US11421181B2 - Environmentally friendly lubricating grease for steel ropes - Google Patents

Environmentally friendly lubricating grease for steel ropes Download PDF

Info

Publication number
US11421181B2
US11421181B2 US17/258,456 US201917258456A US11421181B2 US 11421181 B2 US11421181 B2 US 11421181B2 US 201917258456 A US201917258456 A US 201917258456A US 11421181 B2 US11421181 B2 US 11421181B2
Authority
US
United States
Prior art keywords
lubricating grease
din
biodegradable
grease according
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/258,456
Other versions
US20210277323A1 (en
Inventor
Brigitte Mayrhofer
Maximilian Erhard
Patrick Wittmeyer
Stefan Seemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Klueber Lubrication Muenchen GmbH and Co KG
Original Assignee
Klueber Lubrication Muenchen SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klueber Lubrication Muenchen SE and Co KG filed Critical Klueber Lubrication Muenchen SE and Co KG
Assigned to KLUEBER LUBRICATION MUENCHEN SE & CO. KG reassignment KLUEBER LUBRICATION MUENCHEN SE & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Mayrhofer, Brigitte, WITTMEYER, Patrick, ERHARD, Maximilian, SEEMEYER, STEFAN
Publication of US20210277323A1 publication Critical patent/US20210277323A1/en
Application granted granted Critical
Publication of US11421181B2 publication Critical patent/US11421181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/06Mixtures of thickeners and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M117/00Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof
    • C10M117/02Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen
    • C10M117/04Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • C10M125/30Clay
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/06Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • C10M2201/1036Clays; Mica; Zeolites used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/105Silica
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/128Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof
    • C10M2207/1285Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/102Polyesters
    • C10M2209/1023Polyesters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/081Biodegradable compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/66Hydrolytic stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • Lubricants for steel ropes are used to separate the individual rope tips from one another by a lubricating film, i.e. to lubricate them, and thereby to reduce wear, and also to protect the steel rope as a whole from corrosion.
  • the lubricants must also fulfill various additional tasks. For example, in the marine industry sector and in the oil and gas industries, it is necessary for the lubricants to exhibit both a good lubricating action and also to be usable in a wide temperature range and also in the presence of water. If galvanized steel ropes are used, the lubricants must furthermore have no negative influence on the zinc layer of the steel rope.
  • CH 540331 A describes a lubricant for steel ropes which contains as main component a saturated or unsaturated fatty acid having 5-30 C atoms or an ester of such an acid or a mixture thereof.
  • EP 0108536 A1 describes a corrosion preventive composition comprising a corrosion inhibitor, a thickener and a thixotropic gel.
  • the corrosion preventive composition can be used for the treatment of multi-wire electrical conductors, wire ropes or cables.
  • U.S. Pat. No. 4,589,990 A describes a lubricant composition containing specific synthetic esters, namely polyol esters, trimellitate esters and polymeric fatty acid esters, and a mixture of polyisobutylene polymers having different molecular weights.
  • the lubricant composition can also be used inter alia for the treatment of wire ropes.
  • U.S. Pat. No. 4,486,319 A describes a microporous lubricating composition containing an ionomer polymer and a liquid lubricant.
  • the ionomer polymer may be combined with other polymers, and the composition may contain various additives in order to modify the performance and properties of the resulting composition.
  • the formed composition can be used for lubricating mechanical components including wire ropes and bearings, such as sliding bearings.
  • CA 2364200 describes a lubricating composition for lubricating wire ropes comprising: (a) between 50 and 95 percent by volume of a base liquid; (b) between 1 and 8 percent by volume of a lubricant with a low acid content; (c) between 0.2 and 5.0 percent by volume of a low acidity corrosion inhibitor; (d) between 0.1 and 10 percent by volume of an extreme pressure agent; and (e) between 0.1 and 10 percent by volume of an anti-wear agent.
  • U.S. Pat. No. 6,329,073 B1 describes a steel object treated with a corrosion-inhibiting and adhesion-retaining composition, the composition comprising: A) an oily or waxy carrier as carrier of active components and B) active components, comprising: B1) a corrosion inhibitor in the form of a sulfonate of group IIA; B2) a co-corrosion inhibitor selected from the group consisting of: (a) one or more fatty acids having 6 to 24 carbon atoms, aromatic acids and naphthenic acids, the acids having the free acid form or the salt form; (b) one or more imidazoline derivatives having a C6-24 alkyl unit; and (c) one or more of C6-24 alkylsuccinic anhydride compounds; and (d) mixtures of one or more of the compounds defined under (a), (b) and (c) or mixtures of multiple forms of the compounds defined under (a), (b) and (c); and C) optionally a compound selected from the group consisting of: C
  • U.S. Pat. No. 6,010,985 A describes a nontoxic lubricant, grease or gel composition comprising a combination of: at least one base oil from about 45 to about 90 wt %; at least one polymer from about 10 to about 20 wt % that is at least partially miscible with the at least one base oil; and about 1 to about 50 wt % of at least one silicate thickener comprising at least one compound selected from the group consisting of aluminum silicate, magnesium silicate, sodium silicate, calcium silicate, potassium silicate, lithium silicate and ammonium silicate.
  • CN 102102047 A describes a protective grease composition for a high temperature resistant steel wire rope and a manufacturing method thereof.
  • the lubricating grease composition is prepared from base oil (high viscosity mineral oil or synthetic oil), a thickener, an additive and a covering agent.
  • the lubricating grease for the steel wire rope is produced by thickening the base oil with a solid hydrocarbon thickener.
  • the thickener is bentonite.
  • a high molecular weight tackifier and a lubricating grease are used as solid filler in order to improve the performance, the high-temperature resistance and the adhesive strength of bentonite lubricating grease.
  • the protective grease for the steel wire rope is especially used for protecting steel wire ropes in an extreme high-temperature environment.
  • CN 102618371 A describes steel rope grease with a high dropping point and a method for preparing the steel rope grease.
  • the steel rope grease consists of the following components (in percentages by weight): 65%-85% base oil, 5%-20% thickener, 2%-15% adhesive, 1%-6% rust preventive agent, 0-5% antioxidant, 0-5% polar additive and 0.5%-6% solid lubricant.
  • CN 102827678 A describes a wire rope lubricating grease composition which, in addition to lubrication, also provides corrosion protection.
  • the composition consists of the following components: 51.0% to 72.5% of calcium sulfonate composite grease no. 2, 25.0 to 38.0% of base oil, 0.2 to 1.0% of diphenylamine, 1.3 to 5.5% of colloidal graphite and 1.0 to 4.5% of ozokerite.
  • the product is suitable for lubricating and protecting various wire ropes under oceanic climatic conditions such as seaports, maritime vessels, offshore drilling platforms, etc.
  • the above-mentioned lubricants do not meet all of the above-mentioned requirements, namely in addition to a good lubricating action being usable in a wide temperature range and also in the presence of water and also meeting the requirements for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • an environmentally acceptable lubricating grease comprising: a) 50 wt % to 90 wt % of a biodegradable base oil comprising a biodegradable ester as base oil; b) 3 wt % to 25 wt % of a thickener selected from b1) 3 wt % to 12 wt % biodegradable calcium soap, b2) 3 wt % to 25 wt % bentonites, b3) and mixtures thereof; c) 4 wt % to 40 wt % additives, comprising c1) 1 wt % to 12 wt % fumed silicon dioxide and/or polytetrafluoroethylene and/or mixtures thereof, c2) 2 wt % to 45 wt % of a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, polyesters and mixtures thereof, c3) 0.5
  • a method comprising coating steel ropes with an environmentally acceptable lubricating grease, comprising: a) 50 wt % to 90 wt % of a biodegradable base oil comprising a biodegradable ester as base oil; b) 3 wt % to 25 wt % of a thickener selected from b1) 3 wt % to 12 wt % biodegradable calcium soap, b2) 3 wt % to 25 wt % bentonites, b3) and mixtures thereof; c) 4 wt % to 40 wt % additives, comprising c1) 1 wt % to 12 wt % fumed silicon dioxide and/or polytetrafluoroethylene and/or mixtures thereof, c2) 2 wt % to 45 wt % of a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, polyester
  • a lubricant which meets the above-mentioned requirements.
  • an environmentally acceptable lubricating grease comprising:
  • the lubricating grease has a dropping point according to standard DIN ISO 2176 of over 150° C., for example 150° C. to 300° C. and/or 170° C. to 300° C. and/or 200° C. to 290° C.
  • the lubricating grease has an upper operating temperature (UOT) according to standard DIN 58397, Part 1, of at least 150° C., for example 150° C. to 200° C. and/or 150° C.
  • the lubricating grease preferably at least 75 wt %, for example 75 wt % to 100 wt %, more preferably at least 80 wt %, for example 80 wt % to 100 wt % and/or 85 wt % to 100 wt % and/or 75 wt % to 90 wt % of the lubricating grease consists of biodegradable and nontoxic ingredients.
  • the lubricating grease can also contain up to 25 wt % of non-biodegradable components, provided that they are not bioaccumulating and/or are only minimally toxic.
  • the lubricating grease in an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • the lubricating grease can also be used for applications that may come into contact with seawater.
  • components a) to c) have no negative influence on the zinc layer of galvanized steel ropes and, in particular, do not undergo any reaction with the zinc layer.
  • the lubricating grease contains at least 50 wt %, for example 50 wt % to 90 wt %, more preferably at least 60 wt %, for example 60 wt % to 80 wt %, and in particular 65 wt % to 75 wt % of a biodegradable base oil, in particular a biodegradable ester as base oil.
  • the proportion of component a) is in each case based on the total amount of the lubricating grease.
  • a biodegradable base oil or a biodegradable ester is to be understood in an embodiment as a base oil and/or an ester which is biodegradable according to standard OECD 301 A-F or OECD 306.
  • the base oil and/or the ester must also have no toxicity.
  • a plurality of biodegradable base oils and in particular of biodegradable esters can be used as component a), provided that they have sufficient thermal stability.
  • Preferred biodegradable base oils are base oils and in particular esters which have a thermal stability, determinable via TGA (DIN 51006; evaporation loss of greater than 1 wt % means thermally unstable) of over 150° C., for example in the range of 150° C. to 200° C.
  • the base oil and in particular the ester preferably also have a rather low volatility.
  • preferred biodegradable base oils are base oils and in particular esters which have a volatility measured according to DIN 58397, after 7 d at 150° C., of ⁇ 10 wt %, preferably ⁇ 5 wt %.
  • the lubricating grease preferably likewise has a rather low volatility.
  • preferred lubricating greases are lubricating greases which have a volatility measured according to DIN 58397, after 7 d at 150° C., of ⁇ 10 wt %, preferably ⁇ 5 wt %.
  • the base oil and in particular the ester preferably exhibit a high hydrolytic stability.
  • preferred biodegradable base oils are base oils and/or esters which have a TAN Delta (change in acid content), measured in accordance with DIN ASTM D-2619 (with extended running time of 400 h, 93° C.) of 0.0 mg KOH/g to 20, more preferably of 0.0 to 15 mg KOH/g.
  • the base oils and in particular the esters preferably exhibit a low acid content (TAN) in accordance with DIN EN 12634, with preferred biodegradable base oils and in particular esters having an acid content (TAN), of less than 5 mg KOH/g, for example 0.01 mg to 5 mg KOH/g, more preferably of less than 1 mg KOH/g, for example 0.01 mg KOH/g to 1 mg KOH/g.
  • TAN acid content
  • the viscosity of the biodegradable base oil is preferably at least 18 mm 2 /s, for example 18 mm 2 /s to 1200 mm 2 /s and/or at least 100 mm 2 /sec, for example 100 mm 2 /sec to 1200 mm 2 /s and/or 120 to 500 mm 2 /sec and/or 120 to 300 mm 2 /sec, in each case measured in accordance with DIN EN ISO 3104 at 40° C.
  • the viscosity of preferred mixtures of base oils measured in accordance with DIN 51562, Part 1, at 40° C. is at least 18 mm 2 /s, for example 18 mm 2 /s to 1200 mm 2 /s and/or 18 mm 2 /s to 500 mm 2 /s and/or 18 to 200 mm 2 /s.
  • the viscosity of preferred biodegradable esters is preferably at least 50 mm 2 /sec, for example 50 mm 2 /sec to 1000 mm 2 /s and/or 50 mm 2 /sec to 1200 mm 2 /s, more preferably at least 100 mm 2 /sec, for example 100 mm 2 /sec to 1000 mm 2 /s and/or 100 mm 2 /sec to 1200 mm 2 /s and in particular 130 to 1000 mm 2 /sec and/or 130 mm 2 /sec to 1200 mm 2 /s, in each case measured in accordance with DIN EN ISO 3104 at 40° C.
  • the biodegradable ester is a synthetic ester.
  • the ester is particularly preferably a renewable-based ester.
  • a particularly preferred ester in an embodiment is a polyol ester, in particular (trimethylolpropane) ester, pentaerythritol ester, mixtures and/or complex esters thereof.
  • Particularly preferred (trimethylolpropane) esters are esters of trimethylolpropane and branched or unbranched and saturated or unsaturated C 10 -C 22 carboxylic acids.
  • the acids may be monocarboxylic and/or dicarboxylic acids. If dicarboxylic acids are used, complex esters can be obtained.
  • Particularly preferred pentaerythritol esters are esters of pentaerythritol and branched or unbranched and saturated or unsaturated C 10 -C 22 carboxylic acids.
  • Very particularly preferred esters are esters of trimethylolpropane or pentaerythritol with saturated or unsaturated branched C 18 carboxylic acids, in particular with oleic acid, isostearic acid, mixtures and/or complex esters thereof.
  • esters are complex esters of trimethylolpropane with saturated, branched or unbranched, C 8 -C 20 carboxylic acids and/or C 10 -C 22 carboxylic acids, in particular with sebacic acid, stearic acid and isostearic acid, and/or mixtures thereof.
  • esters are complex esters of trimethylolpropane with a mixture of at least two saturated or unsaturated, branched or unbranched C 8 -C 20 carboxylic acids and/or C 10 -C 22 carboxylic acids, wherein at least one first carboxylic acid is a saturated or unsaturated, branched or unbranched C 8 -C 20 dicarboxylic acid and/or C 10 -C 22 dicarboxylic acid and at least one second acid is a saturated or unsaturated, branched or unbranched C 8 -C 20 carboxylic acid and/or C 10 -C 22 carboxylic acid.
  • esters are complex esters of trimethylolpropane with a mixture of at least two saturated, branched or unbranched C 8 -C 20 carboxylic acids and/or C 10 -C 22 carboxylic acids, wherein at least one first carboxylic acid is a saturated, unbranched C 8 -C 12 dicarboxylic acid, in particular sebacic acid, and at least one second acid is a saturated, branched or unbranched C 15 -C 20 carboxylic acid, in particular stearic acid, isostearic acid or a mixture thereof.
  • component a) is not a triglyceride, since triglycerides have unsatisfactory hydrolytic and oxidative or chemical stability, at least for some applications.
  • biodegradable base oils are polyalphaolefins and/or polyglycols.
  • biodegradable polyalphaolefins have a viscosity measured in accordance with DIN 51562, Part 1, at 100° C. of at most 6 mm 2 /s, for example 2 mm 2 /s to 6 mm 2 /s and/or 2 mm 2 /s to 5 mm 2 /s and/or 2 to 4 mm 2 /s.
  • biodegradable polyglycols are oil-soluble polyglycols. These preferably have a viscosity measured in accordance with DIN 51562, Part 1, at 40° C. of at most 150 mm 2 /s, for example 18 mm 2 /s to 150 mm 2 /s and/or 18 mm 2 /s to 68 mm 2 /s and/or 18 to 46 mm 2 /s.
  • the lubricating grease comprises a thickener selected from biodegradable calcium soaps (b1)) in an amount of 3 to 12 wt %, more preferably 4 wt % to 10 wt %, in particular 4 wt % to 7 wt %, bentonites (b2)) in an amount of 3 wt % to 25 wt % and/or 3.5 wt % to 20 wt % and/or 4 to 12 wt %, more preferably 4 wt % to 10 wt % and mixtures thereof.
  • the proportion of thickener is 3 wt % to 25 wt % and/or 7 wt % to 20 wt %.
  • the proportion of component b) is in each case based on the total amount of the lubricating grease.
  • a biodegradable calcium soap is to be understood in an embodiment as a calcium soap which is biodegradable according to standard OECD 301 A-F and/or OECD 306.
  • the calcium soap In order for the lubricant to meet the requirements for EAL, the calcium soap must moreover have no toxicity or only minimal toxicity.
  • Preferred calcium soaps are water-resistant, in particular they have a static water resistance in accordance with DIN 51807 T1.
  • calcium soaps are preferred to bentonites, since they have a greater thickening effect and better biodegradability. It is also possible to use mixtures of different calcium soaps or bentonites.
  • Calcium soaps of fatty acids in particular C8-C26 fatty acids, in particular calcium 12-hydroxystearate, are particularly preferred.
  • the base oil may contain as component c) 1 wt % to 40 wt % additives.
  • the base oil contains 4 wt % to 40 wt %, more preferably 5 wt % to 40 wt %, more preferably 7 wt % to 40 wt %, and in particular 10 wt % to 35 wt % additives.
  • the proportion of component c) is in each case based on the total amount of the lubricating grease.
  • the additives of component c) comprise, in an embodiment, 1 to 12 wt % and/or 4 to 12 wt %, preferably 4 wt % to 10 wt % fumed silicon dioxide and/or polytetrafluoroethylene as component c1).
  • the proportion of component c1) is in each case based on the total amount of the lubricating grease.
  • the fumed silicon dioxide is selected from silica having a specific surface area of 90 to 130 m 2 /g.
  • Hydrophobized fumed silica in particular a silica hydrophobized by means of dichlorodimethylsilane, is likewise preferred.
  • Component c1) contributes to improving the dropping point of the lubricating grease and thereby to the temperature resistance thereof, in the sense of an increase in the upper operating temperature (UOT).
  • component c1) has the advantage that it can act as a co-thickener and can thereby contribute to stabilizing the thickener system.
  • the additives of component c) comprise, in an embodiment, a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, polyesters, preferably complex esters, in particular complex esters of neopentyl glycol/dimer acid/2-ethylhexanol and mixtures thereof.
  • a complex ester is understood in an embodiment as a polyester which is prepared by reacting polyols with dicarboxylic acids and, if appropriate, monocarboxylic acids.
  • the proportion of component c2) is 2 wt % to 45 wt %, preferably 2 wt % to 25 wt %, more preferably 5 wt % to 20 wt %, and in particular 7 wt % to 17 wt %, in each case based on the total amount of the lubricating grease.
  • the polymers of component c2) preferably have a viscosity, measured in accordance with DIN 51562, Part 1, at 100° C., of at least 600 mm 2 /s, more preferably of at least 800 mm 2 /s and/or at least 1000 mm 2 /s and/or at least 1500 mm 2 /s and/or at least 4000 mm 2 /s, for example 4000 mm 2 /s to 10000 mm 2 /s and/or 4000 mm 2 /s to 6000 mm 2 /s, in particular 4000 to 4700 mm 2 /s.
  • a high viscosity is advantageous, since in this way the amount used can be kept low.
  • polyisobutylene and/or polyisobutylene/butene copolymer is particularly preferred, since these are inexpensive raw materials and have no hydrolyzable groups, such as, for example, ester groups. Also preferred are polymers that are biodegradable.
  • component c2) is advantageous since, as a toxicologically safe adhesion promoter, it can improve the adhesion measured in accordance with ASTM D 4049 of ⁇ 50 wt % loss, for example of ⁇ 30 wt % loss, more preferably of ⁇ 25 wt % loss between lubricating grease and steel rope.
  • the lubricating grease therefore preferably has a weight loss in a water spray off test in accordance with ASTM D 4049 of ⁇ 50 wt % loss, for example ⁇ 30 wt % loss, more preferably ⁇ 25 wt %.
  • the additives of component c) comprise, according to an embodiment, 0.5 wt % to 20 wt % and/or 1 wt % to 10 wt %, more preferably 1 wt % to 9 wt % and in particular 1.5 wt % to 8 wt % of a solid lubricant, preferably selected from alkaline earth metal salts, in particular calcium carbonate, calcium stearate, graphite, melamine cyanurate, zinc sulfide (ZnS), molybdenum sulfide (MoS2) and mixtures thereof.
  • the proportion of component c3) is in each case based on the total amount of the lubricating grease.
  • solid lubricants in particular of calcium carbonate, graphite, melamine cyanurate and calcium stearate as component c3), is particularly advantageous since these compounds are toxicologically safe and can significantly improve the frictional properties of the steel rope.
  • less preferred solid lubricants are dithiocarbamates, in particular ashless dithiocarbamates, bis-stearoylethylenediamine and mixtures thereof.
  • dithiocarbamates in particular ashless dithiocarbamates, bis-stearoylethylenediamine and mixtures thereof.
  • the lubricating grease contains 0.5 wt % and in particular 0.5 to 2.8 wt % succinic acid derivatives as first corrosion inhibitor, in particular amidated succinic acid half-esters as component c4).
  • the proportion of component c4) is in each case based on the total amount of the lubricating grease.
  • Component c4) preferably has a total acid number (TAN) (DIN 53402) of 70 to 100 mg KOH/g.
  • succinic acid derivatives are advantageous since they are biodegradable and have a high corrosion protection effect.
  • the lubricating grease contains, as component c5), a second corrosion inhibitor, preferably selected from alkaline earth metal oxides, in particular calcium oxide and/or magnesium oxide, and calcium, magnesium and/or sodium sulfonates or salts of C 8 -C 20 dicarboxylic acids, in particular disodium sebacate.
  • a second corrosion inhibitor preferably selected from alkaline earth metal oxides, in particular calcium oxide and/or magnesium oxide, and calcium, magnesium and/or sodium sulfonates or salts of C 8 -C 20 dicarboxylic acids, in particular disodium sebacate.
  • component c5) has a d10 particle size distribution of 1 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, more preferably 4 to 6 ⁇ m and in particular 5 ⁇ m and/or a d50 particle size distribution of 10 to 30 ⁇ m, more preferably 13 to 22 ⁇ m, more preferably 15 to 20 ⁇ m and in particular 17 ⁇ m and/or a d90 particle size distribution of 30 to 50 ⁇ m, more preferably 35 to 45 ⁇ m and in particular 40 ⁇ m.
  • component c5) has a d50 particle size distribution of less than 25 ⁇ m, for example 5 ⁇ m to 25 ⁇ m and/or 5 ⁇ m to 20 ⁇ m.
  • component c5) The advantage of using component c5) is that it can act as a basic reserve in addition to increasing the corrosion protection of the lubricating grease. Moreover, it was found in practical experiments that magnesium oxide acts synergistically as component c5) in combination with c4).
  • the proportion of component c5) is preferably in the range of 0.3 to 5 wt %, more preferably 0.5 to 2.5 wt %, and in particular 1 wt % to 2.3 wt %.
  • the proportion of component c5) is in each case based on the total amount of the lubricating grease.
  • the lubricating grease can also contain other customary additives, for example antioxidants, provided that these do not have a negative effect on the environmental acceptableness of the lubricating grease.
  • the lubricating grease contains an antioxidant as component c6). This is preferably selected from nontoxic or only minimally toxic antioxidants.
  • the proportion of the antioxidant is preferably in the range of 0.3 to 3 wt %, more preferably 0.5 to 2 wt %, and in particular 0.8 wt % to 1.5 wt %.
  • the proportion of component c6) is in each case based on the total amount of the lubricating grease.
  • Particularly preferred antioxidants according to an embodiment are phenolic and/or aminic antioxidants.
  • the lubricating grease comprises:
  • the lubricating grease comprises:
  • the lubricating grease comprises:
  • the lubricating grease comprises:
  • the lubricating grease comprises:
  • lubricating grease for coating steel ropes, in particular galvanized steel ropes. Because of their high resistance, steel ropes provided with the lubricating grease in an embodiment are outstandingly suitable for a wide variety of applications in which high-performance ropes are required, for example in the marine industry and in the oil and gas industries.
  • Embodiments are explained in more detail below with reference to several examples. All examples show outstanding lubricating properties when applied to steel ropes. Furthermore, they have an applicability even in the presence of water and in a wide temperature range.
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2) and c3).
  • Amount Component Composition Function (wt %) a) Polyol ester Base oil 75.0 b1) Calcium 12-hydroxystearate Thickener 6.0 c1) Fumed silicon dioxide Additive 5.0 c2) Isobutylene/butene copolymer Adhesion 11.0 promoter c3) Calcium carbonate Solid lubricant 3.0
  • All components of the lubricating grease 1 according to an embodiment are biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 1 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
  • Amount Component Composition Function (wt %) a) Polyol ester Base oil 70.0 b1) Calcium 12-hydroxystearate Thickener 5.5 c1) Fumed silicon dioxide Additive 4.0 c2) Isobutylene/butene copolymer Adhesion 15.0 promoter c3) Calcium carbonate Solid lubricant 2.0 c5) Magnesium oxide Corrosion 2.5 protection c6) Phenolic antioxidant Antioxidant 1.0
  • the components of the lubricating grease 2 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 1 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), b2), c1), c2) and c3).
  • Amount Component Composition Function (wt %) a) Polyol ester Base oil 68.0 b1)(b3) Calcium 12-hydroxystearate Thickener 5.0 b2)(b3) Bentonite Thickener 4.0 c1) Fumed silicon dioxide Additive 4.0 c2) Isobutylene/butene copolymer Adhesion 6.0 promoter c2) Complex esters Adhesion 10.0 promoter c3) Zinc sulfide Solid lubricant 3.0
  • the components of the lubricating grease 3 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 3 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), b2), c1), c2) and c3).
  • Amount Component Composition Function (wt %) a) Polyol ester Base oil 71.0 b1)(b3) Calcium 12-hydroxystearate Thickener 5.0 b2)(b3) Bentonite Thickener 3.0 c1) Fumed silicon dioxide Additive 4.0 c2) Isobutylene/butene copolymer Adhesion 9.0 promoter c2) Polymethacrylate Adhesion 4.0 promoter c3) Zinc sulfide Solid lubricant 4.0
  • the components of the lubricating grease 4 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 4 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2) and c3).
  • Amount Component Composition Function (wt %) a) Polyol ester Base oil 75 b1) Calcium 12-hydroxystearate Thickener 4 c1) Fumed silicon dioxide Additive 6.0 c2) Isobutylene/butene copolymer Adhesion 8.0 promoter c2) Polymethacrylate Adhesion 2.0 promoter c2) Complex esters Adhesion 3.0 promoter c3) Zinc sulfide Solid lubricant 2.0
  • the components of the lubricating grease 5 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 5 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), b2), c1), c2), c3), c4), c5) and c6).
  • Amount Component Composition Function (wt %) a) Polyol ester Base oil 64.0 b1)(b3) Calcium 12-hydroxystearate Thickener 4.0 b2)(b3) Bentonite Thickener 7.0 c1) Fumed silicon dioxide Additive 4.0 c2) Isobutylene/butene copolymer Adhesion 10.0 promoter c3) Calcium stearate Solid lubricant 7.0 c4) Succinic acid derivative Corrosion 2.0 protection c5) Magnesium oxide Corrosion 1.0 protection c6) Phenolic antioxidant Antioxidant 1.0
  • the components of the lubricating grease 6 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 6 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b2), c1), c2), c3), c5) and c6).
  • Amount Component Composition Function (wt %) a) Pentaerythritol ester Base oil 71.0 b2) Bentonite Thickener 12.0 c1) Fumed silicon dioxide Additive 2.0 c2) Complex esters Adhesion promoter 4.0 c2) Polymethacrylate Adhesion promoter 3.0 c3) Calcium stearate Solid lubricant 5.0 c5) Magnesium oxide Corrosion protection 2.0 c6) Phenolic antioxidant Antioxidant 1.0
  • the components of the lubricating grease 7 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 7 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
  • Amount Component Composition Function (wt %) a) Pentaerythritol esters of Base oil 70.0 pentaerythritol and isostearic acid b1) Ca 12-hydroxystearate Thickener 6.0 c1) Fumed silicon dioxide Additive 6.0 c2) Polyisobutylene Adhesion 13.0 promoter c3) Calcium carbonate Solid 2.0 lubricant c5) Magnesium oxide Corrosion 2.0 protection c6) Phenolic antioxidant Antioxidant 1.0
  • the components of the lubricating grease 8 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 8 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
  • Amount Component Composition Function (wt %) a) Complex esters based on Base oil 70.0 trimethylolpropane, Sebacic acid, stearic acid and isostearic acid b1) Ca 12-hydroxystearate Thickener 7.0 c1) Fumed silicon dioxide Additive 5.0 c2) Polyisobutylene Adhesion 11.0 promoter c3) Calcium carbonate Solid 4.0 lubricant c5) Magnesium oxide Corrosion 2.0 protection c6) Phenolic antioxidant Antioxidant 1.0
  • the components of the lubricating grease 9 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 9 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
  • Amount Component Composition Function (wt %) a) Oil-soluble polyglycol Base oil 68.0 b1) Ca 12-hydroxystearate Thickener 8.0 c1) Fumed silicon dioxide Additive 5.0 c2) Polyisobutylene Adhesion promoter 14.0 c3) Calcium carbonate Solid lubricant 2.0 c5) Magnesium oxide Corrosion protection 2.0 c6) Phenolic antioxidant Antioxidant 1.0
  • the components of the lubricating grease 10 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 10 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b2), c1), c2), c3), c5) and c6).
  • Amount Component Composition Function (wt %) a) Polyol ester Base oil 70.0 b2) Bentonite Thickener 18.0 c1) Polytetrafluoroethylene Additive 1.0 c2) Polyisobutylene Adhesion promoter 2.0 c3) Calcium stearate Solid lubricant 6.0 c5) Magnesium oxide Corrosion protection 2.0 c6) Phenolic antioxidant Antioxidant 1.0
  • the components of the lubricating grease 11 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 11 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
  • Amount Component Composition Function (wt %) a) Polyol ester Base oil 70.0 b1) Ca 12-hydroxystearate Thickener 7.0 c1) Fumed silicon dioxide Additive 1.0 c2) Polyisobutylene Adhesion promoter 17.0 c3) Calcium stearate Solid lubricant 2.0 c5) Magnesium oxide Corrosion protection 2.0 c6) Phenolic antioxidant Antioxidant 1.0
  • the components of the lubricating grease 12 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 12 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • Example 12 Physical-chemical properties of Example 12 are shown in Table 12:
  • a lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
  • Amount Component Composition Function (wt %) a) Polyol ester Base oil 60.0 b1) Ca 12-hydroxystearate Thickener 3.0 c1) Fumed silicon dioxide Additive 8.0 c1) Polytetrafluoroethylene Additive 4.0 c2) Polyisobutylene Adhesion promoter 5.0 c3) Calcium stearate Solid lubricant 17.0 c5) Magnesium oxide Corrosion protection 2.0 c6) Phenolic antioxidant Antioxidant 1.0
  • the components of the lubricating grease 13 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 13 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
  • EAL environmentally acceptable lubricants
  • the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise.
  • the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Abstract

An environmentally acceptable lubricating grease, comprising: a) 50 wt % to 90 wt % of a biodegradable base oil comprising a biodegradable ester as base oil; b) 3 wt % to 25 wt % of a thickener selected from b1) 3 wt % to 12 wt % biodegradable calcium soap, b2) 3 wt % to 25 wt % bentonites, b3) and mixtures thereof; c) 4 wt % to 40 wt % additives, comprising c1) 1 wt % to 12 wt % fumed silicon dioxide and/or polytetrafluoroethylene and/or mixtures thereof, c2) 2 wt % to 45 wt % of a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, polyesters and mixtures thereof, c3) 0.5 wt % to 20 wt % of a solid lubricant.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2019/068344, filed on Jul. 9, 2019, and claims benefit to German Patent Application No. DE 10 2018 005 397.1, filed on Jul. 9, 2018, and German Patent Application No. DE 10 2018 008 362.5, filed on Oct. 23, 2018. The International Application was published in German on Jan. 16, 2020 as WO 2020/011758 under PCT Article 21(2).
BACKGROUND
Disclosed is an environmentally acceptable lubricating grease for steel ropes, in particular galvanized steel ropes. Also disclosed is a method for producing the lubricating grease and to the use thereof.
Lubricants for steel ropes are used to separate the individual rope tips from one another by a lubricating film, i.e. to lubricate them, and thereby to reduce wear, and also to protect the steel rope as a whole from corrosion. Depending on their respective field of application, the lubricants must also fulfill various additional tasks. For example, in the marine industry sector and in the oil and gas industries, it is necessary for the lubricants to exhibit both a good lubricating action and also to be usable in a wide temperature range and also in the presence of water. If galvanized steel ropes are used, the lubricants must furthermore have no negative influence on the zinc layer of the steel rope.
In addition, there is in principle an increasing demand for environmentally acceptable lubricants, in particular lubricants which meet the requirements for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit and can therefore also be used for components which may come into contact with seawater. Environmentally acceptable lubricants must be biodegradable and must have only minimal toxicity as well as no bioaccumulability.
A wide variety of lubricants for steel ropes are described in the literature.
CH 540331 A describes a lubricant for steel ropes which contains as main component a saturated or unsaturated fatty acid having 5-30 C atoms or an ester of such an acid or a mixture thereof.
EP 0108536 A1 describes a corrosion preventive composition comprising a corrosion inhibitor, a thickener and a thixotropic gel. The corrosion preventive composition can be used for the treatment of multi-wire electrical conductors, wire ropes or cables.
U.S. Pat. No. 4,589,990 A describes a lubricant composition containing specific synthetic esters, namely polyol esters, trimellitate esters and polymeric fatty acid esters, and a mixture of polyisobutylene polymers having different molecular weights. The lubricant composition can also be used inter alia for the treatment of wire ropes.
U.S. Pat. No. 4,486,319 A describes a microporous lubricating composition containing an ionomer polymer and a liquid lubricant. The ionomer polymer may be combined with other polymers, and the composition may contain various additives in order to modify the performance and properties of the resulting composition. The formed composition can be used for lubricating mechanical components including wire ropes and bearings, such as sliding bearings.
CA 2364200 describes a lubricating composition for lubricating wire ropes comprising: (a) between 50 and 95 percent by volume of a base liquid; (b) between 1 and 8 percent by volume of a lubricant with a low acid content; (c) between 0.2 and 5.0 percent by volume of a low acidity corrosion inhibitor; (d) between 0.1 and 10 percent by volume of an extreme pressure agent; and (e) between 0.1 and 10 percent by volume of an anti-wear agent.
U.S. Pat. No. 6,329,073 B1 describes a steel object treated with a corrosion-inhibiting and adhesion-retaining composition, the composition comprising: A) an oily or waxy carrier as carrier of active components and B) active components, comprising: B1) a corrosion inhibitor in the form of a sulfonate of group IIA; B2) a co-corrosion inhibitor selected from the group consisting of: (a) one or more fatty acids having 6 to 24 carbon atoms, aromatic acids and naphthenic acids, the acids having the free acid form or the salt form; (b) one or more imidazoline derivatives having a C6-24 alkyl unit; and (c) one or more of C6-24 alkylsuccinic anhydride compounds; and (d) mixtures of one or more of the compounds defined under (a), (b) and (c) or mixtures of multiple forms of the compounds defined under (a), (b) and (c); and C) optionally a compound selected from the group consisting of: C1) a water repellent; C2) a synthetic ester derived from a C1-10 alcohol having 1-12 hydroxyl groups and C6-24 fatty acids; and C3) a C6-18 alcohol; and C4) a mixture of one or more of the compounds defined under C1), C2) and C3) or mixtures of multiple forms of the compounds defined under C1), C2), and C3), the elongated steel object being a hard-drawn steel wire.
U.S. Pat. No. 6,010,985 A describes a nontoxic lubricant, grease or gel composition comprising a combination of: at least one base oil from about 45 to about 90 wt %; at least one polymer from about 10 to about 20 wt % that is at least partially miscible with the at least one base oil; and about 1 to about 50 wt % of at least one silicate thickener comprising at least one compound selected from the group consisting of aluminum silicate, magnesium silicate, sodium silicate, calcium silicate, potassium silicate, lithium silicate and ammonium silicate.
CN 102102047 A describes a protective grease composition for a high temperature resistant steel wire rope and a manufacturing method thereof. The lubricating grease composition is prepared from base oil (high viscosity mineral oil or synthetic oil), a thickener, an additive and a covering agent. The lubricating grease for the steel wire rope is produced by thickening the base oil with a solid hydrocarbon thickener. The thickener is bentonite. A high molecular weight tackifier and a lubricating grease are used as solid filler in order to improve the performance, the high-temperature resistance and the adhesive strength of bentonite lubricating grease. The protective grease for the steel wire rope is especially used for protecting steel wire ropes in an extreme high-temperature environment.
CN 102618371 A describes steel rope grease with a high dropping point and a method for preparing the steel rope grease. The steel rope grease consists of the following components (in percentages by weight): 65%-85% base oil, 5%-20% thickener, 2%-15% adhesive, 1%-6% rust preventive agent, 0-5% antioxidant, 0-5% polar additive and 0.5%-6% solid lubricant.
CN 102827678 A describes a wire rope lubricating grease composition which, in addition to lubrication, also provides corrosion protection. The composition consists of the following components: 51.0% to 72.5% of calcium sulfonate composite grease no. 2, 25.0 to 38.0% of base oil, 0.2 to 1.0% of diphenylamine, 1.3 to 5.5% of colloidal graphite and 1.0 to 4.5% of ozokerite. The product is suitable for lubricating and protecting various wire ropes under oceanic climatic conditions such as seaports, maritime vessels, offshore drilling platforms, etc.
However, the above-mentioned lubricants do not meet all of the above-mentioned requirements, namely in addition to a good lubricating action being usable in a wide temperature range and also in the presence of water and also meeting the requirements for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
SUMMARY
In an embodiment, disclosed is an environmentally acceptable lubricating grease, comprising: a) 50 wt % to 90 wt % of a biodegradable base oil comprising a biodegradable ester as base oil; b) 3 wt % to 25 wt % of a thickener selected from b1) 3 wt % to 12 wt % biodegradable calcium soap, b2) 3 wt % to 25 wt % bentonites, b3) and mixtures thereof; c) 4 wt % to 40 wt % additives, comprising c1) 1 wt % to 12 wt % fumed silicon dioxide and/or polytetrafluoroethylene and/or mixtures thereof, c2) 2 wt % to 45 wt % of a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, polyesters and mixtures thereof, c3) 0.5 wt % to 20 wt % of a solid lubricant.
In an embodiment, disclosed herein is a method comprising coating steel ropes with an environmentally acceptable lubricating grease, comprising: a) 50 wt % to 90 wt % of a biodegradable base oil comprising a biodegradable ester as base oil; b) 3 wt % to 25 wt % of a thickener selected from b1) 3 wt % to 12 wt % biodegradable calcium soap, b2) 3 wt % to 25 wt % bentonites, b3) and mixtures thereof; c) 4 wt % to 40 wt % additives, comprising c1) 1 wt % to 12 wt % fumed silicon dioxide and/or polytetrafluoroethylene and/or mixtures thereof, c2) 2 wt % to 45 wt % of a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, polyesters and mixtures thereof, c3) 0.5 wt % to 20 wt % of a solid lubricant.
DETAILED DESCRIPTION
In an embodiment, a lubricant is disclosed which meets the above-mentioned requirements.
In an embodiment, disclosed is an environmentally acceptable lubricating grease, comprising:
    • a) 50 wt % to 90 wt % of a biodegradable base oil, in particular a biodegradable ester as base oil,
    • b) 3 wt % to 25 wt % and/or 7 wt % to 20 wt % of a thickener selected from
      • b1) 3 wt % to 12 wt % biodegradable calcium soap,
      • b2) 3 wt % to 25 wt % and/or 3.5 wt % to 20 wt % and/or 4 wt % to 12 wt % bentonites,
      • b3) and mixtures thereof,
    • c) 4 wt % to 40 wt %, preferably 7 wt % to 40 wt % additives, comprising
      • c1) 1 wt % to 12 wt % and/or 4 wt % to 12 wt % fumed silicon dioxide and/or polytetrafluoroethylene and mixtures thereof,
      • c2) 2 wt % to 45 wt % and/or 2 wt % to 25 wt % of a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, polyesters, preferably complex esters, in particular complex esters of neopentyl glycol/dimer acid/2-ethylhexanol and mixtures thereof,
      • c3) 0.5 wt % to 20 wt % and/or 1 wt % to 10 wt % of a solid lubricant.
In extensive experiments, it was found by the applicant that with a lubricating grease of the above-mentioned composition it is possible to provide an environmentally acceptable lubricant which combines outstanding lubricating properties when applied to steel ropes, in particular galvanized steel ropes, with an applicability even in the presence of water and in a wide temperature range.
Thus, in an embodiment, the lubricating grease has a dropping point according to standard DIN ISO 2176 of over 150° C., for example 150° C. to 300° C. and/or 170° C. to 300° C. and/or 200° C. to 290° C. In a further embodiment, the lubricating grease has an upper operating temperature (UOT) according to standard DIN 58397, Part 1, of at least 150° C., for example 150° C. to 200° C. and/or 150° C.
In an embodiment, preferably at least 75 wt %, for example 75 wt % to 100 wt %, more preferably at least 80 wt %, for example 80 wt % to 100 wt % and/or 85 wt % to 100 wt % and/or 75 wt % to 90 wt % of the lubricating grease consists of biodegradable and nontoxic ingredients. The lubricating grease can also contain up to 25 wt % of non-biodegradable components, provided that they are not bioaccumulating and/or are only minimally toxic. Consequently, the lubricating grease in an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit. Thus, the lubricating grease can also be used for applications that may come into contact with seawater.
Moreover, it has been found that components a) to c) have no negative influence on the zinc layer of galvanized steel ropes and, in particular, do not undergo any reaction with the zinc layer.
As component a), the lubricating grease contains at least 50 wt %, for example 50 wt % to 90 wt %, more preferably at least 60 wt %, for example 60 wt % to 80 wt %, and in particular 65 wt % to 75 wt % of a biodegradable base oil, in particular a biodegradable ester as base oil. The proportion of component a) is in each case based on the total amount of the lubricating grease.
A biodegradable base oil or a biodegradable ester is to be understood in an embodiment as a base oil and/or an ester which is biodegradable according to standard OECD 301 A-F or OECD 306.
In an embodiment, it is also possible to use mixtures of different base oils and/or different esters. In order for the lubricant to meet the requirements for EAL, the base oil and/or the ester must also have no toxicity.
In an embodiment, a plurality of biodegradable base oils and in particular of biodegradable esters can be used as component a), provided that they have sufficient thermal stability.
Preferred biodegradable base oils are base oils and in particular esters which have a thermal stability, determinable via TGA (DIN 51006; evaporation loss of greater than 1 wt % means thermally unstable) of over 150° C., for example in the range of 150° C. to 200° C.
The base oil and in particular the ester preferably also have a rather low volatility. Thus, preferred biodegradable base oils are base oils and in particular esters which have a volatility measured according to DIN 58397, after 7 d at 150° C., of <10 wt %, preferably <5 wt %.
The lubricating grease preferably likewise has a rather low volatility. Thus, preferred lubricating greases are lubricating greases which have a volatility measured according to DIN 58397, after 7 d at 150° C., of <10 wt %, preferably <5 wt %.
Furthermore, the base oil and in particular the ester preferably exhibit a high hydrolytic stability. For this reason, preferred biodegradable base oils are base oils and/or esters which have a TAN Delta (change in acid content), measured in accordance with DIN ASTM D-2619 (with extended running time of 400 h, 93° C.) of 0.0 mg KOH/g to 20, more preferably of 0.0 to 15 mg KOH/g.
Finally, the base oils and in particular the esters preferably exhibit a low acid content (TAN) in accordance with DIN EN 12634, with preferred biodegradable base oils and in particular esters having an acid content (TAN), of less than 5 mg KOH/g, for example 0.01 mg to 5 mg KOH/g, more preferably of less than 1 mg KOH/g, for example 0.01 mg KOH/g to 1 mg KOH/g.
The viscosity of the biodegradable base oil is preferably at least 18 mm2/s, for example 18 mm2/s to 1200 mm2/s and/or at least 100 mm2/sec, for example 100 mm2/sec to 1200 mm2/s and/or 120 to 500 mm2/sec and/or 120 to 300 mm2/sec, in each case measured in accordance with DIN EN ISO 3104 at 40° C.
The viscosity of preferred mixtures of base oils measured in accordance with DIN 51562, Part 1, at 40° C. is at least 18 mm2/s, for example 18 mm2/s to 1200 mm2/s and/or 18 mm2/s to 500 mm2/s and/or 18 to 200 mm2/s.
The viscosity of preferred biodegradable esters is preferably at least 50 mm2/sec, for example 50 mm2/sec to 1000 mm2/s and/or 50 mm2/sec to 1200 mm2/s, more preferably at least 100 mm2/sec, for example 100 mm2/sec to 1000 mm2/s and/or 100 mm2/sec to 1200 mm2/s and in particular 130 to 1000 mm2/sec and/or 130 mm2/sec to 1200 mm2/s, in each case measured in accordance with DIN EN ISO 3104 at 40° C.
In an embodiment, the biodegradable ester is a synthetic ester. Furthermore, the ester is particularly preferably a renewable-based ester. A particularly preferred ester in an embodiment is a polyol ester, in particular (trimethylolpropane) ester, pentaerythritol ester, mixtures and/or complex esters thereof. Particularly preferred (trimethylolpropane) esters are esters of trimethylolpropane and branched or unbranched and saturated or unsaturated C10-C22 carboxylic acids. The acids may be monocarboxylic and/or dicarboxylic acids. If dicarboxylic acids are used, complex esters can be obtained. Particularly preferred pentaerythritol esters are esters of pentaerythritol and branched or unbranched and saturated or unsaturated C10-C22 carboxylic acids. Very particularly preferred esters are esters of trimethylolpropane or pentaerythritol with saturated or unsaturated branched C18 carboxylic acids, in particular with oleic acid, isostearic acid, mixtures and/or complex esters thereof. Also particularly preferred esters are esters of trimethylolpropane with saturated or unsaturated, branched or unbranched, C8-C20 carboxylic acids, and/or C10-C22 carboxylic acids, in particular with sebacic acid, stearic acid and isostearic acid, mixtures and/or complex esters thereof.
Also particularly preferred esters are complex esters of trimethylolpropane with saturated, branched or unbranched, C8-C20 carboxylic acids and/or C10-C22 carboxylic acids, in particular with sebacic acid, stearic acid and isostearic acid, and/or mixtures thereof. Also particularly preferred esters are complex esters of trimethylolpropane with a mixture of at least two saturated or unsaturated, branched or unbranched C8-C20 carboxylic acids and/or C10-C22 carboxylic acids, wherein at least one first carboxylic acid is a saturated or unsaturated, branched or unbranched C8-C20 dicarboxylic acid and/or C10-C22 dicarboxylic acid and at least one second acid is a saturated or unsaturated, branched or unbranched C8-C20 carboxylic acid and/or C10-C22 carboxylic acid. Also particularly preferred esters are complex esters of trimethylolpropane with a mixture of at least two saturated, branched or unbranched C8-C20 carboxylic acids and/or C10-C22 carboxylic acids, wherein at least one first carboxylic acid is a saturated, unbranched C8-C12 dicarboxylic acid, in particular sebacic acid, and at least one second acid is a saturated, branched or unbranched C15-C20 carboxylic acid, in particular stearic acid, isostearic acid or a mixture thereof.
In an embodiment, component a) is not a triglyceride, since triglycerides have unsatisfactory hydrolytic and oxidative or chemical stability, at least for some applications.
Also suitable biodegradable base oils are polyalphaolefins and/or polyglycols.
Particularly preferred biodegradable polyalphaolefins have a viscosity measured in accordance with DIN 51562, Part 1, at 100° C. of at most 6 mm2/s, for example 2 mm2/s to 6 mm2/s and/or 2 mm2/s to 5 mm2/s and/or 2 to 4 mm2/s.
Particularly preferred biodegradable polyglycols are oil-soluble polyglycols. These preferably have a viscosity measured in accordance with DIN 51562, Part 1, at 40° C. of at most 150 mm2/s, for example 18 mm2/s to 150 mm2/s and/or 18 mm2/s to 68 mm2/s and/or 18 to 46 mm2/s.
As component b), the lubricating grease comprises a thickener selected from biodegradable calcium soaps (b1)) in an amount of 3 to 12 wt %, more preferably 4 wt % to 10 wt %, in particular 4 wt % to 7 wt %, bentonites (b2)) in an amount of 3 wt % to 25 wt % and/or 3.5 wt % to 20 wt % and/or 4 to 12 wt %, more preferably 4 wt % to 10 wt % and mixtures thereof. According to an embodiment, the proportion of thickener is 3 wt % to 25 wt % and/or 7 wt % to 20 wt %. The proportion of component b) is in each case based on the total amount of the lubricating grease.
The use of calcium soap as thickener is advantageous in that, in particular in combination with component c2), it increases the resistance to water.
A biodegradable calcium soap is to be understood in an embodiment as a calcium soap which is biodegradable according to standard OECD 301 A-F and/or OECD 306. In order for the lubricant to meet the requirements for EAL, the calcium soap must moreover have no toxicity or only minimal toxicity. Preferred calcium soaps are water-resistant, in particular they have a static water resistance in accordance with DIN 51807 T1. In an embodiment, calcium soaps are preferred to bentonites, since they have a greater thickening effect and better biodegradability. It is also possible to use mixtures of different calcium soaps or bentonites.
Calcium soaps of fatty acids, in particular C8-C26 fatty acids, in particular calcium 12-hydroxystearate, are particularly preferred.
In principle, it is also possible to use mixtures of calcium soaps and bentonites. This embodiment, however, is less preferred, at least when galvanized steel ropes are used, since zinc corrosion is impaired compared to the isolated use of calcium soaps or bentonites.
It is conceivable for the base oil to contain as component c) 1 wt % to 40 wt % additives. In an embodiment, the base oil contains 4 wt % to 40 wt %, more preferably 5 wt % to 40 wt %, more preferably 7 wt % to 40 wt %, and in particular 10 wt % to 35 wt % additives. The proportion of component c) is in each case based on the total amount of the lubricating grease.
The additives of component c) comprise, in an embodiment, 1 to 12 wt % and/or 4 to 12 wt %, preferably 4 wt % to 10 wt % fumed silicon dioxide and/or polytetrafluoroethylene as component c1). The proportion of component c1) is in each case based on the total amount of the lubricating grease.
In an embodiment, the fumed silicon dioxide is selected from silica having a specific surface area of 90 to 130 m2/g. Hydrophobized fumed silica, in particular a silica hydrophobized by means of dichlorodimethylsilane, is likewise preferred.
Component c1) contributes to improving the dropping point of the lubricating grease and thereby to the temperature resistance thereof, in the sense of an increase in the upper operating temperature (UOT). In addition, component c1) has the advantage that it can act as a co-thickener and can thereby contribute to stabilizing the thickener system.
As component c2), the additives of component c) comprise, in an embodiment, a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, polyesters, preferably complex esters, in particular complex esters of neopentyl glycol/dimer acid/2-ethylhexanol and mixtures thereof. A complex ester is understood in an embodiment as a polyester which is prepared by reacting polyols with dicarboxylic acids and, if appropriate, monocarboxylic acids. The proportion of component c2) is 2 wt % to 45 wt %, preferably 2 wt % to 25 wt %, more preferably 5 wt % to 20 wt %, and in particular 7 wt % to 17 wt %, in each case based on the total amount of the lubricating grease.
The polymers of component c2) preferably have a viscosity, measured in accordance with DIN 51562, Part 1, at 100° C., of at least 600 mm2/s, more preferably of at least 800 mm2/s and/or at least 1000 mm2/s and/or at least 1500 mm2/s and/or at least 4000 mm2/s, for example 4000 mm2/s to 10000 mm2/s and/or 4000 mm2/s to 6000 mm2/s, in particular 4000 to 4700 mm2/s. A high viscosity is advantageous, since in this way the amount used can be kept low. In an embodiment, polyisobutylene and/or polyisobutylene/butene copolymer is particularly preferred, since these are inexpensive raw materials and have no hydrolyzable groups, such as, for example, ester groups. Also preferred are polymers that are biodegradable.
The use of component c2) is advantageous since, as a toxicologically safe adhesion promoter, it can improve the adhesion measured in accordance with ASTM D 4049 of <50 wt % loss, for example of <30 wt % loss, more preferably of <25 wt % loss between lubricating grease and steel rope.
In an embodiment, the lubricating grease therefore preferably has a weight loss in a water spray off test in accordance with ASTM D 4049 of <50 wt % loss, for example <30 wt % loss, more preferably <25 wt %.
As component c3), the additives of component c) comprise, according to an embodiment, 0.5 wt % to 20 wt % and/or 1 wt % to 10 wt %, more preferably 1 wt % to 9 wt % and in particular 1.5 wt % to 8 wt % of a solid lubricant, preferably selected from alkaline earth metal salts, in particular calcium carbonate, calcium stearate, graphite, melamine cyanurate, zinc sulfide (ZnS), molybdenum sulfide (MoS2) and mixtures thereof. The proportion of component c3) is in each case based on the total amount of the lubricating grease.
The use of the above-mentioned solid lubricants, in particular of calcium carbonate, graphite, melamine cyanurate and calcium stearate as component c3), is particularly advantageous since these compounds are toxicologically safe and can significantly improve the frictional properties of the steel rope.
In an embodiment, less preferred solid lubricants are dithiocarbamates, in particular ashless dithiocarbamates, bis-stearoylethylenediamine and mixtures thereof. In practical experiments, it was found that the use of these compounds has a negative effect on the corrosion of the zinc layer. This is also disadvantageous from an environmental point of view, since zinc oxide, formed in the corrosion of zinc, is toxic to aquatic organisms.
It is likewise conceivable that the lubricating grease contains 0.5 wt % and in particular 0.5 to 2.8 wt % succinic acid derivatives as first corrosion inhibitor, in particular amidated succinic acid half-esters as component c4). The proportion of component c4) is in each case based on the total amount of the lubricating grease. Component c4) preferably has a total acid number (TAN) (DIN 53402) of 70 to 100 mg KOH/g.
The use of succinic acid derivatives is advantageous since they are biodegradable and have a high corrosion protection effect.
In an embodiment, the lubricating grease contains, as component c5), a second corrosion inhibitor, preferably selected from alkaline earth metal oxides, in particular calcium oxide and/or magnesium oxide, and calcium, magnesium and/or sodium sulfonates or salts of C8-C20 dicarboxylic acids, in particular disodium sebacate. An advantage of the above-mentioned components is that they offer good corrosion protection and are nontoxic. Magnesium oxide, disodium sebacate and/or mixtures thereof are particularly preferred. In a further embodiment, component c5) has a d10 particle size distribution of 1 to 10 μm, more preferably 3 to 8 μm, more preferably 4 to 6 μm and in particular 5 μm and/or a d50 particle size distribution of 10 to 30 μm, more preferably 13 to 22 μm, more preferably 15 to 20 μm and in particular 17 μm and/or a d90 particle size distribution of 30 to 50 μm, more preferably 35 to 45 μm and in particular 40 μm. In an embodiment, component c5) has a d50 particle size distribution of less than 25 μm, for example 5 μm to 25 μm and/or 5 μm to 20 μm.
The advantage of using component c5) is that it can act as a basic reserve in addition to increasing the corrosion protection of the lubricating grease. Moreover, it was found in practical experiments that magnesium oxide acts synergistically as component c5) in combination with c4).
The proportion of component c5) is preferably in the range of 0.3 to 5 wt %, more preferably 0.5 to 2.5 wt %, and in particular 1 wt % to 2.3 wt %. The proportion of component c5) is in each case based on the total amount of the lubricating grease.
Moreover, the lubricating grease can also contain other customary additives, for example antioxidants, provided that these do not have a negative effect on the environmental acceptableness of the lubricating grease. Thus, in an embodiment, the lubricating grease contains an antioxidant as component c6). This is preferably selected from nontoxic or only minimally toxic antioxidants. The proportion of the antioxidant is preferably in the range of 0.3 to 3 wt %, more preferably 0.5 to 2 wt %, and in particular 0.8 wt % to 1.5 wt %. The proportion of component c6) is in each case based on the total amount of the lubricating grease.
Particularly preferred antioxidants according to an embodiment are phenolic and/or aminic antioxidants.
In one embodiment, the lubricating grease comprises:
a) 50 wt % to 90 wt % of a biodegradable ester as base oil,
b) 7 wt % to 20 wt % of a thickener selected from
    • b1) 3 wt % to 12 wt % biodegradable calcium soap,
    • b2) 4 wt % to 12 wt % bentonites,
c) 4 wt % to 40 wt % additives, comprising
    • c1) 4 wt % to 12 wt % fumed silicon dioxide and/or polytetrafluoroethylene and mixtures thereof,
    • c2) 2 wt % to 25 wt % of a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, complex esters of neopentyl glycol/dimer acid/2-ethylhexanol and mixtures thereof,
    • c3) 1 wt % to 10 wt % of a solid lubricant.
In an embodiment, the lubricating grease comprises:
  • a) 50 wt % to 90 wt %, more preferably 60 wt % to 80 wt %, more preferably 65 wt % to 75 wt % pentaerythritol esters, in particular pentaerythritol esters of pentaerythritol and isostearic acid, as base oil,
  • b) 3 wt % to 25 wt % of a thickener selected from
    • b1) 3 wt % to 12 wt %, more preferably 4 wt % to 10 wt %, more preferably 4 wt % to 7 wt % Ca 12-hydroxystearate,
  • c) 4 wt % to 40 wt %, more preferably 5 wt % to 40 wt %, more preferably 7 wt % to 40 wt %, more preferably 10 wt % to 35 wt % additives, comprising
    • c1) 1 wt % to 12 wt % and/or 4 wt % to 12 wt %, preferably 4 wt % to 10 wt % fumed silicon dioxide,
    • c2) 2 wt % to 45 wt % and/or 2 wt % to 25 wt %, more preferably 5 wt % to 20 wt %, and in particular 7 wt % to 17 wt % polyisobutylene,
    • c3) 0.5 wt % to 20 wt % and/or 1 wt % to 10 wt %, more preferably 1 wt % to 9 wt %, and in particular 1.5 wt % to 8 wt % calcium carbonate as solid lubricant.
In a further embodiment, the lubricating grease comprises:
  • a) 50 wt % to 90 wt %, more preferably 60 wt % to 80 wt %, more preferably 65 wt % to 75 wt % pentaerythritol esters, in particular pentaerythritol esters of pentaerythritol and isostearic acid, as base oil,
  • b) 3 wt % to 25 wt % of a thickener selected from
    • b1) 3 wt % to 12 wt %, more preferably 4 wt % to 10 wt %, more preferably 4 wt % to 7 wt % Ca 12-hydroxystearate,
  • c) 4 wt % to 40 wt %, more preferably 5 wt % to 40 wt %, more preferably 7 wt % to 40 wt %, more preferably 10 wt % to 35 wt % additives, comprising
    • c1) 1 wt % to 12 wt % and/or 4 wt % to 12 wt %, preferably 4 wt % to 10 wt % fumed silicon dioxide,
    • c2) 2 wt % to 45 wt % and/or 2 wt % to 25 wt %, more preferably 5 wt % to 20 wt %, and in particular 7 wt % to 17 wt % polyisobutylene,
    • c3) 0.5 wt % to 20 wt % and/or 1 wt % to 10 wt %, more preferably 1 wt % to 9 wt %, and in particular 1.5 wt % to 8 wt % calcium carbonate as solid lubricant,
    • c5) 0.3 wt % to 5 wt %, more preferably 0.5 wt % to 2.5 wt %, and in particular 1 wt % to 2.3 wt % magnesium oxide as corrosion inhibitor,
    • c6) 0.3 wt % to 3 wt %, more preferably 0.5 wt % to 2 wt %, and in particular 0.8 wt % to 1.5 wt % of a phenolic antioxidant.
In a further embodiment, the lubricating grease comprises:
  • a) 50 wt % to 90 wt %, more preferably 60 wt % to 80 wt %, more preferably 65 wt % to 75 wt % complex esters, in particular complex esters of trimethylolpropane with a mixture of at least two saturated or unsaturated, branched or unbranched C8-C20 carboxylic acids, wherein at least one first carboxylic acid is a saturated or unsaturated, branched or unbranched C8-C20 dicarboxylic acid and at least one second acid is a saturated or unsaturated, branched or unbranched C8-C20 carboxylic acid, as base oil,
  • b) 3 wt % to 25 wt % of a thickener selected from
    • b1) 3 wt % to 12 wt %, more preferably 4 wt % to 10 wt %, more preferably 4 wt % to 7 wt % Ca 12-hydroxystearate,
  • c) 4 wt % to 40 wt %, more preferably 5 wt % to 40 wt %, more preferably 7 wt % to 40 wt %, more preferably 10 wt % to 35 wt % additives, comprising
    • c1) 1 wt % to 12 wt % and/or 4 wt % to 12 wt %, preferably 4 wt % to 10 wt % fumed silicon dioxide,
    • c2) 2 wt % to 45 wt % and/or 2 wt % to 25 wt %, more preferably 5 wt % to 20 wt %, and in particular 7 wt % to 17 wt % polyisobutylene,
    • c3) 0.5 wt % to 20 wt % and/or 1 wt % to 10 wt %, more preferably 1 wt % to 9 wt %, and in particular 1.5 wt % to 8 wt % calcium carbonate as solid lubricant.
In a further embodiment, the lubricating grease comprises:
  • a) 50 wt % to 90 wt %, more preferably 60 wt % to 80 wt %, more preferably 65 wt % to 75 wt % complex esters, in particular complex esters of trimethylolpropane with a mixture of at least two saturated or unsaturated, branched or unbranched C8-C20 carboxylic acids, wherein at least one first carboxylic acid is a saturated or unsaturated, branched or unbranched C8-C20 dicarboxylic acid and at least one second acid is a saturated or unsaturated, branched or unbranched C8-C20 carboxylic acid, as base oil,
  • c) 3 wt % to 25 wt % of a thickener selected from
    • b1) 3 wt % to 12 wt %, more preferably 4 wt % to 10 wt %, more preferably 4 wt % to 7 wt % Ca 12-hydroxystearate,
  • c) 4 wt % to 40 wt %, more preferably 5 wt % to 40 wt %, more preferably 7 wt % to 40 wt %, more preferably 10 wt % to 35 wt % additives, comprising
    • c1) 1 wt % to 12 wt % and/or 4 wt % to 12 wt %, preferably 4 wt % to 10 wt % fumed silicon dioxide,
    • c2) 2 wt % to 45 wt % and/or 2 wt % to 25 wt %, more preferably 5 wt % to 20 wt %, and in particular 7 wt % to 17 wt % polyisobutylene,
    • c3) 0.5 wt % to 20 wt % and/or 1 wt % to 10 wt %, more preferably 1 wt % to 9 wt %, and in particular 1.5 wt % to 8 wt % calcium carbonate as solid lubricant,
    • c5) 0.3 wt % to 5 wt %, more preferably 0.5 wt % to 2.5 wt %, and in particular 1 wt % to 2.3 wt % magnesium oxide as corrosion inhibitor,
    • c6) 0.3 wt % to 3 wt %, more preferably 0.5 wt % to 2 wt %, and in particular 0.8 wt % to 1.5 wt % of a phenolic antioxidant.
In an embodiment, disclosed is the use of the lubricating grease for coating steel ropes, in particular galvanized steel ropes. Because of their high resistance, steel ropes provided with the lubricating grease in an embodiment are outstandingly suitable for a wide variety of applications in which high-performance ropes are required, for example in the marine industry and in the oil and gas industries.
Embodiments are explained in more detail below with reference to several examples. All examples show outstanding lubricating properties when applied to steel ropes. Furthermore, they have an applicability even in the presence of water and in a wide temperature range.
Example 1: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 1)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2) and c3).
Amount
Component Composition Function (wt %)
a) Polyol ester Base oil 75.0
b1) Calcium 12-hydroxystearate Thickener 6.0
c1) Fumed silicon dioxide Additive 5.0
c2) Isobutylene/butene copolymer Adhesion 11.0
promoter
c3) Calcium carbonate Solid lubricant 3.0
All components of the lubricating grease 1 according to an embodiment are biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 1 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 1 are shown in Table 1:
Standard Test name Result
DIN ISO 2176 Dropping point >200° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <20%  
KL-PN 010 Zinc corrosion <0.01% 
DIN 58397 T1 Evaporation loss <5%   
Example 2: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 2)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
Amount
Component Composition Function (wt %)
a) Polyol ester Base oil 70.0
b1) Calcium 12-hydroxystearate Thickener 5.5
c1) Fumed silicon dioxide Additive 4.0
c2) Isobutylene/butene copolymer Adhesion 15.0
promoter
c3) Calcium carbonate Solid lubricant 2.0
c5) Magnesium oxide Corrosion 2.5
protection
c6) Phenolic antioxidant Antioxidant 1.0
The components of the lubricating grease 2 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 1 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 2 are shown in Table 2:
Standard Test name Result
DIN ISO 2176 Dropping point >200° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <20%  
KL-PN 010 Zinc corrosion <0.01% 
DIN 58397 T1 Evaporation loss <5%   
Example 3: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 3)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), b2), c1), c2) and c3).
Amount
Component Composition Function (wt %)
a) Polyol ester Base oil 68.0
b1)(b3) Calcium 12-hydroxystearate Thickener 5.0
b2)(b3) Bentonite Thickener 4.0
c1) Fumed silicon dioxide Additive 4.0
c2) Isobutylene/butene copolymer Adhesion 6.0
promoter
c2) Complex esters Adhesion 10.0
promoter
c3) Zinc sulfide Solid lubricant 3.0
The components of the lubricating grease 3 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 3 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 3 are shown in Table 3:
Standard Test name Result
DIN ISO 2176 Dropping point >200° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <10%  
KL-PN 010 Zinc corrosion <0.05% 
DIN 58397 T1 Evaporation loss <5%   
Example 4: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 4)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), b2), c1), c2) and c3).
Amount
Component Composition Function (wt %)
a) Polyol ester Base oil 71.0
b1)(b3) Calcium 12-hydroxystearate Thickener 5.0
b2)(b3) Bentonite Thickener 3.0
c1) Fumed silicon dioxide Additive 4.0
c2) Isobutylene/butene copolymer Adhesion 9.0
promoter
c2) Polymethacrylate Adhesion 4.0
promoter
c3) Zinc sulfide Solid lubricant 4.0
The components of the lubricating grease 4 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 4 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 4 are shown in Table 4:
Standard Test name Result
DIN ISO 2176 Dropping point >200° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <10% (7%)
KL-PN 010 Zinc corrosion <0.1% (0.06%)
DIN 58397 T1 Evaporation loss <5%   
Example 5: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 5)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2) and c3).
Amount
Component Composition Function (wt %)
a) Polyol ester Base oil 75
b1) Calcium 12-hydroxystearate Thickener 4
c1) Fumed silicon dioxide Additive 6.0
c2) Isobutylene/butene copolymer Adhesion 8.0
promoter
c2) Polymethacrylate Adhesion 2.0
promoter
c2) Complex esters Adhesion 3.0
promoter
c3) Zinc sulfide Solid lubricant 2.0
The components of the lubricating grease 5 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 5 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 5 are shown in Table 5:
Standard Test name Result
DIN ISO 2176 Dropping point >200° C.
DIN 51807 Static water resistance 1
ASTM D 4049 Water spray-off <30%  
KL-PN 010 Zinc corrosion <0.02% 
DIN 58397 T1 Evaporation loss <5%   
Example 6: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 6)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), b2), c1), c2), c3), c4), c5) and c6).
Amount
Component Composition Function (wt %)
a) Polyol ester Base oil 64.0
b1)(b3) Calcium 12-hydroxystearate Thickener 4.0
b2)(b3) Bentonite Thickener 7.0
c1) Fumed silicon dioxide Additive 4.0
c2) Isobutylene/butene copolymer Adhesion 10.0
promoter
c3) Calcium stearate Solid lubricant 7.0
c4) Succinic acid derivative Corrosion 2.0
protection
c5) Magnesium oxide Corrosion 1.0
protection
c6) Phenolic antioxidant Antioxidant 1.0
The components of the lubricating grease 6 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Consequently, the lubricating grease 6 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 6 are shown in Table 6:
Standard Test name Result
DIN ISO 2176 Dropping point >200° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <10%  
KL-PN 010 Zinc corrosion <0.1% 
DIN 58397 T1 Evaporation loss <5%   
Example 7: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 7)
A lubricating grease according to an embodiment is obtained by mixing components a), b2), c1), c2), c3), c5) and c6).
Amount
Component Composition Function (wt %)
a) Pentaerythritol ester Base oil 71.0
b2) Bentonite Thickener 12.0
c1) Fumed silicon dioxide Additive 2.0
c2) Complex esters Adhesion promoter 4.0
c2) Polymethacrylate Adhesion promoter 3.0
c3) Calcium stearate Solid lubricant 5.0
c5) Magnesium oxide Corrosion protection 2.0
c6) Phenolic antioxidant Antioxidant 1.0
The components of the lubricating grease 7 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 7 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 7 are shown in Table 7:
Standard Test name Result
DIN ISO 2176 Dropping point >200° C.
DIN 51807 Static water resistance 1
ASTM D 4049 Water spray-off <20%  
KL-PN 010 Zinc corrosion <0.05% 
DIN 58397 T1 Evaporation loss <5%   
Example 8: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 8)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
Amount
Component Composition Function (wt %)
a) Pentaerythritol esters of Base oil 70.0
pentaerythritol and isostearic acid
b1) Ca 12-hydroxystearate Thickener 6.0
c1) Fumed silicon dioxide Additive 6.0
c2) Polyisobutylene Adhesion 13.0
promoter
c3) Calcium carbonate Solid 2.0
lubricant
c5) Magnesium oxide Corrosion 2.0
protection
c6) Phenolic antioxidant Antioxidant 1.0
The components of the lubricating grease 8 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 8 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 8 are shown in Table 8:
Standard Test name Result
DIN ISO 2176 Dropping point >200° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <10%  
KL-PN 010 Zinc corrosion <0.01% 
DIN 58397 T1 Evaporation loss <5%   
Example 9: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 9)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
Amount
Component Composition Function (wt %)
a) Complex esters based on Base oil 70.0
trimethylolpropane, Sebacic acid,
stearic acid and isostearic acid
b1) Ca 12-hydroxystearate Thickener 7.0
c1) Fumed silicon dioxide Additive 5.0
c2) Polyisobutylene Adhesion 11.0
promoter
c3) Calcium carbonate Solid 4.0
lubricant
c5) Magnesium oxide Corrosion 2.0
protection
c6) Phenolic antioxidant Antioxidant 1.0
The components of the lubricating grease 9 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 9 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 9 are shown in Table 9:
Standard Test name Result
DIN ISO 2176 Dropping point >200° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <5%
KL-PN 010 Zinc corrosion   <0.01%
DIN 58397 T1 Evaporation loss <5%
Example 10: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 10)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
Amount
Component Composition Function (wt %)
a) Oil-soluble polyglycol Base oil 68.0
b1) Ca 12-hydroxystearate Thickener 8.0
c1) Fumed silicon dioxide Additive 5.0
c2) Polyisobutylene Adhesion promoter 14.0
c3) Calcium carbonate Solid lubricant 2.0
c5) Magnesium oxide Corrosion protection 2.0
c6) Phenolic antioxidant Antioxidant 1.0
The components of the lubricating grease 10 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 10 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 10 are shown in Table 10:
Standard Test name Result
DIN ISO 2176 Dropping point ≥150° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <65%   
KL-PN 010 Zinc corrosion <0.0005%
Example 11: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 11)
A lubricating grease according to an embodiment is obtained by mixing components a), b2), c1), c2), c3), c5) and c6).
Amount
Component Composition Function (wt %)
a) Polyol ester Base oil 70.0
b2) Bentonite Thickener 18.0
c1) Polytetrafluoroethylene Additive 1.0
c2) Polyisobutylene Adhesion promoter 2.0
c3) Calcium stearate Solid lubricant 6.0
c5) Magnesium oxide Corrosion protection 2.0
c6) Phenolic antioxidant Antioxidant 1.0
The components of the lubricating grease 11 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 11 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 11 are shown in Table 11:
Standard Test name Result
DIN ISO 2176 Dropping point ≥200° C.
DIN 51807 Static water resistance 1
ASTM D 4049 Water spray-off <15%
KL-PN 010 Zinc corrosion <0.05%
DIN 58397 T1 Evaporation loss <10%
Example 12: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 12)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
Amount
Component Composition Function (wt %)
a) Polyol ester Base oil 70.0
b1) Ca 12-hydroxystearate Thickener 7.0
c1) Fumed silicon dioxide Additive 1.0
c2) Polyisobutylene Adhesion promoter 17.0
c3) Calcium stearate Solid lubricant 2.0
c5) Magnesium oxide Corrosion protection 2.0
c6) Phenolic antioxidant Antioxidant 1.0
The components of the lubricating grease 12 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 12 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 12 are shown in Table 12:
Standard Test name Result
DIN ISO 2176 Dropping point ≥150° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <20%  
KL-PN 010 Zinc corrosion <0.005%
DIN 58397 T1 Evaporation loss <5%   
Example 13: Production of a Lubricating Grease According to an Embodiment (Lubricating Grease 13)
A lubricating grease according to an embodiment is obtained by mixing components a), b1), c1), c2), c3), c5) and c6).
Amount
Component Composition Function (wt %)
a) Polyol ester Base oil 60.0
b1) Ca 12-hydroxystearate Thickener 3.0
c1) Fumed silicon dioxide Additive 8.0
c1) Polytetrafluoroethylene Additive 4.0
c2) Polyisobutylene Adhesion promoter 5.0
c3) Calcium stearate Solid lubricant 17.0
c5) Magnesium oxide Corrosion protection 2.0
c6) Phenolic antioxidant Antioxidant 1.0
The components of the lubricating grease 13 according to an embodiment are also biodegradable; if not biodegradable, then not bioaccumulating, and have no toxicity or only minimal toxicity. Moreover, the lubricating grease 13 according to an embodiment meets the criteria for environmentally acceptable lubricants (EAL) according to Appendix A of the 2013 Vessel General Permit.
Physical-chemical properties of Example 13 are shown in Table 13:
Standard Test name Result
DIN ISO 2176 Dropping point ≥150° C.
DIN 51807 Static water resistance 0
ASTM D 4049 Water spray-off <20%
KL-PN 010 Zinc corrosion <0.02%
DIN 58397 T1 Evaporation loss <5% 
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. It will be understood that changes and modifications may be made by those of ordinary skill within the scope of the following claims. In particular, the present invention covers further embodiments with any combination of features from different embodiments described above and below. Additionally, statements made herein characterizing the invention refer to an embodiment of the invention and not necessarily all embodiments.
The terms used in the claims should be construed to have the broadest reasonable interpretation consistent with the foregoing description. For example, the use of the article “a” or “the” in introducing an element should not be interpreted as being exclusive of a plurality of elements. Likewise, the recitation of “or” should be interpreted as being inclusive, such that the recitation of “A or B” is not exclusive of “A and B,” unless it is clear from the context or the foregoing description that only one of A and B is intended. Further, the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise. Moreover, the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.

Claims (20)

The invention claimed is:
1. An environmentally acceptable lubricating grease, comprising:
a) 50 wt % to 90 wt % of a biodegradable base oil comprising a biodegradable ester as base oil,
b) 3 wt % to 25 wt % of a thickener selected from
b1) 3 wt % to 12 wt % biodegradable calcium soap,
b2) 3 wt % to 25 wt % bentonites,
b3) and mixtures thereof, and
c) 4 wt % to 40 wt % additives, comprising
c1) 1 wt % to 12 wt % fumed silicon dioxide and/or polytetrafluoroethylene and/or mixtures thereof,
c2) 2 wt % to 45 wt % of a polymer selected from polyisobutylene, polyisobutylene/butene copolymer, polymethacrylates, polyesters and mixtures thereof,
c3) 0.5 wt % to 20 wt % of a solid lubricant,
wherein the lubricating grease and/or the ester a) has a thermal stability, determinable via TGA DIN 51006 of 150° C. to 200° C. and/or a volatility measured according to DIN 58397 of <10 wt % and/or a TAN Delta measured in accordance with DIN ASTM D-2619 with extended running time of 400 h of 0.0 mg KOH/g to 20 mg KOH/g and/or an acid content (TAN) of less than 5 mg KOH/g.
2. The lubricating grease according to claim 1, wherein a dropping point according to standard DIN ISO 2176 is over 150° C.
3. The lubricating grease according to claim 1, wherein an upper operating temperature (UOT) according to standard DIN 58397, Part 1, is at least 150° C.
4. The lubricating grease according to claim 1, wherein the viscosity of the ester a) is at least 50 mm2/sec as measured in accordance with DIN EN ISO 3104 at 40° C.
5. The lubricating grease according to claim 1, wherein the biodegradable calcium soap b1) is selected from calcium soaps of fatty acids comprising calcium 12-hydroxystearate.
6. The lubricating grease according to claim 1, wherein the fumed silicon dioxide c1) is selected from silica having a specific surface area of 90 to 130 m2/g.
7. The lubricating grease according to claim 1, wherein the polymers of component c2) have a viscosity measured in accordance with DIN 51562, Part 1, at 100° C. of at least 600 mm2/s.
8. The lubricating grease according to claim 1, further comprising as component c5) a corrosion inhibitor selected from alkaline earth metal oxides comprising calcium oxide and/or magnesium oxide, and calcium, magnesium and/or sodium sulfonates or salts of C8-C20 dicarboxylic acids comprising disodium sebacate.
9. A method, comprising coating steel ropes comprising galvanized steel ropes with the lubricating grease according to claim 1.
10. The lubricating grease according to claim 1, comprising 7 wt % to 20 wt % of the thickener b).
11. The lubricating grease according to claim 1, wherein the thickener b) is selected from:
b1) 3 wt % to 12 wt % biodegradable calcium soap,
b2) 3.5 wt % to 20 wt % bentonites,
b3) and mixtures thereof.
12. The lubricating grease according to claim 1, wherein the thickener b) is selected from:
b1) 3 wt % to 12 wt % biodegradable calcium soap,
b2) 4 wt % to 12 wt % bentonites,
b3) and mixtures thereof.
13. The lubricating grease according to claim 1, comprising 7 wt % to 40 wt % of the additives c).
14. The lubricating grease according to claim 1, wherein the additives c) comprises 4 wt % to 12 wt % fumed silicon dioxide and/or polytetrafluoroethylene and/or mixtures thereof.
15. The lubricating grease according to claim 1, wherein the additives c) comprises 2 wt % to 25 wt % of the polymer c2).
16. The lubricating grease according to claim 1, wherein the polymer c2) comprises polyesters comprising complex esters of neopentyl glycol/dimer acid/2-ethylhexanol.
17. The lubricating grease according to claim 1, wherein the additives c) comprises 1 wt % to 10 wt % of the solid lubricant c3).
18. The lubricating grease according to claim 1, wherein the lubricating grease and/or the ester a) has a volatility measured according to DIN 58397 of <5 wt %.
19. The lubricating grease according to claim 7, wherein the polymers of component c2) have a viscosity measured in accordance with DIN 51562, Part 1, at 100° C. of at least 4000 mm2/s.
20. The lubricating grease according to claim 8, wherein the component c5) comprises an alkaline earth metal oxide comprising calcium oxide and/or magnesium oxide.
US17/258,456 2018-07-09 2019-07-09 Environmentally friendly lubricating grease for steel ropes Active US11421181B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102018005397.1 2018-07-09
DE102018005397 2018-07-09
DE102018008362.5 2018-10-23
DE102018008362.5A DE102018008362A1 (en) 2018-07-09 2018-10-23 Environmentally friendly grease for steel cables
PCT/EP2019/068344 WO2020011758A1 (en) 2018-07-09 2019-07-09 Environmentally friendly lubricating grease for steel ropes

Publications (2)

Publication Number Publication Date
US20210277323A1 US20210277323A1 (en) 2021-09-09
US11421181B2 true US11421181B2 (en) 2022-08-23

Family

ID=68943511

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/258,456 Active US11421181B2 (en) 2018-07-09 2019-07-09 Environmentally friendly lubricating grease for steel ropes

Country Status (11)

Country Link
US (1) US11421181B2 (en)
EP (1) EP3820978B1 (en)
JP (1) JP7095124B2 (en)
KR (1) KR102555949B1 (en)
CN (1) CN112424325B (en)
AU (1) AU2019301866C1 (en)
BR (1) BR112020025205B1 (en)
DE (1) DE102018008362A1 (en)
DK (1) DK3820978T3 (en)
SG (1) SG11202100005WA (en)
WO (1) WO2020011758A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020232345A1 (en) * 2019-05-15 2020-11-19 Jet-Lube, Llc Valve leak repair packing material and method of using the same
CN114517121A (en) * 2020-11-20 2022-05-20 中国石油天然气股份有限公司 Special grease for polar region steel wire rope maintenance
FR3134112B1 (en) 2022-04-05 2024-04-12 Totalenergies Onetech Biodegradable lubricating greases.

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH540331A (en) 1970-12-08 1973-08-15 Schmids Erben Ag Adolf Lubricants for steel cables - based on fatty acids or their esters and giving reduced rubber swell
EP0108536A1 (en) 1982-10-28 1984-05-16 Alan Richard Parkinson Corrosion preventive composition
US4486319A (en) 1982-09-27 1984-12-04 Armco, Inc. Microporous ionomer polymer lubricating composition
US4589990A (en) 1985-06-21 1986-05-20 National Distillers And Chemical Corporation Mist lubricant compositions
US5783528A (en) * 1997-01-07 1998-07-21 Diversey Lever, Inc. Synthetic lubricant based on enhanced performance of synthetic ester fluids
JPH11332177A (en) 1998-05-15 1999-11-30 Mabuchi Motor Co Ltd Small-sized motor with worm reducer
US6010985A (en) 1997-01-31 2000-01-04 Elisha Technologies Co L.L.C. Corrosion resistant lubricants greases and gels
US6329073B1 (en) 1996-10-15 2001-12-11 N.V. Bekaert S.A. Elongated steel object treated with a corrosion inhibiting composition
US6331509B1 (en) * 1997-01-31 2001-12-18 Elisha Technologies Co Llc Corrosion resistant lubricants, greases, and gels
CA2364200A1 (en) 2001-12-03 2003-06-03 Imperial Oil, A Partnership Of Imperial Oil Limited And Mccoll-Frontenac Petroleum Inc. Lubricating compositions
CN102102047A (en) 2009-12-18 2011-06-22 益田润石(北京)化工有限公司 Preparation method of protective lubricating grease for high-temperature-resistant steel wire rope
CN102618371A (en) 2012-03-09 2012-08-01 河南省煤炭科学研究院有限公司 Steel rope grease with high dropping point and preparation method of steel rope grease
CN102827678A (en) 2012-08-23 2012-12-19 中国石油化工股份有限公司 Wire rope lubricating grease composition having dual effects of lubrication and anti-corrosion
US20140329731A1 (en) 2011-12-16 2014-11-06 Total Marketing Services Grease composition
DE102016011022A1 (en) 2015-09-17 2017-03-23 Klüber Lubrication München Se & Co. Kg Biodegradable lubricant compositions with high elastomer compatibility for use in the marine sector, especially in the area of stern tube lubrication
US20170233676A1 (en) 2011-06-17 2017-08-17 Biosynthetic Technologies, Llc Grease Compositions Comprising Estolide Base Oils
GB2553340A (en) 2016-09-02 2018-03-07 Illinois Tool Works Wire Rope lubricant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6258998A (en) * 1997-01-31 1998-08-25 Elisha Technologies Co. L.L.C. Corrosion resistant lubricants, greases and gels
US5891830A (en) * 1997-01-31 1999-04-06 Baker Hughes Incorporated Lubricating grease
WO2010037746A1 (en) * 2008-09-30 2010-04-08 Shell Internationale Research Maatschappij B.V. Grease composition
DE102010006745A1 (en) * 2010-02-02 2011-08-04 Fuchs Petrolub AG, 68169 Greases containing lignosulfonate, their preparation and use
KR20110108081A (en) * 2010-03-26 2011-10-05 에스케이루브리컨츠 주식회사 Lubricating oil for reduced friction by the use of nano porous materials
DE102014018718A1 (en) * 2014-12-17 2016-06-23 Klüber Lubrication München Se & Co. Kg High temperature lubricants
CN105950267B (en) * 2016-05-23 2019-01-22 中国铁道科学研究院金属及化学研究所 A kind of environment-friendly type wheel-rail lubricating rouge and preparation method thereof
JP7348894B2 (en) 2018-03-06 2023-09-21 日本グリース株式会社 grease composition

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH540331A (en) 1970-12-08 1973-08-15 Schmids Erben Ag Adolf Lubricants for steel cables - based on fatty acids or their esters and giving reduced rubber swell
US4486319A (en) 1982-09-27 1984-12-04 Armco, Inc. Microporous ionomer polymer lubricating composition
EP0108536A1 (en) 1982-10-28 1984-05-16 Alan Richard Parkinson Corrosion preventive composition
US4589990A (en) 1985-06-21 1986-05-20 National Distillers And Chemical Corporation Mist lubricant compositions
US6329073B1 (en) 1996-10-15 2001-12-11 N.V. Bekaert S.A. Elongated steel object treated with a corrosion inhibiting composition
US5783528A (en) * 1997-01-07 1998-07-21 Diversey Lever, Inc. Synthetic lubricant based on enhanced performance of synthetic ester fluids
US6010985A (en) 1997-01-31 2000-01-04 Elisha Technologies Co L.L.C. Corrosion resistant lubricants greases and gels
US6331509B1 (en) * 1997-01-31 2001-12-18 Elisha Technologies Co Llc Corrosion resistant lubricants, greases, and gels
US6225265B1 (en) 1998-05-15 2001-05-01 Mabuchi Motor Co., Ltd. Miniature electric motor with reduction worm gear unit
JPH11332177A (en) 1998-05-15 1999-11-30 Mabuchi Motor Co Ltd Small-sized motor with worm reducer
CA2364200A1 (en) 2001-12-03 2003-06-03 Imperial Oil, A Partnership Of Imperial Oil Limited And Mccoll-Frontenac Petroleum Inc. Lubricating compositions
CN102102047A (en) 2009-12-18 2011-06-22 益田润石(北京)化工有限公司 Preparation method of protective lubricating grease for high-temperature-resistant steel wire rope
US20170233676A1 (en) 2011-06-17 2017-08-17 Biosynthetic Technologies, Llc Grease Compositions Comprising Estolide Base Oils
JP2015504933A (en) 2011-12-16 2015-02-16 トータル・マーケティング・サービシーズ Grease composition
US20140329731A1 (en) 2011-12-16 2014-11-06 Total Marketing Services Grease composition
CN102618371A (en) 2012-03-09 2012-08-01 河南省煤炭科学研究院有限公司 Steel rope grease with high dropping point and preparation method of steel rope grease
CN102827678A (en) 2012-08-23 2012-12-19 中国石油化工股份有限公司 Wire rope lubricating grease composition having dual effects of lubrication and anti-corrosion
DE102016011022A1 (en) 2015-09-17 2017-03-23 Klüber Lubrication München Se & Co. Kg Biodegradable lubricant compositions with high elastomer compatibility for use in the marine sector, especially in the area of stern tube lubrication
GB2553340A (en) 2016-09-02 2018-03-07 Illinois Tool Works Wire Rope lubricant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Albert, Ryan, "United States Environmental Protection Agency Office of Wastewater 1-10 Management Environmentally Acceptable Lubricants Contents," Nov. 2011, pp. 4-6, United States Environmental Protection Agency Office of Wastewater Management, Washington, DC, USA.

Also Published As

Publication number Publication date
SG11202100005WA (en) 2021-02-25
US20210277323A1 (en) 2021-09-09
AU2019301866B2 (en) 2021-11-25
KR102555949B1 (en) 2023-07-14
AU2019301866C1 (en) 2022-06-09
DK3820978T3 (en) 2022-11-14
JP2021535231A (en) 2021-12-16
EP3820978A1 (en) 2021-05-19
KR20210005903A (en) 2021-01-15
EP3820978B1 (en) 2022-08-24
BR112020025205A2 (en) 2021-03-30
CN112424325A (en) 2021-02-26
BR112020025205B1 (en) 2023-10-31
AU2019301866A1 (en) 2020-12-03
CN112424325B (en) 2022-09-09
JP7095124B2 (en) 2022-07-04
WO2020011758A1 (en) 2020-01-16
DE102018008362A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US11421181B2 (en) Environmentally friendly lubricating grease for steel ropes
FI82068C (en) Grease Composition
HUE026690T2 (en) Lubricating greases containing lignosulfonate, the production thereof, and the use thereof
WO2005097954A1 (en) Rust proof rust preventive grease composition, grease filled bearing and rust preventive agent for grease composition
CN111742037A (en) Grease composition
JP6970387B2 (en) Lubricating oil base oil
JP5766425B2 (en) Grease composition
US5169564A (en) Thermooxidatively stable compositions
WO2020184436A1 (en) Rust preventive oil composition and method for producing same
CN113490769A (en) Rust preventive oil composition and method for producing same
JP3639876B2 (en) Rust preventive lubricant composition for plastic working
JP4008992B2 (en) Sintered oil-impregnated bearing oil composition
JP3352123B2 (en) Lubricating oil composition
JPH1036870A (en) Bearing oil composition
US5133900A (en) Thermooxidatively stable compositions
WO1996035765A1 (en) Lubricating oil
JPH10287892A (en) Sintered oil-containing bearing oil composition
CN115698238B (en) Lubricant composition
EP3763805B1 (en) Grease composition
EP0393732A2 (en) Thermooxidatively stable compositions
KR20190119640A (en) Gear lubricant composition

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: KLUEBER LUBRICATION MUENCHEN SE & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAYRHOFER, BRIGITTE;ERHARD, MAXIMILIAN;WITTMEYER, PATRICK;AND OTHERS;SIGNING DATES FROM 20201123 TO 20201124;REEL/FRAME:054882/0662

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STCF Information on status: patent grant

Free format text: PATENTED CASE