure
JP2013543491A (en) Compounds that can modulate or preserve the integrity of vascular endothelium for use in the prevention or treatment of acute traumatic coagulopathy and resuscitated cardiac arrest
US20190271708A1 (en) Blood sample analysis method and system, for determining diabetes
Seibert et al. Serum klotho levels in acute kidney injury
US10852308B2 (en) Disease-state biomarker for renal disease
WO2014089262A1 (en) Diagnosis and therapy of chronic inflammation-induced disorders
Tsapenko et al. Measurement of urinary TGF-β1 in patients with diabetes mellitus and normal controls
Farias-Basulto et al. Circulating levels of soluble klotho and fibroblast growth factor 23 in diabetic patients and its association with early nephropathy
EP3943948A1 (en) Method for assisting evaluation of condition of kidneys, system for evaluating condition of kidneys, and program for evaluating condition of kidneys
US20130034868A1 (en) Method and use for assessing radiation therapy in accordance with saa
JP7271442B2 (en) Methods of diagnosing or monitoring renal function or aiding in diagnosing renal dysfunction
CN103308670A (en) A method for predicting the risk of a subject for contracting diabetes mellitus and/or metabolic syndrome or for diagnosing metabolic syndrome in a subject
US20230001023A1 (en) Method for creating a renal injury model to screen molecules for the treatment of renal injury
KR102314642B1 (en) Biomarkers for diagnosing Fabry disease and the use thereof
US20220170945A1 (en) Method for assisting evaluation of renal pathological conditions, system for evaluating renal pathological conditions and program for evaluating renal pathological conditions
JP6062439B2 (en) Evaluation markers for early kidney injury and methods for measuring them
JP7053872B2 (en) Auxiliary method for shunt trouble prediction and kit for that
Sebeniuk et al. Renal function and activity of low-grade inflammation in patients with resistant arterial hypertension
Solanki et al. ASSESSMENT AND CORRELATION OF SALIVARY AND SERUM UREA AND CREATININE LEVEL IN PATIENTS WITH CHRONIC KIDNEY DISEASE, DIABETES AND HYPERTENSION
Yan et al. Apelin-13: A Novel Approach to Suppressing Renin Production in RVHT
WO2023235487A1 (en) Methods relating to diagnosing stability following renal transplantation
Pär Risk factors in type 2 diabetes with emphasis on blood pressure, physical activity and serum vitamin D
Brahmanandam et al. Case report of adrenal pheochromocytoma with coexisting thyrotoxicosis.
Toering et al. ANGIOTENSIN II SENSITIVITY AFTER PREECLAMPSIA: TRANSLATIONAL DATA FROM EARLY-ONSET HUMAN PREECLAMPSIA AND EXPERIMENTAL PREECLAMPSIA

Legal Events

Date Code Title Description
AS Assignment

Owner name: RENIBUS THERAPEUTICS, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZAGER, RICHARD A.;KEYSER, DONALD JEFFREY;GUILLEM, ALVARO F.;REEL/FRAME:049279/0178

Effective date: 20180716

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE