US11396941B2 - Staged impeller for the oil supply of an epicyclic or planetary reduction gear - Google Patents

Staged impeller for the oil supply of an epicyclic or planetary reduction gear Download PDF

Info

Publication number
US11396941B2
US11396941B2 US17/095,670 US202017095670A US11396941B2 US 11396941 B2 US11396941 B2 US 11396941B2 US 202017095670 A US202017095670 A US 202017095670A US 11396941 B2 US11396941 B2 US 11396941B2
Authority
US
United States
Prior art keywords
oil
cup
axis
reduction gear
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/095,670
Other versions
US20210148453A1 (en
Inventor
Antoine Jacques Marie Pennacino
Jean-Charles Michel Pierre Di Giovanni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Transmission Systems SAS
Original Assignee
Safran Transmission Systems SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Transmission Systems SAS filed Critical Safran Transmission Systems SAS
Assigned to SAFRAN TRANSMISSION SYSTEMS reassignment SAFRAN TRANSMISSION SYSTEMS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DI GIOVANNI, JEAN-CHARLES MICHEL PIERRE, PENNACINO, ANTOINE JACQUES MARIE
Publication of US20210148453A1 publication Critical patent/US20210148453A1/en
Application granted granted Critical
Publication of US11396941B2 publication Critical patent/US11396941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0456Lubrication by injection; Injection nozzles or tubes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/12Combinations with mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0427Guidance of lubricant on rotary parts, e.g. using baffles for collecting lubricant by centrifugal force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0435Pressure control for supplying lubricant; Circuits or valves therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/045Lubricant storage reservoirs, e.g. reservoirs in addition to a gear sump for collecting lubricant in the upper part of a gear case
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0458Oil-mist or spray lubrication; Means to reduce foam formation
    • F16H57/046Oil-mist or spray lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0479Gears or bearings on planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/98Lubrication

Definitions

  • the field of the present invention is that of turbomachines and more particularly that of differential transmission systems in these turbomachines, in particular epicyclic or planetary reduction gears.
  • turbomachines in particular the turbomachines comprising one or more propellers blowing a secondary flow, comprise a transmission system, called a reduction gear, to drive this or these propellers at an adequate rotational speed from the shaft of the power turbine of the primary body of the engine.
  • a transmission system called a reduction gear
  • the role of a mechanical reduction gear is to change the speed ratio and torque between the input and output axles of a mechanism.
  • the new generations of dual flow turbomachines comprise a mechanical reduction gear to drive the shaft of a fan.
  • the purpose of the reduction gear is to transform the so-called fast rotation speed of the shaft of a power turbine into a slower rotation speed for the shaft driving the fan.
  • Such a reduction gear comprises a central pinion, called a sun gear, a ring gear and pinions called planet gears, which are meshed between the sun gear and the ring gear.
  • the planet gears are held by a frame called the planet carrier.
  • the sun gear, the ring gear and the planet carrier are planetaries because their axes of revolution coincide with the longitudinal axis X of the turbomachine.
  • the planet gears each have a different axis of revolution and are equally distributed on the same operating diameter around the axis of the planetaries. These axes are parallel to the longitudinal axis X.
  • the reduction gears can be composed of one or more meshing stages. This meshing is ensured in different ways such as by contact, friction or magnetic fields.
  • the epicyclic reduction gears have the advantage of offering high speed reduction rates in small spaces.
  • they like the differential reduction gears, they have the disadvantage that they have planet gear pinions that move by rotating around the axis of rotation of the drive shaft of the reduction gear, which is coaxial to the planetary. Therefore, they require devices to transfer the oil from a reservoir and pump located in a fixed mark to lubrication means that follow the rotational movement of the axles of the planet gear pinions around the drive shaft.
  • Commonly used devices to solve this problem comprise rotary joint systems.
  • an oil injection system comprising a supply means with nozzles sprays the oil coming from a circuit connected to the fixed mark to an oil supply device (known as a “impeller” or “distributor”) comprising a cup which is integral with a planet carrier.
  • the cup which is in rotation with the oil supply device (known as the “impeller” or “distributor”) around the injection means, confines the oil recovered by centrifugation before directing it to the means for lubricating the pinions.
  • the technical solution described in the patent application FR-3.047.279-A1 attempts to adjust the oil flow rate to different gears according to their lubrication needs.
  • the receiving cup of the oil supply device is segmented into segments along the axis of rotation and axially offset supplying means comprise axially offset nozzles which supply these segments. These segments delimit cavities associated with different circuits, which communicate with each other by overflow. The oil recovered by each axial segment is then directed to a circuit dedicated to a type of meshing or other member to be lubricated.
  • this solution does not allow the oil flow distribution between the segments to be modulated according to the speed of the turbomachine. Moreover, it is relatively complex with nozzles placed on the same diameter and dedicated to each axial section. Moreover, the multiplication of the number of nozzles and their proximity can raise questions of reliability.
  • the technical solution described in the patent application FR-3.041.054-A1 also attempts to adjust the oil flow rate to different lubrication stations such as gears according to their lubrication requirements.
  • the receiving cup of the oil supply device (known as a “impeller” or “distributor”) is segmented into a circumferential succession of bowls arranged around the axis of rotation and nozzles of a injection means of the oil injection system supply these segments.
  • the oil recovered by each bowl is then directed to a circuit dedicated to a particular lubrication station.
  • this solution does not allow to modulate the oil flow rate distribution between the lubrication stations to be supplied other than by modulating the oil flow rate that each bowl supplies to the circuit associated with it, because the bowls are supplied by the same nozzles of the same supply means and therefore with the same flow rate.
  • This solution also does not allow to differentiate the type of lubricant used, in particular in terms of viscosity, temperature or filtration, in order to use lubricants with different properties adapted to the needs of the members or gears to be lubricated.
  • the supply of the bowls is significantly irregular because it involves the passage of the bowls in front of the nozzles.
  • an oil supply device was proposed in the document US-2016/377167-A1 that comprises of two coaxial, staged, lubrication annular cups, each supplying different oil distribution circuits of the reduction gear and configured to receive oil from two oil injection means to form two separate lubrication stages.
  • the oil injection means are injection manifolds providing oil jets centrifugally. Therefore, the injection manifolds are close to the axis of the reduction gear and are difficult to mount.
  • the invention is intended to overcome this disadvantage, while improving the advantages of the technical solutions proposed in the above-mentioned patent applications.
  • the invention relates to an oil supply device extending around an axis X, intended to supply oil to two distinct oil distribution circuits of a reduction gear, the reduction gear comprising at least one sun pinion, a planet carrier and a ring gear which are r mobile in rotation relatively with respect to each other, the oil being intended to come from at least one oil injection means fixed with respect to the reduction gear, said device being intended to be fixed to the planet carrier and comprising a lubrication annular cup configured to receive oil coming from said at least one oil injection means and to allow the supply of oil to one of said oil distribution circuits, the device comprising at least one further lubrication cup so that it can be staged in at least two separate lubrication stages, the further cup being configured to receive oil coming from a further oil injection means and to allow the supply of oil to a further of said oil distribution circuits, each cup supplying an associated and distinct oil circuit, the cups being coaxial and of different diameters, characterized in that said cups are configured to receive oil axially in a direction that
  • the invention also concerns an oil injection system for supplying oil to an oil supply device of the type described above, characterized in that it is staged and comprises at least two distinct oil injection means each supplying a corresponding cup of the device.
  • the invention concerns a lubrication set for an epicyclic or differential reduction gear, characterized in that it comprises an oil supply device according to one of the claims and an oil injection system of the type described above.
  • FIG. 1 is a schematic axial section view of a turbomachine using the invention
  • FIG. 2 is a partial axial section view of a mechanical reduction gear
  • FIG. 3 is an axial sectional view of an epicyclic reduction gear equipped with an oil supply device according to the invention
  • FIG. 4 is a cross-sectional view through the plane 4 - 4 of FIG. 3 of the epicyclic reduction gear equipped with an oil supply device according to the invention
  • FIG. 5 is a detailed view of FIG. 3 showing a second cup of the oil supply device
  • FIG. 6 is a detailed view of FIG. 4 showing the second cup of the oil supply device
  • FIG. 7 is a detailed view of FIG. 3 showing a first cup of the oil supply device
  • FIG. 8 is a detailed view of FIG. 4 showing the first cup of the oil supply device
  • FIG. 9 is a perspective view of an oil injection system for an oil supply device according to the invention.
  • FIG. 10 is a block diagram illustrating the steps of a method for assembling an epicyclic reduction gear with a lubrication set according to the invention.
  • FIG. 1 describes a turbomachine 10 which comprises, in a conventional manner, a fan 12 , a low-pressure compressor 14 , a high-pressure compressor 16 , an annular combustion chamber 18 , a high-pressure turbine 20 , a low-pressure turbine 22 and an exhaust pipe 24 .
  • the high-pressure compressor 16 and the high-pressure turbine 20 are connected by a high-pressure shaft 26 and form with it a high-pressure (HP) body.
  • the low-pressure compressor 14 and the low-pressure turbine 20 are connected by a low-pressure shaft 28 and form a low-pressure (LP) body with it.
  • the fan 12 is driven by a fan shaft 30 which is driven by the LP shaft 28 by means of a reduction gear 32 .
  • This reduction gear 32 is usually of the planetary or epicyclic type.
  • the reduction gear 32 is positioned in the upstream part of the turbomachine.
  • a fixed structure comprising schematically, here, an upstream part 34 and a downstream part 36 which composes the engine casing or stator 38 is arranged so as to form an enclosure E surrounding the reduction gear 32 .
  • This enclosure E is here closed upstream by seals at the level of a bearing allowing the passage of the fan shaft 30 , and downstream by seals at the level of the passage of the LP shaft 28 .
  • FIG. 2 shows a reduction gear 32 which can take the form of different architectures according to whether some parts are fixed or in rotation.
  • the reduction gear 32 is connected to the LP shaft 28 , e.g. via internal splines 40 a .
  • the LP shaft 28 drives a planetary pinion called the sun gear 40 .
  • the sun gear 40 the axis of rotation of which is the same as that of the turbomachine X, drives a series of pinions called planet gears 42 , which are equally distributed on the same diameter around the axis of rotation X. This diameter is equal to twice the operating centre distance between the sun gear 40 and the planet gears 42 .
  • the number of planet gears 42 is generally defined between three and seven for this type of application.
  • the set of planet gears 42 is maintained by a frame called planet carrier 44 .
  • Each planet gear 42 rotates around its own axis and meshes with a ring gear 46 .
  • the set of planet gears 42 drive the planet carrier 44 around the axis X of the turbomachine.
  • the ring gear 46 is fixed to the engine casing or stator 38 via a ring gear carrier 48 and the planet carrier 44 is fixed to the fan shaft 30 .
  • the set of planet gears 42 is held by a planet carrier 44 which is attached to the engine or stator housing 38 .
  • Each planet gear 42 drives the ring gear 46 which is attached to the fan shaft 30 via a ring gear carrier 48 .
  • Each planet gear 42 is freely mounted in rotation by using a bearing 50 , e.g. of the bearing or hydrodynamic bearing type.
  • Each bearing 50 is mounted on one of the axles 44 b of the planet carrier 44 and all axles are positioned with respect to each other by using one or more structural frames 44 a of the planet carrier 44 .
  • the axles 44 b and the frame 44 a can be separated into several parts.
  • the toothing of a reduction gear can be separated into several propellers, in particular an upstream and a downstream propeller, so called with respect to a plane of symmetry of the reduction gear and with respect to an upstream to downstream orientation according to the direction of the engine.
  • An upstream half-ring gear 46 a consists of a rim 46 aa and a mounting half-flange 46 ab .
  • On the rim 46 aa is the upstream propeller of the toothing of the reduction gear. This upstream propeller meshes with that of the planet gear 42 which meshes with that of the sun gear 40 .
  • a downstream half-ring gear 46 b consists of a rim 46 ba and a mounting half-flange 46 bb .
  • On the rim 46 ba is the rear propeller of the toothing of the reduction gear. This downstream propeller meshes with that of the planet gear 42 which meshes with that of the sun gear 40 .
  • the mounting half-flange 46 ab of the upstream ring gear 46 a and the mounting half-flange 46 bb of the downstream ring gear 46 form the mounting flange 46 c of the ring gear 46 .
  • the ring gear 46 is attached to a ring gear carrier by assembling the mounting flange 46 c of the ring gear and a mounting flange 48 a of the ring gear carrier 48 using a bolted assembly for example.
  • the arrows in FIG. 2 describe the oil flow in the reduction gear 32 .
  • the oil is fed into the reduction gear 32 from the stator part 38 into the oil supply device, in this case a distributor 52 , by various means which will not be specified in this view as they are specific to the type of architecture of the reduction gear.
  • the distributor 52 is separated into two parts, usually each repeated by the same number of planet gears.
  • the nozzles 52 a of the distributor 52 have the function of lubricating the toothing and the arms 52 b of the distributor 52 have the function of lubricating the bearings.
  • the oil is fed to the nozzle 52 a and out at the end of the nozzle 52 c to lubricate the toothing.
  • the oil is also fed to the arm 52 b and circulates through the supply port 52 d of the bearing.
  • the oil then flows through the axle into one or more buffer zone(s) 44 c and out through orifices 44 d to lubricate the bearings of the planet gears 42 .
  • the conventional designs use a single cup (not shown in FIG. 2 ) to supply the nozzles 52 a and the arms 52 b . Under these conditions, it is not possible to modulate the distribution of the oil flow between the stations to be lubricated because the nozzles 52 a and the arms 52 b are supplied by the same cup and by the same injectors of the injection system, with the same flow rate.
  • the nozzles 52 a and arms 52 b are centrifugally supplied by a single cup placed at a specific diameter, and as a result the ends of the arms 52 b , which are placed on a larger diameter than the nozzles 52 a , suffer significant pressure losses.
  • oil supply devices with two annular, staged, coaxial lubrication cups, each supplying different oil distribution circuits of the reduction gear and configured to receive the oil from two oil injection means, so as to form two separate lubrication stages.
