US10302602B2 - Process of conducting high throughput testing high performance liquid chromatography - Google Patents

Process of conducting high throughput testing high performance liquid chromatography Download PDF

Info

Publication number
US10302602B2
US10302602B2 US15/526,885 US201515526885A US10302602B2 US 10302602 B2 US10302602 B2 US 10302602B2 US 201515526885 A US201515526885 A US 201515526885A US 10302602 B2 US10302602 B2 US 10302602B2
Authority
US
United States
Prior art keywords
patient
api
tablet
cftr
cystic fibrosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/526,885
Other versions
US20170356885A1 (en
Inventor
Eric Borsje
Henrik Torstholm Rasmussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertex Pharmaceuticals Inc
Original Assignee
Vertex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertex Pharmaceuticals Inc filed Critical Vertex Pharmaceuticals Inc
Priority to US15/526,885 priority Critical patent/US10302602B2/en
Publication of US20170356885A1 publication Critical patent/US20170356885A1/en
Assigned to VERTEX PHARMACEUTICALS INCORPORATED reassignment VERTEX PHARMACEUTICALS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BORSJE, Eric, Rasmussen, Henrik Torstholm
Application granted granted Critical
Publication of US10302602B2 publication Critical patent/US10302602B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N2013/006Dissolution of tablets or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00188Special arrangements of analysers the analyte being in the solid state
    • G01N2035/00198Dissolution analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00524Mixing by agitating sample carrier

Definitions

  • the invention relates to a process of conducting high throughput testing (HTT) high performance liquid chromatography (HPLC) useful for testing large amounts of samples quickly and accurately.
  • HTT HPLC is useful for developing process analytical techniques (PAT) for continuous manufacturing of pharmaceutical compositions.
  • the pharmaceutical compositions are for the treatment of CFTR mediated diseases such as cystic fibrosis and comprise one or more active pharmaceutical ingredient (API).
  • API active pharmaceutical ingredient
  • the present invention features a process of conducting high throughput HPLC comprising a) dropping containers, such as a vials, of pre-weighed samples into plastic bottles, such as HDPE bottles; b) adding solution to each set of container and bottle via a bottle top dispenser; c) shaking each set of plastic bottle, container, and solution until sample is dissolved; d) centrifuging each set of plastic bottle, container, and solution; e) loading an aliquot of supernatant from the centrifuge step onto an HPLC column; and f) running the column with a mobile phase.
  • containers such as a vials
  • the process is used to supply correlating values to PAT measurements for continuous manufacturing. In another embodiment, the process is used to measure the concentration of API in the final pharmaceutical composition.
  • the pharmaceutical composition is a tablet.
  • the tablet is for the treatment of a CFTR mediated disease such as cystic fibrosis (CF).
  • CFTR mediated disease such as cystic fibrosis (CF).
  • the tablet comprises two API.
  • one API is a CF corrector.
  • one API is a CF potentiator.
  • one API is a CF corrector and the other API is a CF potentiator.
  • one API is 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (Compound 1), which has the structure below:
  • one API is N-(5-hydroxy-2,4-ditert-butyl-phenyl)-4-oxo-1H-quinoline-3-carboxamide (Compound 2), which has the structure below:
  • one API is Compound 1 and the other API is Compound 2.
  • Compound 1 is in Form I
  • Compound 2 is the form of a solid dispersion of substantially amorphous Compound 2.
  • FIG. 1 is a flow chart for the continuous manufacture of a tablet of Compound 1 Form I and a solid dispersion of substantially amorphous Compound 2.
  • FIG. 2 is a schematic drawing of a process analytical technique (PAT) enabled continuous manufacturing process where in step 1) feeder/blender one, PAT1 NIR measures material attributes during screening of raw materials; step 2) twin screw granulator, PAT2 NIR measures composition and BU; step 3) fluidized bed dryer, PAT 3a NIR measures granule uniformity, LOD, solid state form and physical attributes of granules, PAT 3b laser diffraction measures particle size distribution; step 4) milling, PAT4 NIR measures composition and BU; step 5) feeder/blender two, PAT 5a Raman measures assay and CU, PAT 5b weight, hardness, thickness; step 6) compression, PAT6 Raman measures coat thickness; and step 7) coating.
  • PAT process analytical technique
  • FIG. 3 is a schematic drawing showing a PAT inline Sentronics NIR located after blender one, granule mill, and extra granule blender. Each probe has 7 spots that cycle sequentially to maximize sampling and NIR with multiplexer-NIR ensuring robust and exhaustive sampling by controlled powder flow across the probe optics.
  • FIG. 4 is a depiction of NIR in flowing powder.
  • FIG. 5 is a Kaiser Raman spectrum of Compound 1 Form I and Compound 1 Form II (Compound 1 Form II is a different polymorph disclosed in US 201131588 incorporated herein in its entirety by reference) taken after tablet pressing.
  • the Kaiser Raman spectrometer is mounted on the Kraemer UTS tablet tester.
  • FIG. 6 is a graph showing good correlation between predicted and reference off-line NIR samplings of Compound 2 granules.
  • FIG. 7 is a series of NIR spectra measuring water content in samples of Compound 1 granules.
  • FIG. 8 is a series of NIR spectra measuring a range of compositions comprising different ratios of Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 on the left, and pretreated spectra on the right depicting Range A for identifying Compound 1 Form I and Range B for identifying amorphous Compound 2.
  • FIG. 9 depicts a calibration curve for predicted Compound 1 Form I content versus reference (actual) Compound 1 Form I content using partial least squares (PLS) techniques.
  • FIG. 10 depicts actual results of unknown samples comprising different contents of Compound 1 Form I (Y Reference) versus predicted content using the calibration curve calculated from FIG. 19 (Y Predicted).
  • FIG. 11 depicts the transmission percent of a laser diffraction measurement in response to changes in line rate (flow velocity) for a composition comprising Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 showing the expected reduction in transmission percent as line rate increase.
  • FIG. 12 depicts laser diffraction measurements of particles comprising Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 at different line rates showing that the average particle size (Dv(50) is not affected by line rate.
  • FIG. 13 depicts laser diffraction measurements of particles comprising Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 under different processing parameters showing that the particle size measurements are sensitive to such changes.
  • FIG. 14 depicts the predictive capabilities of process analytical technology models using Raman spectroscopy, both non-continuously and continuously, for monitoring Compound 1 solid form identity in a tablet.
  • FIG. 15 depicts the predictive capabilities of process analytical technology models using Raman spectroscopy, both non-continuously and continuously, for monitoring Compound 2 solid form identity in a tablet.
  • HTT high throughput testing
  • HPLC high performance liquid chromatography
  • active pharmaceutical ingredient or “API” refers to a biologically active compound.
  • CU content uniformity
  • CTR cystic fibrosis transmembrane conductance regulator
  • a “ ⁇ F508 mutation” or “F508-del mutation” is a specific mutation within the CFTR protein.
  • the mutation is a deletion of the three nucleotides that comprise the codon for amino acid phenylalanine at position 508, resulting in CFTR protein that lacks this phenylalanine residue.
  • a patient who is “homozygous” for a particular mutation e.g. ⁇ F508, has the same mutation on each allele.
  • a patient who is “heterozygous” for a particular mutation e.g. ⁇ F508, has this mutation on one allele, and a different mutation on the other allele.
  • CFTR corrector refers to a compound that increases the amount of functional CFTR protein to the cell surface, resulting in enhanced ion transport.
  • CFTR potentiator refers to a compound that increases the channel activity of CFTR protein located at the cell surface, resulting in enhanced ion transport.
  • solid form refers to Compound 1 or Compound 2, in a particular solid form e.g. crystals, amorphous states, and the like.
  • substantially amorphous refers to a solid material having little or no long range order in the position of its molecules.
  • substantially amorphous materials have less than about 15% crystallinity (e.g., less than about 10% crystallinity or less than about 5% crystallinity).
  • substantially amorphous includes the descriptor, ‘amorphous’, which refers to materials having no (0%) crystallinity.
  • substantially crystalline refers to a solid material having predominantly long range order in the position of its molecules.
  • substantially crystalline materials have more than about 85% crystallinity (e.g., more than about 90% crystallinity or more than about 95% crystallinity).
  • substantially crystalline includes the descriptor, ‘crystalline’, which refers to materials having 100% crystallinity.
  • crystalline and related terms used herein, when used to describe a substance, component, product, or form, means that the substance, component or product is substantially crystalline as determined by X-ray diffraction. (See, e.g., Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott Williams & Wilkins, Baltimore, Md. (2003); The United States Pharmacopeia, 23 rd ed., 1843-1844 (1995)).
  • tablette refers to a physically discrete unit of agent appropriate for the patient to be treated.
  • a compacted mixture has a density greater than that of the mixture prior to compaction.
  • a dosage tablet of the invention can have almost any shape including concave and/or convex faces, rounded or angled corners, and a rounded to rectilinear shape.
  • the compressed tablets of the invention comprise a rounded tablet having flat faces.
  • the tablets of the invention can be prepared by any compaction and compression method known by persons of ordinary skill in the art of forming compressed solid pharmaceutical dosage forms.
  • the formulations provided herein may be prepared using conventional methods known to those skilled in the field of pharmaceutical formulation, as described, e.g., in pertinent textbooks.
  • an “excipient” includes functional and non-functional ingredients in a pharmaceutical composition.
  • an “effective amount” or “therapeutically effective amount” of a compound of the invention may vary according to factors such as the disease state, age, and weight of the subject, and the ability of the compound of the invention to elicit a desired response in the subject. Dosage regimens may be adjusted to provide the optimum therapeutic response. An effective amount is also one in which any toxic or detrimental effects (e.g., side effects) of the compound of the invention are outweighed by the therapeutically beneficial effects.
  • the terms “therapeutically effective amount” and “effective amount” of a compound mean an amount sufficient to provide a therapeutic benefit in the treatment or management of a disease or disorder, or to delay or minimize one or more symptoms associated with the disease or disorder.
  • a “therapeutically effective amount” and “effective amount” of a compound mean an amount of therapeutic agent, alone or in combination with one or more other agent(s), which provides a therapeutic benefit in the treatment or management of the disease or disorder.
  • the terms “therapeutically effective amount” and “effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of disease or disorder, or enhances the therapeutic efficacy of another therapeutic agent.
  • substantially pure as used in the phrase “substantially pure Compound 1 Form I” means greater than about 90% purity. In another embodiment, substantially pure refers to greater than about 95% purity. In another embodiment, substantially pure refers to greater than about 98% purity. In another embodiment, substantially pure refers to greater than about 99% purity.
  • the term “about” or “approximately” means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined.
  • the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations.
  • the term “about” or “approximately” means within 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05% of a given value or range.
  • Compound 1 Form I is prepared by methods disclosed in U.S. Pat. No. 8,507,534 incorporated herein by reference in its entirety.
  • a solid dispersion of substantially amorphous Compound 2 is prepared by methods disclosed in International Published Patent Application No. WO2010/019239 incorporated herein by reference in its entirety.
  • a tablet comprising Compound 1 and Compound 2 may be prepared continuously according to the flow chart of FIG. 1 .
  • the invention also provides a method of treating, lessening the severity of, or symptomatically treating a disease in a patient, the method comprising administering an effective amount of the pharmaceutical composition or tablet prepared in a continuous manner using PAT to the patient, preferably a mammal, wherein the disease is selected from cystic fibrosis, asthma, smoke induced COPD, chronic bronchitis, rhinosinusitis, constipation, pancreatitis, pancreatic insufficiency, male infertility caused by congenital bilateral absence of the vas deferens (CBAVD), mild pulmonary disease, idiopathic pancreatitis, allergic bronchopulmonary aspergillosis (ABPA), liver disease, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type
  • the invention also provides a method of treating, lessening the severity of, or symptomatically treating a disease in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the disease is selected from generalized epilepsy with ferbrile seizures plus (GEFS+), general epilepsy with ferbile and aferbrile seizures, myotonia, paramyotonia congenital, potassium-aggravated myotonia, hyperkalemic periodic paralysis, LQTS, LQTS/Brugada syndrome, autosomal-dominant LQTS with deafness, autosomal-recessive LQTS, LQTS with dysmorphic features, congenital and acquired LQTS, Timothy syndrome, persistent hyperinsulinemic hypolglycemia of infancy, dilated cardiomyopathy, autosomal-dominant LQTS, Dent disease, Osteopetrosis, Bartter syndrome type III, central core disease,
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation N1303K, ⁇ I507, or R560T.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation G551D.
  • the patient is homozygous in G551D.
  • the patient is heterozygous in G551D wherein the other CFTR genetic mutation is any one of ⁇ F508, G542X, N1303K, W1282X, R117H, R553X, 1717-1G ⁇ A, 621+1G ⁇ T, 2789+5G ⁇ A, 3849+10kbC ⁇ T, R1162X, G85E, 3120+1G ⁇ A, ⁇ I507, 1898+1G ⁇ A, 3659delC, R347P, R560T, R334W, A455E, 2184delA, or 711+1G ⁇ T.
  • the other CFTR genetic mutation is any one of ⁇ F508, G542X, N1303K, W1282X, R117H, R553X, 1717-1G ⁇ A, 621+1G ⁇ T, 2789+5G ⁇ A, 3849+10kbC ⁇ T, R1162X, G85E, 3120+1G ⁇ A, ⁇ I507, 1898+1
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation ⁇ F508.
  • the patient is homozygous in ⁇ F508.
  • the patient is heterozygous in ⁇ F508 wherein the other CFTR genetic mutation is any one of G551D, G542X, N1303K, W1282X, R117H, R553X, 1717-1G ⁇ A, 621+1G ⁇ T, 2789+5G ⁇ A, 3849+10kbC ⁇ T, R1162X, G85E, 3120+1G ⁇ A, ⁇ I507, 1898+1G ⁇ A, 3659delC, R347P, R560T, R334W, A455E, 2184delA, or 711+1G ⁇ T.
  • the other CFTR genetic mutation is any one of G551D, G542X, N1303K, W1282X, R117H, R553X, 1717-1G ⁇ A, 621+1G ⁇ T, 2789+5G ⁇ A, 3849+10kbC ⁇ T, R1162X, G85E, 3120+1G ⁇ A, ⁇ I507, 1898
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G ⁇ A, 621+1G ⁇ T, 3120+1G ⁇ A, 1898+1G ⁇ A, 711+1G ⁇ T, 2622+1G ⁇
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R.
  • the invention provides a method of treating CFTR comprising administering Compound 1 to a patient possessing a human CFTR mutation selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R.
  • the method produces a greater than 10-fold increase in chloride transport relative to baseline chloride transport.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H.
  • the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G ⁇ A, 621+1G ⁇ T, 3120+1G ⁇ A, 1898+1G ⁇ A, 711+1G ⁇ T, 2622+1G ⁇ A, 405+1G ⁇ A, 406-1G ⁇ A, 4005+1G ⁇ A, 1812-1G ⁇ A, 1525-1G ⁇ A, 712-1G ⁇ T, 1248+1G ⁇ A, 1341+1G ⁇ A, 3121-1G ⁇ A, 4374+1G ⁇ T, 3850-1G ⁇ A, 2789+5G ⁇ A, 3849+10kbC ⁇ T, 3272-26A ⁇ G, 711+5G ⁇ A, 3120G ⁇ A, 1811+1.6kbA ⁇ G, 711+3
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G ⁇ A, 1811+1.6kbA ⁇ G, 2789+5G ⁇ A, 3272-26A ⁇ G and 3849+10kbC ⁇ T.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G ⁇ A and 3272-26A ⁇ G.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G ⁇ A, 621+1G ⁇ T, 3120+1G ⁇ A, 1898+1G ⁇ A, 711+1G ⁇ T, 2622+1G ⁇
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R, and a human CFTR mutation selected from ⁇ F508, R117H, and G551D.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N, and a human CFTR mutation selected from ⁇ F508, R117H, and G551D.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R, and a human CFTR mutation selected from ⁇ F508, R117H, and G551D.
  • the method produces a greater than 10-fold increase in chloride transport relative to baseline chloride transport.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H, and a human CFTR mutation selected from ⁇ F508, R117H, and G551D.
  • the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G ⁇ A, 621+1G ⁇ T, 3120+1G ⁇ A, 1898+1G ⁇ A, 711+1G ⁇ T, 2622+1G ⁇ A, 405+1G ⁇ A, 406-1G ⁇ A, 4005+1G ⁇ A, 1812-1G ⁇ A, 1525-1G ⁇ A, 712-1G ⁇ T, 1248+1G ⁇ A, 1341+1G ⁇ A, 3121-1G ⁇ A, 4374+1G ⁇ T, 3850-1G ⁇ A, 2789+5G ⁇ A, 3849+10kbC ⁇ T, 3272-26A ⁇ G, 711+5G ⁇ A, 3120G ⁇ A, 1811+1.6kbA ⁇ G, 711+3
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G ⁇ A, 1811+1.6kbA ⁇ G, 2789+5G ⁇ A, 3272-26A ⁇ G and 3849+10kbC ⁇ T, and a human CFTR mutation selected from ⁇ F508, R117H, and G551D.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G ⁇ A and 3272-26A ⁇ G, and a human CFTR mutation selected from ⁇ F508, R117H.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G ⁇ A, 621+1G ⁇ T, 3120+1G ⁇ A, 1898+1G ⁇ A, 711+1G ⁇ T, 2622+1G ⁇
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R.
  • the method produces a greater than 10-fold increase in chloride transport relative to baseline chloride transport.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H.
  • the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G ⁇ A, 621+1G ⁇ T, 3120+1G ⁇ A, 1898+1G ⁇ A, 711+1G ⁇ T, 2622+1G ⁇ A, 405+1G ⁇ A, 406-1G ⁇ A, 4005+1G ⁇ A, 1812-1G ⁇ A, 1525-1G ⁇ A, 712-1G ⁇ T, 1248+1G ⁇ A, 1341+1G ⁇ A, 3121-1G ⁇ A, 4374+1G ⁇ T, 3850-1G ⁇ A, 2789+5G ⁇ A, 3849+10kbC ⁇ T, 3272-26A ⁇ G, 711+5G ⁇ A, 3120G ⁇ A, 1811+1.6kbA ⁇ G, 711+3
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G ⁇ A, 1811+1.6kbA ⁇ G, 2789+5G ⁇ A, 3272-26A ⁇ G and 3849+10kbC ⁇ T.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G ⁇ A and 3272-26A ⁇ G.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G ⁇ A, 621+1G ⁇ T, 3120+1G ⁇ A, 1898+1G ⁇ A, 711+1G ⁇ T, 2622+1G ⁇
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R, and one or more human CFTR mutations selected from ⁇ F508, R117H, and G551D.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N, and one or more human CFTR mutations selected from ⁇ F508, R117H, and G551D.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R, and one or more human CFTR mutations selected from ⁇ F508, R117H, and G551D.
  • the method produces a greater than 10-fold increase in chloride transport relative to baseline chloride transport.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H, and one or more human CFTR mutations selected from ⁇ F508, R117H, and G551D.
  • the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G ⁇ A, 621+1G ⁇ T, 3120+1G ⁇ A, 1898+1G ⁇ A, 711+1G ⁇ T, 2622+1G ⁇ A, 405+1G ⁇ A, 406-1G ⁇ A, 4005+1G ⁇ A, 1812-1G ⁇ A, 1525-1G ⁇ A, 712-1G ⁇ T, 1248+1G ⁇ A, 1341+1G ⁇ A, 3121-1G ⁇ A, 4374+1G ⁇ T, 3850-1G ⁇ A, 2789+5G ⁇ A, 3849+10kbC ⁇ T, 3272-26A ⁇ G, 711+5G ⁇ A, 3120G ⁇ A, 1811+1.6kbA ⁇ G, 711+3
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G ⁇ A, 1811+1.6kbA ⁇ G, 2789+5G ⁇ A, 3272-26A ⁇ G and 3849+10kbC ⁇ T, and one or more human CFTR mutations selected from ⁇ F508, R117H, and G551D.
  • the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G ⁇ A and 3272-26A ⁇ G, and one or more human CFTR mutations selected from ⁇ F508, R117H, and G551D.
  • the pharmaceutically acceptable composition or tablet of the present invention comprising Compound 1 Form I and a solid dispersion of substantially amorphous Compound 2 are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit residual CFTR activity in the apical membrane of respiratory and non-respiratory epithelia.
  • the presence of residual CFTR activity at the epithelial surface can be readily detected using methods known in the art, e.g., standard electrophysiological, biochemical, or histochemical techniques. Such methods identify CFTR activity using in vivo or ex vivo electrophysiological techniques, measurement of sweat or salivary C1 concentrations, or ex vivo biochemical or histochemical techniques to monitor cell surface density.
  • the pharmaceutically acceptable compositions or tablets comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2 are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit little to no residual CFTR activity.
  • compositions or tablets comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2 are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit little to no residual CFTR activity in the apical membrane of respiratory epithelia.
  • the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who have residual CFTR activity induced or augmented using pharmacological methods.
  • the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who have residual CFTR activity induced or augmented using or gene therapy. Such methods increase the amount of CFTR present at the cell surface, thereby inducing a hitherto absent CFTR activity in a patient or augmenting the existing level of residual CFTR activity in a patient.
  • compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating or lessening the severity of cystic fibrosis in patients within certain genotypes exhibiting residual CFTR activity, e.g., Class I mutations (not synthesized), class II mutation (misfolding), class III mutations (impaired regulation or gating), class IV mutations (altered conductance), or class V mutations (reduced synthesis).
  • compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients within certain clinical phenotypes, e.g., a moderate to mild clinical phenotype that typically correlates with the amount of residual CFTR activity in the apical membrane of epithelia.
  • phenotypes include patients exhibiting pancreatic sufficiency.
  • compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating, lessening the severity of, or symptomatically treating patients diagnosed with pancreatic sufficiency, idiopathic pancreatitis and congenital bilateral absence of the vas deferens, or mild lung disease wherein the patient exhibits residual CFTR activity.
  • compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating, lessening the severity of, or symptomatically treating patients diagnosed with pancreatic sufficiency, idiopathic pancreatitis and congenital bilateral absence of the vas deferens, or mild lung disease wherein the patient has wild type CFTR.
  • COPD chronic obstructive pulmonary disease
  • COPD dry eye disease
  • Sjögren's Syndrome a chronic obstructive pulmonary disease
  • COPD chronic obstructive pulmonary disease
  • CFTR dry eye disease
  • Sjögren's Syndrome a chronic obstructive pulmonary disease
  • COPD is characterized by airflow limitation that is progressive and not fully reversible. The airflow limitation is due to mucus hypersecretion, emphysema, and bronchiolitis.
  • Activators of mutant or wild-type CFTR offer a potential treatment of mucus hypersecretion and impaired mucociliary clearance that is common in COPD.
  • CFTR Dry eye disease
  • tear aqueous production and abnormal tear film lipid, protein and mucin profiles There are many causes of dry eye, some of which include age, Lasik eye surgery, arthritis, medications, chemical/thermal burns, allergies, and diseases, such as cystic fibrosis and Sjögrens's syndrome.
  • Increasing anion secretion via CFTR would enhance fluid transport from the corneal endothelial cells and secretory glands surrounding the eye to increase comeal hydration.
  • Sjögrens's syndrome is an autoimmune disease in which the immune system attacks moisture-producing glands throughout the body, including the eye, mouth, skin, respiratory tissue, liver, vagina, and gut. Symptoms, include, dry eye, mouth, and vagina, as well as lung disease. The disease is also associated with rheumatoid arthritis, systemic lupus, systemic sclerosis, and polymypositis/dermatomyositis. Defective protein trafficking is believed to cause the disease, for which treatment options are limited. Augmenters or inducers of CFTR activity may hydrate the various organs afflicted by the disease and help to elevate the associated symptoms.
  • Compound 1 Form I the solid dispersion comprising substantially amorphous Compound 2, and excipients may be dispensed in separate intermediate bin containers (IBCs). These materials may be screened using a “bin-to-bin” screening operation. Appropriate screen sizes are mesh 20, mesh 40, or mesh 60.
  • the IBCs containing the screened Compound 1 Form I, the solid dispersion comprising substantially amorphous Compound 2, and excipients may be docked to the a feeder system, which can feed the materials in a controlled manner, e.g. using volumetric or gravimetric loss in weight feeders, into a continuous blender.
  • the feed rates of the individual components is defined by the formulation composition and the overall line rate.
  • the line rate may be 8 kg/hr to 30 kg/hr.
  • the continuous blender can have different blade configurations to allow appropriate blending and the rotational speed of these blades may be between 80 RPM and 300 RPM.
  • a granulation solution may be prepared by dissolving 48 g sodium lauryl sulfate and 159 g polyvinylpyrrolidone in 1,626 g water in a stainless steel container, using an overhead stirrer with a stirring speed of 700 RPM.
  • the granulation solution may be placed in a container from which the solution may be pumped into the twin screw granulator using a peristaltic pump with a mass flow meter and control, using a flow rate that is appropriate for the process.
  • the blend may be granulated using a twin screw granulator such as the granulator that is part of the DLR.
  • the blend may be added to the twin screw granulator using a Loss in Weight feeder, such as the K-Tron feeder on the DLR, with a feed rate of 8 kg/hr to 24 kg/hr.
  • the twin screw granulator may be operated with a barrel temperature of 25 degrees Celsius and a screw speed of 200 to 950 RPM.
  • the granulation process may be performed for three minutes for small batch sizes or several hours for large batch sizes.
  • the wet granules may be fed directly into a fluid bed dryer, such as the segmented fluid bed dryer on the DLR.
  • the drying end-point may be chosen at a product temperature during discharge ranging from 40 to 55 degrees Celsius at which point the water content of the granules may be 2.1% w/w (“Loss on Drying, LOD”) or less.
  • the drying time may be 12 minutes, or shorter or longer, to reach the desired drying endpoint.
  • the dried granules may be milled to reduce the size of the granules.
  • a cone mill such as the integrated Quadro U10 CoMil may be used for this.
  • the granules may be blended with extra-granular excipients such as fillers and lubricant using loss in weight feeders and a continuous blender.
  • the blending speed may be 80-300 RPM.
  • the compression blend may be compressed into tablets using a single station or rotary tablet press, such as the Courtoy Modul P press, which is part of the DLR system, using appropriately sized tooling.
  • the weight of the tablets for a dose of 200 mg of Compound 1 Form I and 125 mg of substantially amorphous Compound 2 may be about 500 or 600 mg.
  • Tablets may be film coated using the innovative Omega film coater, which is part of the DLR system. This coater enables fast film coating of sub-batches of 1 to 4 kg to allow continuous manufacturing.
  • Film coated tablets may be printed with a monogram on one or both tablet faces with, for example, an Ackley ramp printer.
  • the continuous process described above in one embodiment is enhanced by PAT techniques as described in Table 1.
  • PAT techniques as described in Table 1.
  • the PAT systems may be used for real time release testing (RTRT) and may also be employed for in process controls (IPC) and feedback/feed-forward control.
  • RTRT real time release testing
  • IPC in process controls
  • Meeting specifications may be done by RTRT as described in Table 2.
  • PAT measurements can serve as surrogates for conventional end-testing directly via combining measurements to express attributes conventionally (i.e. as assay, CU, dissolution, etc.). Validation can be performed using ICH Q2 as guidance. Sequential off-line to on-line method development allows for the assessment of CQAs in a material sparing manner. Ultimately, RTRT will lead to ensuring product quality at a higher confidence level than conventional testing.
  • the continuous process of manufacturing of the present invention utilizes high throughput testing (HTT) HPLC methods to validate samples.
  • High throughput testing HPLC methods achieve 24 hour sample turnaround time for at least 300 samples by improving sample preparation techniques, emphasizing generic analysis methods, using well defined sample workflows, and automating data processing.
  • improved sample preparation techniques comprise using wide mouth disposable bottles.
  • improved sample preparation techniques comprise adding the entire vial of a sample to a disposable bottle, adding diluent, shaking overnight, and centrifuging.
  • HPLC methods can be developed and validated for multiple projects. Common HPLC columns and commercial mobile phases can be used. Additional analysis improvements include leveraged standard stability and utilizing injection overlap.
  • HTT HPLC is used in the development of the process analytical techniques as a way of correlating the spectroscopic data collected from the process analytical techniques with an absolute number.
  • the present invention features a process of conducting high throughput HPLC comprising a) dropping containers, such as a vials, of pre-weighed samples into plastic bottles, such as HDPE bottles; b) adding solution to each set of container and bottle via a bottle top dispenser; c) shaking the sets of plastic bottles, vials, and solutions until samples are dissolved; d) centrifuging the sets of plastic bottles, vials, and solutions; e) loading an aliquot of supernatant from the centrifuge step onto an HPLC column; and f) running the column with a mobile phase.
  • HTT HPLC The advantage of HTT HPLC is that it can measure a high volume of samples in a timely, accurate, and cost effective manner.
  • the sample preparation uses plastic bottles as the main vessel which can be placed in large number on a shaker and then transferred directly to a centrifuge. This avoids the more time consuming step of filtering the solution of sample. Additionally, the size of the plastic bottle allows the sample to be added directly by simply dropping the container, such as a vial, of sample into the plastic bottle. Commercially available solution dispensers can then be used to add a fixed amount of solution, thus avoiding another time consuming step of pipetting the solution in.
  • Table 3 summarizes the benefits of high throughput testing HPLC compared to traditional HPLC testing methods.

Abstract

The present invention utilizes a high throughput testing (HTT) method of high performance liquid chromatography (HPLC) to validate samples of pharmaceutical compositions. In one embodiment, improved sample preparation techniques comprise adding the entire vial of a sample to a wide mouth disposable bottle, adding diluent, shaking overnight, and centrifuging.

Description

This is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/US2015/061264, filed Nov. 18, 2015, which designated the U.S. and which claims the benefit of U.S. Provisional Application No. 62/081,181, filed Nov. 18, 2014, all of which are incorporated herein by reference.
TECHNICAL FIELD OF INVENTION
The invention relates to a process of conducting high throughput testing (HTT) high performance liquid chromatography (HPLC) useful for testing large amounts of samples quickly and accurately. In one embodiment, HTT HPLC is useful for developing process analytical techniques (PAT) for continuous manufacturing of pharmaceutical compositions. In another embodiment, the pharmaceutical compositions are for the treatment of CFTR mediated diseases such as cystic fibrosis and comprise one or more active pharmaceutical ingredient (API).
BACKGROUND
A common challenge for drugs approved by the FDA is the occasional lack of drug availability for patients in need thereof. Accordingly, a significant unmet need exists for the disclosed processes of preparing drugs in a continuous and controlled manner as opposed to the more traditional batch preparations. To achieve continuous manufacturing, PAT must be developed that accurately monitor properties of the pharmaceutical compositions without interrupting the continuity of the processes. PAT, however, are spectroscopic in nature and must be correlated to references to be of any use. This correlation to references requires running many samples in a timely fashion using HTT HPLC techniques disclosed herein. It is also envisioned that HTT HPLC can be used to test the concentration of API in the final composition as either a back-up to PAT or when PAT is not available.
SUMMARY
In one embodiment, the present invention features a process of conducting high throughput HPLC comprising a) dropping containers, such as a vials, of pre-weighed samples into plastic bottles, such as HDPE bottles; b) adding solution to each set of container and bottle via a bottle top dispenser; c) shaking each set of plastic bottle, container, and solution until sample is dissolved; d) centrifuging each set of plastic bottle, container, and solution; e) loading an aliquot of supernatant from the centrifuge step onto an HPLC column; and f) running the column with a mobile phase.
In another embodiment, the process is used to supply correlating values to PAT measurements for continuous manufacturing. In another embodiment, the process is used to measure the concentration of API in the final pharmaceutical composition.
In another embodiment, the pharmaceutical composition is a tablet. In another embodiment, the tablet is for the treatment of a CFTR mediated disease such as cystic fibrosis (CF).
In another embodiment, the tablet comprises two API. In another embodiment, one API is a CF corrector. In another embodiment, one API is a CF potentiator. In another embodiment, one API is a CF corrector and the other API is a CF potentiator.
In another embodiment, one API is 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (Compound 1), which has the structure below:
Figure US10302602-20190528-C00001
In another embodiment, one API is N-(5-hydroxy-2,4-ditert-butyl-phenyl)-4-oxo-1H-quinoline-3-carboxamide (Compound 2), which has the structure below:
Figure US10302602-20190528-C00002
In another embodiment, one API is Compound 1 and the other API is Compound 2. In another embodiment, Compound 1 is in Form I, and Compound 2 is the form of a solid dispersion of substantially amorphous Compound 2.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a flow chart for the continuous manufacture of a tablet of Compound 1 Form I and a solid dispersion of substantially amorphous Compound 2.
FIG. 2 is a schematic drawing of a process analytical technique (PAT) enabled continuous manufacturing process where in step 1) feeder/blender one, PAT1 NIR measures material attributes during screening of raw materials; step 2) twin screw granulator, PAT2 NIR measures composition and BU; step 3) fluidized bed dryer, PAT 3a NIR measures granule uniformity, LOD, solid state form and physical attributes of granules, PAT 3b laser diffraction measures particle size distribution; step 4) milling, PAT4 NIR measures composition and BU; step 5) feeder/blender two, PAT 5a Raman measures assay and CU, PAT 5b weight, hardness, thickness; step 6) compression, PAT6 Raman measures coat thickness; and step 7) coating.
FIG. 3 is a schematic drawing showing a PAT inline Sentronics NIR located after blender one, granule mill, and extra granule blender. Each probe has 7 spots that cycle sequentially to maximize sampling and NIR with multiplexer-NIR ensuring robust and exhaustive sampling by controlled powder flow across the probe optics.
FIG. 4 is a depiction of NIR in flowing powder.
FIG. 5 is a Kaiser Raman spectrum of Compound 1 Form I and Compound 1 Form II (Compound 1 Form II is a different polymorph disclosed in US 201131588 incorporated herein in its entirety by reference) taken after tablet pressing. The Kaiser Raman spectrometer is mounted on the Kraemer UTS tablet tester.
FIG. 6 is a graph showing good correlation between predicted and reference off-line NIR samplings of Compound 2 granules.
FIG. 7 is a series of NIR spectra measuring water content in samples of Compound 1 granules.
FIG. 8 is a series of NIR spectra measuring a range of compositions comprising different ratios of Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 on the left, and pretreated spectra on the right depicting Range A for identifying Compound 1 Form I and Range B for identifying amorphous Compound 2.
FIG. 9 depicts a calibration curve for predicted Compound 1 Form I content versus reference (actual) Compound 1 Form I content using partial least squares (PLS) techniques.
FIG. 10 depicts actual results of unknown samples comprising different contents of Compound 1 Form I (Y Reference) versus predicted content using the calibration curve calculated from FIG. 19 (Y Predicted).
FIG. 11 depicts the transmission percent of a laser diffraction measurement in response to changes in line rate (flow velocity) for a composition comprising Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 showing the expected reduction in transmission percent as line rate increase.
FIG. 12 depicts laser diffraction measurements of particles comprising Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 at different line rates showing that the average particle size (Dv(50) is not affected by line rate.
FIG. 13 depicts laser diffraction measurements of particles comprising Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 under different processing parameters showing that the particle size measurements are sensitive to such changes.
FIG. 14 depicts the predictive capabilities of process analytical technology models using Raman spectroscopy, both non-continuously and continuously, for monitoring Compound 1 solid form identity in a tablet.
FIG. 15 depicts the predictive capabilities of process analytical technology models using Raman spectroscopy, both non-continuously and continuously, for monitoring Compound 2 solid form identity in a tablet.
DETAILED DESCRIPTION
Definitions
As used herein, “HTT” stands for high throughput testing and “HPLC” stands for high performance liquid chromatography. The two together as in HTT HPLC refers to a high performance liquid chromatography method that can be used to test a high volume amount of samples quickly and accurately.
As used herein, the term “active pharmaceutical ingredient” or “API” refers to a biologically active compound.
As used herein, the term “PAT” stands for process analytical technology.
As used herein, the term “CU” stands for content uniformity.
As used herein, “CFTR” stands for cystic fibrosis transmembrane conductance regulator.
As used herein, a “ΔF508 mutation” or “F508-del mutation” is a specific mutation within the CFTR protein. The mutation is a deletion of the three nucleotides that comprise the codon for amino acid phenylalanine at position 508, resulting in CFTR protein that lacks this phenylalanine residue.
As used herein, a patient who is “homozygous” for a particular mutation, e.g. ΔF508, has the same mutation on each allele.
As used herein, a patient who is “heterozygous” for a particular mutation, e.g. ΔF508, has this mutation on one allele, and a different mutation on the other allele.
As used herein, the term “CFTR corrector” refers to a compound that increases the amount of functional CFTR protein to the cell surface, resulting in enhanced ion transport.
As used herein, the term “CFTR potentiator” refers to a compound that increases the channel activity of CFTR protein located at the cell surface, resulting in enhanced ion transport.
The terms “solid form”, “solid forms” and related terms, when used herein refer to Compound 1 or Compound 2, in a particular solid form e.g. crystals, amorphous states, and the like.
As used herein, the term “substantially amorphous” refers to a solid material having little or no long range order in the position of its molecules. For example, substantially amorphous materials have less than about 15% crystallinity (e.g., less than about 10% crystallinity or less than about 5% crystallinity). It is also noted that the term ‘substantially amorphous’ includes the descriptor, ‘amorphous’, which refers to materials having no (0%) crystallinity.
As used herein, the term “substantially crystalline” (as in the phrase substantially crystalline Compound 1 Form I refers to a solid material having predominantly long range order in the position of its molecules. For example, substantially crystalline materials have more than about 85% crystallinity (e.g., more than about 90% crystallinity or more than about 95% crystallinity). It is also noted that the term ‘substantially crystalline’ includes the descriptor, ‘crystalline’, which refers to materials having 100% crystallinity.
The term “crystalline” and related terms used herein, when used to describe a substance, component, product, or form, means that the substance, component or product is substantially crystalline as determined by X-ray diffraction. (See, e.g., Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott Williams & Wilkins, Baltimore, Md. (2003); The United States Pharmacopeia, 23rd ed., 1843-1844 (1995)).
The term “tablet” as used herein refers to a physically discrete unit of agent appropriate for the patient to be treated. In general, a compacted mixture has a density greater than that of the mixture prior to compaction. A dosage tablet of the invention can have almost any shape including concave and/or convex faces, rounded or angled corners, and a rounded to rectilinear shape. In some embodiments, the compressed tablets of the invention comprise a rounded tablet having flat faces. The tablets of the invention can be prepared by any compaction and compression method known by persons of ordinary skill in the art of forming compressed solid pharmaceutical dosage forms. In particular embodiments, the formulations provided herein may be prepared using conventional methods known to those skilled in the field of pharmaceutical formulation, as described, e.g., in pertinent textbooks. See, e.g., Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott Williams & Wilkins, Baltimore, Md. (2003); Ansel et al., Pharmaceutical Dosage Forms And Drug Delivery Systems, 7th Edition, Lippincott Williams & Wilkins, (1999); The Handbook of Pharmaceutical Excipients, 4th edition, Rowe et al., Eds., American Pharmaceuticals Association (2003); Gibson, Pharmaceutical Preformulation And Formulation, CRC Press (2001), these references hereby incorporated herein by reference in their entirety.
As used herein, an “excipient” includes functional and non-functional ingredients in a pharmaceutical composition.
An “effective amount” or “therapeutically effective amount” of a compound of the invention may vary according to factors such as the disease state, age, and weight of the subject, and the ability of the compound of the invention to elicit a desired response in the subject. Dosage regimens may be adjusted to provide the optimum therapeutic response. An effective amount is also one in which any toxic or detrimental effects (e.g., side effects) of the compound of the invention are outweighed by the therapeutically beneficial effects.
As used herein, and unless otherwise specified, the terms “therapeutically effective amount” and “effective amount” of a compound mean an amount sufficient to provide a therapeutic benefit in the treatment or management of a disease or disorder, or to delay or minimize one or more symptoms associated with the disease or disorder. A “therapeutically effective amount” and “effective amount” of a compound mean an amount of therapeutic agent, alone or in combination with one or more other agent(s), which provides a therapeutic benefit in the treatment or management of the disease or disorder. The terms “therapeutically effective amount” and “effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of disease or disorder, or enhances the therapeutic efficacy of another therapeutic agent.
“Substantially pure” as used in the phrase “substantially pure Compound 1 Form I” means greater than about 90% purity. In another embodiment, substantially pure refers to greater than about 95% purity. In another embodiment, substantially pure refers to greater than about 98% purity. In another embodiment, substantially pure refers to greater than about 99% purity.
With respect to Compound 1 Form I, or a solid dispersion comprising substantially amorphous Compound 2, the terms “about” and “approximately”, when used in connection with doses, amounts, or weight percent of ingredients of a composition or a dosage form, mean a dose, amount, or weight percent that is recognized by one of ordinary skill in the art to provide a pharmacological effect equivalent to that obtained from the specified dose, amount, or weight percent. Specifically the term “about” or “approximately” means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. In certain embodiments, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05% of a given value or range.
Compound 1 Form I is prepared by methods disclosed in U.S. Pat. No. 8,507,534 incorporated herein by reference in its entirety. A solid dispersion of substantially amorphous Compound 2 is prepared by methods disclosed in International Published Patent Application No. WO2010/019239 incorporated herein by reference in its entirety. A tablet comprising Compound 1 and Compound 2 may be prepared continuously according to the flow chart of FIG. 1.
Therapeutic Uses of the Composition
In one aspect, the invention also provides a method of treating, lessening the severity of, or symptomatically treating a disease in a patient, the method comprising administering an effective amount of the pharmaceutical composition or tablet prepared in a continuous manner using PAT to the patient, preferably a mammal, wherein the disease is selected from cystic fibrosis, asthma, smoke induced COPD, chronic bronchitis, rhinosinusitis, constipation, pancreatitis, pancreatic insufficiency, male infertility caused by congenital bilateral absence of the vas deferens (CBAVD), mild pulmonary disease, idiopathic pancreatitis, allergic bronchopulmonary aspergillosis (ABPA), liver disease, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders such as Huntington's, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler-Scheinker syndrome, COPD, dry-eye disease, or Sjogren's disease, osteoporosis, osteopenia, bone healing and bone growth (including bone repair, bone regeneration, reducing bone resorption and increasing bone deposition), Gorham's Syndrome, chloride channelopathies such as myotonia congenita (Thomson and Becker forms), Bartter's syndrome type III, Dent's disease, hyperekplexia, epilepsy, lysosomal storage disease, Angelman syndrome, and Primary Ciliary Dyskinesia (PCD), a term for inherited disorders of the structure and/or function of cilia, including PCD with situs inversus (also known as Kartagener syndrome), PCD without situs inversus and ciliary aplasia.
In one aspect, the invention also provides a method of treating, lessening the severity of, or symptomatically treating a disease in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the disease is selected from generalized epilepsy with ferbrile seizures plus (GEFS+), general epilepsy with ferbile and aferbrile seizures, myotonia, paramyotonia congenital, potassium-aggravated myotonia, hyperkalemic periodic paralysis, LQTS, LQTS/Brugada syndrome, autosomal-dominant LQTS with deafness, autosomal-recessive LQTS, LQTS with dysmorphic features, congenital and acquired LQTS, Timothy syndrome, persistent hyperinsulinemic hypolglycemia of infancy, dilated cardiomyopathy, autosomal-dominant LQTS, Dent disease, Osteopetrosis, Bartter syndrome type III, central core disease, malignant hyperthermia, and catecholaminergic polymorphic tachycardia.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation N1303K, ΔI507, or R560T.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation G551D. In another embodiment, the patient is homozygous in G551D. In another embodiment, the patient is heterozygous in G551D wherein the other CFTR genetic mutation is any one of ΔF508, G542X, N1303K, W1282X, R117H, R553X, 1717-1G→A, 621+1G→T, 2789+5G→A, 3849+10kbC→T, R1162X, G85E, 3120+1G→A, ΔI507, 1898+1G→A, 3659delC, R347P, R560T, R334W, A455E, 2184delA, or 711+1G→T.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation ΔF508. In another embodiment, the patient is homozygous in ΔF508. In another embodiment, the patient is heterozygous in ΔF508 wherein the other CFTR genetic mutation is any one of G551D, G542X, N1303K, W1282X, R117H, R553X, 1717-1G→A, 621+1G→T, 2789+5G→A, 3849+10kbC→T, R1162X, G85E, 3120+1G→A, ΔI507, 1898+1G→A, 3659delC, R347P, R560T, R334W, A455E, 2184delA, or 711+1G→T.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G→A, 621+1G→T, 3120+1G→A, 1898+1G→A, 711+1G→T, 2622+1G→A, 405+1G→A, 406-1G→A, 4005+1G→A, 1812-1G→A, 1525-1G→A, 712-1G→T, 1248+1G→A, 1341+1G→A, 3121-1G→A, 4374+1G→T, 3850-1G→A, 2789+5G→A, 3849+10kbC→T, 3272-26A→G, 711+5G→A, 3120G→A, 1811+1.6kbA→G, 711+3A→G, 1898+3A→G, 1717-8G→A, 1342-2A→C, 405+3A→C, 1716G/A, 1811+1G→C, 1898+5G→T, 3850-3T→G, IVS14b+5G→A, 1898+1G→T, 4005+2T→C and 621+3A→G.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R. In one embodiment of this aspect, the invention provides a method of treating CFTR comprising administering Compound 1 to a patient possessing a human CFTR mutation selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R. In some embodiments of this aspect, the method produces a greater than 10-fold increase in chloride transport relative to baseline chloride transport.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H. In one embodiment of this aspect, the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G→A, 621+1G→T, 3120+1G→A, 1898+1G→A, 711+1G→T, 2622+1G→A, 405+1G→A, 406-1G→A, 4005+1G→A, 1812-1G→A, 1525-1G→A, 712-1G→T, 1248+1G→A, 1341+1G→A, 3121-1G→A, 4374+1G→T, 3850-1G→A, 2789+5G→A, 3849+10kbC→T, 3272-26A→G, 711+5G→A, 3120G→A, 1811+1.6kbA→G, 711+3A→G, 1898+3A→G, 1717-8G→A, 1342-2A→C, 405+3A→C, 1716G/A, 1811+1G→C, 1898+5G→T, 3850-3T→G, IVS14b+5G→A, 1898+1G→T, 4005+2T→C and 621+3A→G. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G→A, 1811+1.6kbA→G, 2789+5G→A, 3272-26A→G and 3849+10kbC→T. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G→A and 3272-26A→G.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G→A, 621+1G→T, 3120+1G→A, 1898+1G→A, 711+1G→T, 2622+1G→A, 405+1G→A, 406-1G→A, 4005+1G→A, 1812-1G→A, 1525-1G→A, 712-1G→T, 1248+1G→A, 1341+1G→A, 3121-1G→A, 4374+1G→T, 3850-1G→A, 2789+5G→A, 3849+10kbC→T, 3272-26A→G, 711+5G→A, 3120G→A, 1811+1.6kbA→G, 711+3A→G, 1898+3A→G, 1717-8G→A, 1342-2A→C, 405+3A→C, 1716G/A, 1811+1G→C, 1898+5G→T, 3850-3T→G, IVS14b+5G→A, 1898+1G→T, 4005+2T→C and 621+3A→G, and a human CFTR mutation selected from ΔF508, R117H, and G551D.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R, and a human CFTR mutation selected from ΔF508, R117H, and G551D. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N, and a human CFTR mutation selected from ΔF508, R117H, and G551D. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R, and a human CFTR mutation selected from ΔF508, R117H, and G551D. In some embodiments of this aspect, the method produces a greater than 10-fold increase in chloride transport relative to baseline chloride transport.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H, and a human CFTR mutation selected from ΔF508, R117H, and G551D. In one embodiment of this aspect, the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G→A, 621+1G→T, 3120+1G→A, 1898+1G→A, 711+1G→T, 2622+1G→A, 405+1G→A, 406-1G→A, 4005+1G→A, 1812-1G→A, 1525-1G→A, 712-1G→T, 1248+1G→A, 1341+1G→A, 3121-1G→A, 4374+1G→T, 3850-1G→A, 2789+5G→A, 3849+10kbC→T, 3272-26A→G, 711+5G→A, 3120G→A, 1811+1.6kbA→G, 711+3A→G, 1898+3A→G, 1717-8G→A, 1342-2A→C, 405+3A→C, 1716G/A, 1811+1G→C, 1898+5G→T, 3850-3T→G, IVS14b+5G→A, 1898+1G→T, 4005+2T→C and 621+3A→G, and a human CFTR mutation selected from ΔF508, R117H, and G551D. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G→A, 1811+1.6kbA→G, 2789+5G→A, 3272-26A→G and 3849+10kbC→T, and a human CFTR mutation selected from ΔF508, R117H, and G551D. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G→A and 3272-26A→G, and a human CFTR mutation selected from ΔF508, R117H.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G→A, 621+1G→T, 3120+1G→A, 1898+1G→A, 711+1G→T, 2622+1G→A, 405+1G→A, 406-1G→A, 4005+1G→A, 1812-1G→A, 1525-1G→A, 712-1G→T, 1248+1G→A, 1341+1G→A, 3121-1G→A, 4374+1G→T, 3850-1G→A, 2789+5G→A, 3849+10kbC→T, 3272-26A→G, 711+5G→A, 3120G→A, 1811+1.6kbA→G, 711+3A→G, 1898+3A→G, 1717-8G→A, 1342-2A→C, 405+3A→C, 1716G/A, 1811+1G→C, 1898+5G→T, 3850-3T→G, IVS14b+5G→A, 1898+1G→T, 4005+2T→C and 621+3A→G, and a human CFTR mutation selected from ΔF508, R117H, and G551D.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R. In some embodiments of this aspect, the method produces a greater than 10-fold increase in chloride transport relative to baseline chloride transport.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H. In one embodiment of this aspect, the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G→A, 621+1G→T, 3120+1G→A, 1898+1G→A, 711+1G→T, 2622+1G→A, 405+1G→A, 406-1G→A, 4005+1G→A, 1812-1G→A, 1525-1G→A, 712-1G→T, 1248+1G→A, 1341+1G→A, 3121-1G→A, 4374+1G→T, 3850-1G→A, 2789+5G→A, 3849+10kbC→T, 3272-26A→G, 711+5G→A, 3120G→A, 1811+1.6kbA→G, 711+3A→G, 1898+3A→G, 1717-8G→A, 1342-2A→C, 405+3A→C, 1716G/A, 1811+1G→C, 1898+5G→T, 3850-3T→G, IVS14b+5G→A, 1898+1G→T, 4005+2T→C and 621+3A→G. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G→A, 1811+1.6kbA→G, 2789+5G→A, 3272-26A→G and 3849+10kbC→T. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G→A and 3272-26A→G.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G→A, 621+1G→T, 3120+1G→A, 1898+1G→A, 711+1G→T, 2622+1G→A, 405+1G→A, 406-1G→A, 4005+1G→A, 1812-1G→A, 1525-1G→A, 712-1G→T, 1248+1G→A, 1341+1G→A, 3121-1G→A, 4374+1G→T, 3850-1G→A, 2789+5G→A, 3849+10kbC→T, 3272-26A→G, 711+5G→A, 3120G→A, 1811+1.6kbA→G, 711+3A→G, 1898+3A→G, 1717-8G→A, 1342-2A→C, 405+3A→C, 1716G/A, 1811+1G→C, 1898+5G→T, 3850-3T→G, IVS14b+5G→A, 1898+1G→T, 4005+2T→C and 621+3A→G, and a human CFTR mutation selected from ΔF508, R117H, and G551D, and one or more human CFTR mutations selected from ΔF508, R117H, and G551D.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R, and one or more human CFTR mutations selected from ΔF508, R117H, and G551D. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N, and one or more human CFTR mutations selected from ΔF508, R117H, and G551D. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R, and one or more human CFTR mutations selected from ΔF508, R117H, and G551D. In some embodiments of this aspect, the method produces a greater than 10-fold increase in chloride transport relative to baseline chloride transport.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H, and one or more human CFTR mutations selected from ΔF508, R117H, and G551D. In one embodiment of this aspect, the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G→A, 621+1G→T, 3120+1G→A, 1898+1G→A, 711+1G→T, 2622+1G→A, 405+1G→A, 406-1G→A, 4005+1G→A, 1812-1G→A, 1525-1G→A, 712-1G→T, 1248+1G→A, 1341+1G→A, 3121-1G→A, 4374+1G→T, 3850-1G→A, 2789+5G→A, 3849+10kbC→T, 3272-26A→G, 711+5G→A, 3120G→A, 1811+1.6kbA→G, 711+3A→G, 1898+3A→G, 1717-8G→A, 1342-2A→C, 405+3A→C, 1716G/A, 1811+1G→C, 1898+5G→T, 3850-3T→G, IVS14b+5G→A, 1898+1G→T, 4005+2T→C and 621+3A→G, and one or more human CFTR mutations selected from ΔF508, R117H, and G551D. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G→A, 1811+1.6kbA→G, 2789+5G→A, 3272-26A→G and 3849+10kbC→T, and one or more human CFTR mutations selected from ΔF508, R117H, and G551D. In one aspect, the present invention is directed to a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G→A and 3272-26A→G, and one or more human CFTR mutations selected from ΔF508, R117H, and G551D.
In certain embodiments, the pharmaceutically acceptable composition or tablet of the present invention comprising Compound 1 Form I and a solid dispersion of substantially amorphous Compound 2 are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit residual CFTR activity in the apical membrane of respiratory and non-respiratory epithelia. The presence of residual CFTR activity at the epithelial surface can be readily detected using methods known in the art, e.g., standard electrophysiological, biochemical, or histochemical techniques. Such methods identify CFTR activity using in vivo or ex vivo electrophysiological techniques, measurement of sweat or salivary C1 concentrations, or ex vivo biochemical or histochemical techniques to monitor cell surface density. Using such methods, residual CFTR activity can be readily detected in patients heterozygous or homozygous for a variety of different mutations, including patients homozygous or heterozygous for the most common mutation, ΔF508, as well as other mutations such as the G551D mutation, or the R117H mutation. In certain embodiments, the pharmaceutically acceptable compositions or tablets comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2 are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit little to no residual CFTR activity. In certain embodiments, the pharmaceutically acceptable compositions or tablets comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2 are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit little to no residual CFTR activity in the apical membrane of respiratory epithelia.
In another embodiment, the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who have residual CFTR activity induced or augmented using pharmacological methods. In another embodiment, the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who have residual CFTR activity induced or augmented using or gene therapy. Such methods increase the amount of CFTR present at the cell surface, thereby inducing a hitherto absent CFTR activity in a patient or augmenting the existing level of residual CFTR activity in a patient.
In one embodiment, pharmaceutical compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating or lessening the severity of cystic fibrosis in patients within certain genotypes exhibiting residual CFTR activity, e.g., Class I mutations (not synthesized), class II mutation (misfolding), class III mutations (impaired regulation or gating), class IV mutations (altered conductance), or class V mutations (reduced synthesis).
In one embodiment, pharmaceutical compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients within certain clinical phenotypes, e.g., a moderate to mild clinical phenotype that typically correlates with the amount of residual CFTR activity in the apical membrane of epithelia. Such phenotypes include patients exhibiting pancreatic sufficiency.
In one embodiment, pharmaceutical compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating, lessening the severity of, or symptomatically treating patients diagnosed with pancreatic sufficiency, idiopathic pancreatitis and congenital bilateral absence of the vas deferens, or mild lung disease wherein the patient exhibits residual CFTR activity.
In one embodiment, pharmaceutical compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating, lessening the severity of, or symptomatically treating patients diagnosed with pancreatic sufficiency, idiopathic pancreatitis and congenital bilateral absence of the vas deferens, or mild lung disease wherein the patient has wild type CFTR.
In addition to cystic fibrosis, modulation of CFTR activity may be beneficial for other diseases not directly caused by mutations in CFTR, such as secretory diseases and other protein folding diseases mediated by CFTR. These include, but are not limited to, chronic obstructive pulmonary disease (COPD), dry eye disease, and Sjögren's Syndrome. COPD is characterized by airflow limitation that is progressive and not fully reversible. The airflow limitation is due to mucus hypersecretion, emphysema, and bronchiolitis. Activators of mutant or wild-type CFTR offer a potential treatment of mucus hypersecretion and impaired mucociliary clearance that is common in COPD. Specifically, increasing anion secretion across CFTR may facilitate fluid transport into the airway surface liquid to hydrate the mucus and optimized periciliary fluid viscosity. This would lead to enhanced mucociliary clearance and a reduction in the symptoms associated with COPD. Dry eye disease is characterized by a decrease in tear aqueous production and abnormal tear film lipid, protein and mucin profiles. There are many causes of dry eye, some of which include age, Lasik eye surgery, arthritis, medications, chemical/thermal burns, allergies, and diseases, such as cystic fibrosis and Sjögrens's syndrome. Increasing anion secretion via CFTR would enhance fluid transport from the corneal endothelial cells and secretory glands surrounding the eye to increase comeal hydration. This would help to alleviate the symptoms associated with dry eye disease. Sjögrens's syndrome is an autoimmune disease in which the immune system attacks moisture-producing glands throughout the body, including the eye, mouth, skin, respiratory tissue, liver, vagina, and gut. Symptoms, include, dry eye, mouth, and vagina, as well as lung disease. The disease is also associated with rheumatoid arthritis, systemic lupus, systemic sclerosis, and polymypositis/dermatomyositis. Defective protein trafficking is believed to cause the disease, for which treatment options are limited. Augmenters or inducers of CFTR activity may hydrate the various organs afflicted by the disease and help to elevate the associated symptoms.
Anywhere in the present application where a name of a compound may not correctly describe the structure of the compound, the structure supersedes the name and governs.
EXAMPLES
Tablet Formation from a Fully Continuous Wet Granulation Process
Equipment/Process
Equipment
Fully Continuous Development and Launch Rig (DLR) or similar type of equipment.
Screening
Compound 1 Form I, the solid dispersion comprising substantially amorphous Compound 2, and excipients may be dispensed in separate intermediate bin containers (IBCs). These materials may be screened using a “bin-to-bin” screening operation. Appropriate screen sizes are mesh 20, mesh 40, or mesh 60.
Blending
The IBCs containing the screened Compound 1 Form I, the solid dispersion comprising substantially amorphous Compound 2, and excipients may be docked to the a feeder system, which can feed the materials in a controlled manner, e.g. using volumetric or gravimetric loss in weight feeders, into a continuous blender. The feed rates of the individual components is defined by the formulation composition and the overall line rate. The line rate may be 8 kg/hr to 30 kg/hr. The continuous blender can have different blade configurations to allow appropriate blending and the rotational speed of these blades may be between 80 RPM and 300 RPM.
Wet Granulation
A granulation solution may be prepared by dissolving 48 g sodium lauryl sulfate and 159 g polyvinylpyrrolidone in 1,626 g water in a stainless steel container, using an overhead stirrer with a stirring speed of 700 RPM. The granulation solution may be placed in a container from which the solution may be pumped into the twin screw granulator using a peristaltic pump with a mass flow meter and control, using a flow rate that is appropriate for the process. The blend may be granulated using a twin screw granulator such as the granulator that is part of the DLR. The blend may be added to the twin screw granulator using a Loss in Weight feeder, such as the K-Tron feeder on the DLR, with a feed rate of 8 kg/hr to 24 kg/hr. The twin screw granulator may be operated with a barrel temperature of 25 degrees Celsius and a screw speed of 200 to 950 RPM. The granulation process may be performed for three minutes for small batch sizes or several hours for large batch sizes.
Drying
The wet granules may be fed directly into a fluid bed dryer, such as the segmented fluid bed dryer on the DLR. The drying end-point may be chosen at a product temperature during discharge ranging from 40 to 55 degrees Celsius at which point the water content of the granules may be 2.1% w/w (“Loss on Drying, LOD”) or less. The drying time may be 12 minutes, or shorter or longer, to reach the desired drying endpoint.
Milling
The dried granules may be milled to reduce the size of the granules. A cone mill such as the integrated Quadro U10 CoMil may be used for this.
Blending
The granules may be blended with extra-granular excipients such as fillers and lubricant using loss in weight feeders and a continuous blender. The blending speed may be 80-300 RPM.
Compression
The compression blend may be compressed into tablets using a single station or rotary tablet press, such as the Courtoy Modul P press, which is part of the DLR system, using appropriately sized tooling. The weight of the tablets for a dose of 200 mg of Compound 1 Form I and 125 mg of substantially amorphous Compound 2 may be about 500 or 600 mg.
Film Coating
Tablets may be film coated using the innovative Omega film coater, which is part of the DLR system. This coater enables fast film coating of sub-batches of 1 to 4 kg to allow continuous manufacturing.
Printing
Film coated tablets may be printed with a monogram on one or both tablet faces with, for example, an Ackley ramp printer.
PAT
The continuous process described above in one embodiment is enhanced by PAT techniques as described in Table 1. There are 6 PAT positions each of which includes a manual sampling port. In process samples can be obtained for investigational reasons, as needed, and also for PAT model maintenance, transfer, and validation. The PAT systems may be used for real time release testing (RTRT) and may also be employed for in process controls (IPC) and feedback/feed-forward control.
TABLE 1
Proposed
Location Technology Processing Step Purpose Role
PAT
1 NIR Dispensing/ Build an NIR IPC
Charging raw material
library
PAT
2 NIR Initial blend Blend IPC
uniformity
PAT
3 NIR Wet Granule IPC
Granulation uniformity
Moisture RTRT/IPC
Laser Wet Particle size RTRT
Diffraction Granulation distribution
PAT
4 NIR Final blend Blend RTRT
uniformity
Moisture RTRT
PAT
5 Raman Compression API form RTRT
Identification RTRT
Tablet Compression Weight RTRT/IPC
Tester Thickness IPC
Hardness RTRT/IPC
PAT
6 Raman Coating Coating IPC
thickness
Meeting specifications may be done by RTRT as described in Table 2.
TABLE 2
Final Product In-Process
Attribute PAT Position Material Measurement
Identity PAT 5a Uncoated Confirms spectrum
(Raman) Tablet matches the reference
standard spectra
Assay PAT 4 (NIR) Final Blend API Concentration
PAT 5b Uncoated Tablet Weight
(Tablet Tester) Tablet
CU PAT 4 (NIR) Final Blend Variance in API
concentration
PAT 5b Uncoated Variance in tablet
(Tablet Tester) Tablet weight
Dissolution May include: May include:
PAT 3b (Laser Milled Granule Particle
Diffraction) granules Size
PAT 4 (NIR) Final Blend API Concentration
PAT 5b Uncoated Tablet Weight,
(Tablet Tester) Tablet Hardness
Moisture PAT
4 Final Blend Water Content
Form PAT 5a Uncoated Form I & Absence of
(Raman) Tablet Form II
There is a high probability of detecting non-conforming material. For example, if model classification criterion is set at a minimum of 95% confidence and 800 tablets are tested during batch manufacture, 40 hour run with a sampling rate of 1 tablet every 3 minutes equals 800 tablets. Then, probability of passing a non-conforming batch is extremely low: <(0.05)n-, where n=# of samples, therefore the probability is <1.5×10−1041. Probability of not detecting non-conforming tablets resulting from a short term event (≥3 minutes) is as follows: 1 tablet (3 min event)→<0.05 (probability of detection >0.95); 2 tablets (6 minute event)→<0.0025 (probability of detection >0.9975).
PAT measurements can serve as surrogates for conventional end-testing directly via combining measurements to express attributes conventionally (i.e. as assay, CU, dissolution, etc.). Validation can be performed using ICH Q2 as guidance. Sequential off-line to on-line method development allows for the assessment of CQAs in a material sparing manner. Ultimately, RTRT will lead to ensuring product quality at a higher confidence level than conventional testing.
HTT HPLC
In one embodiment, the continuous process of manufacturing of the present invention utilizes high throughput testing (HTT) HPLC methods to validate samples. High throughput testing HPLC methods achieve 24 hour sample turnaround time for at least 300 samples by improving sample preparation techniques, emphasizing generic analysis methods, using well defined sample workflows, and automating data processing.
Sample preparation takes the majority of an FTE's time and is the source of most errors. It is often overlooked during method development. In one embodiment, improved sample preparation techniques comprise using wide mouth disposable bottles. In another embodiment, improved sample preparation techniques comprise adding the entire vial of a sample to a disposable bottle, adding diluent, shaking overnight, and centrifuging.
Generic HPLC methods can be developed and validated for multiple projects. Common HPLC columns and commercial mobile phases can be used. Additional analysis improvements include leveraged standard stability and utilizing injection overlap.
In another embodiment, HTT HPLC is used in the development of the process analytical techniques as a way of correlating the spectroscopic data collected from the process analytical techniques with an absolute number.
In one embodiment, the present invention features a process of conducting high throughput HPLC comprising a) dropping containers, such as a vials, of pre-weighed samples into plastic bottles, such as HDPE bottles; b) adding solution to each set of container and bottle via a bottle top dispenser; c) shaking the sets of plastic bottles, vials, and solutions until samples are dissolved; d) centrifuging the sets of plastic bottles, vials, and solutions; e) loading an aliquot of supernatant from the centrifuge step onto an HPLC column; and f) running the column with a mobile phase.
The advantage of HTT HPLC is that it can measure a high volume of samples in a timely, accurate, and cost effective manner. The sample preparation uses plastic bottles as the main vessel which can be placed in large number on a shaker and then transferred directly to a centrifuge. This avoids the more time consuming step of filtering the solution of sample. Additionally, the size of the plastic bottle allows the sample to be added directly by simply dropping the container, such as a vial, of sample into the plastic bottle. Commercially available solution dispensers can then be used to add a fixed amount of solution, thus avoiding another time consuming step of pipetting the solution in.
Table 3 summarizes the benefits of high throughput testing HPLC compared to traditional HPLC testing methods.
TABLE 3
Traditional Method HTT Method
Samples added to volumetric flasks Samples added to disposable
HDPE bottles
Premixed diluent Off shelf solvents mixed into
sample bottle (no diluent
prep necessary)
Diluent added and the QS'd to line Calibrated bottle top
dispensers dispense solvents
For BU: quantitative transfer For BU: sample bottles rinsed
in bottle
Sonication and shaking of samples Shaking only
Secondary dilution and QS No dilution (injection volume
driven)
Samples filtered Samples centrifuged
HPLC is project specific (variable HPLC is generic (uses fixed
MP and column combinations) column, fixed mobile phase A
and B, and commercially
manufactured mobile phases)
OTHER EMBODIMENTS
All publications and patents referred to in this disclosure are incorporated herein by reference to the same extent as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Should the meaning of the terms in any of the patents or publications incorporated by reference conflict with the meaning of the terms used in this disclosure, the meaning of the terms in this disclosure are intended to be controlling. Furthermore, the foregoing discussion discloses and describes merely exemplary embodiments of the invention. One skilled in the art will readily recognize from such discussion and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.

Claims (16)

The invention claimed is:
1. A process of conducting high throughput high performance liquid chromatography (HPLC) comprising:
a) dropping containers of pre-weighed samples into plastic bottles;
b) adding solution to each set of container and bottle via a bottle top dispenser;
c) shaking each set of plastic bottle, container, and solution until sample is dissolved;
d) centrifuging each set of plastic bottle, container, and solution;
e) loading an aliquot of supernatant from the centrifuge step onto an HPLC column; and
f) running the column with a mobile phase.
2. The process of claim 1, wherein the containers of step a) are vials.
3. The process of claim 1, wherein the plastic bottles of step a) are high-density polyethylene (HDPE) bottles.
4. The process of claim 1, further comprising correlating the results from the process of claim 1 to process analytical technique (PAT) measurements for continuous manufacturing.
5. The process of claim 4, wherein continuous manufacturing is for a pharmaceutical composition.
6. The process of claim 5, wherein the pharmaceutical composition is a tablet.
7. The process of claim 6, wherein the tablet is for the treatment of a cystic fibrosis transmembrance conductance regulator (CFTR) mediated disease.
8. The process of claim 7, wherein the CFTR mediated disease is cystic fibrosis.
9. The process of claim 6, wherein the tablet comprises two active pharmaceutical ingredients (API).
10. The process of claim 9, wherein one API is a cystic fibrosis (CF) corrector.
11. The process of claim 9, wherein one API is a CF potentiator.
12. The process of claim 9, wherein one API is a CF corrector and the other API is a CF potentiator.
13. The process of claim 9, wherein one API is
Figure US10302602-20190528-C00003
14. The process of claim 9, wherein one API is
Figure US10302602-20190528-C00004
15. The process of claim 9, wherein one API is
Figure US10302602-20190528-C00005
and the other API is
Figure US10302602-20190528-C00006
16. The process of claim 15, wherein
Figure US10302602-20190528-C00007
is in Form I, and
Figure US10302602-20190528-C00008
is substantially amorphous in the form of a solid dispersion.
US15/526,885 2014-11-18 2015-11-18 Process of conducting high throughput testing high performance liquid chromatography Active 2036-05-13 US10302602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/526,885 US10302602B2 (en) 2014-11-18 2015-11-18 Process of conducting high throughput testing high performance liquid chromatography

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462081181P 2014-11-18 2014-11-18
US15/526,885 US10302602B2 (en) 2014-11-18 2015-11-18 Process of conducting high throughput testing high performance liquid chromatography
PCT/US2015/061264 WO2016081556A1 (en) 2014-11-18 2015-11-18 Process of conducting high throughput testing high performance liquid chromatography

Publications (2)

Publication Number Publication Date
US20170356885A1 US20170356885A1 (en) 2017-12-14
US10302602B2 true US10302602B2 (en) 2019-05-28

Family

ID=54838411

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/526,885 Active 2036-05-13 US10302602B2 (en) 2014-11-18 2015-11-18 Process of conducting high throughput testing high performance liquid chromatography

Country Status (22)

Country Link
US (1) US10302602B2 (en)
EP (1) EP3221692B1 (en)
JP (1) JP6494757B2 (en)
KR (1) KR102576006B1 (en)
CN (1) CN107110831B (en)
AU (1) AU2015350049B2 (en)
BR (1) BR112017010406B1 (en)
CA (1) CA2968130C (en)
DK (1) DK3221692T3 (en)
ES (1) ES2882656T3 (en)
HR (1) HRP20211194T1 (en)
HU (1) HUE055423T2 (en)
IL (1) IL252272B (en)
MX (1) MX2017006443A (en)
PL (1) PL3221692T3 (en)
PT (1) PT3221692T (en)
RS (1) RS62259B1 (en)
RU (1) RU2691136C2 (en)
SG (1) SG11201703963QA (en)
SI (1) SI3221692T1 (en)
WO (1) WO2016081556A1 (en)
ZA (1) ZA201703531B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626111B2 (en) 2004-01-30 2020-04-21 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10662192B2 (en) 2004-06-24 2020-05-26 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10906891B2 (en) 2010-03-25 2021-02-02 Vertex Pharmaceuticals Incoporated Solid forms of (R)-1(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
US10975061B2 (en) 2006-04-07 2021-04-13 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10980746B2 (en) 2014-04-15 2021-04-20 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases
US11052075B2 (en) 2010-04-07 2021-07-06 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid and administration thereof
US11147770B2 (en) 2012-02-27 2021-10-19 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US11291662B2 (en) 2005-12-28 2022-04-05 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US11564916B2 (en) 2008-08-13 2023-01-31 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3203840T3 (en) 2014-10-06 2021-01-11 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2018064632A1 (en) 2016-09-30 2018-04-05 Vertex Pharmaceuticals Incorporated Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
WO2018107100A1 (en) 2016-12-09 2018-06-14 Vertex Pharmaceuticals Incorporated Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
BR112019025801A2 (en) 2017-06-08 2020-07-07 Vertex Pharmaceuticals Incorporated treatment methods for cystic fibrosis
AU2018304168B2 (en) 2017-07-17 2023-05-04 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
WO2019028228A1 (en) 2017-08-02 2019-02-07 Vertex Pharmaceuticals Incorporated Processes for preparing pyrrolidine compounds
WO2019079760A1 (en) 2017-10-19 2019-04-25 Vertex Pharmaceuticals Incorporated Crystalline forms and compositions of cftr modulators
AU2018380426B2 (en) 2017-12-08 2023-05-18 Vertex Pharmaceuticals Incorporated Processes for making modulators of cystic fibrosis transmembrane conductance regulator
TWI810243B (en) 2018-02-05 2023-08-01 美商維泰克斯製藥公司 Pharmaceutical compositions for treating cystic fibrosis
PT3752510T (en) 2018-02-15 2023-03-15 Vertex Pharma Macrocycles as modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions thereof, their use in the treatment of cycstic fibrosis, and process for making them
EP3774825A1 (en) 2018-04-13 2021-02-17 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
TW202115092A (en) 2019-08-14 2021-04-16 美商維泰克斯製藥公司 Modulators of cystic fibrosis transmembrane conductance regulator
TW202120517A (en) 2019-08-14 2021-06-01 美商維泰克斯製藥公司 Process of making cftr modulators
WO2021030552A1 (en) 2019-08-14 2021-02-18 Vertex Pharmaceuticals Incorporated Crystalline forms of cftr modulators

Citations (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758475A (en) 1971-07-20 1973-09-11 Sandoz Ag Pyrido(2,3-d)pyrimidin 2 ones
EP0081756A1 (en) 1981-12-14 1983-06-22 MEDEA RESEARCH S.r.l. New compounds with antiinflammatory and antitussive activity, process for their preparation and relative pharmaceutical compositions
JPS58121274A (en) 1981-12-14 1983-07-19 メデア・レセアルケス・エツセ・エルレ・エルレ N-pyridyl-amide of 1-phenyl-cyclopentane carboxylic acid, manufacture and medicine
US4501729A (en) 1982-12-13 1985-02-26 Research Corporation Aerosolized amiloride treatment of retained pulmonary secretions
JPH0578356A (en) 1990-11-27 1993-03-30 Takeda Chem Ind Ltd Pyridopyridazine derivative and its use
EP0574174A2 (en) 1992-06-03 1993-12-15 Eli Lilly And Company Angiotensin II antagonists
EP0591830A1 (en) 1992-09-29 1994-04-13 Mitsubishi Chemical Corporation Carboxamide and urea derivatives having ACAT-inhibiting activityM
WO1995006046A1 (en) 1993-08-26 1995-03-02 Pfizer Limited Indole derivatives as thromboxane a2 antagonists
WO1996010027A1 (en) 1994-09-27 1996-04-04 Janssen Pharmaceutica N.V. N-substituted piperidinyl bicyclic benzoate derivatives
WO1996019444A1 (en) 1994-12-19 1996-06-27 Warner-Lambert Company Sulfonate acat inhibitors
JPH08301870A (en) 1994-02-23 1996-11-19 Basf Ag Substituted naphthyridine,herbicide and bactericide containing it,contolling method for unfavorable plant using it,and contolling method for harmful insect and fungus
WO1997036876A1 (en) 1996-04-03 1997-10-09 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
WO1998007420A1 (en) 1996-08-23 1998-02-26 Agouron Acquisition Corp. Neuropeptide-y ligands
US5739345A (en) 1994-04-11 1998-04-14 Sankyo Company, Limited Intermediate compounds in the preparation of heterocyclic compounds having anti-diabetic activity
WO1998028980A1 (en) 1996-12-30 1998-07-09 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
WO1998047868A1 (en) 1997-04-18 1998-10-29 Smithkline Beecham Plc Heterocycle-containing urea derivatives as 5ht1a, 5ht1b and 5ht1d receptor antagonists
RU96121599A (en) 1992-12-02 1999-02-20 Новартис Аг 3-N-ACYLAMINOPYRIDINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION
US5876700A (en) 1994-12-14 1999-03-02 The University Of North Carolina At Chapel Hill Methods of hydrating lung mucous secretions with benzamil or phenamil
WO1999041405A1 (en) 1998-02-17 1999-08-19 G.D. Searle & Co. Process for the enzymatic resolution of lactams
US5948814A (en) 1997-02-20 1999-09-07 The Curators Of The University Of Missouri Genistein for the treatment of cystic fibrosis
US5981714A (en) 1990-03-05 1999-11-09 Genzyme Corporation Antibodies specific for cystic fibrosis transmembrane conductance regulator and uses therefor
WO1999064394A1 (en) 1998-06-08 1999-12-16 Schering Corporation Neuropeptide y5 receptor antagonists
WO2000016798A1 (en) 1998-09-22 2000-03-30 Curtin University Of Technology Use of non-peptidyl compounds for the treatment of insulin related ailments
US6046211A (en) 1993-10-21 2000-04-04 G.D. Searle & Co. Amidino derivatives useful as nitric oxide synthase inhibitors
WO2000035452A1 (en) 1998-12-18 2000-06-22 Du Pont Pharmaceuticals Company N-ureidoalkyl-piperidines as modulators of chemokine receptor activity
EP1026149A1 (en) 1997-10-02 2000-08-09 Sankyo Company Limited Amidocarboxylic acid derivatives
WO2000050401A1 (en) 1999-02-24 2000-08-31 F. Hoffmann-La Roche Ag 3-phenylpyridine derivatives and their use as nk-1 receptor antagonists
WO2000050398A2 (en) 1999-02-24 2000-08-31 F. Hoffmann-La Roche Ag Phenyl- and pyridinyl derivatives as neurokinin 1 antagonists
WO2000075120A1 (en) 1999-06-04 2000-12-14 Agouron Pharmaceuticals, Inc. Diaminothiazoles and their use for inhibiting protein kinases
WO2001046165A2 (en) 1999-12-16 2001-06-28 Novartis Ag N-heteroaryl-amides and their use as parasiticides
WO2001051919A2 (en) 2000-01-07 2001-07-19 Transform Pharmaceuticals, Inc. High-throughput formation, identification, and analysis of diverse solid-forms
WO2001054690A1 (en) 2000-01-28 2001-08-02 Biogen, Inc. Pharmaceutical compositions containing anti-beta 1 integrin compounds and uses
WO2001056989A2 (en) 2000-02-01 2001-08-09 Cor Therapeutics, Inc. Inhibitors of factor xa
WO2001081317A1 (en) 2000-04-26 2001-11-01 Gliatech, Inc. Chiral imidazoyl intermediates for the synthesis of 2-(4-imidazoyl)-cyclopropyl derivatives
WO2001083517A1 (en) 2000-05-03 2001-11-08 Tularik Inc. Stat4 and stat6 binding dipeptide derivatives
WO2001092235A1 (en) 2000-06-01 2001-12-06 Bristol-Myers Squibb Pharma Company LACTAMS SUBSTITUTED BY CYCLIC SUCCINATES AS INHIBITORS OF Aβ PROTEIN PRODUCTION
WO2002016324A1 (en) 2000-08-08 2002-02-28 F. Hoffmann-La Roche Ag 4-phenyl-pyridine derivatives as neurokinin-1 receptor antagonists
WO2002022601A1 (en) 2000-09-15 2002-03-21 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
JP2002114777A (en) 2000-09-22 2002-04-16 Bayer Ag Pyridine derivative
WO2002030875A1 (en) 2000-10-09 2002-04-18 Bayer Aktiengesellschaft Beta-amino acid derivatives as integrin receptor antagonists
WO2002034739A1 (en) 2000-10-20 2002-05-02 Merck Patent Gmbh Chiral binaphthol derivatives
WO2002038107A2 (en) 2000-11-08 2002-05-16 Tularik Inc. Stat modulators
WO2002044183A2 (en) 2000-12-01 2002-06-06 Guilford Pharmaceuticals Inc. Benzoazepine and benzodiazepine derivatives and their use as parp inhibitors
CN1356988A (en) 1999-06-18 2002-07-03 拜尔公司 Phenoxy fluoropyrimidines
US6426331B1 (en) 1998-07-08 2002-07-30 Tularik Inc. Inhibitors of STAT function
WO2002062804A1 (en) 2001-02-02 2002-08-15 Pharmacia Italia S.P.A. Oxazolyl-pyrazole derivatives as kinase inhibitors
US20020115619A1 (en) 2000-10-04 2002-08-22 Rubenstein Ronald C. Compositions and methods for treatment of cystic fibrosis
WO2002079134A1 (en) 2001-02-13 2002-10-10 F. Hoffmann-La-Roche Ag Process for the manufacture of phenylacetic acid derivatives
WO2002085458A2 (en) 2001-04-23 2002-10-31 F. Hoffman-La Roche Ag Use of nk-1 receptor antagonists against benign prostatic hyperplasia
US6479483B2 (en) 1999-02-24 2002-11-12 Hoffmann-La Roche Inc. 4-phenyl-pyridine derivatives
WO2002096421A1 (en) 2001-05-22 2002-12-05 Neurogen Corporation 5-substituted-2-arylpyridines as crf1 modulators
US6499984B1 (en) 2000-05-22 2002-12-31 Warner-Lambert Company Continuous production of pharmaceutical granulation
WO2003006016A2 (en) 2001-07-10 2003-01-23 F. Hoffmann-La Roche Ag Use of nk-1 receptor antagonists with pyridinic structure, for the treatment of brain, spinal or nerve injury
WO2003007945A1 (en) 2001-07-20 2003-01-30 Boehringer Ingelheim (Canada) Ltd. Viral polymerase inhibitors
WO2003007888A2 (en) 2001-07-20 2003-01-30 Adipogenix, Inc. Fat accumulation-modulating compounds
WO2003022852A2 (en) 2001-09-11 2003-03-20 Smithkline Beecham Corporation Furo-and thienopyrimidine derivatives as angiogenesis inhibitors
WO2003042191A1 (en) 2001-11-12 2003-05-22 Pfizer Products Inc. Benzamide and heteroarylamide as p2x7 receptor antagonists
JP2003155285A (en) 2001-11-19 2003-05-27 Toray Ind Inc Cyclic nitrogen-containing derivative
US20030125315A1 (en) 2001-04-10 2003-07-03 Mjalli Adnan M. M. Probes, systems, and methods for drug discovery
WO2003055482A1 (en) 2001-12-21 2003-07-10 Novo Nordisk A/S Amide derivatives as gk activators
JP2003221386A (en) 2001-11-26 2003-08-05 Takeda Chem Ind Ltd Bicylic derivative, method for producing the same, and use of the same
WO2003063797A2 (en) 2002-02-01 2003-08-07 Bristol-Myers Squibb Company Cycloalkyl inhibitors of potassium channel function
US6627646B2 (en) 2001-07-17 2003-09-30 Sepracor Inc. Norastemizole polymorphs
WO2003082186A2 (en) 2002-03-25 2003-10-09 Avanir Pharmaceuticals Use of benzimidazole analogs in the treatment of cell proliferation
WO2003088908A2 (en) 2002-04-19 2003-10-30 Bristol-Myers Squibb Company Heterocyclo inhibitors of potassium channel function
WO2003105788A2 (en) 2002-06-12 2003-12-24 L'oreal Care and/or make-up cosmetic composition structured with silicone polymers and organogelling agents, in rigid form
WO2004024691A1 (en) 2002-09-16 2004-03-25 Glaxo Group Limited Cox-2 inhibiting pyridine derivatives
WO2004035571A1 (en) 2002-10-15 2004-04-29 Rigel Pharmaceuticals, Inc. Substituted indoles and their use as hcv inhibitors
WO2004041163A2 (en) 2002-10-30 2004-05-21 Merck & Co., Inc. Piperidinyl cyclopentyl aryl benzylamide modulators of chemokine receptor activity
WO2004054505A2 (en) 2002-12-12 2004-07-01 Pharmacia Corporation Method of using aminocyanopyridine compounds as mitogen activated protein kinase-activated protein kinase-2 inhibitors
WO2004063179A1 (en) 2003-01-06 2004-07-29 Eli Lilly And Company Substituted arylcyclopropylacetamides as glucokinase activators
WO2004072038A1 (en) 2003-02-10 2004-08-26 Vertex Pharmaceuticals Incorporated Processes for the preparation of n-heteroaryl-n-aryl-amines by reacting an n-aryl carbamic acid ester with a halo-heteroaryl and analogous processes
WO2004099168A2 (en) 2003-04-30 2004-11-18 The Institutes For Pharmaceutical Discovery, Llc Substituted carboxylic acids
WO2005000300A1 (en) 2003-06-27 2005-01-06 Vernalis (Cambridge) Limited Substituted 5-membered ring compounds and their use
JP2005053902A (en) 2003-07-18 2005-03-03 Nippon Nohyaku Co Ltd Phenylpyridines, intermediate therefor, and herbicide containing the same as effective ingredient
WO2005023806A2 (en) 2003-09-05 2005-03-17 Neurogen Corporation Heteroaryl fused pyridines, pyrazines and pyrimidines as crf1 receptor ligands
WO2005026137A2 (en) 2003-09-06 2005-03-24 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US20050070718A1 (en) 2003-09-30 2005-03-31 Abbott Gmbh & Co. Kg Heteroaryl-substituted 1,3-dihydroindol-2-one derivatives and medicaments containing them
CA2539250A1 (en) 2003-09-25 2005-04-07 Wyeth Biphenyloxy-acids
WO2005039589A2 (en) 2003-10-23 2005-05-06 Universite Joseph Fourier Cftr channel modulators
WO2005044797A1 (en) 2003-11-06 2005-05-19 Addex Pharmaceuticals Sa Allosteric modulators of metabotropic glutamate receptors
US20050113423A1 (en) 2003-03-12 2005-05-26 Vangoor Frederick F. Modulators of ATP-binding cassette transporters
WO2005049034A2 (en) 2003-11-19 2005-06-02 Glaxo Group Limited Use of cyclooxygenase-2 selective inhibitors for the treatment of schizophrenic disorders
WO2005049018A1 (en) 2003-11-14 2005-06-02 Vertex Pharmaceuticals Incorporated Thiazoles and oxazoles useful as modulators of atp-binding cassette transporters
WO2005075435A1 (en) 2004-01-30 2005-08-18 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
WO2005080348A1 (en) 2004-02-19 2005-09-01 Banyu Pharmaceutical Co., Ltd. Novel sulfone amide derivative
WO2005100353A1 (en) 2004-04-15 2005-10-27 Almirall Prodesfarma, Sa Condensed pyridine derivatives useful as a28 adenosine receptor antagonists
WO2005108391A1 (en) 2004-04-22 2005-11-17 Eli Lilly And Company Amides as bace inhibitors
WO2005115399A2 (en) 2004-04-16 2005-12-08 Neurogen Corporation Imidazopyrazines, imidazopyridines, ans imidazopyrimidines as crf1 receptor ligands
US20060003005A1 (en) 2004-07-02 2006-01-05 Bruce Cao Tablet for pulsed delivery
WO2006002421A2 (en) 2004-06-24 2006-01-05 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
WO2006003504A1 (en) 2004-07-01 2006-01-12 Warner-Lambert Company Llc Preparation of pharmaceutical compositions containing nanoparticles
WO2006014012A2 (en) 2004-08-06 2006-02-09 Otsuka Pharmaceutical Co., Ltd. Aromatic compounds
US20060069110A1 (en) 2004-09-27 2006-03-30 Andersen Denise L Substituted heterocyclic compounds and methods of use
WO2006040520A1 (en) 2004-10-12 2006-04-20 Astrazeneca Ab Quinazoline derivatives
WO2006051394A1 (en) 2004-11-15 2006-05-18 Pfizer Products Inc. Azabenzoxazoles for the treatment of cns disorders
WO2006063999A1 (en) 2004-12-15 2006-06-22 Dompe' Pha.R.Ma.S.P.A. 2-arylpropionic acid derivatives and pharmaceutical compositions containing them
WO2006067931A1 (en) 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescent element using the same
WO2006080884A1 (en) 2005-01-27 2006-08-03 Astrazeneca Ab Novel biaromatic compounds, inhibitors of the p2x7-receptor
US20060173050A1 (en) 2005-01-28 2006-08-03 Gang Liu Inhibitors of c-Jun N-terminal kinases
WO2006082952A1 (en) 2005-02-01 2006-08-10 Takeda Pharmaceutical Company Limited Amide compound
WO2006108695A2 (en) 2005-04-08 2006-10-19 Bayer Schering Pharma Aktiengesellschaft Sulfoximine-pyrimidine macrocycles and the salts thereof , a process for making them, and their pharmaceutical use against cancer
WO2006113704A2 (en) 2005-04-18 2006-10-26 Neurogen Corporation Subtituted heteroaryl cb1 antagonists
CA2605300A1 (en) 2005-04-19 2006-10-26 Bayer Pharmaceuticals Corporation Preparation and use of aryl alkyl acid derivatives for the treatment of obesity
WO2006129199A1 (en) 2005-05-18 2006-12-07 Addex Pharma Sa Novel heterocyclic compounds as positive allosteric modulators of metabotropic glutamate receptors
WO2006130403A1 (en) 2005-06-02 2006-12-07 Bayer Cropscience Ag Phenylalkyl substituted heteroaryl devivatives
WO2006136829A2 (en) 2005-06-21 2006-12-28 Astex Therapeutics Limited Pyrazole derivatives and their use as pka and pkb modulators
WO2007021982A2 (en) 2005-08-11 2007-02-22 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2007028654A1 (en) 2005-09-09 2007-03-15 Smithkline Beecham Corporation Pyridine derivatives and their use in the treatment of psychotic disorders
WO2007039420A1 (en) 2005-09-23 2007-04-12 F. Hoffmann-La Roche Ag Novel dosage formulation
WO2007045462A2 (en) 2005-10-19 2007-04-26 Grünenthal GmbH Novel vanilloid receptor ligands and their use for producing medicaments
WO2007056341A1 (en) 2005-11-08 2007-05-18 Vertex Pharmaceuticals Incorporated Heterocyclic modulators of atp-binding cassette transporters
WO2007054480A1 (en) 2005-11-08 2007-05-18 N.V. Organon 2-(benzimidazol-1-yl)-acetamide biaryl derivatives and their use as inhibitors of the trpv1 receptor
WO2007067506A2 (en) 2005-12-05 2007-06-14 Smithkline Beecham Corporation 2-pyrimidinyl pyrazolopyridine erbb kinase inhibitors
WO2007075946A1 (en) 2005-12-27 2007-07-05 Vertex Pharmaceuticals Incorporated Compounds useful in cftr assays and methods therewith
WO2007079257A2 (en) 2005-12-30 2007-07-12 Caliper Life Sciences, Inc. Integrated dissolution processing and sample transfer system
WO2007079139A2 (en) 2005-12-28 2007-07-12 Vertex Pharmaceuticals, Inc. Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2007087066A2 (en) 2005-12-28 2007-08-02 Vertex Pharmaceuticals Incorporated 1-(benzo [d] [1,3] di0x0l-5-yl) -n- (phenyl) cyclopropane- carboxamide derivatives and related compounds as modulators of atp-binding cassette transporters for the treatment of cystic fibrosis
WO2007117715A2 (en) 2006-04-07 2007-10-18 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US7297700B2 (en) 2005-03-24 2007-11-20 Renovis, Inc. Bicycloheteroaryl compounds as P2X7 modulators and uses thereof
WO2007134279A2 (en) 2006-05-12 2007-11-22 Vertex Pharmaceuticals Incorporated Compositions of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2008065068A2 (en) 2006-11-27 2008-06-05 Novartis Ag Substituted dihydroimidazoles and their use in the treatment of tumors
US20080138803A1 (en) 2004-06-01 2008-06-12 Galvan-Goldman Nee Galvan Barb Method of Detecting Cystic Fibrosis Associated Mutations
CN101287732A (en) 2005-08-11 2008-10-15 沃泰克斯药物股份有限公司 Modulators of cystic fibrosis transmembrane conductance regulator
WO2008127399A2 (en) 2006-11-03 2008-10-23 Vertex Pharmaceuticals Incorporated Azaindole derivatives as cftr modulators
US20080260820A1 (en) 2007-04-19 2008-10-23 Gilles Borrelly Oral dosage formulations of protease-resistant polypeptides
WO2008141119A2 (en) 2007-05-09 2008-11-20 Vertex Pharmaceuticals Incorporated Modulators of cftr
WO2008147952A1 (en) 2007-05-25 2008-12-04 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2009006315A1 (en) 2007-06-29 2009-01-08 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters for treating cystic fibrosis
US7476744B2 (en) 1999-12-08 2009-01-13 Pfizer Inc. Polymorphic crystalline forms of celecoxib
WO2009023509A2 (en) 2007-08-09 2009-02-19 Vertex Pharmaceuticals Incorporated Therapeutic combinations useful in treating cftr related diseases
WO2009033561A1 (en) 2007-09-07 2009-03-19 Bayer Schering Pharma Aktiengesellschaft Substituted 6-pheylnicotinic acids and the use thereof
WO2009036412A1 (en) 2007-09-14 2009-03-19 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2009038913A2 (en) 2007-08-24 2009-03-26 Vertex Pharmaceuticals Incorporated Isothiazolopyridinones useful for the treatment of (inter alia) cystic fibrosis
WO2009038683A2 (en) 2007-09-14 2009-03-26 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US20090105272A1 (en) 2005-12-24 2009-04-23 Grootenhuis Peter D J Prodrugs of modulators of ABC transporters
WO2009073757A1 (en) 2007-12-07 2009-06-11 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
WO2009074749A2 (en) 2007-09-28 2009-06-18 Sanofi-Aventis Nicotinamide derivatives, preparation thereof and therapeutic use thereof
WO2009076593A1 (en) 2007-12-13 2009-06-18 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2009076142A2 (en) 2007-12-07 2009-06-18 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxiamido-pyridine benzoic acids
WO2009076141A2 (en) 2007-12-07 2009-06-18 Vertex Pharmaceuticals Incorporated Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cycklopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US7585885B2 (en) 2004-04-22 2009-09-08 Eli Lilly And Company Pyrrolidine derivatives useful as BACE inhibitors
US7598412B2 (en) 2003-10-08 2009-10-06 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2009123896A1 (en) 2008-03-31 2009-10-08 Vertex Pharmaceuticals Incorporated Pyridyl derivatives as cftr modulators
US7645789B2 (en) 2006-04-07 2010-01-12 Vertex Pharmaceuticals Incorporated Indole derivatives as CFTR modulators
WO2010013035A1 (en) 2008-07-26 2010-02-04 University Of Bradford Method and product
US20100036130A1 (en) 2007-12-07 2010-02-11 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
WO2010019239A2 (en) 2008-08-13 2010-02-18 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US20100074949A1 (en) 2008-08-13 2010-03-25 William Rowe Pharmaceutical composition and administration thereof
WO2010037066A2 (en) 2008-09-29 2010-04-01 Vertex Pharmaceuticals Incorporated Dosage units of 3-(6-(1-(2,2-difluorobenzo [d] [1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
WO2010048526A2 (en) 2008-10-23 2010-04-29 Vertex Pharmaceuticals, Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2010048564A1 (en) 2008-10-23 2010-04-29 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2010053471A1 (en) 2008-11-06 2010-05-14 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
WO2010054138A2 (en) 2008-11-06 2010-05-14 Vertex Pharmaceuticals, Incorporated Modulators of atp-binding cassette transporters
US7754739B2 (en) 2007-05-09 2010-07-13 Vertex Pharmaceuticals Incorporated Modulators of CFTR
US20100256184A1 (en) 2008-08-13 2010-10-07 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
WO2010128359A1 (en) 2009-05-07 2010-11-11 Gea Pharma Systems Limited Tablet production module and method for continuous production of tablets
US7893094B2 (en) 2003-06-27 2011-02-22 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Amphiphilic pyridinium compounds, method of making and use thereof
US20110098311A1 (en) 2009-10-22 2011-04-28 Vertex Pharmaceuticals Incorported Compositions for treatment of cystic fibrosis and other chronic diseases
CN102058889A (en) 2010-11-05 2011-05-18 王定豪 Dispersible tablet containing anticoagulants and application thereof
US7977322B2 (en) 2004-08-20 2011-07-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20110251253A1 (en) 2010-03-25 2011-10-13 Vertex Pharmaceuticals Incorporated Solid forms of (r)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide
WO2011127241A2 (en) 2010-04-07 2011-10-13 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyriodin-2-yl)benzoic acid and administration thereof
US20110257223A1 (en) 2008-10-23 2011-10-20 Vertex Pharmaceuticals Incorporated Modulators of Cystic Fibrosis Transmembrane Conductance Regulator
WO2011133951A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
WO2011133953A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
WO2011133956A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US20110288122A1 (en) 2010-05-20 2011-11-24 Vertex Pharmaceuticals Incorporated Pharmaceutical Compositions and Administrations Thereof
US20120046330A1 (en) 2010-08-23 2012-02-23 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (r)-1-(2,2-difluorobenzo[d] [1,3]dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide and administration thereof
US20120064157A1 (en) 2010-08-27 2012-03-15 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US20120122921A1 (en) 2009-03-20 2012-05-17 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
US8242149B2 (en) 2005-03-11 2012-08-14 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20120232059A1 (en) 2005-11-08 2012-09-13 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette Transporters
US8299099B2 (en) 2008-02-28 2012-10-30 Vertex Pharmaceuticals Incorporated Heteroaryl derivatives as CFTR modulators
US8314256B2 (en) 2005-10-06 2012-11-20 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8344147B2 (en) 2009-10-23 2013-01-01 Vertex Pharmaceutical Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
US8354427B2 (en) 2004-06-24 2013-01-15 Vertex Pharmaceutical Incorporated Modulators of ATP-binding cassette transporters
US20130018071A1 (en) 2010-03-19 2013-01-17 Vertex Pharmaceuticals Incorporated Solid Forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8367660B2 (en) 2008-12-30 2013-02-05 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8389727B2 (en) 2009-10-23 2013-03-05 Vertex Pharmaceuticals Incorporated Solid forms of N-(4-(7-Azabicyclo[2.2.1]Heptan-7-yl)-2-Trifluoromethyl)Phenyl)-4-Oxo-5-(Trifluoromethyl)-1,4-Dihydroquinoline-3-Carboxamide
US8404849B2 (en) 2010-05-20 2013-03-26 Vertex Pharmaceuticals Processes for producing modulators of cystic fibrosis transmembrane conductance regulator
US8404865B2 (en) 2009-09-17 2013-03-26 Vertex Pharmaceuticals Process for preparing azabicyclic compounds
US20130085158A1 (en) 2010-04-07 2013-04-04 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US8436014B2 (en) 2008-10-23 2013-05-07 Vertex Pharmaceutical Incorporated Solid forms of N-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-(trifluorormethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihyroquinoline-3-carboxamide
US20130186801A1 (en) 2012-01-25 2013-07-25 Vertex Pharmaceuticals Incorporated Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US8507524B2 (en) 2007-11-16 2013-08-13 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette-transporters
US20130224293A1 (en) 2012-02-27 2013-08-29 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US8563593B2 (en) 2010-06-08 2013-10-22 Vertex Pharmaceuticals Incorporated Formulations of (R)-1-(2,2-difluorobenzo[D] [1,3] dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
US8563573B2 (en) 2007-11-02 2013-10-22 Vertex Pharmaceuticals Incorporated Azaindole derivatives as CFTR modulators
WO2013185112A1 (en) 2012-06-08 2013-12-12 Vertex Pharmaceuticals Incorporated Pharmaceuticl compositions for the treatment of cftr -mediated disorders
US8614325B2 (en) 2009-03-20 2013-12-24 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2014014841A1 (en) 2012-07-16 2014-01-23 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (r)-1-(2,2-diflurorbenzo[d][1,3]dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide and administration thereof
US8642609B2 (en) 2003-06-06 2014-02-04 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8674108B2 (en) 2012-04-20 2014-03-18 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethy)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2014055501A1 (en) 2012-10-01 2014-04-10 Momentive Performance Materials Inc. Container and method for in-line analysis of protein compositions
WO2014071122A1 (en) 2012-11-02 2014-05-08 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cftr mediated diseases
US20140221424A1 (en) 2013-01-30 2014-08-07 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for use in the treatment of cystic fibrosis
US8802868B2 (en) 2010-03-25 2014-08-12 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[D][1,3]dioxo1-5-yl)-N-(1-(2,3-dihydroxypropyl-6-fluoro-2-(1-hydroxy-2-methylpropan2-yl)-1H-Indol-5-yl)-Cyclopropanecarboxamide
US8802700B2 (en) 2010-12-10 2014-08-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
US8822451B2 (en) 2005-05-24 2014-09-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20140323521A1 (en) 2011-11-02 2014-10-30 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US20140343098A1 (en) 2004-06-24 2014-11-20 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US9035072B2 (en) 2010-04-22 2015-05-19 Vertex Pharmaceuticals Incorporated Process of producing cycloalkylcarboxamido-indole compounds
US20150320736A1 (en) 2014-04-15 2015-11-12 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases
US9254291B2 (en) 2011-11-08 2016-02-09 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20160096807A1 (en) 2014-10-07 2016-04-07 Vertex Pharmaceuticals Incorporated Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator
US20160095858A1 (en) 2014-10-06 2016-04-07 Vertex Pharmaceuticals Incorporated Modulators of Cystic Fibrosis Transmembrane Conductance Regulator
WO2016086103A1 (en) 2014-11-26 2016-06-02 Catabasis Pharmaceuticals, Inc. Fatty acid cysteamine conjugates and their use as activators of autophagy
WO2016086136A1 (en) 2014-11-26 2016-06-02 Catabasis Pharmaceuticals, Inc. Fatty acid cysteamine conjugates of cftr modulators and their use in treating medical disorders
WO2016087665A2 (en) 2014-12-05 2016-06-09 Centre National De La Recherche Scientifique (Cnrs) Compounds for treating cystic fibrosis
US20160166540A1 (en) 2011-11-08 2016-06-16 Vertex Pharmaceuticals Incorporated Modulators for atp-binding cassette transporters
US20160213648A1 (en) 2015-01-26 2016-07-28 Rigel Pharmaceuticals, Inc. Tetrazolones as a Carboxylic Acid Bioisosteres
US20160271105A1 (en) 2006-04-07 2016-09-22 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
WO2016185423A1 (en) 2015-05-19 2016-11-24 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278374A3 (en) * 1987-02-06 1989-03-01 Pharmatest Apparatebau Gmbh Device for testing the release of active components by pharmaceutical products
US6060024A (en) * 1993-07-14 2000-05-09 Zymark Corporation Automatic dissolution testing system
ES2171542T3 (en) * 1994-10-28 2002-09-16 Sophion Bioscience As PATCH-CLAMP DEVICE AND TECHNIQUE THAT HAVE HIGH PRODUCTION AND REQUIRE A SMALL VOLUME OF FLUID.
US7122309B2 (en) * 2000-01-15 2006-10-17 Avigenics, Inc. High throughput screening assay for detecting a DNA sequence
US6962674B2 (en) * 2001-02-28 2005-11-08 Varian, Inc. Dissolution test apparatus
US6976384B2 (en) * 2002-10-31 2005-12-20 Nanostream, Inc. Parallel detection chromatography systems
TWI428271B (en) * 2004-06-09 2014-03-01 Smithkline Beecham Corp Apparatus and method for pharmaceutical production
AR052561A1 (en) * 2005-01-25 2007-03-21 Bayer Cropscience Sa METHOD FOR ANALYZING THE PHOSPHOROUS ACID, THE FOSETIL-AL, OR BOTH SIMULTANEOUSLY
CN2856973Y (en) * 2005-07-25 2007-01-10 中国环境科学研究院 Rotary viberator
TW200738331A (en) * 2005-07-26 2007-10-16 Showa Denko Kk Method for analyzing low-molecular-weight compound in sample containing water-soluble polymer and low-molecular-weight compound
EP1882948A2 (en) * 2006-07-28 2008-01-30 Qiagen GmbH Sample processing device
CN101206205B (en) * 2006-12-22 2011-08-10 中国科学院大连化学物理研究所 Method and isolated device for micro flux liquid chromatogram on-line large volume sample injection
CN101209399B (en) * 2006-12-27 2010-07-28 中国科学院沈阳应用生态研究所 Reciprocating oscillation machine sample workpiece mounting and fixing device
CN101210906A (en) * 2006-12-29 2008-07-02 电子科技大学 High throughput automated medicament screening experiment detection system
DE102007058718A1 (en) * 2007-12-06 2009-06-10 Erweka Gmbh Apparatus and method for the automatic release and measurement of drugs from a drug preparation
US20090173146A1 (en) * 2008-01-07 2009-07-09 Matthias Pursch Temperature programmed low thermal mass fast liquid chromatography analysis system
WO2009111228A2 (en) * 2008-02-29 2009-09-11 Waters Technologies Corporation Chromatography-based monitoring and control of multiple process streams
CN102203588B (en) * 2008-10-31 2015-03-18 生物梅里埃公司 Methods for separation, characterization and/or identification of microorganisms using spectroscopy
US8053866B2 (en) 2009-08-06 2011-11-08 Freescale Semiconductor, Inc. Varactor structures
EP2486390A2 (en) * 2009-10-08 2012-08-15 GE Healthcare UK Limited Multi-stream optical interrogation flow cell
CN201586570U (en) * 2010-02-03 2010-09-22 兰州大学 Plastic centrifugal filtration tube
KR101387872B1 (en) 2011-05-11 2014-04-22 경상대학교산학협력단 Method for the co-detection of catechins and caffeine in biospecimens
CN102507770A (en) * 2011-10-25 2012-06-20 中国检验检疫科学研究院 High performance liquid chromatography for detecting hexachlorophene in cosmetics
JP2013253790A (en) * 2012-06-05 2013-12-19 Chube Univ Analytical method of nivalenol
CN102788834B (en) * 2012-08-29 2015-06-03 浙江农林大学 Method for quickly measuring soluble sugar in fruit
KR101455694B1 (en) 2012-09-18 2014-11-03 학교법인 선목학원 Method for detection of drug using liquid-liquid extraction by mixed ethyl acetate and acetonitrile
WO2014089216A1 (en) * 2012-12-04 2014-06-12 Tekmira Pharmaceuticals Corporation In vitro release assay for liposome encapsulated vincristine
CN103264029B (en) * 2013-05-06 2015-03-25 深圳市华星光电技术有限公司 Washing device and washing method of chromatographing sample bottles
CN103743826B (en) * 2013-08-28 2015-12-02 合肥久诺医药科技有限公司 A kind of HPLC analytical method of Azilsartan
CN103822976B (en) * 2013-10-15 2015-05-27 辽宁省食品药品检验所 Method for measuring 4-potassium methoxysalicylate in cosmetics
CN104090038B (en) * 2014-07-07 2015-09-30 黄宏南 A kind of method of Chinese caterpillar fungus polysaccharide peptide content in direct mensuration Cordyceps sinensis product
CN104122345B (en) * 2014-07-31 2015-08-12 国家烟草质量监督检验中心 The assay method of 1,1,1-trimethylolpropane in cigarette paper using
CN104122346B (en) * 2014-07-31 2016-03-16 国家烟草质量监督检验中心 The assay method of urea content in a kind of water base adhesive
CN105890945A (en) * 2016-04-01 2016-08-24 中国热带农业科学院分析测试中心 Ultrasonic centrifuged seepage sample injecting method for quickly measuring rapidly available potassium in soil

Patent Citations (457)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758475A (en) 1971-07-20 1973-09-11 Sandoz Ag Pyrido(2,3-d)pyrimidin 2 ones
EP0081756A1 (en) 1981-12-14 1983-06-22 MEDEA RESEARCH S.r.l. New compounds with antiinflammatory and antitussive activity, process for their preparation and relative pharmaceutical compositions
JPS58121274A (en) 1981-12-14 1983-07-19 メデア・レセアルケス・エツセ・エルレ・エルレ N-pyridyl-amide of 1-phenyl-cyclopentane carboxylic acid, manufacture and medicine
US4501729A (en) 1982-12-13 1985-02-26 Research Corporation Aerosolized amiloride treatment of retained pulmonary secretions
US5981714A (en) 1990-03-05 1999-11-09 Genzyme Corporation Antibodies specific for cystic fibrosis transmembrane conductance regulator and uses therefor
JPH0578356A (en) 1990-11-27 1993-03-30 Takeda Chem Ind Ltd Pyridopyridazine derivative and its use
EP0574174A2 (en) 1992-06-03 1993-12-15 Eli Lilly And Company Angiotensin II antagonists
EP0591830A1 (en) 1992-09-29 1994-04-13 Mitsubishi Chemical Corporation Carboxamide and urea derivatives having ACAT-inhibiting activityM
RU96121599A (en) 1992-12-02 1999-02-20 Новартис Аг 3-N-ACYLAMINOPYRIDINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION
WO1995006046A1 (en) 1993-08-26 1995-03-02 Pfizer Limited Indole derivatives as thromboxane a2 antagonists
US6046211A (en) 1993-10-21 2000-04-04 G.D. Searle & Co. Amidino derivatives useful as nitric oxide synthase inhibitors
JPH08301870A (en) 1994-02-23 1996-11-19 Basf Ag Substituted naphthyridine,herbicide and bactericide containing it,contolling method for unfavorable plant using it,and contolling method for harmful insect and fungus
US5739345A (en) 1994-04-11 1998-04-14 Sankyo Company, Limited Intermediate compounds in the preparation of heterocyclic compounds having anti-diabetic activity
WO1996010027A1 (en) 1994-09-27 1996-04-04 Janssen Pharmaceutica N.V. N-substituted piperidinyl bicyclic benzoate derivatives
RU2154064C2 (en) 1994-09-27 2000-08-10 Жансен Фармасетика Н.В. N-substituted piperidinylbenzoates, their n-oxide forms, pharmaceutically acceptable salts of additive acid salts and stereochemically isomeric forms, methods of their synthesis, pharmaceutical composition based on thereof and intermediate substance
US5876700A (en) 1994-12-14 1999-03-02 The University Of North Carolina At Chapel Hill Methods of hydrating lung mucous secretions with benzamil or phenamil
WO1996019444A1 (en) 1994-12-19 1996-06-27 Warner-Lambert Company Sulfonate acat inhibitors
WO1997036876A1 (en) 1996-04-03 1997-10-09 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
WO1998007420A1 (en) 1996-08-23 1998-02-26 Agouron Acquisition Corp. Neuropeptide-y ligands
WO1998028980A1 (en) 1996-12-30 1998-07-09 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
US5948814A (en) 1997-02-20 1999-09-07 The Curators Of The University Of Missouri Genistein for the treatment of cystic fibrosis
WO1998047868A1 (en) 1997-04-18 1998-10-29 Smithkline Beecham Plc Heterocycle-containing urea derivatives as 5ht1a, 5ht1b and 5ht1d receptor antagonists
EP1026149A1 (en) 1997-10-02 2000-08-09 Sankyo Company Limited Amidocarboxylic acid derivatives
WO1999041405A1 (en) 1998-02-17 1999-08-19 G.D. Searle & Co. Process for the enzymatic resolution of lactams
WO1999064394A1 (en) 1998-06-08 1999-12-16 Schering Corporation Neuropeptide y5 receptor antagonists
US6426331B1 (en) 1998-07-08 2002-07-30 Tularik Inc. Inhibitors of STAT function
WO2000016798A1 (en) 1998-09-22 2000-03-30 Curtin University Of Technology Use of non-peptidyl compounds for the treatment of insulin related ailments
WO2000035452A1 (en) 1998-12-18 2000-06-22 Du Pont Pharmaceuticals Company N-ureidoalkyl-piperidines as modulators of chemokine receptor activity
CN1335771A (en) 1998-12-18 2002-02-13 杜邦药品公司 N-ureidoalkyl-piperidines as modulators of chemokine receptor activity
WO2000050401A1 (en) 1999-02-24 2000-08-31 F. Hoffmann-La Roche Ag 3-phenylpyridine derivatives and their use as nk-1 receptor antagonists
WO2000050398A2 (en) 1999-02-24 2000-08-31 F. Hoffmann-La Roche Ag Phenyl- and pyridinyl derivatives as neurokinin 1 antagonists
US6479483B2 (en) 1999-02-24 2002-11-12 Hoffmann-La Roche Inc. 4-phenyl-pyridine derivatives
WO2000075120A1 (en) 1999-06-04 2000-12-14 Agouron Pharmaceuticals, Inc. Diaminothiazoles and their use for inhibiting protein kinases
JP2003501420A (en) 1999-06-04 2003-01-14 アゴウロン・ファーマスーティカルス・インコーポレーテッド Diaminothiazole and its use for protein kinase inhibition
CN1356988A (en) 1999-06-18 2002-07-03 拜尔公司 Phenoxy fluoropyrimidines
US7476744B2 (en) 1999-12-08 2009-01-13 Pfizer Inc. Polymorphic crystalline forms of celecoxib
WO2001046165A2 (en) 1999-12-16 2001-06-28 Novartis Ag N-heteroaryl-amides and their use as parasiticides
JP2003519698A (en) 2000-01-07 2003-06-24 トランスフォーム ファーマスーティカルズ,インコーポレイテッド High-throughput formation, identification and analysis of various solid forms
WO2001051919A2 (en) 2000-01-07 2001-07-19 Transform Pharmaceuticals, Inc. High-throughput formation, identification, and analysis of diverse solid-forms
WO2001054690A1 (en) 2000-01-28 2001-08-02 Biogen, Inc. Pharmaceutical compositions containing anti-beta 1 integrin compounds and uses
WO2001056989A2 (en) 2000-02-01 2001-08-09 Cor Therapeutics, Inc. Inhibitors of factor xa
WO2001081317A1 (en) 2000-04-26 2001-11-01 Gliatech, Inc. Chiral imidazoyl intermediates for the synthesis of 2-(4-imidazoyl)-cyclopropyl derivatives
WO2001083517A1 (en) 2000-05-03 2001-11-08 Tularik Inc. Stat4 and stat6 binding dipeptide derivatives
US6499984B1 (en) 2000-05-22 2002-12-31 Warner-Lambert Company Continuous production of pharmaceutical granulation
WO2001092235A1 (en) 2000-06-01 2001-12-06 Bristol-Myers Squibb Pharma Company LACTAMS SUBSTITUTED BY CYCLIC SUCCINATES AS INHIBITORS OF Aβ PROTEIN PRODUCTION
US6770637B2 (en) 2000-08-08 2004-08-03 Hoffmann-La Roche Inc. Substituted 4-phenyl-pyridine compounds with activity as antagonists of neurokinin 1 receptors
WO2002016324A1 (en) 2000-08-08 2002-02-28 F. Hoffmann-La Roche Ag 4-phenyl-pyridine derivatives as neurokinin-1 receptor antagonists
WO2002022601A1 (en) 2000-09-15 2002-03-21 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
JP2002114777A (en) 2000-09-22 2002-04-16 Bayer Ag Pyridine derivative
US20020115619A1 (en) 2000-10-04 2002-08-22 Rubenstein Ronald C. Compositions and methods for treatment of cystic fibrosis
WO2002030875A1 (en) 2000-10-09 2002-04-18 Bayer Aktiengesellschaft Beta-amino acid derivatives as integrin receptor antagonists
WO2002034739A1 (en) 2000-10-20 2002-05-02 Merck Patent Gmbh Chiral binaphthol derivatives
WO2002038107A2 (en) 2000-11-08 2002-05-16 Tularik Inc. Stat modulators
WO2002044183A2 (en) 2000-12-01 2002-06-06 Guilford Pharmaceuticals Inc. Benzoazepine and benzodiazepine derivatives and their use as parp inhibitors
JP2004520394A (en) 2001-02-02 2004-07-08 フアルマシア・イタリア・エツセ・ピー・アー Oxazolyl-pyrazole derivatives as kinase inhibitors
WO2002062804A1 (en) 2001-02-02 2002-08-15 Pharmacia Italia S.P.A. Oxazolyl-pyrazole derivatives as kinase inhibitors
WO2002079134A1 (en) 2001-02-13 2002-10-10 F. Hoffmann-La-Roche Ag Process for the manufacture of phenylacetic acid derivatives
US20030125315A1 (en) 2001-04-10 2003-07-03 Mjalli Adnan M. M. Probes, systems, and methods for drug discovery
WO2003084997A1 (en) 2001-04-10 2003-10-16 Transtech Pharma, Inc. Probes, systems and methods for drug discovery
WO2002085458A2 (en) 2001-04-23 2002-10-31 F. Hoffman-La Roche Ag Use of nk-1 receptor antagonists against benign prostatic hyperplasia
US7223778B2 (en) 2001-05-22 2007-05-29 Neurogen Corporation 5-substituted-2-arylpyridines
WO2002096421A1 (en) 2001-05-22 2002-12-05 Neurogen Corporation 5-substituted-2-arylpyridines as crf1 modulators
WO2003006016A2 (en) 2001-07-10 2003-01-23 F. Hoffmann-La Roche Ag Use of nk-1 receptor antagonists with pyridinic structure, for the treatment of brain, spinal or nerve injury
US6627646B2 (en) 2001-07-17 2003-09-30 Sepracor Inc. Norastemizole polymorphs
WO2003007888A2 (en) 2001-07-20 2003-01-30 Adipogenix, Inc. Fat accumulation-modulating compounds
WO2003007945A1 (en) 2001-07-20 2003-01-30 Boehringer Ingelheim (Canada) Ltd. Viral polymerase inhibitors
JP2005508904A (en) 2001-09-11 2005-04-07 スミスクライン ビーチャム コーポレーション Furo- and thienopyrimidine derivatives as angiogenesis inhibitors
WO2003022852A2 (en) 2001-09-11 2003-03-20 Smithkline Beecham Corporation Furo-and thienopyrimidine derivatives as angiogenesis inhibitors
WO2003042191A1 (en) 2001-11-12 2003-05-22 Pfizer Products Inc. Benzamide and heteroarylamide as p2x7 receptor antagonists
JP2003155285A (en) 2001-11-19 2003-05-27 Toray Ind Inc Cyclic nitrogen-containing derivative
JP2003221386A (en) 2001-11-26 2003-08-05 Takeda Chem Ind Ltd Bicylic derivative, method for producing the same, and use of the same
WO2003055482A1 (en) 2001-12-21 2003-07-10 Novo Nordisk A/S Amide derivatives as gk activators
JP2006508016A (en) 2002-02-01 2006-03-09 ブリストル−マイヤーズ スクイブ カンパニー Cycloalkyl inhibitors of potassium channel function
WO2003063797A2 (en) 2002-02-01 2003-08-07 Bristol-Myers Squibb Company Cycloalkyl inhibitors of potassium channel function
JP2005525389A (en) 2002-03-25 2005-08-25 アバニール・ファーマシューティカルズ Use of benzimidazole analogs in the treatment of cell proliferation
WO2003082186A2 (en) 2002-03-25 2003-10-09 Avanir Pharmaceuticals Use of benzimidazole analogs in the treatment of cell proliferation
JP2005529114A (en) 2002-04-19 2005-09-29 ブリストル−マイヤーズ スクイブ カンパニー Heterocyclic inhibitors of potassium channel function
WO2003088908A2 (en) 2002-04-19 2003-10-30 Bristol-Myers Squibb Company Heterocyclo inhibitors of potassium channel function
US7005436B2 (en) 2002-04-19 2006-02-28 Bristol Myers Squibb Company Heterocyclo inhibitors of potassium channel function
WO2003105788A2 (en) 2002-06-12 2003-12-24 L'oreal Care and/or make-up cosmetic composition structured with silicone polymers and organogelling agents, in rigid form
US7446117B2 (en) 2002-09-16 2008-11-04 Glaxo Group Limited Cox-2 inhibiting pyridine derivatives
WO2004024691A1 (en) 2002-09-16 2004-03-25 Glaxo Group Limited Cox-2 inhibiting pyridine derivatives
JP2006507247A (en) 2002-09-16 2006-03-02 グラクソ グループ リミテッド COX-2 inhibitory pyridine derivative
WO2004035571A1 (en) 2002-10-15 2004-04-29 Rigel Pharmaceuticals, Inc. Substituted indoles and their use as hcv inhibitors
WO2004041163A2 (en) 2002-10-30 2004-05-21 Merck & Co., Inc. Piperidinyl cyclopentyl aryl benzylamide modulators of chemokine receptor activity
WO2004054505A2 (en) 2002-12-12 2004-07-01 Pharmacia Corporation Method of using aminocyanopyridine compounds as mitogen activated protein kinase-activated protein kinase-2 inhibitors
JP2006512338A (en) 2002-12-12 2006-04-13 ファルマシア・コーポレーション Use of aminocyanopyridines as mitogen-activated protein kinase-activated protein kinase-2 inhibitors
WO2004063179A1 (en) 2003-01-06 2004-07-29 Eli Lilly And Company Substituted arylcyclopropylacetamides as glucokinase activators
WO2004072038A1 (en) 2003-02-10 2004-08-26 Vertex Pharmaceuticals Incorporated Processes for the preparation of n-heteroaryl-n-aryl-amines by reacting an n-aryl carbamic acid ester with a halo-heteroaryl and analogous processes
US20120184583A1 (en) 2003-03-12 2012-07-19 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US20100144798A1 (en) 2003-03-12 2010-06-10 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette Transporters
US20050113423A1 (en) 2003-03-12 2005-05-26 Vangoor Frederick F. Modulators of ATP-binding cassette transporters
WO2004099168A2 (en) 2003-04-30 2004-11-18 The Institutes For Pharmaceutical Discovery, Llc Substituted carboxylic acids
US8642609B2 (en) 2003-06-06 2014-02-04 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7893094B2 (en) 2003-06-27 2011-02-22 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Amphiphilic pyridinium compounds, method of making and use thereof
WO2005000300A1 (en) 2003-06-27 2005-01-06 Vernalis (Cambridge) Limited Substituted 5-membered ring compounds and their use
JP2005053902A (en) 2003-07-18 2005-03-03 Nippon Nohyaku Co Ltd Phenylpyridines, intermediate therefor, and herbicide containing the same as effective ingredient
US20050113379A1 (en) 2003-09-05 2005-05-26 Ping Ge Heteroaryl fused pyridines, pyrazines and pyrimidines as CRF1 receptor ligands
WO2005023806A2 (en) 2003-09-05 2005-03-17 Neurogen Corporation Heteroaryl fused pyridines, pyrazines and pyrimidines as crf1 receptor ligands
US20160228414A1 (en) 2003-09-06 2016-08-11 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US9249131B2 (en) 2003-09-06 2016-02-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8853415B2 (en) 2003-09-06 2014-10-07 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8431605B2 (en) 2003-09-06 2013-04-30 Vertex Pharmaceutical Incorporated Modulators of ATP-binding cassette transporters
US8741939B2 (en) 2003-09-06 2014-06-03 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7973169B2 (en) 2003-09-06 2011-07-05 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
WO2005026137A2 (en) 2003-09-06 2005-03-24 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
WO2005030702A1 (en) 2003-09-25 2005-04-07 Wyeth Biphenyloxy-acids
CA2539250A1 (en) 2003-09-25 2005-04-07 Wyeth Biphenyloxy-acids
WO2005030755A1 (en) 2003-09-30 2005-04-07 Abbott Gmbh & Co. Kg Heteroaryl-substituted 1,3-dihydroindol-2-one derivatives and medicaments containing them
US20050070718A1 (en) 2003-09-30 2005-03-31 Abbott Gmbh & Co. Kg Heteroaryl-substituted 1,3-dihydroindol-2-one derivatives and medicaments containing them
US20130012536A1 (en) 2003-10-08 2013-01-10 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US20120035179A1 (en) 2003-10-08 2012-02-09 Hadida-Ruah Sara S Modulators of atp-binding cassette transporters
US20100125090A1 (en) 2003-10-08 2010-05-20 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette Transporters
US7598412B2 (en) 2003-10-08 2009-10-06 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2005039589A2 (en) 2003-10-23 2005-05-06 Universite Joseph Fourier Cftr channel modulators
WO2005044797A1 (en) 2003-11-06 2005-05-19 Addex Pharmaceuticals Sa Allosteric modulators of metabotropic glutamate receptors
US7407976B2 (en) 2003-11-14 2008-08-05 Vertex Pharmaceuticals Incorporated Thiazoles and oxazoles useful as modulators of ATP-Binding Cassette transporters
US7846951B2 (en) 2003-11-14 2010-12-07 Vertex Pharmaceuticals Incorporated Thiazoles and oxazoles useful as modulators of ATP-binding cassette transporters
US8232302B2 (en) 2003-11-14 2012-07-31 Vertex Pharmaceuticals Incorporated Thiazoles and oxazoles useful as modulators of ATP-binding cassette transporters
WO2005049018A1 (en) 2003-11-14 2005-06-02 Vertex Pharmaceuticals Incorporated Thiazoles and oxazoles useful as modulators of atp-binding cassette transporters
JP2007511572A (en) 2003-11-19 2007-05-10 グラクソ グループ リミテッド Use of a cyclooxygenase-2 selective inhibitor for the treatment of schizophrenia
US20070142411A1 (en) 2003-11-19 2007-06-21 James Hagan Use of cyclooxygenase-2 selective inhibitors for the treatment of schizophrenic disorders
WO2005049034A2 (en) 2003-11-19 2005-06-02 Glaxo Group Limited Use of cyclooxygenase-2 selective inhibitors for the treatment of schizophrenic disorders
US20140080825A1 (en) 2004-01-30 2014-03-20 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
JP2007519740A (en) 2004-01-30 2007-07-19 バーテックス ファーマシューティカルズ インコーポレイテッド ATP-binding cassette transporter modulator
WO2005075435A1 (en) 2004-01-30 2005-08-18 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8759335B2 (en) 2004-01-30 2014-06-24 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
CN1938279A (en) 2004-01-30 2007-03-28 沃泰克斯药物股份有限公司 Modulators of atp-binding cassette transporters
US20170107205A1 (en) 2004-01-30 2017-04-20 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US9550761B2 (en) 2004-01-30 2017-01-24 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2005080348A1 (en) 2004-02-19 2005-09-01 Banyu Pharmaceutical Co., Ltd. Novel sulfone amide derivative
WO2005100353A1 (en) 2004-04-15 2005-10-27 Almirall Prodesfarma, Sa Condensed pyridine derivatives useful as a28 adenosine receptor antagonists
WO2005115399A2 (en) 2004-04-16 2005-12-08 Neurogen Corporation Imidazopyrazines, imidazopyridines, ans imidazopyrimidines as crf1 receptor ligands
JP2007533740A (en) 2004-04-22 2007-11-22 イーライ リリー アンド カンパニー Amides as BACE inhibitors
US7585885B2 (en) 2004-04-22 2009-09-08 Eli Lilly And Company Pyrrolidine derivatives useful as BACE inhibitors
WO2005108391A1 (en) 2004-04-22 2005-11-17 Eli Lilly And Company Amides as bace inhibitors
US20080138803A1 (en) 2004-06-01 2008-06-12 Galvan-Goldman Nee Galvan Barb Method of Detecting Cystic Fibrosis Associated Mutations
US20140155431A1 (en) 2004-06-24 2014-06-05 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US20160318931A1 (en) 2004-06-24 2016-11-03 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8614327B2 (en) 2004-06-24 2013-12-24 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
CN101006076A (en) 2004-06-24 2007-07-25 沃泰克斯药物股份有限公司 Modulators of ATP-binding cassette transporters
US20130331567A1 (en) 2004-06-24 2013-12-12 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8629162B2 (en) 2004-06-24 2014-01-14 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US9090619B2 (en) 2004-06-24 2015-07-28 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20150065487A1 (en) 2004-06-24 2015-03-05 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8101767B2 (en) 2004-06-24 2012-01-24 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2006002421A2 (en) 2004-06-24 2006-01-05 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8741925B2 (en) 2004-06-24 2014-06-03 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8324242B2 (en) 2004-06-24 2012-12-04 Vertex Pharmaceutical Incorporated Modulators of ATP-binding cassette transporters
US20140163011A1 (en) 2004-06-24 2014-06-12 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8829204B2 (en) 2004-06-24 2014-09-09 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20150031722A1 (en) 2004-06-24 2015-01-29 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US20140343098A1 (en) 2004-06-24 2014-11-20 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US7495103B2 (en) 2004-06-24 2009-02-24 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8354427B2 (en) 2004-06-24 2013-01-15 Vertex Pharmaceutical Incorporated Modulators of ATP-binding cassette transporters
JP2008504097A (en) 2004-07-01 2008-02-14 ワーナー−ランバート カンパニー リミテッド ライアビリティー カンパニー Preparation of pharmaceutical compositions containing nanoparticles
WO2006003504A1 (en) 2004-07-01 2006-01-12 Warner-Lambert Company Llc Preparation of pharmaceutical compositions containing nanoparticles
US20060003005A1 (en) 2004-07-02 2006-01-05 Bruce Cao Tablet for pulsed delivery
WO2006014012A2 (en) 2004-08-06 2006-02-09 Otsuka Pharmaceutical Co., Ltd. Aromatic compounds
US8541453B2 (en) 2004-08-20 2013-09-24 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7977322B2 (en) 2004-08-20 2011-07-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20060069110A1 (en) 2004-09-27 2006-03-30 Andersen Denise L Substituted heterocyclic compounds and methods of use
WO2006040520A1 (en) 2004-10-12 2006-04-20 Astrazeneca Ab Quinazoline derivatives
WO2006051394A1 (en) 2004-11-15 2006-05-18 Pfizer Products Inc. Azabenzoxazoles for the treatment of cns disorders
WO2006063999A1 (en) 2004-12-15 2006-06-22 Dompe' Pha.R.Ma.S.P.A. 2-arylpropionic acid derivatives and pharmaceutical compositions containing them
WO2006067931A1 (en) 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescent element using the same
WO2006080884A1 (en) 2005-01-27 2006-08-03 Astrazeneca Ab Novel biaromatic compounds, inhibitors of the p2x7-receptor
US20060173050A1 (en) 2005-01-28 2006-08-03 Gang Liu Inhibitors of c-Jun N-terminal kinases
WO2006082952A1 (en) 2005-02-01 2006-08-10 Takeda Pharmaceutical Company Limited Amide compound
US8609703B2 (en) 2005-03-11 2013-12-17 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20140155626A1 (en) 2005-03-11 2014-06-05 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8242149B2 (en) 2005-03-11 2012-08-14 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7297700B2 (en) 2005-03-24 2007-11-20 Renovis, Inc. Bicycloheteroaryl compounds as P2X7 modulators and uses thereof
WO2006108695A2 (en) 2005-04-08 2006-10-19 Bayer Schering Pharma Aktiengesellschaft Sulfoximine-pyrimidine macrocycles and the salts thereof , a process for making them, and their pharmaceutical use against cancer
WO2006113704A2 (en) 2005-04-18 2006-10-26 Neurogen Corporation Subtituted heteroaryl cb1 antagonists
CN101198333A (en) 2005-04-19 2008-06-11 拜尔药品公司 Preparation and use of aryl alkyl acid derivatives for the treatment of obesity
CA2605300A1 (en) 2005-04-19 2006-10-26 Bayer Pharmaceuticals Corporation Preparation and use of aryl alkyl acid derivatives for the treatment of obesity
WO2006113919A2 (en) 2005-04-19 2006-10-26 Bayer Pharmaceuticals Corporation Aryl alkyl acid derivatives for and use thereof
WO2006129199A1 (en) 2005-05-18 2006-12-07 Addex Pharma Sa Novel heterocyclic compounds as positive allosteric modulators of metabotropic glutamate receptors
US8822451B2 (en) 2005-05-24 2014-09-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2006130403A1 (en) 2005-06-02 2006-12-07 Bayer Cropscience Ag Phenylalkyl substituted heteroaryl devivatives
WO2006136829A2 (en) 2005-06-21 2006-12-28 Astex Therapeutics Limited Pyrazole derivatives and their use as pka and pkb modulators
US20160237079A1 (en) 2005-08-11 2016-08-18 Vertex Pharmaceuticals Incorporated Modulators of Cystic Fibrosis Transmembrane Conductance Regulator
CN101287732A (en) 2005-08-11 2008-10-15 沃泰克斯药物股份有限公司 Modulators of cystic fibrosis transmembrane conductance regulator
WO2007021982A2 (en) 2005-08-11 2007-02-22 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US9351962B2 (en) 2005-08-11 2016-05-31 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8962856B2 (en) 2005-08-11 2015-02-24 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8586615B2 (en) 2005-08-11 2013-11-19 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US7999113B2 (en) 2005-08-11 2011-08-16 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2007028654A1 (en) 2005-09-09 2007-03-15 Smithkline Beecham Corporation Pyridine derivatives and their use in the treatment of psychotic disorders
WO2007039420A1 (en) 2005-09-23 2007-04-12 F. Hoffmann-La Roche Ag Novel dosage formulation
US8314256B2 (en) 2005-10-06 2012-11-20 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8853254B2 (en) 2005-10-06 2014-10-07 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2007045462A2 (en) 2005-10-19 2007-04-26 Grünenthal GmbH Novel vanilloid receptor ligands and their use for producing medicaments
WO2007056341A1 (en) 2005-11-08 2007-05-18 Vertex Pharmaceuticals Incorporated Heterocyclic modulators of atp-binding cassette transporters
US8461156B2 (en) 2005-11-08 2013-06-11 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
JP5317184B2 (en) 2005-11-08 2013-10-16 バーテックス ファーマシューティカルズ インコーポレイテッド ATP binding cassette transporter modulator
US20130245010A1 (en) 2005-11-08 2013-09-19 Sara S. Hadida Ruah Modulators of atp-binding cassette transporters
US20130245011A1 (en) 2005-11-08 2013-09-19 Sara S. Hadida Ruah Modulators of ATP-Binding Cassette Transporters
US7482469B2 (en) 2005-11-08 2009-01-27 N.V. Organon 2-(benzimidazol-1-yl)-acetamide bisaryl derivatives
US8741933B2 (en) 2005-11-08 2014-06-03 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20170107206A1 (en) 2005-11-08 2017-04-20 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8324207B2 (en) 2005-11-08 2012-12-04 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8318733B2 (en) 2005-11-08 2012-11-27 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7659268B2 (en) 2005-11-08 2010-02-09 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7956052B2 (en) 2005-11-08 2011-06-07 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7973038B2 (en) 2005-11-08 2011-07-05 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20120232059A1 (en) 2005-11-08 2012-09-13 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette Transporters
US7741321B2 (en) 2005-11-08 2010-06-22 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
JP5666525B2 (en) 2005-11-08 2015-02-12 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated ATP binding cassette transporter modulator
US20160143898A1 (en) 2005-11-08 2016-05-26 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US9216969B2 (en) 2005-11-08 2015-12-22 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
AU2006311650B2 (en) 2005-11-08 2012-02-23 Vertex Pharmaceuticals Incorporated Heterocyclic modulators of ATP-binding cassette transporters
WO2007054480A1 (en) 2005-11-08 2007-05-18 N.V. Organon 2-(benzimidazol-1-yl)-acetamide biaryl derivatives and their use as inhibitors of the trpv1 receptor
US20150065500A1 (en) 2005-11-08 2015-03-05 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette Transporters
US8993600B2 (en) 2005-11-08 2015-03-31 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2007067506A2 (en) 2005-12-05 2007-06-14 Smithkline Beecham Corporation 2-pyrimidinyl pyrazolopyridine erbb kinase inhibitors
US20150336898A1 (en) 2005-12-24 2015-11-26 Vertex Pharmaceuticals Incorporated Prodrugs of Modulators of ABC Transporters
US20130303484A1 (en) 2005-12-24 2013-11-14 Vertex Pharmaceuticals Incorporated Prodrugs of Modulators of ABC Transporters
US20140243289A1 (en) 2005-12-24 2014-08-28 Vertex Pharmaceuticals Incorporated Prodrugs of modulators of abc transporters
US20090105272A1 (en) 2005-12-24 2009-04-23 Grootenhuis Peter D J Prodrugs of modulators of ABC transporters
US20090246820A1 (en) 2005-12-27 2009-10-01 Singh Ashvani K Compounds useful in cftr assays and methods therewith
WO2007075946A1 (en) 2005-12-27 2007-07-05 Vertex Pharmaceuticals Incorporated Compounds useful in cftr assays and methods therewith
US20150293078A1 (en) 2005-12-27 2015-10-15 Vertex Pharmaceuticals Incorporated Compounds useful in cftr assays and methods therewith
US8754224B2 (en) 2005-12-28 2014-06-17 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US7671221B2 (en) 2005-12-28 2010-03-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
US20150065497A1 (en) 2005-12-28 2015-03-05 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8524767B2 (en) 2005-12-28 2013-09-03 Vertex Pharmaceuticals Incorporated Modulators of ATP binding cassette transporters
JP5165586B2 (en) 2005-12-28 2013-03-21 バーテックス ファーマシューティカルズ インコーポレイテッド 1- (Benzo [d] [1,3] dioxol-5-yl) -N- (phenyl) cyclopropane-carboxamide derivatives and related as modulators of ATP binding cassette transporters for the treatment of cystic fibrosis Compound
WO2007087066A2 (en) 2005-12-28 2007-08-02 Vertex Pharmaceuticals Incorporated 1-(benzo [d] [1,3] di0x0l-5-yl) -n- (phenyl) cyclopropane- carboxamide derivatives and related compounds as modulators of atp-binding cassette transporters for the treatment of cystic fibrosis
US8410274B2 (en) 2005-12-28 2013-04-02 Vertex Pharmaceuticals Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8846753B2 (en) 2005-12-28 2014-09-30 Vertex Pharamaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20110064811A1 (en) 2005-12-28 2011-03-17 Patricia Hurter Solid forms of N-[2,4-BIS(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2007079139A2 (en) 2005-12-28 2007-07-12 Vertex Pharmaceuticals, Inc. Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US9670163B2 (en) 2005-12-28 2017-06-06 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US7691902B2 (en) 2005-12-28 2010-04-06 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US9139530B2 (en) 2005-12-28 2015-09-22 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8039491B2 (en) 2005-12-28 2011-10-18 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2007079257A2 (en) 2005-12-30 2007-07-12 Caliper Life Sciences, Inc. Integrated dissolution processing and sample transfer system
US8952049B2 (en) 2006-04-07 2015-02-10 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7645789B2 (en) 2006-04-07 2010-01-12 Vertex Pharmaceuticals Incorporated Indole derivatives as CFTR modulators
US8912199B2 (en) 2006-04-07 2014-12-16 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20160271105A1 (en) 2006-04-07 2016-09-22 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
CN101460489A (en) 2006-04-07 2009-06-17 弗特克斯药品有限公司 Modulators of ATP-binding cassette transporters
US8575209B2 (en) 2006-04-07 2013-11-05 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8952050B2 (en) 2006-04-07 2015-02-10 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7776905B2 (en) 2006-04-07 2010-08-17 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2007117715A2 (en) 2006-04-07 2007-10-18 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US20160332997A1 (en) 2006-04-07 2016-11-17 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8415387B2 (en) 2006-04-07 2013-04-09 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20150094304A1 (en) 2006-04-07 2015-04-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette Transporters
US20150174098A1 (en) 2006-04-07 2015-06-25 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8623905B2 (en) 2006-04-07 2014-01-07 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8598181B2 (en) 2006-04-07 2013-12-03 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20150119441A1 (en) 2006-04-07 2015-04-30 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette Transporters
US7553855B2 (en) 2006-05-12 2009-06-30 Vertex Pharmaceuticals Incorporated Compositions of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8076357B2 (en) 2006-05-12 2011-12-13 Vertex Pharmaceuticals Incorporated Compositions of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US20120122922A1 (en) 2006-05-12 2012-05-17 Vertex Pharmaceuticals Incorporated Compositions of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2007134279A2 (en) 2006-05-12 2007-11-22 Vertex Pharmaceuticals Incorporated Compositions of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US9102672B2 (en) 2006-11-03 2015-08-11 Vertex Pharmaceuticals Incorporated Azaindole derivatives as CFTR modulators
US20150336956A1 (en) 2006-11-03 2015-11-26 Vertex Pharmaceuticals Incorporated Azaindole derivatives as cftr modulators
WO2008127399A2 (en) 2006-11-03 2008-10-23 Vertex Pharmaceuticals Incorporated Azaindole derivatives as cftr modulators
US8012999B2 (en) 2006-11-08 2011-09-06 Vertex Pharmaceuticals Incorporated Modulators of CFTR
WO2008065068A2 (en) 2006-11-27 2008-06-05 Novartis Ag Substituted dihydroimidazoles and their use in the treatment of tumors
US20080260820A1 (en) 2007-04-19 2008-10-23 Gilles Borrelly Oral dosage formulations of protease-resistant polypeptides
JP5497633B2 (en) 2007-05-09 2014-05-21 バーテックス ファーマシューティカルズ インコーポレイテッド CFTR modulator
US8969386B2 (en) 2007-05-09 2015-03-03 Vertex Pharmaceuticals Incorporated Modulators of CFTR
US7754739B2 (en) 2007-05-09 2010-07-13 Vertex Pharmaceuticals Incorporated Modulators of CFTR
US20150166516A1 (en) 2007-05-09 2015-06-18 Vertex Pharmaceuticals Incorporated Modulators of cftr
WO2008141119A2 (en) 2007-05-09 2008-11-20 Vertex Pharmaceuticals Incorporated Modulators of cftr
WO2008147952A1 (en) 2007-05-25 2008-12-04 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US20140235668A1 (en) 2007-05-25 2014-08-21 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator vpi
US8710075B2 (en) 2007-05-25 2014-04-29 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8399479B2 (en) 2007-05-25 2013-03-19 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2009006315A1 (en) 2007-06-29 2009-01-08 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters for treating cystic fibrosis
US20110177999A1 (en) 2007-08-09 2011-07-21 Vertex Pharmaceuticals Incorporated Therapeutic Combinations Useful in Treating CFTR Related Diseases
WO2009023509A2 (en) 2007-08-09 2009-02-19 Vertex Pharmaceuticals Incorporated Therapeutic combinations useful in treating cftr related diseases
US9399648B2 (en) 2007-08-24 2016-07-26 Vertex Pharmaceuticals Incorporated Isothiazolopyridinones useful for the treatment of (inter alia) cystic fibrosis
US8802844B2 (en) 2007-08-24 2014-08-12 Vertex Pharmaceuticals Incorporated Isothiazolopyridinones useful for the treatment of (inter alia) cystic fibrosis
WO2009038913A2 (en) 2007-08-24 2009-03-26 Vertex Pharmaceuticals Incorporated Isothiazolopyridinones useful for the treatment of (inter alia) cystic fibrosis
WO2009033561A1 (en) 2007-09-07 2009-03-19 Bayer Schering Pharma Aktiengesellschaft Substituted 6-pheylnicotinic acids and the use thereof
US8163772B2 (en) 2007-09-14 2012-04-24 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxypheny1]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8188283B2 (en) 2007-09-14 2012-05-29 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8410132B2 (en) 2007-09-14 2013-04-02 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2009036412A1 (en) 2007-09-14 2009-03-19 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8362253B2 (en) 2007-09-14 2013-01-29 Vertex Pharmaceutical Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2009038683A2 (en) 2007-09-14 2009-03-26 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8748612B2 (en) 2007-09-14 2014-06-10 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8623894B2 (en) 2007-09-14 2014-01-07 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-Bis(1,1-dimethyethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquioline-3-carboxamide
WO2009074749A2 (en) 2007-09-28 2009-06-18 Sanofi-Aventis Nicotinamide derivatives, preparation thereof and therapeutic use thereof
US8563573B2 (en) 2007-11-02 2013-10-22 Vertex Pharmaceuticals Incorporated Azaindole derivatives as CFTR modulators
US8507524B2 (en) 2007-11-16 2013-08-13 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette-transporters
US9522145B2 (en) 2007-11-16 2016-12-20 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8722704B2 (en) 2007-11-16 2014-05-13 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette-transporters
US9012473B2 (en) 2007-11-16 2015-04-21 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8124781B2 (en) 2007-12-07 2012-02-28 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US8461342B2 (en) 2007-12-07 2013-06-11 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US20160221995A1 (en) 2007-12-07 2016-08-04 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
US8592602B2 (en) 2007-12-07 2013-11-26 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US9150552B2 (en) 2007-12-07 2015-10-06 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
US8816093B2 (en) 2007-12-07 2014-08-26 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
EP2231606B1 (en) 2007-12-07 2013-02-13 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxiamido-pyridine benzoic acids
WO2009073757A1 (en) 2007-12-07 2009-06-11 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
US8846718B2 (en) 2007-12-07 2014-09-30 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxo1-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
US9434717B2 (en) 2007-12-07 2016-09-06 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
US20160200712A1 (en) 2007-12-07 2016-07-14 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US20100036130A1 (en) 2007-12-07 2010-02-11 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US9321725B2 (en) 2007-12-07 2016-04-26 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US9012652B2 (en) 2007-12-07 2015-04-21 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US8507534B2 (en) 2007-12-07 2013-08-13 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US20090176839A1 (en) 2007-12-07 2009-07-09 Ali Keshavarz-Shokri Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
WO2009076141A2 (en) 2007-12-07 2009-06-18 Vertex Pharmaceuticals Incorporated Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cycklopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US8653103B2 (en) 2007-12-07 2014-02-18 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[D][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
WO2009076142A2 (en) 2007-12-07 2009-06-18 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxiamido-pyridine benzoic acids
US8552006B2 (en) 2007-12-13 2013-10-08 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US9051324B2 (en) 2007-12-13 2015-06-09 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2009076593A1 (en) 2007-12-13 2009-06-18 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US9504683B2 (en) 2008-02-28 2016-11-29 Vertex Pharmaceuticals Incorporated Heteroaryl derivatives as CFTR modulators
US9079916B2 (en) 2008-02-28 2015-07-14 Vertex Pharmaceuticals Incorporated Heteroaryl derivatives as CFTR modulators
US20170107225A1 (en) 2008-02-28 2017-04-20 Vertex Pharmaceuticals Incorporated Heteroaryl derivatives as cftr modulators
US8299099B2 (en) 2008-02-28 2012-10-30 Vertex Pharmaceuticals Incorporated Heteroaryl derivatives as CFTR modulators
US8796312B2 (en) 2008-02-28 2014-08-05 Vertex Pharmaceuticals Incorporated Heteroaryl derivatives as CFTR modulators
EP2615085A1 (en) 2008-03-31 2013-07-17 Vertex Pharmaceuticals Incorporated Pyridyl derivatives as CFTR modulators
US8889875B2 (en) 2008-03-31 2014-11-18 Vertex Pharmaceuticals Incorporated Pyridyl derivatives as CFTR modulators
US8227615B2 (en) 2008-03-31 2012-07-24 Vertex Pharmaceutical Incorporated Pyridyl derivatives as CFTR modulators
WO2009123896A1 (en) 2008-03-31 2009-10-08 Vertex Pharmaceuticals Incorporated Pyridyl derivatives as cftr modulators
US8524910B2 (en) 2008-03-31 2013-09-03 Vertex Pharmaceuticals Incorporated Pyridyl derivatives as CFTR modulators
JP2011529101A (en) 2008-07-26 2011-12-01 ユニバーシティー オブ ブラッドフォード Methods and products
WO2010013035A1 (en) 2008-07-26 2010-02-04 University Of Bradford Method and product
US20120220625A1 (en) 2008-08-13 2012-08-30 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US20100074949A1 (en) 2008-08-13 2010-03-25 William Rowe Pharmaceutical composition and administration thereof
US20140112988A1 (en) 2008-08-13 2014-04-24 Vertex Pharmaceuticals Incorporated Pharmaceutical Composition and Administrations Thereof
US20120258983A1 (en) 2008-08-13 2012-10-11 Vertex Pharmaceuticals Incorporated Pharmaceutical Composition and Administrations Thereof
US20170087144A1 (en) 2008-08-13 2017-03-30 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US20100256184A1 (en) 2008-08-13 2010-10-07 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
JP2011530598A (en) 2008-08-13 2011-12-22 バーテックス ファーマシューティカルズ インコーポレイテッド Pharmaceutical composition and its administration
WO2010019239A2 (en) 2008-08-13 2010-02-18 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US20140315948A1 (en) 2008-08-13 2014-10-23 Vertex Pharmaceuticals Incorporated Pharmaceutical Composition and Administrations Thereof
US8716338B2 (en) 2008-09-29 2014-05-06 Vertex Pharmaceuticals Incorporated Dosage units of 3-(6-(1-(2,2-difluorobenzo[D] [1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
WO2010037066A2 (en) 2008-09-29 2010-04-01 Vertex Pharmaceuticals Incorporated Dosage units of 3-(6-(1-(2,2-difluorobenzo [d] [1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
CN102164587A (en) 2008-09-29 2011-08-24 沃泰克斯药物股份有限公司 Dosage units of 3-(6-(1-(2,2-difluorobenzo [D] [1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US9192606B2 (en) 2008-09-29 2015-11-24 Vertex Pharmaceuticals Incorporated Dosage units of 3-(6-(1-(2,2-difluorobenzo[d] [1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US20160039800A1 (en) 2008-09-29 2016-02-11 Vertex Pharmaceuticals Incorporated Dosage units of 3-(6-(1-(2,2-difluorobenzo[d] [1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
WO2010048564A1 (en) 2008-10-23 2010-04-29 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8969382B2 (en) 2008-10-23 2015-03-03 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8598205B2 (en) 2008-10-23 2013-12-03 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8604203B2 (en) 2008-10-23 2013-12-10 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US20130231368A1 (en) 2008-10-23 2013-09-05 Vertex Pharmaceuticals Incorporated Solid Forms of N-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-(trifluorormethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihyroquinoline-3-carboxamide
US20110257223A1 (en) 2008-10-23 2011-10-20 Vertex Pharmaceuticals Incorporated Modulators of Cystic Fibrosis Transmembrane Conductance Regulator
US8785640B2 (en) 2008-10-23 2014-07-22 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8513282B2 (en) 2008-10-23 2013-08-20 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US20140303204A1 (en) 2008-10-23 2014-10-09 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2010048526A2 (en) 2008-10-23 2010-04-29 Vertex Pharmaceuticals, Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8314239B2 (en) 2008-10-23 2012-11-20 Vertex Pharmaceutical Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8436014B2 (en) 2008-10-23 2013-05-07 Vertex Pharmaceutical Incorporated Solid forms of N-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-(trifluorormethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihyroquinoline-3-carboxamide
WO2010053471A1 (en) 2008-11-06 2010-05-14 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
WO2010054138A2 (en) 2008-11-06 2010-05-14 Vertex Pharmaceuticals, Incorporated Modulators of atp-binding cassette transporters
US8633189B2 (en) 2008-12-30 2014-01-21 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8999976B2 (en) 2008-12-30 2015-04-07 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8367660B2 (en) 2008-12-30 2013-02-05 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US20140303205A1 (en) 2009-03-20 2014-10-09 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8796308B2 (en) 2009-03-20 2014-08-05 Vertex Pharamaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US20160221952A1 (en) 2009-03-20 2016-08-04 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8614325B2 (en) 2009-03-20 2013-12-24 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8765957B2 (en) 2009-03-20 2014-07-01 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
US8835639B2 (en) 2009-03-20 2014-09-16 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
US20170096396A1 (en) 2009-03-20 2017-04-06 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
US8476442B2 (en) 2009-03-20 2013-07-02 Vertex Pharmaceutical Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
US20140350281A1 (en) 2009-03-20 2014-11-27 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
US20120122921A1 (en) 2009-03-20 2012-05-17 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
US9371287B2 (en) 2009-03-20 2016-06-21 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
WO2010128359A1 (en) 2009-05-07 2010-11-11 Gea Pharma Systems Limited Tablet production module and method for continuous production of tablets
US20120061869A1 (en) 2009-05-07 2012-03-15 Gea Pharma Systems Limited Tablet production module and method for continuous production of tablets
WO2010138484A2 (en) 2009-05-29 2010-12-02 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US8404865B2 (en) 2009-09-17 2013-03-26 Vertex Pharmaceuticals Process for preparing azabicyclic compounds
US8461352B2 (en) 2009-09-17 2013-06-11 Vertex Pharmaceuticals Incorporated Process for preparing azabicyclic compounds
US20110098311A1 (en) 2009-10-22 2011-04-28 Vertex Pharmaceuticals Incorported Compositions for treatment of cystic fibrosis and other chronic diseases
US20150231142A1 (en) 2009-10-22 2015-08-20 Vertex Pharmaceuticals Incorporated Compositions for Treatment of Cystic Fibrosis and Other Chronic Diseases
US20150150879A2 (en) 2009-10-22 2015-06-04 Vertex Pharmaceuticals Incorporated Compositions for Treatment of Cystic Fibrosis and Other Chronic Diseases
US8884018B2 (en) 2009-10-23 2014-11-11 Vertex Pharmaceuticals Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
US8389727B2 (en) 2009-10-23 2013-03-05 Vertex Pharmaceuticals Incorporated Solid forms of N-(4-(7-Azabicyclo[2.2.1]Heptan-7-yl)-2-Trifluoromethyl)Phenyl)-4-Oxo-5-(Trifluoromethyl)-1,4-Dihydroquinoline-3-Carboxamide
US8741922B2 (en) 2009-10-23 2014-06-03 Vertex Pharmaceuticals Incorporated Solid forms of N-(4-(7-azabicyclo[2.2,1]heptan-7-yl)-2-trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
US8344147B2 (en) 2009-10-23 2013-01-01 Vertex Pharmaceutical Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
US20140336393A1 (en) 2009-10-23 2014-11-13 Vertex Pharmaceuticals Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
US8754222B2 (en) 2009-10-23 2014-06-17 Vertex Pharmaceuticals Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
US20130018071A1 (en) 2010-03-19 2013-01-17 Vertex Pharmaceuticals Incorporated Solid Forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8471029B2 (en) 2010-03-19 2013-06-25 Vertex Pharmaceutical Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US20140329855A1 (en) 2010-03-19 2014-11-06 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8785476B2 (en) 2010-03-19 2014-07-22 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8802868B2 (en) 2010-03-25 2014-08-12 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[D][1,3]dioxo1-5-yl)-N-(1-(2,3-dihydroxypropyl-6-fluoro-2-(1-hydroxy-2-methylpropan2-yl)-1H-Indol-5-yl)-Cyclopropanecarboxamide
US9051303B2 (en) 2010-03-25 2015-06-09 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[D][1,3]dioxol-5-YL)-N-(1-(2,3-dihydroxypropyl-6-fluoro-2-(1-hydroxy-2-methylpropan-2-YL)-1H-indol-5-YL)-cyclopropanecarboxamide
US20110251253A1 (en) 2010-03-25 2011-10-13 Vertex Pharmaceuticals Incorporated Solid forms of (r)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide
US20150203478A1 (en) 2010-03-25 2015-07-23 Vertex Pharmaceuticals Incorporated Solid Forms of (R)-1(2,2-Difluorobenzo[D][1,3]Dioxol-5-yl)-N-(1-(2,3-Dihydroxypropyl)-6-Fluoro-2-(1-Hydroxy-2-Methylpropan-2-yl)-1H-Indol-5-yl)Cyclopropanecarboxamide
US20160303096A1 (en) 2010-04-07 2016-10-20 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid and administration thereof.
US20130095181A1 (en) 2010-04-07 2013-04-18 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyriodin-2-yl)benzoic acid and administration thereof
US8507687B2 (en) 2010-04-07 2013-08-13 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[D][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
WO2011127241A2 (en) 2010-04-07 2011-10-13 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyriodin-2-yl)benzoic acid and administration thereof
US9241934B2 (en) 2010-04-07 2016-01-26 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[D][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid and administration thereof
US20130085158A1 (en) 2010-04-07 2013-04-04 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US9314455B2 (en) 2010-04-07 2016-04-19 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US20140023706A1 (en) 2010-04-07 2014-01-23 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid and administration thereof
US8742122B2 (en) 2010-04-07 2014-06-03 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US8552034B2 (en) 2010-04-07 2013-10-08 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid and administration thereof
US8969574B2 (en) 2010-04-07 2015-03-03 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US20160022665A2 (en) 2010-04-22 2016-01-28 Vertex Pharmaceuticals Incorporated Pharmaceutical Compositions and Administrations Thereof
US20160067239A9 (en) 2010-04-22 2016-03-10 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US20130131107A1 (en) 2010-04-22 2013-05-23 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US20150218122A1 (en) 2010-04-22 2015-08-06 Vertex Pharmaceuticals Incorporated Process of Producing Cycloalkylcarboxamido-indole Compounds
WO2011133956A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US20160022664A2 (en) 2010-04-22 2016-01-28 Vertex Pharmaceuticals Incorporated Pharmaceutical Compositions and Administrations Thereof
US20130158071A1 (en) 2010-04-22 2013-06-20 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US9035072B2 (en) 2010-04-22 2015-05-19 Vertex Pharmaceuticals Incorporated Process of producing cycloalkylcarboxamido-indole compounds
US20130143919A1 (en) 2010-04-22 2013-06-06 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
WO2011133951A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
WO2011133953A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US20140142138A1 (en) 2010-05-20 2014-05-22 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US20130090354A1 (en) 2010-05-20 2013-04-11 Vertex Pharmaceuticals Incorporated Pharmaceutical Compositions and Administrations Thereof
US8404849B2 (en) 2010-05-20 2013-03-26 Vertex Pharmaceuticals Processes for producing modulators of cystic fibrosis transmembrane conductance regulator
US20110288122A1 (en) 2010-05-20 2011-11-24 Vertex Pharmaceuticals Incorporated Pharmaceutical Compositions and Administrations Thereof
US8563593B2 (en) 2010-06-08 2013-10-22 Vertex Pharmaceuticals Incorporated Formulations of (R)-1-(2,2-difluorobenzo[D] [1,3] dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
US20140094499A1 (en) 2010-06-08 2014-04-03 Vertex Pharmaceuticals Incorporated Formulations of (r)-1-(2,2-difluorobenzo[d] [1,3] dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl)cyclopropanecarboxamide
US20120046330A1 (en) 2010-08-23 2012-02-23 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (r)-1-(2,2-difluorobenzo[d] [1,3]dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide and administration thereof
US20150010628A1 (en) 2010-08-27 2015-01-08 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US20120064157A1 (en) 2010-08-27 2012-03-15 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
CN102058889A (en) 2010-11-05 2011-05-18 王定豪 Dispersible tablet containing anticoagulants and application thereof
US8802700B2 (en) 2010-12-10 2014-08-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
US20140323521A1 (en) 2011-11-02 2014-10-30 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US20160166540A1 (en) 2011-11-08 2016-06-16 Vertex Pharmaceuticals Incorporated Modulators for atp-binding cassette transporters
US9254291B2 (en) 2011-11-08 2016-02-09 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20130186801A1 (en) 2012-01-25 2013-07-25 Vertex Pharmaceuticals Incorporated Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
WO2013112804A1 (en) 2012-01-25 2013-08-01 Vertex Pharmaceuticals Incorporated Formulations of 3-(6-(1-(2.2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US20160324788A1 (en) 2012-01-25 2016-11-10 Vertex Pharmaceuticals Incorporated Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US20150246031A1 (en) 2012-02-27 2015-09-03 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US20130224293A1 (en) 2012-02-27 2013-08-29 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US8883206B2 (en) 2012-02-27 2014-11-11 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US20150024047A1 (en) 2012-02-27 2015-01-22 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US20170100340A1 (en) 2012-02-27 2017-04-13 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US8674108B2 (en) 2012-04-20 2014-03-18 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethy)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US9045425B2 (en) 2012-04-20 2015-06-02 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US20150080431A1 (en) 2012-06-08 2015-03-19 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cftr-mediated disorders
WO2013185112A1 (en) 2012-06-08 2013-12-12 Vertex Pharmaceuticals Incorporated Pharmaceuticl compositions for the treatment of cftr -mediated disorders
US20150182517A1 (en) 2012-07-16 2015-07-02 Vertex Pharmaceuticals Incorporated Pharmaceutical Compositions of (R)-1-(2,2-Difluorobenzo[D][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl) cyclopropanecarboxamide and Administration Thereof
US9012496B2 (en) 2012-07-16 2015-04-21 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (R)-1-(2,2-difluorobenzo[D][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide and administration thereof
WO2014014841A1 (en) 2012-07-16 2014-01-23 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (r)-1-(2,2-diflurorbenzo[d][1,3]dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide and administration thereof
WO2014055501A1 (en) 2012-10-01 2014-04-10 Momentive Performance Materials Inc. Container and method for in-line analysis of protein compositions
US20140163068A1 (en) 2012-11-02 2014-06-12 Vertex Pharmaceuticals Incorporated Pharmaceutical Compositions for the Treatment of CFTR Mediated Diseases
US20160324846A1 (en) 2012-11-02 2016-11-10 Vertex Pharmaceuticals Incorporated Pharmaceutical Compositions for the Treatment of CFTR Mediated Diseases
WO2014071122A1 (en) 2012-11-02 2014-05-08 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cftr mediated diseases
US20140221424A1 (en) 2013-01-30 2014-08-07 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for use in the treatment of cystic fibrosis
US20150320736A1 (en) 2014-04-15 2015-11-12 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases
US20160095858A1 (en) 2014-10-06 2016-04-07 Vertex Pharmaceuticals Incorporated Modulators of Cystic Fibrosis Transmembrane Conductance Regulator
US20160096807A1 (en) 2014-10-07 2016-04-07 Vertex Pharmaceuticals Incorporated Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator
WO2016086136A1 (en) 2014-11-26 2016-06-02 Catabasis Pharmaceuticals, Inc. Fatty acid cysteamine conjugates of cftr modulators and their use in treating medical disorders
WO2016086103A1 (en) 2014-11-26 2016-06-02 Catabasis Pharmaceuticals, Inc. Fatty acid cysteamine conjugates and their use as activators of autophagy
WO2016087665A2 (en) 2014-12-05 2016-06-09 Centre National De La Recherche Scientifique (Cnrs) Compounds for treating cystic fibrosis
US20160213648A1 (en) 2015-01-26 2016-07-28 Rigel Pharmaceuticals, Inc. Tetrazolones as a Carboxylic Acid Bioisosteres
WO2016185423A1 (en) 2015-05-19 2016-11-24 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors

Non-Patent Citations (218)

* Cited by examiner, † Cited by third party
Title
Abadi, A. et al. (1999) Synthesis of 4-alkyl (aryl)-6-aryl-3-cyano-2(1H)-pyridinones and their 2-imino isosteres as nonsteroidal cardiotonic agents II Farmaco, 54:195-201.
Amaral, M. D. and C.M. Farinha (2013) "Rescuing Mutant CFTR: A Multi-task Approach to a Better Outcome in Treating Cystic Fibrosis" Curr Pharm Des, 19:3497-3508.
Aventis Pharmaceuticals, Inc. (May 12, 2003) Prescribing Information for ALLEGRA® (10 pages).
Batt, D.G. and G.C. Houghton (May 1995) "Polyfunctional pyridines from nitroacetamidine and β-diketones. A useful synthesis of substituted imidazo [4,5-b] pyridines and related compounds" J Heterocycl Chem, 32(3):963-969.
Bauer, K.H. et al. (1999) Lehrbuch der Pharmazeutischen Technologie. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH; pp. 313-316, with English translation (13 pages total).
Bavin, M. (Aug. 1989) "Polymorphism in Process Development" Chemistry & Industry, 16:527-529.
Bazant, V. et al. (Jan. 1968) "Properties of sodium-bis-(2-methoxyethoxy)aluminumhydride. I. Reduction of some organic functional groups" Tetrahedron Letters, 9(29):3303-3306.
Bell, T.W. et al. (Oct. 16, 1995) "Highly Effective Hydrogen-Bonding Receptors for Guanine Derivatives" Angewandte Chemie-International Edition, 34(19):2163-2165.
Bell, T.W. et al. (Oct. 16, 1995) "Highly Effective Hydrogen-Bonding Receptors for Guanine Derivatives" Angewandte Chemie—International Edition, 34(19):2163-2165.
Bernstein, J. (2002) Polymorphism in Molecular Crystals. Oxford: Oxford Science Publications; Chapters 1 and 7, pp. 1-28 and 240-256.
Bernstein, J. (2002) Polymorphism in Molecular Crystals. Oxford: Oxford Science Publications; pp. 9-10.
Bhalerao, U.T. et al. (Jul. 1995) "A mild and efficient method for the dehydrogenation of dihydropyrido-pyrimidinones and related compounds by using active MnO2" Indian J Chem, 34B:587-590.
Bhattacharya, S. et al. (2009) "Thermoanalytical and Crystallographic Methods" in Polymorphism in Pharmaceutical Solids. 2nd edition. Harry G. Brittain (ed.) New York, NY: Informa Healthcare USA, Inc.; pp. 318-335.
Bombieri, C. et al. (1998) "Complete mutational screening of the CFTR gene in 120 patients with pulmonary disease" Hum Genet, 103:718-722.
Boyle, M.P. et al. (Oct. 1, 2011) "VX-809, an Investigational CFTR Corrector, in Combination With VX-770, an Investigational CFTR Potentiator, In Subjects With CF and Homozygous for the F508del-CFTR Mutation" Pediatric Pulmonology, 46:287, Abstract 212.
Braga, D. et al. (2009) "Crystal Polymorphism and Multiple Crystal Forms" Struct Bond, 132:25-27.
Brittain (Ed.) (1999) Polymorphism on Pharmaceutical Science. NY:Marcel Dekker, Inc.; pp. 1-2, 183-226, 235-238.
Byrn, S. et al. (1995) "Pharmaceutical Solids: A Strategic Approach to Regulatory Considerations" Pharmaceutical Research, 12(7):945-954.
Cabeza, J. A. et al. (2004) "Triruthenium, Hexaruthenium, and Triosmium Carbonyl Derivatives of 2-Amino-6-phenylpyridine" Organometallics, 23(5):1107-1115.
Caira, M.R. (1998) "Crystalline Polymorphism of Organic Compounds" in Topics in Current Chemistry, vol. 198, pp. 163-208.
Caplus Database Accession No. 1960:17025; Document No. 54:17025. Ridi, M. (1959) Annali di Chimica, 49:944-957 (2 pages).
Caplus Database Accession No. 1970:435253; Document No. 73:352253. Van Allan, J.A. et al. (1970) J Heterocycl Chem, 7(3):495-507 (1 pages).
Caplus Database Accession No. 1979:420373; Document No. 91:20373. Nantka-Namirski, P. et al. (1978) Polish Journal of Pharmacology and Pharmacy, 30(4):569-572 (2 pages).
Caplus Database Accession No. 1988:186521; Document No. 108:186521. Mertens, H. et al. (1987) Archiv der Pharmazie, 320(11):1143-1149 (2 pages).
Caplus Database Accession No. 1991:6375; Document No. 114:6375. Jure, M. et al. (1990) Latvijas PSR Zinatnu Akademijas Vestis, Kimijas Serija, 4:439-444 (3 pages).
Caplus Database Accession No. 1994:244582; Document No. 120:244582. Troscheutz, R. et al. (1994) Archiv der Pharmazie, 327(2):85-89 (1 page).
Caplus Database Accession No. 2005:406839; Document No. 143:248209; RN 134643-28-0. Spitzner (2005) Science of Synthesis, 15:11-284 (1 page).
Carnegie Mellon, Dept. of Physics (2002) "CMU Seed Fund Project on Detection and Control of Pharmaceutical Polymorphism" [online]. Retrieved from the Internet: http://andrew.cmu.edu/user/suter/polymorph.html; on Apr. 3, 2008, 3 pages.
Cerny, M. et al. (Mar. 1969) "Properties of sodium bis(2-methoxyethoxy)aluminum hydride. III. Reduction of carboxylic acids and their derivatives" Collection of Czechoslovak Chemical Communications, Institute of Organic Chemistry & Biochemistry, 34(3):1025-1032.
Clancy, J.P. et al. (Jan. 2012) "Results of a phase Ila study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation" Thorax, 67(1):12-18. NIH Public Access Author Manuscript; available in PMC Aug. 19, 2013 (16 pages).
Concise Encyclopedia Chemistry, NY: Walter de Gruyter, 1993, pp. 872-873.
Corning Inc. (2013) "Corning° Gentes™ ATPase Assay Kit. Colorimetric Reagent Kit for ABC Transporter Membrane ATPase Assays" Product information, 2 pages.
Costa, M. et al. (Jun. 2005) "Diabetes: a major co-morbidity of cystic fibrosis" Diabetes Metab, 31(3 Pt 1):221-232 (French; English summary on p. 221). Summary p. 221.
Cowart, M. et al. (Jan. 2001) "Structure-activity studies of 5-substituted pyridopyrimidines as adenosine kinase inhibitors" Bioorg Med Chem Lett, 11(1):83-86.
Cowart, M. et al. (Jan. 2001) "Structure—activity studies of 5-substituted pyridopyrimidines as adenosine kinase inhibitors" Bioorg Med Chem Lett, 11(1):83-86.
Cystic Fibrosis Foundation (2006) Annual Report. (58 pages).
Dahl, M. and B.G. Nordestgaard (2009) "Markers of early disease and prognosis in COPD" Intl J COPD, 4:157-167.
Dahl, M. et al. (Oct. 9, 2005) "Asthma and COPD in cystic fibrosis intron-8 5T carriers. A population-based study" Respiratory Research, 6:113, doi:10.1186/1465-9921-6-113, 9 pages.
Damasio, A.R. (1996) "Alzheimer's Disease and Related Dementias" in Cecil Textbook of Medicine. 20th edition. J. Claude Bennett and F. Plum (Eds.). Philadelphia: W.B. Saunders Co.; vol. 2, pp. 1992-1996.
Danswan, G. et al. (1989) "Synthesis of (imidazo[1,2-C]pyrimidin-2-yl)phenylmethanones and 6-benzoylpyrrolo[2,3-D]pyrimidinones" J Heterocyclic Chem, 26(2):293-299.
Davidovich et al. (2004) "Detection of Polymorphism by Powder X-Ray Diffraction: Interference by Preferred Orientation" American Pharmaceutical Review, 7(1):10, 12, 14, 16 and 100.
Dhenge, R.M. et al. (2010) "Twin screw wet granulation: Granule properties" Chemical Engineering Journal, 164:322-329.
Doelker, E. (1999) "Physicochemical Behaviors of Active Substances Their Consequences for the Feasibility and the Stability of Pharmaceutical Forms" S.T.P. Pharma Pratiques, 9(5):399-409. French with English translation.
Doelker, E. (2002) "Modifications Cyrisallines et Transformations Polymorphes au Cours des Operations Galeniques (Crystalline Modifications and Polymorphous Changes During Drug Manufacture" English translation of Ann. Pharm. Fr., 60:161-176 (40 pages).
Dornow, A. and E. Neuse (1951) "Über die Reaktion von Amidinen mit β-Dicarbonyl-Verbindungen" Chemische Berichte, 84:296-304 (German).
Dornow, A. and P. Karlson (1940) "Über eine neue Synthese von 2-Amino-pyridin-Derivaten" Berichte der Deutschen Chemischen Gesellschaft A/B, 73(5):542-546.
Dörwald, F.Z. (2005) Side Reactions in Organic Synthesis. Weinheim, Germany: Wiley-VCH; Preface, pp. 1-15 and Chapter 8, pp. 279-308.
Elkady, M. et al. (1980) "Some reactions of β-aroylacrylic acids" Revue Roumanie de Chimie, 25:1361-1366.
European Medicines Agency (Sep. 24, 2015) "Orkambi" Assessment Report. Procedure No. EMEA/H/C/003954/0000 (104 pages).
Evens, G. and P. Caluwe (1975) "Pyrido[2,3-d]pyrimidines. Latent 2-Aminonicotinaldehydes" J Org Chem, 40(10):1438-1439.
Farhanullah et al. (2003) "Synthesis of Aminonicotinonitriles and Diaminopyridines through Base-Catalyzed Ring Transformation of 2H-Pyran-2-ones" J Org Chem, 68(7):2983-2985.
Ferec, C. et al. (2012) "Assessing the Disease-Liability of Mutations in CFTR" Cold Spring Harbor Perspect Med, 2:a009480 (13 pages).
Florence, A.T. (2011) Physicochemical Principles of Pharmacy. Chapter 1, pp. 7-42.
Flume, P.A. (2012) "Ivacaftor in Subjects With Cystic Fibrosis Who Are Homozygous for the F508del-CFTR Mutation" Chest, 142(3):718-724.
Galietta, L.J.V. and O. Moran (2004) "Identification of CFTR activators and inhibitors: chance or design?" Curr Opin Pharmacol, 4:497-503.
Genomembrane Co. Ltd. (2015) "ABC Transporter and Assay" [online]. Retrieved from: http://www.genomembrane.com/E_ABC_Transporter_and_Assay.html; on Aug. 4, 2015 (3 pages.).
Giardina, G.A.M. et al. (1999) "Replacement of the quinoline system in 2-phenyl-4-quinolinecarboxamide NK-3 receptor antagonists" II Farmaco, 54:364-374.
Giron, D. (2001) "Investigations of polymorphism and pseudo-polymorphism in pharmaceuticals by combined thermoanalytical techniques" J Thermal Analysis Calorimetry, 64:37-60.
Google.com (2016) "'new assay' cystic fibrosis transmembrane conductance regulator" Partial results of Internet search [online]. Retrieved from https://www.***.com; on Feb. 2, 2016 (2 pages).
Google.com (2016) "‘new assay’ cystic fibrosis transmembrane conductance regulator" Partial results of Internet search [online]. Retrieved from https://www.***.com; on Feb. 2, 2016 (2 pages).
Goshayev, M. et al. (1973) "Amination of 2-phenylpyridine under different conditions" Izvestiya Akademii Nauk Turkmenskoi SSR, Seriya Giziko-Tekhnicheskikh, Khimicheskikh I Geologicheskikh Nauk, 1973:108-109 (English abstract on p. 109).
Haleblian et al. (1969) "Pharmaceutical applications of polymorphism" J Pharm Sci, 58(8):911-929.
Hancock, B.C. and M. Parks (Apr. 2000) "What is the true solubility advantage for amorphous pharmaceuticals?" Pharm Res, 17(4):397-404.
HCAPLUS Database Accession No. 2005:823671 (2011) "Preparation of mainly N-thiazolyl carboxamides as modulators of ATP-binding cassette transporters" (3 pages).
Hirayama (Jul. 25, 2008) Yuuki kagoubutsu no. kettshou sakusei handobuttku-genri to nouhou-(Handbook of preparation of crystal of organic compound-principle and know-how). Maruzen Co., Ltd, pp. 59-60 (Japanese).
Hirayama (Jul. 25, 2008) Yuuki kagoubutsu no. kettshou sakusei handobuttku—genri to nouhou—(Handbook of preparation of crystal of organic compound—principle and know-how). Maruzen Co., Ltd, pp. 59-60 (Japanese).
Hisano, T. et al. (1982) "Raction of Aromatic N-Oxides with Dipolarophiles. V. 1,3-Cycloaddition of 2-Substituted Pyridine N-Oxides with Phenyl Isocyanates" Chem Pharm Bull, 30(10):3776-3781.
International Patent Application No. PCT/US2006/043289, filed Nov. 8, 2006, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Mar. 9, 2007.
International Patent Application No. PCT/US2006/049412, filed Dec. 28, 2006, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Sep. 4, 2007.
International Patent Application No. PCT/US2008/063144, filed May 9, 2008, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Mar. 24, 2009.
International Patent Application No. PCT/US2008/083517, filed Nov. 14, 2008, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion dated Feb. 19, 2009.
International Patent Application No. PCT/US2008/085456, filed Dec. 4, 2008, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Feb. 26, 2009.
International Patent Application No. PCT/US2008/085458, filed Dec. 4, 2008, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Aug. 7, 2009.
International Patent Application No. PCT/US2009/035064, filed Feb. 25, 2009, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Oct. 12, 2009.
International Patent Application No. PCT/US2009/038203, filed Mar. 25, 2009, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Jul. 9, 2009.
International Patent Application No. PCT/US2009/058677, filed Sep. 29, 2009, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Mar. 23, 2010.
International Patent Application No. PCT/US2011/031519, filed Apr. 7, 2011, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Dec. 16, 2011.
International Patent Application No. PCT/US2011/031588, filed Apr. 7, 2011, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Dec. 16, 2011.
International Patent Application No. PCT/US2011/033687, filed Apr. 22, 2011, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion dated Aug. 30, 2011.
International Patent Application No. PCT/US2011/033689, filed Apr. 22, 2011, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion dated Aug. 30, 2011.
International Patent Application No. PCT/US2013/023100, filed Jan. 25, 2013, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated May 7, 2013.
International Patent Application No. PCT/US2013/067952, filed Nov. 1, 2013, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Feb. 5, 2014.
International Patent Application No. PCT/US2014/063506, filed Oct. 31, 2014, by Vertex Pharmaceuticals Inc.: International Search Report and Written Opinion, dated Jan. 21, 2015.
Ito, K. et al. (1989) "A New Route to 2-Amino- or 2-Hydroxy-3-pyridinecarboxylic Acid Derivatives" J Heterocyclic Chem, 26:773-778.
Itoh, T. and T. Mase (May 16, 2005) "Direct synthesis of hetero-biaryl compounds containing an unprotected NH2 group via Suzuki-Miyaura reaction" Tetrahedron Lett, 46(20):3573-3577.
Ivanisevic, I. et al. (Aug./Sep. 2011) "Uses of X-Ray Powder Diffraction in the Pharmaceutical Industry" Pharmaceutical Formulation & Quality, pp. 30-33.
Ivanova, L.A. (1991) English translation of: Dosage form technology: a guide in 2 volumes. vol. 2-M: Medicine, pp. 144-146 (translation 4 pages).
Ivanova, L.A. (1991) English translation of: Dosage form technology: a guide in 2 volumes. vol. 2—M: Medicine, pp. 144-146 (translation 4 pages).
Jain, N.K. and M.N. Mohammedi (1986) "Polymorphism in Pharmacy" Indian Drugs, 23(6):315-329.
Jalgaonkar, S.V. et al. (2010) "ABC Membrane Transporters: Target for Drugs and Diseases" Global J Pharmc, 4(2):75-82.
Jonat, S. (2004) "Investigation of Compacted Hydrophilic and Hydrophobic Colloidal Silicon Dioxides as Glidants for Pharmaceutical Excipients" Powder Technology, 141:31-43.
Jones, A.M. and J.M. Helm (2009) "Emerging Treatments in Cystic Fibrosis" Drugs, 69(14):1903-1910.
Jones, P.M. and A.M. George (2004) "The ABC transporter structure and mechanism: perspectives on recent research" Cell Mol Life Sci, 61(6):682-699.
Jure, M. et al. (1990) "Synthesis of 3-Alkyl-5-Phenyl-7-Trifluoromethylimidazo[4,5-b]pyridin-2-ones" Latvijas PSR Zinatnu Akademijas Vestis, Kimijas Serija, 1990(4):439-444 (English summary on p. 444).
Kaczmarek, L. et al. (Aug. 1, 1992) "An Excellent Method for the Mild and Safe Oxidation of N-Heteroaromatic Compounds and Tertiary Amines" Chem Ber, 125(8):1965-1966.
Kaminski, W. et al. (2006) "ABC A-subfamily transporters: Structure, function and disease" Biochim Biophys Acta, 1762(5):510-524.
Kanth, S. et al. (2005) "Multistep Synthesis of Pyrido[3′,2′:4,5]pyrrolo[3,2-d][1,3]oxazin-4(5H)-one from 2-Aminonicotinonitriles" Heterocycles, 65(6):1415-1423.
Katoh, A. et al. (1984) "Ring Transformation Reactions of 1-Substituted 2(1H)-Pyrimidinones and Related compounds with Active Methylene Compounds" Chem Pharm Bull, 32(8):2942-2946.
Kirk-Othmer Encyclopedia of Chemical Technology. vol. 8. John Wiley & Sons, Inc., 2002; pp. 95-147.
Koitz, G. et al. (1981) "Synthese und Fluoreszenzeigenschaften von cyansubstituierten 2-Aminopyridinen" Monatshefte für Chemie, 112:973-985. (German; English abstract on p. 973).
Lachman, L. et al. (1990) The Theory and Practice of Industrial Pharmacy. 3rd Edition. Bombay, India: Varghese Publication House; pp. 221-222.
Layzer, R.B. (1996) "Section Five-Degenerative Diseases of the Nervous System" in Cecil Textbook of Medicine. 20th edition. J. Claude Bennett and F. Plum (Eds.). Philadelphia: W.B. Saunders Co.; vol. 2, pp. 2050-2057.
Layzer, R.B. (1996) "Section Five—Degenerative Diseases of the Nervous System" in Cecil Textbook of Medicine. 20th edition. J. Claude Bennett and F. Plum (Eds.). Philadelphia: W.B. Saunders Co.; vol. 2, pp. 2050-2057.
Levin, M.H. et al. (Apr. 2005) "CFTR-Regulated Chloride Transport at the Ocular Surface in Living Mice Measured by Potential Differences" Invest Ophthalmol Vis Sci, 46(4):1428-1434.
Lin, S. et al. (Dec. 2010) "Identification of Synergistic Combinations of F508del Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators" ASSAY Drug Dev Tech, 8(6):669-684.
Liu, X. et al. (2011) "Progress in the Study on Physical Stability and Anti-aging of Solid Dispersion" Chin JMAP, 28(8):710-717. Chinese with English abstract on p. 710.
Liu, Y. et al. (2005) "Expression Profiling of ABC Transporters in a Drug-Resistant Breast Cancer Cell Line Using AmpArray" Mol Pharmacol, 68(2):430-438.
Mathe, S. and A. Rassat (Jan. 29, 1998) "Synthesis of 1,1,1-Ethanetriacetonitrile, Precursor of 6-Substituted-4-methyl-2-aminopyridines" Tetrahedron Lett, 39:383-384.
Mertens, H. and R. Troschütz (1987) "Synthese von N2-substituierten 2-Amino-3-nitropyridinen als Vorstufen von Pyrido[2,3-b]pyrazinen (3-Desazapteridinen)" Arch Pharm (Weinheim), 320:1143-1149 (German; English abstract on p. 1143).
Mertens, H. et al. (1986) "Synthese von 2-Amino-3-nitropyridinen und -1,4-dihydropyridinen" Liebigs Ann Chem, 1986:380-383 (German; English abstract on p. 380).
Muzaffar, N.A. and M.A. Sheikh (1979) "Polymorphism and Drug Availability. A Review" J Pharmacy (Lahore), 1(1):59-66.
Narsaiah, B. et al. (1994) "A novel synthetic route to 2-amino-3-cyano-4-trifluoromethyl-6-substituted pyridines" J Fluorine Chem, 67:87-90.
Ngiam, N.S.P. et al. (2006) "Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in Asians with chronic pulmonary disease: A pilot study" J Cystic Fibrosis, 5:159-164.
Nitta, M. et al. (1991) "On the Reaction of (Vinylimino)phosphoranes. Part 17. Preparation of N-Vinylcarbodiimides and Their [4+2] Cycloaddition with Several Dienophiles to Give Pyridine Ring System" Bull Chem Soc Japan, 64(4):1325-1331.
Noone, P.G. et al. (2001) "'CFTR-opathies': disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations" Respiratory Research, 2(6):328-332.
Noone, P.G. et al. (2001) "‘CFTR-opathies’: disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations" Respiratory Research, 2(6):328-332.
Notice of Allowability for U.S. Appl. No. 14/579,098, dated Apr. 18, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/290,491, dated Oct. 25, 2012.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/871,349, dated Apr. 17, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/871,349, dated Aug. 12, 2014.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/871,349, dated Oct. 13, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/887,839, dated Feb. 2, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/887,839, dated Jul. 7, 2014.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/887,839, dated Oct. 16, 2014.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/887,839, dated Sep. 30, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/031,360, dated Aug. 14, 2014.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/298,245, dated Jul. 21, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/298,245, dated Nov. 12, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/326,930, dated Aug. 14, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/326,930, dated Dec. 8, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/334,902, dated Feb. 18, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/334,902, dated Oct. 19, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/532,791, dated Jul. 24, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/532,791, dated Mar. 1, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/532,791, dated Nov. 6, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/567,475, dated Jan. 5, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/567,475, dated Sep. 21, 2015.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/579,098, dated Feb. 1, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/579,098, dated May 12, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/656,043, dated Aug. 4, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/687,286, dated Feb. 10, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/687,286, dated May 19, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/687,286, dated Sep. 28, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/877,914, dated Jul. 27, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/877,914, dated Nov. 14, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/925,804, dated May 17, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 15/001,036, dated Feb. 10, 2017.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 15/073,591, dated Sep. 28, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 15/160,100, dated May 3, 2017.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 15/162,887, dated Apr. 28, 2017.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 15/297,983, dated May 18, 2017.
Ochiai, Michiko et al., United States Court of Appeals for the Federal Circuit 71 F.3d 1565; 1995, U.S. Patent and Trademark Office Board of Patent Appeals and Interferences. (U.S. Appl. No. 07/462,492).
Okiyoneda, T. and G.L. Lukacs (Oct. 15, 2012) "Fixing cystic fibrosis by correcting CFTR domain assembly" J Cell Biol, 199(2):199-204.
Otsuka, M. et al. (1999) "Effect of Polymorphic Forms of Bulk Powders on Pharmaceutical Properties of Carbamazepine Granules" Chem Pharm Bull, 47(6):852-856.
Paranjape, S.M. et al. (2008) "Atypical Cystic fibrosis and CFTR-Related Diseases" Clinic Rev Allerg Immunol, 35(3):116-123.
Patani, G. et al. (1996) "Bioisosterism: A Rational Approach in Drug Design" Chem Rev, 96(8):3147-3176.
Pettit, R.S. (2012) "Cystic Fibrosis Transmembrane Conductance Regulator-Modifying Medications: The Future of Cystic Fibrosis Treatment" Ann Pharmacother, 46(7/8):1065-1075.
Qiao, J. X. et al. (Nov. 2, 2004) "5-Amidinobenzo[b]thiophenes as dual inhibitors of factors IXa and Xa" Bioorg Med Chem Lett, 15(1):29-35.
Rathore, A.S. et al. (May 18, 2010) "Process analytical technology (PAT) for biopharmaceutical products" Anal Bioanal Chem, 398(1):137-154.
Registry Database RN 477866-05-0 (Dec. 31, 2002) "3-Pyridinecarboxylic acid, 5-cyano-2-phenyl-6-[(phenylmethyl)amino]-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 478068-14-3 (Jan. 3, 2003) "3,4,5-Pyridinetricarbonitrile, 2-amino-6-(4-bromophenyl)-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 478068-16-5 (Jan. 3, 2003) "3,4,5-Pyridinetricarbonitrile, 2-amino-6-[4-(trifluoromethyl)phenyl]-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 478081-23-1 (Jan. 3, 2003) "3,4,5-Pyridinetricarbonitrile, 2-amino-6-(4-methylphenyl)-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 881299-60-1 (Apr. 20, 2006) "3-Pyridinecarbonitrile, 6-(4-methoxyphenyl)-2-[(1-phenylethyl)amino]-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 881300-29-4 (Apr. 20, 2006) "3-Pyridinecarbonitrile, 6-(4-methoxyphenyl)-2-(phenylamino)-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 912772-80-6 (Nov. 9, 2006) "2,5 Pyridinediamine, 6-phenyl-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 912772-97-5 (Nov. 9, 2006) "2-Pyridinamine, 5-nitro-6-phenyl-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 925921-90-0 (Mar. 9, 2007) "2-Pyridinamine, 4-chloro-6-(2-methoxyphenyl)-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 929400-78-2 (Apr. 8, 2007) "3-Pyridinecarbonitrile, 2-(cyclohexyllamino)-6-(4-methoxyphenyl)-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 929443-63-0 (Apr. 9, 2007) "3-Pyridinecarbonitrile, 6-(4-methoxyphenyl)-2-(4-piperidinylamino)-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Registry Database RN 929443-65-2 (Apr. 9, 2007) "3-Pyridinecarbonitrile, 2-(cycloheptylamino)-6-(4-methoxyphenyl)-" Retrieved from STN [online]; retrieved on Nov. 28, 2016 (1 page).
Ridi, M. (1959) "Richerch sopra derivati della piridina. Nota II. Richerche sopra sistemi 3 H-1,2,6,7,9- pentaazafenalenci, piri-do(3,4-d)piridazinici e pirido(2,3-d)pirimidinici" Annali di Chimica, 49:944-957 (Italian).
Robins, R.K. and G.H. Hitchings (1958) "Studies on Condensed Pyrimidine Systems. XIX. A New Synthesis of Pyrido [2,3-d] pyrimidines. The Condensation of 1,3-Diketones and 3-Ketoaldehydes with 4-Aminopyrimidines" J Am Chem, 80(13):3449-3457.
Rodon, J. et al. (2010) "Combining Targeted Therapies: Practical Issues to Consider at the Bench and Bedside" The Oncologist, 15:37-50.
Rodríguez-Spong, B. et al. (2004) "General principles of a pharmaceutical solid polymorphism: a supramolecular perspective" Adv Drug Delivery Reviews, 56:241-274.
Rouhi, A.M. (2003) "The Right Stuff. From research and development to the clinic, getting drug crystals right is full of pitfalls" Chem Eng News, 81(8):32-35.
Rowe, S.M. et al. (2005) "Cystic Fibrosis" N Engl J Med, 352(19):1992-2001.
Rowland, M. and T.N. Tozer (1995) Clinical Pharmacokinetics. Concepts and Applications, p. 123.
Saito, T. et al. (1993) "Lewis Acid-Induced Hetero Diels-Alder Reaction of Conjugated Carbodiimides" Chem Lett, pp. 1127-1130.
Saito, T. et al. (1998) "Thermal or Lewis acid-promoted electrocyclisation and hetero Diels-Alder cycloaddition of α,β-unsaturated (conjugated) carbodiimides: a facile synthesis of nitrogen-containing heterocycles" J Chem Soc Perkin Trans, 1:3065-3080.
Schmidt, H-W. et al. (1980) "Synthesen mit Nitrilen; 591. Ein einfacher Weg zu 2-Amino-3,4,5-tricyanopyridinen" Synthesis, 1980(6):471-472. (German).
Schultheiss, N. et al. (2009) "Pharmaceutical Cocrystals and Their Physiochemical Properties" Crystal Growth & Design, 9(6):2950-2967.
Shah, U. and L. Augsburger (2002) "Multiple Sources of Sodium Starch Glycolate, NF: Evaluation of Functional Equivalence and Development of Standard Performance Tests" Pharmaceutical Development and Technology, 7(3):345-359.
Silverman, R.B (2004) The Organic Chemistry of Drug Design and Drug Action. 2nd Ed. Elsevier Academic Press; pp. 26 and 29-32.
Silverman, R.B. (1993) The Organic Chemistry of Drug Design and Drug Action. Academic Press Inc.; pp. 72-76.
Singhal, D. and W. Curatolo (2004) "Drug Polymorphism and dosage form design: a practical perspective" Advanced Drug Delivery Reviews, 56:335-347.
Stankovic, M. et al. (2008) "The CFTR M470V gene variant as a potential modifier of COPD severity: study of Serbian population" Genetic Testing, 12(3):357-362.
Suloeva, E. et al. (2001) "Synthesis of 5-Phenyl-7-trifluoromethyl-2,3-dihydroimidazo[1,2-a]pyridines" Chem Heterocyclic Compounds, 37:329-337.
Taday, P.F. et al. (2003) "Using Terahertz Pulse Spectroscopy to Study the Crystalline Structure of a Drug: A Case Study of the Polymorphs of Ranitidine Hydrochloride" J Pharm Sci, 92(4):831-838.
Takata, N. (2009) "Cocrystal" Pharm Tech Japan, 25(12):155-166 (Japanese with English abstract).
The Associated Press (Sep. 24, 2003) "FDA mulls drug to slow late-stage Alzheimer's" CNN.com/HEALTH [online]. Retrieved from: http://www.cnn.com/2003/HEALTH/conditions/09/24/alzheimers.drug.ap/index.html, on Sep. 24, 2003 (2 pages).
Troschütz, R. (1979) "6-Substituierte 2-Aminonicotinsäure-ethylester" Archiv der Pharmazie, 312:455-457 (German).
Troschütz, R. and A. Lückel (1992) "Synthese von substituierten 2-Amino-3-nitropyridinen aus 1,3-Biselektrophilen and 2-Nitroethen-1,1-diamin" Archiv der Pharmazie, 325(12):785-789 (German; English abstract on p. 785).
Troschütz, R. and T. Dennstedt (1994) "Substituierte 2-Aminonicotinonitrile" Archiv der Pharmazie, 327:85-89 (German; English abstract on p. 85).
Troschütz, R. and T. Dennstedt (1994) "Synthese von substituierten 2-Aminonicotinonitrilen" Archiv der Pharmazie, 327:33-40 (German; English abstract on p. 33).
Tzetis, M. et al. (2001) "CFTR gene mutations-including three novel nucleotide substitutions-and haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease" Hum. Genet., 108:216-221.
Tzetis, M. et al. (2001) "CFTR gene mutations—including three novel nucleotide substitutions—and haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease" Hum. Genet., 108:216-221.
U.S. Appl. No. 15/234,877, filed Aug. 11, 2016, by Hadida-Ruah et al.
U.S. Appl. No. 15/342,999, filed Nov. 3, 2016, by Alargova et al.
U.S. Department of Health and Human Services, Food and Drug Administration (FDA) (May 1999) Guideline for Industry. Container Closure Systems for Packaging Human Drugs and Biologics (56 pages).
U.S. Pharmacopeia #28, National Formulary #23 (2005), p. 2711.
U.S. Pharmacopia #23, National Formulary #18, (1995), pp. 1843-1844.
Ulicky, L and T.J. Kemp (Eds.) (1992) Comprehensive Dictionary of Physical Chemistry. Czecho-Slovakia: ALFA/Ellis Horwood Ltd.; p. 21.
Van Goor, F. et al. (2006) "Rescue of ΔF580-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules" Am J Physiol Lung Cell Mol Physiol, 290(6):L1117-L1130.
Vanallan, J.A. et al. (Jun. 1970) "Reactions of Some 4-Methylene-4H-pyran Derivatives with Primary and Secondary Amines" J Heterocyclic Chem, 7:495-507.
Vertex Pharmaceuticals, Inc. (Jun. 25, 2015) Summary Review of Regulatory Action for Lumacaftor/ivacaftor Tablets. U.S. FDA, Center for Drug Evaluation and Research, Division of Pulmonary, Allergy, and Rheumatology, Products, CDER; Director Badrul A. Chowdhury, MD, PhD.; Application No. 206038Orig1s000 (18 pages).
Vertex Pharmaceuticals, Inc. (Mar. 2011) "Study of VX-809 Alone and in Combination With VX-770 in Cystic Fibrosis (CF) Patients Homozygous for the F508del-CFTR Mutation" ClinicalTrials.gov[online]. Retrieved from: https://clinicaltrials.gov/archive/NCT01225211/2011_03_01; Identifier: NCT01225211.
Vertex Pharmaceuticals, Inc. (May 17, 2006) "Vertex Pharmaceuticals Initiates Phase I Development for VX-770 in Cystic Fibrosis. FDA Grants Fast Track Designation to VX-770" Press Release [online]. Retrieved from: http://investors.vrtx.com/releasedetail.cfm?ReleaseID=233045; on Jan. 19, 2015 (2 pages).
Wang, Y. et al. (2006) "Specific Rescue of Cystic Fibrosis Transmembrane Conductance Regulator Processing Mutants Using Pharmacological Chaperones" Mol Pharmacol, 70(1):297-302.
Wikipedia (2009) "ATP-binding cassette transporter" [online]. [Retrieved on Jul. 10, 2009]; retrieved from the Internet: http://en.wikipedia.org/wiki/ATP-binding_cassette_transporter (20 pages).
Wikipedia (2011) "Solid solution" [online]. Retrieved from: http://www.wikipedia.com; Retrieved on Sep. 20, 2011, 3 pages.
Wikipedia (Jul. 13, 2008) "ATP-binding cassette transporter" [online]. [Retrieved on Sep. 24, 2008]; Retrieved from the Internet: http://en.wikipedia.org/wiki/ATP-binding_cassette_transporter (6 pages).
Xu, L. et al. (Feb. 2, 2009) "Multiple compounds determination and fingerprint analysis of Lidanpaishi tablet and keli by high-performance liquid chromatography" Anal Chim Acta, 633(1):136-148.
Yin, J. et al. (Jun. 2007) "A general and efficient 2-amination of pyridines and quinolines" J Org Chem, 72(12):4554-4557.
Yogi, S. et al. (1986) "Synthesis of Stable 1,2-Diazocines, 4,7-Disubstituted 3,8-Diaryl-1,2-diazacycloocta-2,4,6,8-tetraenes, and Their Termolysis" Bull Chem Soc Jpn, 59:1087-1094.
Yurugi, S. et al. (1972) "Studies on the Synthesis of N-Heterocyclic Compounds. XII. Syntheses of Pyrido[3,4-d]pyridazine and Pyrido[2,3-d]pyridazine Derivatives" Yakugaku Zasshi (Journal of the Pharmaceutical Society of Japan), 92(11):1333-1338. Japanese with English abstract on p. 1333.
Zhang, W. et al. (Mar. 2012) "Recent advances and new perspectives in targeting CFTR for therapy of cystic fibrosis and enterotoxin-induced secretory diarrheas" Future Med Chem, 4(3):329-345. NIH Author Manuscript; available in PMC Jan. 1, 2013 (28 pages).
Zhu, J. et al. (2006) "Solid-phase synthesis of 4-biaryl-piperidine-4-carboxamides" Tetrahedron Lett, 47:7267-7270.

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626111B2 (en) 2004-01-30 2020-04-21 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10662192B2 (en) 2004-06-24 2020-05-26 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US11084804B2 (en) 2005-11-08 2021-08-10 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US11291662B2 (en) 2005-12-28 2022-04-05 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US10975061B2 (en) 2006-04-07 2021-04-13 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US11639347B2 (en) 2006-04-07 2023-05-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US11564916B2 (en) 2008-08-13 2023-01-31 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US10906891B2 (en) 2010-03-25 2021-02-02 Vertex Pharmaceuticals Incoporated Solid forms of (R)-1(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
US11578062B2 (en) 2010-03-25 2023-02-14 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
US11052075B2 (en) 2010-04-07 2021-07-06 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid and administration thereof
US11147770B2 (en) 2012-02-27 2021-10-19 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US11752106B2 (en) 2012-02-27 2023-09-12 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US10980746B2 (en) 2014-04-15 2021-04-20 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases
US11951212B2 (en) 2014-04-15 2024-04-09 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases

Also Published As

Publication number Publication date
PL3221692T3 (en) 2021-12-06
EP3221692A1 (en) 2017-09-27
CA2968130A1 (en) 2016-05-26
AU2015350049B2 (en) 2021-08-19
CN107110831B (en) 2020-02-21
BR112017010406A2 (en) 2017-12-26
US20170356885A1 (en) 2017-12-14
HRP20211194T1 (en) 2021-10-29
RU2017120901A (en) 2018-12-19
CA2968130C (en) 2022-08-16
RS62259B1 (en) 2021-09-30
NZ731893A (en) 2023-09-29
IL252272B (en) 2020-11-30
MX2017006443A (en) 2017-09-11
JP2018502285A (en) 2018-01-25
ES2882656T3 (en) 2021-12-02
HUE055423T2 (en) 2021-11-29
AU2015350049A1 (en) 2017-06-08
SI3221692T1 (en) 2021-11-30
CN107110831A (en) 2017-08-29
DK3221692T3 (en) 2021-08-23
RU2017120901A3 (en) 2019-04-02
JP6494757B2 (en) 2019-04-03
BR112017010406B1 (en) 2021-03-09
PT3221692T (en) 2021-09-10
ZA201703531B (en) 2019-11-27
RU2691136C2 (en) 2019-06-11
KR102576006B1 (en) 2023-09-06
WO2016081556A1 (en) 2016-05-26
IL252272A0 (en) 2017-07-31
EP3221692B1 (en) 2021-06-23
KR20170084272A (en) 2017-07-19
SG11201703963QA (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US10302602B2 (en) Process of conducting high throughput testing high performance liquid chromatography
EP3068392B9 (en) Process of preparing pharmaceutical compositions for the treatment of cftr mediated diseases
US20230364073A1 (en) Pharmaceutical compositions for the treatment of cftr mediated diseases
EP3842037A1 (en) Pharmaceutical composition and administrations thereof
NZ731893B2 (en) Process of conducting high throughput testing high performance liquid chromatography

Legal Events

Date Code Title Description
AS Assignment

Owner name: VERTEX PHARMACEUTICALS INCORPORATED, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BORSJE, ERIC;RASMUSSEN, HENRIK TORSTHOLM;REEL/FRAME:048152/0096

Effective date: 20141202

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4