  • the oil injection means are injection manifolds providing oil jets centrifugally. Therefore, the injection manifolds are close to the axis of the reduction gear and are difficult to mount.
  • the invention overcomes this disadvantage by proposing a staged impeller with independent cups that can be supplied centripetally by an injection manifold further from the axis X and therefore easier to mount.
  • FIG. 3 shows an oil supply device 54 intended to supply oil to at least two oil distribution circuits 54 a , 54 b connected to a planet carrier 44 of an epicyclic reduction gear comprising at least one sun pinion 40 , a planet carrier 44 and a ring gear (not shown) that are relatively mobile in rotation with respect to each other. It is noted that such an oil supply device 54 could be suitable for supplying oil to a differential reduction gear.
  • the oil comes from an oil injection system 58 comprising at least one oil injection means, which is fixed with respect to the reduction gear 32 .
  • the oil supply device 54 comprises at least one lubrication annular cup 56 a which is integral of said planet carriers 44 and is substantially annular and open radially with respect to the axis X of the reduction gear 32 .
  • the walls of the cup 56 a delimit a cavity 59 a which receives oil from the oil injection means 58 and which supplies at least one of the oil distribution circuits 54 a.
  • the oil supply device 54 comprises a further lubrication annular cup 56 b so as to be staged with at least two separate stages each comprising a cup 56 a , 56 b.
  • the lubrication annular cup 56 b is also integral of said planet carrier 44 and is substantially annular and open radially with respect to the axis X of the reduction gear 32 .
  • the walls of cup 56 b delimit a cavity 59 b which receives oil from the oil injection means 58 and supplies the other oil distribution circuit 54 b.
  • the cups 56 a , 56 b are coaxial along the axis X of the reduction gear 32 , are of different diameters, and are both advantageously capable of receiving oil transmitted with a centripetal and/or axial component to each independently supply an associated oil circuit 54 a , 54 b.
  • an oil supply device 54 is considered to comprise two cups 56 a , 56 b , but it will be understood that this configuration is not limiting the invention and that the oil supply device 54 could comprise a greater number of cups.
  • the oil supply device 54 comprises at least one first annular cup 56 a , the associated oil distribution circuit 54 a of which comprises a plurality of spray nozzles 60 a , which are distributed angularly and evenly around the axis X of the reduction gear, which are arranged close to the sun pinion and/or the planet gears, and which spray the sun pinion 40 and/or the planet gears 42 .
  • the first cup 56 a comprises a first substantially annular wall 62 a facing the planet carrier 44 , a second substantially annular opposite wall 64 a , both transverse to the axis X of the reduction gear and joined by a third peripheral wall 66 a .
  • the walls 62 a 64 a and 66 a delimit at least one oil reservoir 59 a corresponding to the cavity thus delimited and which supplies the oil distribution circuit 54 a.
  • the nozzles 60 a have here been represented flanged on the first cup 56 a , but this configuration is not limiting the invention.
  • the nozzle 60 a was shown flanged on the first wall 62 a and it comprises for this purpose a cylindrical bearing 68 a which engages in a bore 70 a formed in the first wall 62 a , and a shoulder 71 a resting on this wall and traversed by a screw 73 a which is received in the first wall 62 a to ensure the flanging of the nozzle 60 a .
  • the bore 70 a constitutes a duct putting in communication the reservoir 59 a with the nozzle 60 a.
  • the nozzles 60 a could be integrated in one piece into the cup 56 a.
  • the oil supply device 54 comprises a second annular cup 56 b whose oil distribution circuit 54 b feeds bearings (not shown) of the planet gears 42 on the planet carrier 44 .
  • the cup 56 b comprises a first substantially annular wall 62 b facing the planet carrier, a second substantially annular opposite wall 64 b , both transverse to the axis of the reduction gear and joined by a third peripheral wall 66 b .
  • the walls 62 b , 64 b and 66 b delimit at least one oil reservoir 59 b corresponding to the cavity thus defined and supplying the oil distribution circuit 54 b .
  • the first wall 62 b comprises ducts 70 b connecting said reservoir 59 b to the bearings of the planet gears 42 . This communication is achieved by means of a male-to-male adapter 75 b .
  • This adapter 75 b is integral with the axle of the bearing of the planet gear 42 and is connected to the female interface formed by the duct 70 b , in which it is received.
  • the invention is innovative in that the cavities of reservoirs 59 a , 59 b are supplied with oil by axial jets along the axis X, and/or centrifugal jets turned in the direction of the axis X of the reduction gear, and/or tangential, unlike the known prior art designs which use centrifugal jets turned away from the axis X of the reduction gear.
  • the oil jets are directed axially in a direction that is parallel to the axis X and facing the associated cup 56 a , 56 b , or centripetally in a radial direction facing the axis X, or tangentially or according to an inclined direction combining two of these directions.
  • this configuration allows to use an oil injection system 58 less close to the LP shaft 28 , and therefore easier to mount.
  • a LP shaft 28 is, to counter the effects of misalignment within the turbomachine, generally equipped with a bellows-type, radially bulky flexibility device 29 , which is located close to the reduction gear 32 .
  • the use of an oil injection system 58 with a centripetal component allows to mount this system around the flexibility device 29 without penalizing the total axial dimensions of the coupling of the reduction gear 32 to the LP shaft 28 .
  • each cup 56 a , 56 b has an external part with a section substantially in the shape of a U of radial orientation open towards the axis, which corresponds to the first wall 62 a , 62 b , second wall 64 a , 64 b and third wall 66 a , 66 b delimiting the reservoirs 59 a , 59 b , and an internal part, delimiting a gutter and extending the external part starting from a branch of the U, i.e. here from the first walls 62 a , 62 b.
  • the third walls 66 a , 66 b of the cups 56 a , 56 b are, with respect to the cavities forming the reservoirs 59 a , 59 b that they delimit, arranged opposite the axis of the reduction gear.
  • Each first wall 62 a , 62 b is extended by an annular gutter 72 a , 72 b which extends axially beyond the second wall 64 a , 64 b and which is configured to receive the oil projected by the injection means of the oil injection system 58 .
  • the gutters 72 a , 72 b are substantially J-shaped, and their concavity 74 a , 74 b faces away from the axis X of the reduction gear 32 so as to receive oil jets inclined according to a direction having at least one radial centripetal component facing the axis X and an axial component or axial and tangential component facing the cups 56 a , 56 b.
  • the gutters 72 a , 72 b could be V-shaped and be supplied in the same way, or L-shaped open opposite the cups and in this case be supplied by purely axial jets or axial and tangential jets.
  • This configuration also allows the oil supply device 54 to be supplied by a staged oil injection system 58 comprising at least two independent oil injection means 58 a , 58 b each supplying a corresponding cup 56 a , 56 b of the oil supply device 54 .
  • This configuration is particularly advantageous because it avoids the problems of pressure drop inherent to the supply of oil from a single cup, and also because it allows a differentiated oil supply to the cups 56 a , 56 b .
  • it is possible to differentiate the type of lubricant used, in particular in terms of viscosity, temperature or filtration, in order to use lubricants with different properties adapted to the needs of the members or gears to be lubricated.
  • the bearings of the planet gears 42 can be supplied with a different oil from the one used to lubricate the gears between the sun gear 40 and the planet gears 42 .
  • each oil injection means 58 a , 58 b is supplied with an oil adapted to the needs of the member of the reduction gear 32 which is lubricated by the corresponding cup 56 a , 56 b.
  • oils used can thus be different oils which are filtered in different ways in order to obtain oils comprising different minimum particle sizes to meet different and specific lubrication requirements.
  • each oil injection means 58 a , 58 b has an annular tubular manifold 76 a , 76 b , with a diameter substantially slightly larger than that of the gutter 72 a , 72 b of the corresponding cup 56 a , 56 b , and comprising uniformly distributed holes 78 a , 78 b . As shown in FIGS. 5 and 7 , these holes 78 a , 78 b are turned towards the gutter 72 a , 72 b of the cup 56 a , 56 b at a certain angle to the axis X to improve the oil supply.
  • This angle is preferably chosen so that the jet has a radial component towards the axis X, an axial component towards the cup 56 a , 56 b , and possibly a tangential component, i.e. perpendicular to the plane of FIGS. 3, 5, and 7 .
  • each oil injection means 58 a , 58 b comprises at least one globally radial oil supply duct 80 a , 80 b to the annular manifolds 76 a , 76 b .
  • each oil injection means 58 a , 58 b comprises a plurality of uniformly distributed ducts 80 a , 80 b to ensure uniform supply to the manifold 76 a , 76 b in terms of the flow rate and velocity.
  • each oil injection means 58 a , 58 b could comprise a plurality of angled segments of annular manifolds 76 a , 76 b each supplied by at least one duct 80 a , 80 b.
  • the oil injection means are carried by a casing (not shown) of the turbomachine. Therefore, they are not necessarily connected to each other. If the oil injection means are distant from each other, the jets of one cannot disturb the jets of the other, which is an additional advantage of the invention.
  • the cups 56 a , 56 b which may or may not be connected together by structural arms, depending on the constraints of coaxiality, rigidity and hyperstatism during the assembly.
  • the cup 56 a is connected to the cup 56 b by structural arms 57 , as shown in FIG. 4 .
  • the cups 56 a , 56 b then form an impeller 54 .
  • the oil supply device is flange-mounted on the planet carrier via axial elements such as screws passing through holes 55 , visible in FIGS. 4, 6, and 8 .
  • At least one cup may comprise an extra thickness that can be machined locally to balance the cup.
  • the second wall 64 b of the cup 56 b which comprises an over-thickness in a zone 65 b that can be machined locally to balance this cup 56 b.
  • At least one cup may comprise a zone capable of receiving at least one balancing weight from this cup.
  • the second wall 64 a of the cup 56 a comprises a zone 65 a capable of receiving at least one balancing weight (not shown) from this cup 56 a.
  • the means are provided to improve the collection of the oil through the gutters 72 a , 72 b of the cups 56 a , 56 b and to convey it to the reservoirs 59 a , 59 b.
  • each cup 56 a , 56 b that is, the part corresponding to the first wall 62 a , 62 b , second wall 64 a , 64 b and third wall 66 a , 66 b which delimits the reservoirs 59 a , 59 b , is divided angularly, between its first and second walls 62 a , 64 b and 62 b , 64 b respectively, into adjoining compartments 82 a , 82 b which delimit as many reservoirs 59 a , 59 b .
  • This delimitation is ensured by axial walls 84 a , 84 b arranged at the angular ends of these compartments 82 a , 82 b.
  • each cup 56 a , 56 b comprises five compartments 82 a , 82 b , but it will be understood that this number is not limiting to the invention.
  • the free ends 86 a , 86 b of the walls 84 a , 84 b are bevelled and inclined towards the axis X of the reduction gear to allow the passage of oil from a reservoir 59 a , 59 b of one compartment 82 a , 82 b to the reservoir 59 a , 59 b of the neighbouring compartment.
  • the walls 84 a and 84 b can be inclined to help guide the oil.
  • the annular gutter 72 a , 72 b is continuous along the entire periphery of the corresponding cup 56 a , 56 b.
  • This configuration improves oil distribution between compartments. If all the reservoirs 59 a , 59 b are full, the oil will overflow to the axis X of the reduction gear 32 .
  • each cup 56 a , 56 b comprises fins 88 a , 88 b that extend generally in a radial direction between the gutter 72 a , 72 b and at least the second wall 62 a , 62 b .
  • These fins 88 a , 88 b are configured to drive the oil by centrifugation to the bottom of the corresponding reservoir 59 a , 59 b .
  • the fins 88 a , 88 b can go beyond the second walls 62 a , 62 b and extend to the bottom of the corresponding reservoir, i.e. to the third peripheral walls 66 a , 66 b.
  • fins 88 a , 88 b which are radial have been shown, but these can also be inclined with respect to the radial direction, and/or have a vane profile.
  • each cup 56 a , 56 b comprises only an inner part associated with a series of concentric reservoirs 59 a , 59 b and an associated inner part, these inner and outer parts occupying the entire radial footprint of the cup.
  • a cup comprises several series of concentric outer and inner parts, divided at different angular pitches, to form angularly successive patterns that create reservoirs placed on different diameters and feeding nozzles placed on different diameters.
  • the invention also provides a method of assembling an epicyclic or planetary gear reduction gear comprising a lubrication set comprising an oil supply device 54 and an oil injection system 58 .
  • this method comprises a first step ET 1 of assembly of the reduction gear 32 wherein the sun pinion 40 , the planet carrier 44 with its planet gears 42 and the ring gear 46 are assembled together.
  • a turbomachine with a LP turbine shaft 28 configured to be inserted into the sun gear 40 is installed, and the oil injection system 58 is attached to a casing (not shown) of said turbomachine.
  • a fourth step ET 4 the reduction gear is inserted into the engine frame by inserting the LP turbine shaft 28 into the sun gear.
  • the oil injection system 58 is naturally ideally positioned to supply the impeller 54 once the reduction gear is mounted.
  • the invention allows to propose a differentiated, simple, reliable and effective lubrication for the various members of a turbomachine reduction gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Details Of Gearings (AREA)

Abstract

An oil supply device intended to supply oil to an epicyclic reduction gear, the oil coming from at least one oil injector fixed with respect to the reduction gear, the oil supply device including at least one cup which is integral with a planet carrier of the reduction gear and substantially annular open radially with respect to an axis of the reduction gear and the walls of which delimit a cavity supplied by the at least one oil injector and which supplies at least one of the oil distribution circuits of the reduction gear. The oil supply device is staged and includes at least two independent stages provided with cups coaxial, of different diameters, each supplying an associated oil circuit and configured to receive the oil axially, centripetally, or tangentially, or according to an inclined direction combining two of the directions.

Description

TECHNICAL FIELD OF THE INVENTION
The field of the present invention is that of turbomachines and more particularly that of differential transmission systems in these turbomachines, in particular epicyclic or planetary reduction gears.
BACKGROUND
Current turbomachines, in particular the turbomachines comprising one or more propellers blowing a secondary flow, comprise a transmission system, called a reduction gear, to drive this or these propellers at an adequate rotational speed from the shaft of the power turbine of the primary body of the engine.
The role of a mechanical reduction gear is to change the speed ratio and torque between the input and output axles of a mechanism.
The new generations of dual flow turbomachines, in particular those with a high bypass ratio, comprise a mechanical reduction gear to drive the shaft of a fan. Usually, the purpose of the reduction gear is to transform the so-called fast rotation speed of the shaft of a power turbine into a slower rotation speed for the shaft driving the fan.
Such a reduction gear comprises a central pinion, called a sun gear, a ring gear and pinions called planet gears, which are meshed between the sun gear and the ring gear. The planet gears are held by a frame called the planet carrier. The sun gear, the ring gear and the planet carrier are planetaries because their axes of revolution coincide with the longitudinal axis X of the turbomachine. The planet gears each have a different axis of revolution and are equally distributed on the same operating diameter around the axis of the planetaries. These axes are parallel to the longitudinal axis X.
There are several reduction gear architectures. In the prior art of double-flow turbomachines, the reduction gears are of the planetary or of the epicyclic type. In other similar applications, there are so-called differential or compound architectures.
    • On a planetary reduction gear, the planet carrier is fixed and the ring gear constitutes the output shaft of the device which rotates in the opposite direction of the sun gear.
    • On an epicyclic reduction gear, the ring gear is fixed and the planet carrier is the output shaft of the device which rotates in the same direction as the sun gear.
    • On a differential reduction gear, no element is fixed in rotation. The ring gear rotates in the opposite direction to the sun gear and the planet carrier.
The reduction gears can be composed of one or more meshing stages. This meshing is ensured in different ways such as by contact, friction or magnetic fields.
There are several types of contact meshing such as straight or chevron toothing.
The epicyclic reduction gears, in particular, have the advantage of offering high speed reduction rates in small spaces. On the other hand, like the differential reduction gears, they have the disadvantage that they have planet gear pinions that move by rotating around the axis of rotation of the drive shaft of the reduction gear, which is coaxial to the planetary. Therefore, they require devices to transfer the oil from a reservoir and pump located in a fixed mark to lubrication means that follow the rotational movement of the axles of the planet gear pinions around the drive shaft. Commonly used devices to solve this problem comprise rotary joint systems.
These systems have the disadvantage of being cumbersome and subject to wear that is not compatible with the lifetimes required for aircraft engines, which impacts the maintenance of these engines. Finally, these reduction gears are difficult to fit with a flexible assembly of the structure of the turbomachine, recommended, for example, to compensate for the loss or breakage of a blade of the fan propeller, or with a modular assembly, to facilitate the assembly of the engine.
In order to remedy these disadvantages, the applicant has already proposed, in the patent applications WO-A1-2010/092263, FR-A1-2987416, WO-2019/16463-A1 and WO-2019/16491-A1, lubrication devices without rotating joints, where an oil injection system comprising a supply means with nozzles sprays the oil coming from a circuit connected to the fixed mark to an oil supply device (known as a “impeller” or “distributor”) comprising a cup which is integral with a planet carrier. The cup, which is in rotation with the oil supply device (known as the “impeller” or “distributor”) around the injection means, confines the oil recovered by centrifugation before directing it to the means for lubricating the pinions.
These devices thus greatly improve the reliability of the lubrication system of the reduction gear and its maintenance.
In addition, the technical solution described in the patent application FR-3.047.279-A1 attempts to adjust the oil flow rate to different gears according to their lubrication needs. For this purpose, the receiving cup of the oil supply device is segmented into segments along the axis of rotation and axially offset supplying means comprise axially offset nozzles which supply these segments. These segments delimit cavities associated with different circuits, which communicate with each other by overflow. The oil recovered by each axial segment is then directed to a circuit dedicated to a type of meshing or other member to be lubricated.
However, this solution does not allow the oil flow distribution between the segments to be modulated according to the speed of the turbomachine. Moreover, it is relatively complex with nozzles placed on the same diameter and dedicated to each axial section. Moreover, the multiplication of the number of nozzles and their proximity can raise questions of reliability.
The technical solution described in the patent application FR-3.041.054-A1 also attempts to adjust the oil flow rate to different lubrication stations such as gears according to their lubrication requirements. For this purpose, the receiving cup of the oil supply device (known as a “impeller” or “distributor”) is segmented into a circumferential succession of bowls arranged around the axis of rotation and nozzles of a injection means of the oil injection system supply these segments. The oil recovered by each bowl is then directed to a circuit dedicated to a particular lubrication station.
However, this solution does not allow to modulate the oil flow rate distribution between the lubrication stations to be supplied other than by modulating the oil flow rate that each bowl supplies to the circuit associated with it, because the bowls are supplied by the same nozzles of the same supply means and therefore with the same flow rate. This solution also does not allow to differentiate the type of lubricant used, in particular in terms of viscosity, temperature or filtration, in order to use lubricants with different properties adapted to the needs of the members or gears to be lubricated. In addition, the supply of the bowls is significantly irregular because it involves the passage of the bowls in front of the nozzles.
Furthermore, in both designs, since the oil circuits are supplied by axial cup segments or reservoirs that are all placed at approximately the same diameters, the circuits that are placed on the larger diameters suffer significant pressure drops.
To overcome these drawbacks, an oil supply device was proposed in the document US-2016/377167-A1 that comprises of two coaxial, staged, lubrication annular cups, each supplying different oil distribution circuits of the reduction gear and configured to receive oil from two oil injection means to form two separate lubrication stages. The oil injection means are injection manifolds providing oil jets centrifugally. Therefore, the injection manifolds are close to the axis of the reduction gear and are difficult to mount.
The invention is intended to overcome this disadvantage, while improving the advantages of the technical solutions proposed in the above-mentioned patent applications.
SUMMARY OF THE INVENTION
For this purpose, the invention relates to an oil supply device extending around an axis X, intended to supply oil to two distinct oil distribution circuits of a reduction gear, the reduction gear comprising at least one sun pinion, a planet carrier and a ring gear which are r mobile in rotation relatively with respect to each other, the oil being intended to come from at least one oil injection means fixed with respect to the reduction gear, said device being intended to be fixed to the planet carrier and comprising a lubrication annular cup configured to receive oil coming from said at least one oil injection means and to allow the supply of oil to one of said oil distribution circuits, the device comprising at least one further lubrication cup so that it can be staged in at least two separate lubrication stages, the further cup being configured to receive oil coming from a further oil injection means and to allow the supply of oil to a further of said oil distribution circuits, each cup supplying an associated and distinct oil circuit, the cups being coaxial and of different diameters, characterized in that said cups are configured to receive oil axially in a direction that is parallel to the axis X and facing the associated cup, or centripetally in a radial direction facing the axis X, or tangentially, or according to an inclined direction combining two of said directions.
According to other characteristics of the supply device:
    • the device comprises at least:
      • a first annular cup, the associated oil distribution circuit of which comprises a plurality of nozzles distributed angularly around the axis X and which supply oil to the sun pinion and/or the planet gears, and
      • a second annular cup, the associated oil distribution circuit of which supplies oil to the planet gear bearings on the planet carrier,
    • at least one annular cup has an outer part having a section substantially in the shape of a U of radial orientation open towards the axis X and an inner part extending the outer part starting from a branch of the U which delimits a J- or V-shaped gutter configured to receive oil jets inclined according to a direction having at least one radial centripetal component facing towards the axis X and an axial component or axial and tangential component facing towards the cups, or an open L-shaped gutter opposite the cups supplied by purely axial oil jets or axial and tangential oil jets,
    • the annular cup is angularly divided into adjoining compartments which delimit as many reservoirs supplying the oil distribution circuits, separated by axial walls arranged at the angular ends of said compartments, free ends of said axial walls being bevelled towards the axis of the reduction gear to allow the passage of oil from a reservoir of one compartment to the reservoir of the adjacent compartment,
    • the gutter comprises fins extending substantially in a radial direction and which are arranged in said inner part to drive the oil by centrifugation at the bottoms of the reservoirs,
    • the fins are radial or inclined with respect to the radial direction and/or have a vane profile,
    • each cup is connected to the adjacent cup by structural arms,
    • at least one cup comprises an extra thickness that can be machined locally to allow the balancing of said cup,
    • at least one cup comprises a zone capable of receiving at least one weight for balancing said cup.
The invention also concerns an oil injection system for supplying oil to an oil supply device of the type described above, characterized in that it is staged and comprises at least two distinct oil injection means each supplying a corresponding cup of the device.
According to other characteristics of the oil injection system:
    • each oil injection means of a cup comprises an annular tubular injection manifold, or a plurality of angular segments of annular tubular manifold, of diameter substantially slightly larger than that of the corresponding cup, comprising circumferentially distributed holes intended to be oriented towards the opening of the gutter of the corresponding cup and at least one mainly radial duct for supplying oil to said annular manifold or said annular manifold angular segment,
    • each oil injection means is supplied with an oil adapted to the requirements of a member of the reduction gear which is lubricated by the corresponding cup.
Finally, the invention concerns a lubrication set for an epicyclic or differential reduction gear, characterized in that it comprises an oil supply device according to one of the claims and an oil injection system of the type described above.
BRIEF DESCRIPTION OF THE FIGURES
Other characteristics and advantages of the invention will appear during the reading of the detailed description that will follow for the understanding of which one will refer to the annexed drawings in which:
FIG. 1 is a schematic axial section view of a turbomachine using the invention;
FIG. 2 is a partial axial section view of a mechanical reduction gear;
FIG. 3 is an axial sectional view of an epicyclic reduction gear equipped with an oil supply device according to the invention;
FIG. 4 is a cross-sectional view through the plane 4-4 of FIG. 3 of the epicyclic reduction gear equipped with an oil supply device according to the invention;
FIG. 5 is a detailed view of FIG. 3 showing a second cup of the oil supply device;
FIG. 6 is a detailed view of FIG. 4 showing the second cup of the oil supply device;
FIG. 7 is a detailed view of FIG. 3 showing a first cup of the oil supply device;
FIG. 8 is a detailed view of FIG. 4 showing the first cup of the oil supply device;
FIG. 9 is a perspective view of an oil injection system for an oil supply device according to the invention;
FIG. 10 is a block diagram illustrating the steps of a method for assembling an epicyclic reduction gear with a lubrication set according to the invention.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 describes a turbomachine 10 which comprises, in a conventional manner, a fan 12, a low-pressure compressor 14, a high-pressure compressor 16, an annular combustion chamber 18, a high-pressure turbine 20, a low-pressure turbine 22 and an exhaust pipe 24. The high-pressure compressor 16 and the high-pressure turbine 20 are connected by a high-pressure shaft 26 and form with it a high-pressure (HP) body. The low-pressure compressor 14 and the low-pressure turbine 20 are connected by a low-pressure shaft 28 and form a low-pressure (LP) body with it.
The fan 12 is driven by a fan shaft 30 which is driven by the LP shaft 28 by means of a reduction gear 32. This reduction gear 32 is usually of the planetary or epicyclic type.
Although the following description refers to a planetary or epicyclic reduction gear, it also applies to a mechanical differential in which the three components, i.e. the planet carrier, the ring gear and the sun gear, are mobile in rotation, the rotational speed of one of these components depending, in particular, on the speed difference of the other two components.
The reduction gear 32 is positioned in the upstream part of the turbomachine. A fixed structure comprising schematically, here, an upstream part 34 and a downstream part 36 which composes the engine casing or stator 38 is arranged so as to form an enclosure E surrounding the reduction gear 32. This enclosure E is here closed upstream by seals at the level of a bearing allowing the passage of the fan shaft 30, and downstream by seals at the level of the passage of the LP shaft 28.
FIG. 2 shows a reduction gear 32 which can take the form of different architectures according to whether some parts are fixed or in rotation. At the input side, the reduction gear 32 is connected to the LP shaft 28, e.g. via internal splines 40 a. Thus the LP shaft 28 drives a planetary pinion called the sun gear 40. Classically, the sun gear 40, the axis of rotation of which is the same as that of the turbomachine X, drives a series of pinions called planet gears 42, which are equally distributed on the same diameter around the axis of rotation X. This diameter is equal to twice the operating centre distance between the sun gear 40 and the planet gears 42. The number of planet gears 42 is generally defined between three and seven for this type of application.
The set of planet gears 42 is maintained by a frame called planet carrier 44. Each planet gear 42 rotates around its own axis and meshes with a ring gear 46.
In an epicyclic configuration, the set of planet gears 42 drive the planet carrier 44 around the axis X of the turbomachine. The ring gear 46 is fixed to the engine casing or stator 38 via a ring gear carrier 48 and the planet carrier 44 is fixed to the fan shaft 30.
In a planetary configuration, the set of planet gears 42 is held by a planet carrier 44 which is attached to the engine or stator housing 38. Each planet gear 42 drives the ring gear 46 which is attached to the fan shaft 30 via a ring gear carrier 48.
Each planet gear 42 is freely mounted in rotation by using a bearing 50, e.g. of the bearing or hydrodynamic bearing type. Each bearing 50 is mounted on one of the axles 44 b of the planet carrier 44 and all axles are positioned with respect to each other by using one or more structural frames 44 a of the planet carrier 44. There is a number of axles 44 b and bearings 50 equal to the number of planet gears 42. For operational, assembly, manufacturing, inspection, repair or replacement reasons, the axles 44 b and the frame 44 a can be separated into several parts.
For the same reasons as mentioned above, the toothing of a reduction gear can be separated into several propellers, in particular an upstream and a downstream propeller, so called with respect to a plane of symmetry of the reduction gear and with respect to an upstream to downstream orientation according to the direction of the engine. In our example we detail the operation of a reduction gear with several propellers with a ring gear 46 separated into two half-ring gears 46 a and 46 b.
An upstream half-ring gear 46 a consists of a rim 46 aa and a mounting half-flange 46 ab. On the rim 46 aa is the upstream propeller of the toothing of the reduction gear. This upstream propeller meshes with that of the planet gear 42 which meshes with that of the sun gear 40.
A downstream half-ring gear 46 b consists of a rim 46 ba and a mounting half-flange 46 bb. On the rim 46 ba is the rear propeller of the toothing of the reduction gear. This downstream propeller meshes with that of the planet gear 42 which meshes with that of the sun gear 40.
The mounting half-flange 46 ab of the upstream ring gear 46 a and the mounting half-flange 46 bb of the downstream ring gear 46 form the mounting flange 46 c of the ring gear 46. The ring gear 46 is attached to a ring gear carrier by assembling the mounting flange 46 c of the ring gear and a mounting flange 48 a of the ring gear carrier 48 using a bolted assembly for example.
The arrows in FIG. 2 describe the oil flow in the reduction gear 32. The oil is fed into the reduction gear 32 from the stator part 38 into the oil supply device, in this case a distributor 52, by various means which will not be specified in this view as they are specific to the type of architecture of the reduction gear.
The distributor 52 is separated into two parts, usually each repeated by the same number of planet gears. The nozzles 52 a of the distributor 52 have the function of lubricating the toothing and the arms 52 b of the distributor 52 have the function of lubricating the bearings. The oil is fed to the nozzle 52 a and out at the end of the nozzle 52 c to lubricate the toothing.
The oil is also fed to the arm 52 b and circulates through the supply port 52 d of the bearing. The oil then flows through the axle into one or more buffer zone(s) 44 c and out through orifices 44 d to lubricate the bearings of the planet gears 42.
The conventional designs use a single cup (not shown in FIG. 2) to supply the nozzles 52 a and the arms 52 b. Under these conditions, it is not possible to modulate the distribution of the oil flow between the stations to be lubricated because the nozzles 52 a and the arms 52 b are supplied by the same cup and by the same injectors of the injection system, with the same flow rate.
These usual designs also do not allow to differentiate the type of lubricant used, in particular in terms of viscosity, temperature or filtration, in order to use lubricants with different properties adapted to the needs of the members or gears to be lubricated.
In addition, in these common designs, the nozzles 52 a and arms 52 b are centrifugally supplied by a single cup placed at a specific diameter, and as a result the ends of the arms 52 b, which are placed on a larger diameter than the nozzles 52 a, suffer significant pressure losses.
There are also oil supply devices with two annular, staged, coaxial lubrication cups, each supplying different oil distribution circuits of the reduction gear and configured to receive the oil from two oil injection means, so as to form two separate lubrication stages. The oil injection means are injection manifolds providing oil jets centrifugally. Therefore, the injection manifolds are close to the axis of the reduction gear and are difficult to mount.
The invention overcomes this disadvantage by proposing a staged impeller with independent cups that can be supplied centripetally by an injection manifold further from the axis X and therefore easier to mount.
Similar to the previously described design, FIG. 3 shows an oil supply device 54 intended to supply oil to at least two oil distribution circuits 54 a, 54 b connected to a planet carrier 44 of an epicyclic reduction gear comprising at least one sun pinion 40, a planet carrier 44 and a ring gear (not shown) that are relatively mobile in rotation with respect to each other. It is noted that such an oil supply device 54 could be suitable for supplying oil to a differential reduction gear.
The oil comes from an oil injection system 58 comprising at least one oil injection means, which is fixed with respect to the reduction gear 32. The oil supply device 54 comprises at least one lubrication annular cup 56 a which is integral of said planet carriers 44 and is substantially annular and open radially with respect to the axis X of the reduction gear 32. The walls of the cup 56 a delimit a cavity 59 a which receives oil from the oil injection means 58 and which supplies at least one of the oil distribution circuits 54 a.
The invention is innovative with respect to the prior art in that the oil supply device 54 comprises a further lubrication annular cup 56 b so as to be staged with at least two separate stages each comprising a cup 56 a, 56 b.
The lubrication annular cup 56 b is also integral of said planet carrier 44 and is substantially annular and open radially with respect to the axis X of the reduction gear 32. The walls of cup 56 b delimit a cavity 59 b which receives oil from the oil injection means 58 and supplies the other oil distribution circuit 54 b.
The cups 56 a, 56 b are coaxial along the axis X of the reduction gear 32, are of different diameters, and are both advantageously capable of receiving oil transmitted with a centripetal and/or axial component to each independently supply an associated oil circuit 54 a, 54 b.
In the remainder of this description, an oil supply device 54 is considered to comprise two cups 56 a, 56 b, but it will be understood that this configuration is not limiting the invention and that the oil supply device 54 could comprise a greater number of cups.
In any case, the oil supply device 54 comprises at least one first annular cup 56 a, the associated oil distribution circuit 54 a of which comprises a plurality of spray nozzles 60 a, which are distributed angularly and evenly around the axis X of the reduction gear, which are arranged close to the sun pinion and/or the planet gears, and which spray the sun pinion 40 and/or the planet gears 42.
As shown in detail in FIG. 7, the first cup 56 a comprises a first substantially annular wall 62 a facing the planet carrier 44, a second substantially annular opposite wall 64 a, both transverse to the axis X of the reduction gear and joined by a third peripheral wall 66 a. The walls 62 a 64 a and 66 a delimit at least one oil reservoir 59 a corresponding to the cavity thus delimited and which supplies the oil distribution circuit 54 a.
The nozzles 60 a have here been represented flanged on the first cup 56 a, but this configuration is not limiting the invention. The nozzle 60 a was shown flanged on the first wall 62 a and it comprises for this purpose a cylindrical bearing 68 a which engages in a bore 70 a formed in the first wall 62 a, and a shoulder 71 a resting on this wall and traversed by a screw 73 a which is received in the first wall 62 a to ensure the flanging of the nozzle 60 a. The bore 70 a constitutes a duct putting in communication the reservoir 59 a with the nozzle 60 a.
Alternatively, the nozzles 60 a could be integrated in one piece into the cup 56 a.
Similarly, the oil supply device 54 comprises a second annular cup 56 b whose oil distribution circuit 54 b feeds bearings (not shown) of the planet gears 42 on the planet carrier 44.
For example, as shown in detail in FIG. 5, the cup 56 b comprises a first substantially annular wall 62 b facing the planet carrier, a second substantially annular opposite wall 64 b, both transverse to the axis of the reduction gear and joined by a third peripheral wall 66 b. The walls 62 b, 64 b and 66 b delimit at least one oil reservoir 59 b corresponding to the cavity thus defined and supplying the oil distribution circuit 54 b. The first wall 62 b comprises ducts 70 b connecting said reservoir 59 b to the bearings of the planet gears 42. This communication is achieved by means of a male-to-male adapter 75 b. This adapter 75 b is integral with the axle of the bearing of the planet gear 42 and is connected to the female interface formed by the duct 70 b, in which it is received.
The invention is innovative in that the cavities of reservoirs 59 a, 59 b are supplied with oil by axial jets along the axis X, and/or centrifugal jets turned in the direction of the axis X of the reduction gear, and/or tangential, unlike the known prior art designs which use centrifugal jets turned away from the axis X of the reduction gear. The oil jets are directed axially in a direction that is parallel to the axis X and facing the associated cup 56 a, 56 b, or centripetally in a radial direction facing the axis X, or tangentially or according to an inclined direction combining two of these directions.
As long as the jet direction comprises at least one centripetal radial component facing the axis X, this configuration allows to use an oil injection system 58 less close to the LP shaft 28, and therefore easier to mount. In addition, as shown in FIGS. 3 and 5, such a LP shaft 28 is, to counter the effects of misalignment within the turbomachine, generally equipped with a bellows-type, radially bulky flexibility device 29, which is located close to the reduction gear 32. The use of an oil injection system 58 with a centripetal component allows to mount this system around the flexibility device 29 without penalizing the total axial dimensions of the coupling of the reduction gear 32 to the LP shaft 28.
Overall, each cup 56 a, 56 b has an external part with a section substantially in the shape of a U of radial orientation open towards the axis, which corresponds to the first wall 62 a, 62 b, second wall 64 a, 64 b and third wall 66 a, 66 b delimiting the reservoirs 59 a, 59 b, and an internal part, delimiting a gutter and extending the external part starting from a branch of the U, i.e. here from the first walls 62 a, 62 b.
The third walls 66 a, 66 b of the cups 56 a, 56 b are, with respect to the cavities forming the reservoirs 59 a, 59 b that they delimit, arranged opposite the axis of the reduction gear. Each first wall 62 a, 62 b is extended by an annular gutter 72 a, 72 b which extends axially beyond the second wall 64 a, 64 b and which is configured to receive the oil projected by the injection means of the oil injection system 58.
In the figures, without limitation, the gutters 72 a, 72 b are substantially J-shaped, and their concavity 74 a, 74 b faces away from the axis X of the reduction gear 32 so as to receive oil jets inclined according to a direction having at least one radial centripetal component facing the axis X and an axial component or axial and tangential component facing the cups 56 a, 56 b.
Alternatively, the gutters 72 a, 72 b could be V-shaped and be supplied in the same way, or L-shaped open opposite the cups and in this case be supplied by purely axial jets or axial and tangential jets.
This configuration also allows the oil supply device 54 to be supplied by a staged oil injection system 58 comprising at least two independent oil injection means 58 a, 58 b each supplying a corresponding cup 56 a, 56 b of the oil supply device 54.
This configuration is particularly advantageous because it avoids the problems of pressure drop inherent to the supply of oil from a single cup, and also because it allows a differentiated oil supply to the cups 56 a, 56 b. Thus, it is possible to differentiate the type of lubricant used, in particular in terms of viscosity, temperature or filtration, in order to use lubricants with different properties adapted to the needs of the members or gears to be lubricated. For example, the bearings of the planet gears 42 can be supplied with a different oil from the one used to lubricate the gears between the sun gear 40 and the planet gears 42. Thus, each oil injection means 58 a, 58 b is supplied with an oil adapted to the needs of the member of the reduction gear 32 which is lubricated by the corresponding cup 56 a, 56 b.
The oils used can thus be different oils which are filtered in different ways in order to obtain oils comprising different minimum particle sizes to meet different and specific lubrication requirements.
As shown in FIGS. 3, 5, 7, and 9, each oil injection means 58 a, 58 b has an annular tubular manifold 76 a, 76 b, with a diameter substantially slightly larger than that of the gutter 72 a, 72 b of the corresponding cup 56 a, 56 b, and comprising uniformly distributed holes 78 a, 78 b. As shown in FIGS. 5 and 7, these holes 78 a, 78 b are turned towards the gutter 72 a, 72 b of the cup 56 a, 56 b at a certain angle to the axis X to improve the oil supply. This angle is preferably chosen so that the jet has a radial component towards the axis X, an axial component towards the cup 56 a, 56 b, and possibly a tangential component, i.e. perpendicular to the plane of FIGS. 3, 5, and 7.
Furthermore, as shown in FIG. 9, each oil injection means 58 a, 58 b comprises at least one globally radial oil supply duct 80 a, 80 b to the annular manifolds 76 a, 76 b. Preferably, each oil injection means 58 a, 58 b comprises a plurality of uniformly distributed ducts 80 a, 80 b to ensure uniform supply to the manifold 76 a, 76 b in terms of the flow rate and velocity.
It should be noted that the manifolds 76 a, 76 b are not necessarily continuous. For example, each oil injection means 58 a, 58 b could comprise a plurality of angled segments of annular manifolds 76 a, 76 b each supplied by at least one duct 80 a, 80 b.
The oil injection means are carried by a casing (not shown) of the turbomachine. Therefore, they are not necessarily connected to each other. If the oil injection means are distant from each other, the jets of one cannot disturb the jets of the other, which is an additional advantage of the invention.
It is all the same for the cups 56 a, 56 b which may or may not be connected together by structural arms, depending on the constraints of coaxiality, rigidity and hyperstatism during the assembly.
In the non-limiting example detailed here, the cup 56 a is connected to the cup 56 b by structural arms 57, as shown in FIG. 4. The cups 56 a, 56 b then form an impeller 54.
The oil supply device is flange-mounted on the planet carrier via axial elements such as screws passing through holes 55, visible in FIGS. 4, 6, and 8.
Various means are provided for balancing the impeller 54.
For example, at least one cup may comprise an extra thickness that can be machined locally to balance the cup.
Here, as shown in FIG. 5, it is the second wall 64 b of the cup 56 b, which comprises an over-thickness in a zone 65 b that can be machined locally to balance this cup 56 b.
Alternatively, at least one cup may comprise a zone capable of receiving at least one balancing weight from this cup.
Here, as shown in FIGS. 5 and 7, the second wall 64 a of the cup 56 a comprises a zone 65 a capable of receiving at least one balancing weight (not shown) from this cup 56 a.
In addition, the means are provided to improve the collection of the oil through the gutters 72 a, 72 b of the cups 56 a, 56 b and to convey it to the reservoirs 59 a, 59 b.
For this purpose, as illustrated in FIGS. 4, 6, and 8 the external part of each cup 56 a, 56 b, that is, the part corresponding to the first wall 62 a, 62 b, second wall 64 a, 64 b and third wall 66 a, 66 b which delimits the reservoirs 59 a, 59 b, is divided angularly, between its first and second walls 62 a, 64 b and 62 b, 64 b respectively, into adjoining compartments 82 a, 82 b which delimit as many reservoirs 59 a, 59 b. This delimitation is ensured by axial walls 84 a, 84 b arranged at the angular ends of these compartments 82 a, 82 b.
As can be seen in the example presented here as a non-limiting example, each cup 56 a, 56 b comprises five compartments 82 a, 82 b, but it will be understood that this number is not limiting to the invention.
Advantageously, as can be seen in FIGS. 6 and 8, the free ends 86 a, 86 b of the walls 84 a, 84 b are bevelled and inclined towards the axis X of the reduction gear to allow the passage of oil from a reservoir 59 a, 59 b of one compartment 82 a, 82 b to the reservoir 59 a, 59 b of the neighbouring compartment.
The walls 84 a and 84 b can be inclined to help guide the oil.
The annular gutter 72 a, 72 b is continuous along the entire periphery of the corresponding cup 56 a, 56 b.
This configuration improves oil distribution between compartments. If all the reservoirs 59 a, 59 b are full, the oil will overflow to the axis X of the reduction gear 32.
In addition, the gutter-shaped inner part of each cup 56 a, 56 b comprises fins 88 a, 88 b that extend generally in a radial direction between the gutter 72 a, 72 b and at least the second wall 62 a, 62 b. These fins 88 a, 88 b are configured to drive the oil by centrifugation to the bottom of the corresponding reservoir 59 a, 59 b. Note that the fins 88 a, 88 b can go beyond the second walls 62 a, 62 b and extend to the bottom of the corresponding reservoir, i.e. to the third peripheral walls 66 a, 66 b.
In FIGS. 4 to 8, fins 88 a, 88 b which are radial have been shown, but these can also be inclined with respect to the radial direction, and/or have a vane profile.
In FIGS. 4, 6 and 8, each cup 56 a, 56 b comprises only an inner part associated with a series of concentric reservoirs 59 a, 59 b and an associated inner part, these inner and outer parts occupying the entire radial footprint of the cup.
It is quite conceivable that a cup comprises several series of concentric outer and inner parts, divided at different angular pitches, to form angularly successive patterns that create reservoirs placed on different diameters and feeding nozzles placed on different diameters.
The invention also provides a method of assembling an epicyclic or planetary gear reduction gear comprising a lubrication set comprising an oil supply device 54 and an oil injection system 58.
As shown in FIG. 10, this method comprises a first step ET1 of assembly of the reduction gear 32 wherein the sun pinion 40, the planet carrier 44 with its planet gears 42 and the ring gear 46 are assembled together.
Then, in a second step ET2, the oil supply device 54 is introduced into the reduction gear 32.
Then, in a third step ET3, a turbomachine with a LP turbine shaft 28 configured to be inserted into the sun gear 40 is installed, and the oil injection system 58 is attached to a casing (not shown) of said turbomachine.
Finally, in a fourth step ET4, the reduction gear is inserted into the engine frame by inserting the LP turbine shaft 28 into the sun gear. The oil injection system 58 is naturally ideally positioned to supply the impeller 54 once the reduction gear is mounted.
The invention allows to propose a differentiated, simple, reliable and effective lubrication for the various members of a turbomachine reduction gear.

Claims (14)

The invention claimed is:
1. An oil supply device extending around an axis, intended to supply oil to two distinct oil distribution circuits of a reduction gear, the reduction gear comprising at least one sun pinion, a planet carrier and a ring gear which are mobile in rotation relatively with respect to each other, the oil coming from at least one oil injection means fixed with respect to the reduction gear, said device being configured to be fixed to the planet carrier and comprising a first lubrication annular cup configured to receive oil coming from said at least one oil injection means and to allow the supply of oil to one of said oil distribution circuits,
the device comprising at least one second lubrication cup so that it can be staged in at least two separate lubrication stages, the further cup being configured to receive oil coming from a further oil injection means and to allow the supply of oil to a further of said oil distribution circuits, each cup supplying an associated and distinct oil circuit, the cups being coaxial and of different diameters,
wherein said cups are both configured to receive oil jets that are directed:
in an axial direction that is parallel to the axis and facing the associated cup, or
in a centripetal direction directed radially toward the axis, or
in a tangential direction with respect to the axis, or
according to an inclined direction combining the axial direction that is parallel to the axis and facing the associated cup and the centripetal direction directed radially toward the axis, or
according to an inclined direction combining the centripetal direction directed radially toward the axis and the tangential direction with respect to the axis, or
according to an inclined direction combining the axial direction that is parallel to the axis and facing the associated cup and the tangential direction with respect to the axis.
2. The device according to claim 1, wherein it comprises at least:
the first annular cup, the associated oil distribution circuit of which comprises a plurality of nozzles distributed circumferentially around the axis and which supply oil to the sun pinion or to the planet gears, or to both the sun pinion and the planet gears, and
the second annular cup, the associated oil distribution circuit of which supplies oil to planet gear bearings of the planet carrier.
3. The device according to claim 1, wherein at least one of the first and second annular cups has an outer part having a section substantially in the shape of a U of radial orientation open towards the axis and an inner part extending the outer part starting from a branch of the U which delimits a J- or V-shaped gutter configured to receive oil jets inclined according to a direction having at least one radial centripetal component facing the axis and an axial component or axial and tangential component facing towards the cups, or an open L-shaped gutter opposite the cups supplied by purely axial oil jets or axial and tangential oil jets.
4. The device according to claim 3, wherein said at least one of the first and second annular cups is divided circumferentially into adjoining compartments which delimit as many reservoirs as there are compartments, said reservoirs supplying the oil distribution circuits, and being separated by axial walls arranged at the angular ends of said compartments, free ends of said axial walls being bevelled towards the axis of the reduction gear to allow the passage of oil from a reservoir of one compartment to the reservoir of the adjacent compartment.
5. The device according to claim 3, wherein the gutter comprises fins extending substantially in a radial direction and which are arranged to drive the oil by centrifugation at the bottom of each of the reservoirs.
6. The device according to claim 5, wherein the fins are at least one of radial, inclined with respect to the radial direction, and have a vane profile.
7. The device according to claim 1, wherein each first or second annular cup is connected to the adjacent second or first annular cup by structural arms.
8. The device according to claim 3, wherein at least one of the first and second annular cups comprises a zone having an over thickness, said zone being able to be machined locally to allow the balancing of said cup.
9. The device according to claim 3, wherein at least one of the first and second annular cups comprises a zone having at least one weight member configured to balance said cup.
10. An oil injection system for supplying oil to the oil supply device according to claim 3, wherein said oil supply device is staged and comprises the at least two distinct oil injection means, each supplying a corresponding cup of the first and second annular cups of the device.
11. The oil injection system according to claim 10, wherein each oil injection means of a cup comprises an annular tubular injection manifold, or a plurality of circumferential segments of annular tubular manifold, of diameter substantially slightly larger than that of the corresponding cup, comprising circumferentially distributed holes being configured to be oriented towards the opening of the gutter of the corresponding cup and at least one mainly radial ducts for supplying oil to said annular manifold or said annular manifold circumferential segment.
12. The oil injection system according to claim 10, wherein each oil injection means is supplied with an oil adapted to the requirements of a member of the reduction gear which is lubricated by the corresponding cup.
13. A lubrication set for an epicyclic or differential reduction gear, comprising the oil supply device according to claim 1.
14. A lubrication set for a epicyclic or differential reduction gear, comprising the oil injection system according to claim 10.
US17/095,670 2019-11-15 2020-11-11 Staged impeller for the oil supply of an epicyclic or planetary reduction gear Active US11396941B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912786A FR3103243B1 (en) 2019-11-15 2019-11-15 STAGE IMPELLER FOR THE OIL SUPPLY OF AN EPICYCLOIDAL OR PLANETARY GEARBOX.
FR1912786 2019-11-15

Publications (2)

Publication Number Publication Date
US20210148453A1 US20210148453A1 (en) 2021-05-20
US11396941B2 true US11396941B2 (en) 2022-07-26

Family

ID=69375616

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/095,670 Active US11396941B2 (en) 2019-11-15 2020-11-11 Staged impeller for the oil supply of an epicyclic or planetary reduction gear

Country Status (4)

Country Link
US (1) US11396941B2 (en)
EP (1) EP3822516B1 (en)
CN (1) CN112815075A (en)
FR (1) FR3103243B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3065268B1 (en) * 2017-04-14 2019-05-03 Safran Aircraft Engines LUBRICATION FOR EPICYCLOIDAL GEAR TRAIN
FR3103241B1 (en) * 2019-11-15 2021-12-17 Safran Trans Systems WHEEL FOR A TURBOMACHINE EPICYCLOIDAL GEAR GEAR REDUCER SATELLITE CARRIER

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092263A1 (en) 2009-02-16 2010-08-19 Snecma Lubrication and cooling of a reduction gear with epicyclic gear train
US20130051984A1 (en) 2011-08-30 2013-02-28 United Technologies Corporation Torque frame and asymmetric journal bearing for fan drive gear system
US20130225353A1 (en) 2012-02-23 2013-08-29 Snecma Device for lubricating an epicycloidal reduction gear
US20130287553A1 (en) 2012-04-30 2013-10-31 James B. Coffin Manifold for geared turbofan engine
US20160377167A1 (en) 2015-06-25 2016-12-29 United Technologies Corporation Rolling element cage for geared turbofan
FR3041054A1 (en) 2015-09-15 2017-03-17 Hispano-Suiza OIL SUPPLY DEVICE FOR AN EPICYCLOIDAL TRAIN REDUCER.
WO2017129926A1 (en) 2016-01-28 2017-08-03 Safran Transmission Systems Axially-partitioned oil-distribution wheel, and planetary reduction gear comprising such a wheel
WO2019016463A1 (en) 2017-07-20 2019-01-24 Safran Transmission Systems Assembly comprising a lubricating wheel and lubricant nozzles for a planetary gear speed reducer of a turbomachine
WO2019016491A1 (en) 2017-07-20 2019-01-24 Safran Transmission Systems Lubricant nozzle for a planetary gear set speed reducer of a turbomachine
US20190301466A1 (en) 2018-03-28 2019-10-03 Rolls-Royce Deutschland Ltd & Co Kg Planetary gear device with an oil supply appliance, gas turbine engine with a planetary gear device and method for manufacturing a vane pump
US10458535B2 (en) 2016-04-20 2019-10-29 Ge Avio S.R.L. Oil transfer unit for transferring oil between a stationary part and a rotating part

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092263A1 (en) 2009-02-16 2010-08-19 Snecma Lubrication and cooling of a reduction gear with epicyclic gear train
US20130051984A1 (en) 2011-08-30 2013-02-28 United Technologies Corporation Torque frame and asymmetric journal bearing for fan drive gear system
US20130225353A1 (en) 2012-02-23 2013-08-29 Snecma Device for lubricating an epicycloidal reduction gear
FR2987416A1 (en) 2012-02-23 2013-08-30 Snecma DEVICE FOR LUBRICATING AN EPICYCLOIDAL REDUCER.
US20130287553A1 (en) 2012-04-30 2013-10-31 James B. Coffin Manifold for geared turbofan engine
US20160377167A1 (en) 2015-06-25 2016-12-29 United Technologies Corporation Rolling element cage for geared turbofan
FR3041054A1 (en) 2015-09-15 2017-03-17 Hispano-Suiza OIL SUPPLY DEVICE FOR AN EPICYCLOIDAL TRAIN REDUCER.
WO2017129926A1 (en) 2016-01-28 2017-08-03 Safran Transmission Systems Axially-partitioned oil-distribution wheel, and planetary reduction gear comprising such a wheel
FR3047279A1 (en) 2016-01-28 2017-08-04 Hispano-Suiza AXIS-DISTRIBUTED DISTRIBUTION WHEEL AND EPICYCLOIDAL TRAIN REDUCER THUS EQUIPPED
US10458535B2 (en) 2016-04-20 2019-10-29 Ge Avio S.R.L. Oil transfer unit for transferring oil between a stationary part and a rotating part
WO2019016463A1 (en) 2017-07-20 2019-01-24 Safran Transmission Systems Assembly comprising a lubricating wheel and lubricant nozzles for a planetary gear speed reducer of a turbomachine
WO2019016491A1 (en) 2017-07-20 2019-01-24 Safran Transmission Systems Lubricant nozzle for a planetary gear set speed reducer of a turbomachine
US20190301466A1 (en) 2018-03-28 2019-10-03 Rolls-Royce Deutschland Ltd & Co Kg Planetary gear device with an oil supply appliance, gas turbine engine with a planetary gear device and method for manufacturing a vane pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Preliminary Research Report received for French Application No. 1912786, dated Jun. 15, 2020, 5 pages (1 page of French Translation Cover Sheet and 4 pages of original document).

Also Published As

Publication number Publication date
FR3103243A1 (en) 2021-05-21
CN112815075A (en) 2021-05-18
EP3822516B1 (en) 2023-02-15
EP3822516A1 (en) 2021-05-19
FR3103243B1 (en) 2022-07-15
US20210148453A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US11112001B2 (en) Assembly comprising a lubricating wheel and lubricant nozzles for a planetary gear speed reducer of a turbomachine
US10066506B2 (en) Reduced misalignment gear system
RU2694106C2 (en) Turbomachine and torque transmission system for turbomachine
US11131249B2 (en) Reduction or differential-type device for a turbine engine of an aircraft
EP4060174A1 (en) Lubrication system for aircraft engine reduction gearbox
US11396941B2 (en) Staged impeller for the oil supply of an epicyclic or planetary reduction gear
JP2015212577A (en) Epicyclic transmission provided with lubrication system
US11976786B2 (en) Oil restrictor for emergency lubrication of a component for an aircraft turbine engine
CN110770476B (en) Ring gear for an epicyclic or planetary reduction gear of a turbomachine
CN111664225A (en) Mechanical speed reducer for aircraft turbine engine
US11635028B2 (en) Supply and recovery of lubricating oil in a mechanical reduction gear of an aircraft turbomachine
US20200325979A1 (en) Spray bar for lubricating gear meshes in an epicyclic transmission
US11255425B2 (en) Rotary planet carrier for a mechanical reduction gear of a turbomachine
US20210355875A1 (en) Auxiliary oil tank for an aircraft turbine engine
EP3001072B1 (en) Oil transfer bearing and oil transfer method
US11808344B2 (en) Planet carrier for a mechanical gearbox of an aircraft turbomachine
US11326517B2 (en) Oil distribution device for a rotating planet carrier of a mechanical reduction gear of a turbomachine
US11970983B2 (en) Arrangement for an aircraft turbine engine having improved lubrication, the arrangement comprising a shaft rotatably coupled to a following member by means of splines
US11598407B1 (en) Epicyclic gear train of aircraft powerplant
US20240151149A1 (en) Fan module equipped with an oil transfer device
US20240167421A1 (en) Fan module equipped with an oil transfer device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SAFRAN TRANSMISSION SYSTEMS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PENNACINO, ANTOINE JACQUES MARIE;DI GIOVANNI, JEAN-CHARLES MICHEL PIERRE;SIGNING DATES FROM 20201022 TO 20201118;REEL/FRAME:054686/0447

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction