US10040007B2 - Filtration system for filtration of solids from a liquid - Google Patents

Filtration system for filtration of solids from a liquid Download PDF

Info

Publication number
US10040007B2
US10040007B2 US14/648,460 US201314648460A US10040007B2 US 10040007 B2 US10040007 B2 US 10040007B2 US 201314648460 A US201314648460 A US 201314648460A US 10040007 B2 US10040007 B2 US 10040007B2
Authority
US
United States
Prior art keywords
filter
liquid
filtration system
residue
transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US14/648,460
Other versions
US20150306525A1 (en
Inventor
Quentin Arthur Carl Adam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Empire Technology Development LLC
Original Assignee
Empire Technology Development LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012905265A external-priority patent/AU2012905265A0/en
Application filed by Empire Technology Development LLC filed Critical Empire Technology Development LLC
Assigned to ADAM MECHANICA PTY LTD. reassignment ADAM MECHANICA PTY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADAM, QUENTIN ARTHUR CARL
Assigned to EMPIRE TECHNOLOGY DEVELOPMENT LLC reassignment EMPIRE TECHNOLOGY DEVELOPMENT LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADAM MECHANICA PTY LTD.
Assigned to ADAM MECHANICA PTY LTD. reassignment ADAM MECHANICA PTY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADAM, QUENTIN ARTHUR CARL
Assigned to EMPIRE TECHNOLOGY DEVELOPMENT LLC reassignment EMPIRE TECHNOLOGY DEVELOPMENT LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADAM MECHANICA PTY LTD.
Publication of US20150306525A1 publication Critical patent/US20150306525A1/en
Application granted granted Critical
Publication of US10040007B2 publication Critical patent/US10040007B2/en
Assigned to CRESTLINE DIRECT FINANCE, L.P. reassignment CRESTLINE DIRECT FINANCE, L.P. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMPIRE TECHNOLOGY DEVELOPMENT LLC
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/0075
    • B01D29/0086
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/70Regenerating the filter material in the filter by forces created by movement of the filter element
    • B01D29/72Regenerating the filter material in the filter by forces created by movement of the filter element involving vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2033By influencing the flow dynamically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2066Pulsated flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2066Pulsated flow
    • B01D2321/2075Ultrasonic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/22Electrical effects
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/002Grey water, e.g. from clothes washers, showers or dishwashers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • Wastewater treatment and other water treatment schemes are useful for providing treated water for numerous uses, particularly in locations where access to sufficient fresh water (sometimes referred to as “white water”) is limited.
  • There are several treatment methods in use ranging from primary settling treatment through secondary and tertiary treatment regimes, each using various degrees of physical sedimentation and floatation, biological treatment, filtration, chlorination, ozonation, and so on.
  • filtration systems there are several types of filtration systems in use, depending on the type and quality of both the water being treated and the desired end use of that water.
  • examples include hollow fiber filters with pore sizes in the micrometer and nanometer range. Smaller pore sizes are found in reverse osmosis systems which may be used for example to de-salinate sea water for human consumption.
  • Cleaning regimes may include liquid or gas backwashing, gas scouring, or chemical treatment.
  • Embodiments of the present disclosure are directed to filtration systems, filter modules, and methods for removing residue (for example, a filter cake) from a filter used in filtering a liquid (for example, grey water, black water, municipal water, river water, sea water, another liquid, etc.).
  • residue for example, a filter cake
  • a liquid for example, grey water, black water, municipal water, river water, sea water, another liquid, etc.
  • Such embodiments allow materials such as solids or other residues that can become caked against an upstream surface of a filter of such a filtration system to be at least in part removed.
  • An embodiment is directed to a filtration system for filtering a liquid.
  • the filtration system may include a vessel having an inlet through which a liquid can be introduced during use and an outlet through which filtered, cleaned liquid can exit.
  • a filter that is configured to filter residue from such a liquid may be disposed within the vessel between the inlet and outlet.
  • the filtration system may further include at least one transducer disposed in, on or adjacent to the filter.
  • the at least one transducer may be configured to generate one or more pressure waves effective to dislodge residue collected on an upstream side of the filter.
  • the at least one transducer may employ an electrical power input to produce an energy output in a different form (for example, heat energy, mechanical movement, audio energy, light or other electromagnetic energy, a spark, etc.) that results in generation of a pressure wave within the liquid.
  • An embodiment is directed to a filter module for use in a filtration system for filtering solids from a liquid.
  • the filter module includes a plurality of hollow fiber membrane filters. Each hollow fiber membrane filter may be configured to filter a liquid.
  • the filter module includes at least one transducer disposed in, on, or adjacent to the plurality of hollow fiber membrane filters. The at least one transducer may be configured to generate one or more pressure waves effective to dislodge at least some residue from the plurality of hollow fiber filters.
  • Another embodiment is directed to a method for removing at least some residue from a filter used in filtering a liquid.
  • the method includes generating at least one pressure wave within a liquid at a location in, on, or adjacent to a filter having a residue disposed thereon. Generation of the pressure wave dislodges at least some of the residue from the filter, which would otherwise reduce performance of the filter. Once dislodged, the dislodged residue may be removed.
  • FIG. 1A is a cut-away perspective view of an embodiment of a filtration system including a vessel having a filter disposed therein with at least one transducer disposed adjacent to the filter that is configured to generate a pressure wave to dislodge at least some residue from the upstream side of the filter.
  • FIG. 1B is a cut-away perspective view of the filtration system of FIG. 1A , illustrating generation of a vapor bubble and resulting pressure wave.
  • FIG. 1C is a cut-away perspective view of the filtration system of FIG. 1B illustrating dislodgement of residue from the upstream side of the filter as a result of action of the generated pressure wave.
  • FIG. 1D is a cut-away perspective view of the filtration system of FIG. 1C illustrating removal of dislodged residue material through a bypass valve adjacent to the upstream side of the filter.
  • FIG. 2A is a cut-away perspective view of another embodiment of a filtration system similar to that of FIG. 1A , but including a pressure wave reflector configured to reflect a portion of a generated pressure wave that propagates away from the filter back towards the filter.
  • FIG. 2B is a cut-away perspective view of the filtration system of FIG. 2A illustrating reflection of a portion of the generated pressure wave.
  • FIG. 3 is a cut-away perspective view of another embodiment of a filtration system similar to that of FIG. 1A , but including a plurality of transducers disposed adjacent to an upstream side of the filter.
  • FIG. 4A is a perspective view of an embodiment of a filter including a plurality of transducers disposed thereon, with one or more electrically conductive traces disposed on the filter to provide electrical power to the transducers.
  • FIG. 4B is a cross-sectional view through the filter of FIG. 4A .
  • FIG. 5 is a schematic view of a filtration system that provides a cross-flow configuration.
  • FIG. 6A is a schematic perspective view of a filtration system configured as a plurality of hollow filters.
  • FIG. 6B is an end view of the outlet of the filtration system of FIG. 6A .
  • FIG. 6C is a longitudinal cross-sectional view through the filtration system of FIG. 6B .
  • FIG. 6D is a longitudinal partial cross-sectional view through another embodiment of a filtration system configured with a plurality of hollow fiber membrane filters.
  • FIG. 6E is a transverse cross-sectional view through the filtration system of FIG. 6D .
  • FIG. 6F is a transverse cross-sectional view through a single hollow fiber membrane filter such as that included in the filtration system of FIG. 6D .
  • FIG. 7 is a perspective and partial cut away view of a helically wound filtration system.
  • FIG. 8 is a flowchart describing an illustrative embodiment of a method of removing at least some residue from a filter used to filter a liquid.
  • Embodiments of the present disclosure are directed to filtration systems, filter modules, and methods for removing residue from a filter used in filtering a liquid. Such embodiments may provide a convenient, simple, and inexpensive mechanism for removing accumulated filtered residue material from the upstream side of a filter of a filtration system.
  • FIG. 1 The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.
  • FIGS. 1A-1D illustrate an embodiment of a filtration system 100 including vessel 102 (for example, a cylindrical pipe) having inlet 104 and outlet 106 . While system 100 may be shown with a single inlet 104 and single outlet 106 , it will be understood that any of the various filtration systems within the scope of the present disclosure may include one or more than one inlets and one or more outlets at any suitable location on the vessel 102 .
  • a liquid for example, grey water
  • Filtration system 100 may include a filter 108 disposable within vessel 102 between inlet 104 and outlet 106 .
  • Filter 108 is configured to filter solids from a liquid (for example, grey water, black water, river water, mains water, a liquid other than water, etc.) introduced through inlet 104 .
  • Filtration system 100 may further include at least one transducer 110 disposed in, on or adjacent to filter 108 .
  • transducer 110 is illustrated as being disposed downstream relative to filter 108 , although other placement is possible, some of which are described below.
  • Transducer 110 is capable of generating one or more pressure waves that are effective to dislodge at least some of residue 112 disposed on an upstream side of filter 108 .
  • residue 112 may comprise various solids or other residue materials that are stopped by filter 108 , which residue materials may form what may be referred to as a fouling layer.
  • residue materials may include, but are not limited to, solid particulate materials, dissolved salts (for example, which may precipitate as solids), bacteria, or other materials within the grey liquid that may be denied passage through filter 108 .
  • Filter 108 may comprise any suitable material or construction.
  • filter 108 may be a reverse osmosis filter.
  • Filter 108 may be configured as a flexible, mesh membrane substrate, and may be formed of a material such as, but not limited to cellulose acetate, polysulfone, polyamide, polyolefins, and combinations thereof. Other materials (for example, paper, natural or synthetic fibers, metallic fiber or web, etc.) may also be employed. It will be readily apparent that any suitable filter material capable of filtering undesirable materials from a liquid may be employed.
  • a reverse osmosis filter may be semi-permeable so as to allow passage of water or other liquid through filter 108 , while preventing passage of other materials.
  • a pressure may be applied to the feed side of the filtration system to provide a pressure gradient that causes water or other liquid to flow through the filter.
  • Transducer 110 may be any structure capable of converting an electrical energy (for example, an applied voltage) or other energy input to another output form (for example, heat energy, mechanical movement, audio energy, for example in the form of ultrasound waves, light, for example laser light or other electromagnetic energy, a spark, etc.) that results in generation of a pressure wave.
  • an electrical energy for example, an applied voltage
  • another output form for example, heat energy, mechanical movement, audio energy, for example in the form of ultrasound waves, light, for example laser light or other electromagnetic energy, a spark, etc.
  • transducers include, but are not limited to, a resistive heating element, a high frequency ultrasound generator (for example, a piezoelectric transducer), a laser, a sparking gap for generating a spark which heats the liquid to induce a phase change from liquid to vapor, or any other structure capable of converting an electrical or other power input to another form of energy that results directly or indirectly in generation of a pressure wave within the liquid (for example, grey water) within vessel 102 .
  • a resistive heating element for example, a piezoelectric transducer
  • a laser for example, a laser
  • sparking gap for generating a spark which heats the liquid to induce a phase change from liquid to vapor
  • any other structure capable of converting an electrical or other power input to another form of energy that results directly or indirectly in generation of a pressure wave within the liquid (for example, grey water) within vessel 102 .
  • a resistive heating element may act to heat liquid immediately adjacent to and in contact with the transducer so as to induce a phase change from liquid to gas.
  • the nearly instantaneous phase change results in a substantial increase in volume, generating a pressure wave.
  • a high frequency ultrasound (for example, about 20,000 Hz or higher) generator may include a piezoelectric generator that can result in cavitation of the liquid (for example, as a result of a substantial drop in pressure), which similarly results in generation of a pressure wave within the liquid.
  • Transducers operating under various other principles so as to result in generation of a pressure wave may also be employed.
  • transducer 110 acts to heat liquid immediately adjacent to transducer 110 so as to induce a phase change
  • the flow rate through system 100 may be reduced immediately prior to activation of transducer 110 .
  • Such slowing of the flow serves to reduce the pressure of the liquid, which reduces the input power requirements needed to achieve vaporization of the liquid at a given pressure.
  • a pressure drop typically occurs as a result of passage through a filter such as filter 108 so that placement of transducer 110 downstream from filter 108 also reduces the pressure of the liquid and, thus, the power required to effect vaporization and pressure wave generation.
  • transducer 110 may be disposed downstream from filter 108 , and/or the flow rate of liquid through filter 108 may be reduced so as to reduce the pressure and input power that would otherwise be required to achieve vaporization and pressure wave generation.
  • transducer 110 is disposed near filter 108 , at a location that is downstream relative to filter 108 .
  • transducer 110 for example, a vapor bubble generating resistive heating element
  • a vapor bubble 114 forms within the liquid at transducer 110 .
  • Bubble 114 may form as a result of heating of the liquid adjacent to transducer 110 . Because the heated portion of liquid expands rapidly upon vaporization, a vapor bubble 114 forms, generating a pressure wave 116 within the liquid.
  • Pressure wave 116 results because vapor bubble 114 occupies a substantially larger volume than the same material before it was vaporized, when it was in a liquid state. As seen in FIG.
  • the vapor bubble may quickly collapse as the material of vapor bubble 114 quickly recondenses, while pressure wave 116 propagates outward from its point of origin.
  • Pressure wave 116 hits the downstream side of filter 108 , applying a force to residue 112 (for example, caked solids forming a fouling layer) that causes at least some of residue 112 to be dislodged from the upstream side of filter 108 .
  • residue 112 for example, caked solids forming a fouling layer
  • at least a portion of pressure wave 116 may propagate in an upstream direction, dislodging material 112 from an upstream side of filter 108 as pressure wave 116 passes through or otherwise contacts filter 108 .
  • pressure wave 116 propagates in a direction that may be substantially opposite to the typical direction of flow F (see FIG. 1A ).
  • Portions of generated pressure wave 116 located away from the longitudinal center of vessel 102 may include a shearing vector component as well as a component that is substantially opposite the flow direction F.
  • transducer 110 may be disposed at a location other than along the longitudinal center of vessel 102 , it will be apparent that the force vectors applied by pressure waves 116 will differ. For example, that portion of the pressure wave that is aligned with the point of origination (for example, transducer 110 ) of pressure wave 116 may propagate in a direction that is substantially opposite the flow direction F.
  • pressure wave 116 may result in at least some back flow of liquid as a result of the action of pressure wave 116 upon the liquid within vessel 102
  • dislodgment of residue 112 may be achieved largely as a result of the action of pressure wave 116 upon residue 112 rather than any backflow of the liquid that may momentarily occur.
  • FIG. 1D shows how once residue 112 is dislodged from filter 108 , they may be removed from vessel 102 . It will be readily appreciated that pressure wave 116 is not required to dislodge all of residue 112 , and that some portion of residue 112 may remain caked on filter 108 after the dislodgement by pressure wave 116 . Whatever the fraction or portion of residue 112 dislodged, these materials may be removed to prevent their redeposition onto filter 108 . While any removal mechanism may be employed, FIG. 1D illustrates opening of a bypass valve at a location adjacent to and upstream from filter 108 , so that dislodged residue 112 may be removed after being dislodged. Any suitable mechanism for physical removal of residue 112 may be employed, the bypass valve of FIG. 1D merely represents a non-limiting embodiment of such a mechanism. Other mechanisms will be apparent to one of skill in the art in light of the present disclosure.
  • system 100 may further include pressure wave reflector 118 configured to reflect a portion 116 ′ of pressure wave 116 that propagates away from the upstream side of filter 108 .
  • reflector 118 may be disposed downstream relative to transducer 110 , so as to redirect that portion of pressure wave 116 that would otherwise be wasted.
  • Reflector 118 may comprise any suitable rigid material (for example, rigid plastic, ceramic, metal, etc.). Reflection of portion 116 ′ of pressure wave 116 back towards filter 108 increases the fraction of generated pressure wave 116 that is directed in a manner calculated to dislodge residue 112 caked or otherwise disposed on filter 108 .
  • FIG. 3 illustrates an embodiment of another filtration system 100 in which transducers 110 are disposed on an upstream side of filter 108 , adjacent to where residue 112 becomes disposed onto filter 108 .
  • the one or more transducers 110 may actually be disposed on or in filter 108 itself.
  • FIGS. 4A and 4B illustrate such an embodiment. It will be readily apparent that placement of one or more transducers 110 may thus vary (for example, upstream from filter, downstream from filter, on filter, etc.), as desired.
  • transducers 110 may be disposed not more than about 10 cm, not more than about 5 cm, not more than about 3 cm, or not more than about 1 cm from the upstream side of filter 108 where residue 112 accumulate. All else being equal, closer placement increases the efficacy of the pressure wave 116 in dislodging residue 112 .
  • the transducers 110 a - 110 c may be located in very close proximity relative to residue 112 (for example, not more than about 10 mm, not more than about 5 mm, or not more than about 3 mm)
  • residue 112 for example, not more than about 10 mm, not more than about 5 mm, or not more than about 3 mm
  • Such close placement provides relatively greater strength to the dislodging force delivered to residue 112 by the generated pressure wave.
  • Such relatively close placement also orients the generated pressure wave so that a larger fraction of the wave exhibits a force vector that is configured to shear the residue 112 from the surface of filter 108 , rather than pushing residue 112 further into filter 108 .
  • transducers 110 a - 110 c results in a smaller radius exhibited by the pressure wave at the time it first contacts residue 112 .
  • the pressure wave is oriented to push residue 112 further into filter 108
  • the vast majority of the circumference of the pressure wave is oriented to shear solids 112 from filter 108 .
  • the applied shearing force is concentrated within a relatively smaller radius circle, so that the shearing force applied to any given location along residue 112 is correspondingly higher than if the pressure wave exhibited a relatively larger radius (which corresponds to further placement from filter 108 and residue 112 ).
  • transducers may be particularly beneficial where the transducers are disposed upstream relative to filter 108 .
  • no portion of the pressure wave may exhibit a force vector that pushes residue 112 further into filter 108 .
  • relatively close placement to filter 108 may be particularly beneficial where the transducers are placed upstream relative to filter 108 .
  • transducers may be placed both upstream and downstream (or on the filter and downstream, or on the filter and upstream).
  • FIG. 3 further illustrates how one of 3 illustrated transducers 110 a - 110 c fires, generating a vapor bubble and associated pressure wave 116 .
  • Pressure wave 116 shears at least some residue 112 from filter 108 adjacent to transducer 110 c .
  • Additional transducers 110 b and 110 a may fire relative to transducer 110 c in any desired sequence. In an embodiment, all transducers may fire substantially simultaneously. In another embodiment, all transducers may fire in a non-simultaneous sequence, for example, that may be configured to more effectively or efficiently dislodge residue 112 . In an embodiment, transducer 110 c may fire, followed by firing of transducer 110 b , followed by firing of transducer 110 a .
  • transducers 110 a - 110 c may fire again, even in a different sequence.
  • transducer 110 c may fire, followed by 110 b , followed by 110 a , followed by simultaneous firing of all of transducers 110 a - 110 c .
  • a controller 111 may be provided to provide electrical power to transducers 110 a - 110 c (for example, through electrically conductive traces or other wiring) in a desired sequence.
  • FIGS. 4A and 4B illustrate an embodiment of a filter 208 including a plurality of transducers 210 disposed on filter 208 , and in which filter 208 further includes one or more electrically conductive traces 218 disposed on filter 208 configured to provide electrical power to transducers 210 .
  • transducers 210 may be selectively activated so as to result in generation of a pressure wave that dislodges at least some residue 212 caked or otherwise disposed on an upstream side of filter 208 .
  • transducers 210 may be disposed on only one side of filter 208 (for example, that side of filter 208 which becomes the upstream side of filter 208 during use).
  • Traces 218 may be flexible, as the substrate 220 of filter 208 may also be flexible, allowing such a filter to be employed in helically wound or other layered filtration systems.
  • Filter 208 may comprise a flexible, polymeric mesh membrane substrate 220 , for example, such as those typically employed for reverse osmosis separation or other filtration techniques.
  • Suitable polymeric materials from which filter substrate 220 may be formed include, but are not limited to cellulose acetate, polysulfone, polyamide, polyolefins, and combinations thereof. Other materials (for example, paper, natural or synthetic fibers, metallic fiber or web, etc.) may also be employed. It will be readily apparent that any suitable substrate material capable of filtering undesirable residue materials from a liquid may be employed.
  • Substrate 220 may advantageously exhibit thermal stability so as to resist degradation that might otherwise occur upon exposure to heating, or repeated exposure vaporized liquid (for example, steam) within the liquid feed.
  • Substrate 220 may also advantageously be bondable to electrically conductive traces 218 so as to prevent separation of traces 218 from substrate 220 .
  • traces 218 , transducers 210 , and or other components may be coated with a protective coating (for example, a silicone or similar protective polymer coating) to protect and/or insulate such components.
  • transducers 210 may include an electrically insulative layer 222 disposed over a portion of transducer 210 to reduce a surface area of heating element transducer 210 exposed to the liquid to be vaporized. Such a reduction in surface area serves to decrease the power required to be delivered to vaporize the liquid in contact with heating element transducer 210 .
  • an insulative layer 222 may comprise any suitable electrically insulative material (for example, plastic, ceramic, etc.). Layer 222 may also exhibit thermal insulative characteristics to aid in focusing delivery of the generated heat to a desired area.
  • insulative layer 222 may comprise a substantially rigid material (for example, a rigid plastic or ceramic) that also serves as a pressure wave reflector to reflect that portion of a generated pressure wave that propagates away from a fouling layer residue back towards the upstream side of the filter so as to direct more of the energy of the generated pressure wave so that it results in dislodgement of residue materials caked onto or otherwise disposed on filter 208 .
  • a separate rigid pressure wave reflector may be provided (for example, similar to reflector 118 of FIG. 2A ).
  • electrically conductive traces 218 and transducers 210 cover only a relatively small fraction of the face of filter 208 on which they are disposed.
  • traces 218 and transducers 210 may be disposed on the upstream face of filter 208 , and may cover or occlude no more than about 10% of the surface area of the face on which they are disposed, no more than about 5% of the face on which they are disposed, or no more than about 3% of the face on which they are disposed.
  • Such small fractions prevent the inclusion of traces 218 and transducers 210 from interfering significantly with efficacy of filter 208 .
  • the generated pressure wave may include at least a portion thereof that propagates upstream, through the filter so as to dislodge residue materials disposed on the upstream face.
  • traces 218 may be embedded within substrate 220 .
  • electrical connections are described as being formed with the use of electrically conductive traces, it will be understood that any other electrical connection (for example, one or more wires) may also be employed.
  • electrically conductive trace is to be broadly construed to include wires or similar electrical connections.
  • Filtration systems including one or more transducers for generating a pressure wave may be employed within any suitable filtration configuration.
  • FIGS. 1A-1D show filter 108 configured as a dead end filter that extends across vessel 102 (for example, a pipe) in an orientation that is substantially perpendicular to the direction of flow F.
  • vessel 102 for example, a pipe
  • FIGS. 1A-1D show filter 108 configured as a dead end filter that extends across vessel 102 (for example, a pipe) in an orientation that is substantially perpendicular to the direction of flow F.
  • vessel 102 for example, a pipe
  • other configurations such as, but not limited to, cross-flow filters, helically wound filters, and hollow filters (for example, a hollow fiber filtration system) are also contemplated. Other configurations may also be employed.
  • FIG. 5 illustrates an embodiment of a filtration system 300 having a cross-flow configuration in which the direction of flow F is substantially parallel to filter 308 during operation.
  • a feed liquid may be introduced through inlet 304 into portion 305 of vessel 302 .
  • Pressure may be applied to grey liquid within portion 305 so as to cause a portion of the liquid to flow through filter 308 , into portion 307 , while residue 312 within the liquid are collected against filter 308 .
  • Concentrated grey liquid 306 a may exit from system 300 through outlet 306
  • filtered cleaned liquid (for example, clean water) 306 b may exit through a separate outlet at outlet 306 .
  • portion 305 may be considered to be on a “upstream” side of filter 308 , as liquid within this portion has not yet passed through filter 308 .
  • portion 307 may be considered to be on a “downstream” side of filter 308 , as liquid within this portion has passed through filter 308 .
  • Residue 312 collects on the upstream side of filter 308 , within portion 305 .
  • Filter 308 may include one or more transducers 310 disposed thereon (for example, as shown in FIGS. 4A and 4B ) so as to generate one or more pressure waves to dislodge at least some of residue 312 .
  • one or more transducers 310 may be disposed adjacent to filter 308 , for example, within portion 307 , downstream from filter 308 similar to the configuration shown in FIG. 1A , or upstream from filter 308 , within portion 305 , similar to the configuration shown in FIG. 3 .
  • transducers 310 are disposed so as to generate one or more pressure waves effective to dislodge residue 312 . It will thus be appreciated that any suitable disposition of transducers (for example, disposed in, on, or adjacent to filter 308 ) may be possible.
  • FIGS. 6A-6C illustrate an embodiment of a filtration system 400 configured as a hollow (for example, a tube) filter, which specifically has a configuration including a plurality of hollow filters 424 that may be disposed within a vessel (for example, a tube) 402 .
  • the cylindrical wall 408 of each hollow filter 424 may comprise a filter configured to filter residue 412 from a liquid feed F.
  • Liquid feed F may be introduced into filtration system 400 through inlet 404 so that the liquid is fed into hollow filters 424 .
  • Hollow filters 424 may operate as parallel filtration systems, increasing the filtration capacity of the system as compared to a single hollow filter. In other words, any given portion of the liquid to be filtered may pass through only one of hollow filters 424 .
  • hollow filters 424 may comprise hollow fiber membrane filters (for example, to form a hollow fiber filtration system).
  • the hollow fiber membrane filters may be in the form of microfilters or nanofilters.
  • such a configuration may operate in a cross-flow configuration, where the interior 405 of hollow filters 424 may be considered to be on an “upstream” side of filter 408 , as liquid within hollow filters 424 has not passed through filter 408 .
  • Portion 407 that is exterior hollow filters 424 and within outer vessel 402 may be considered to be a downstream side of filter 408 , as liquid within this portion has passed through filter 408 .
  • the opposite configuration may be employed, where grey liquid is fed into region 407 , exterior hollow filters 424 , so that the relationships are reversed. In other words, filtered clean liquid would then exit from the outlet ends of hollow filters 424 , while the concentrated “dirty” grey liquid would remain within portion 407 , exterior hollow filters 424 .
  • each hollow filter 424 may itself comprise the filter. As shown in FIG. 6C , the flow of liquid through hollow filters 424 results in residue filtered from the liquid collecting on the inside or upstream surface of filter wall 408 , as filtered clean liquid (for example, clean water) passes through the filter wall 408 into region 407 .
  • filter walls 408 may include one or more transducers 410 disposed thereon or therein so as to generate one or more pressure waves to dislodge residue fouling layer 412 .
  • one or more transducers 410 may be disposed adjacent to (but perhaps not on or in) filter wall 408 so as to generate one or more pressure waves effective to dislodge at least some of residue 412 . It will thus be appreciated that any suitable placement of transducers 410 (for example, disposed on or adjacent to filter 408 ) may be possible.
  • FIGS. 5 and 6A-6C have been described in terms of a cross-flow system, it will be understood that such systems could also be configured to operate as a direct flow system.
  • Filtration system 400 ′ includes a bundle of hollow fiber membrane filters 424 ′ oriented so as to extend longitudinally within system 400 ′. Bundles of hollow fiber membrane filters 424 ′ may be provided in a plurality of filter modules 401 ′ (for example, system 400 ′ may include 4 modules 401 ′). Each module includes a plurality of hollow fiber membrane filters 424 ′, so that individual modules 401 ′ may be removed and replaced, as needed.
  • System 400 ′ may include a header 403 ′, in which the hollow fiber membrane filters 424 ′ are mounted in header 403 ′ in close proximity to one another to prevent excessive movement therebetween, for example, as seen in FIGS.
  • Filtrate from the plurality of modules 401 ′ may be collected through a common manifold 407 ′ for delivery to outlet 406 ′.
  • the plurality of hollow fiber membrane filters 424 ′ may be contained within a protective perforated cage (for example, screen mesh) 402 ′.
  • the wall 408 ′ of each fiber membrane filter may comprise a filter configured to filter residual materials 412 ′ from a liquid feed, which enters any given fiber membrane filter 424 ′ through wall 408 ′. Liquid to be filtered is conveyed from the outside of each hollow fiber membrane filter 424 ′, through wall 408 ′, leaving fouling layer residue 412 ′ surrounding the outside of each fiber membrane filter 424 ′ (see FIG. 6F ).
  • the liquid filtrate passes up the hollow central lumen 405 ′ of each fiber membrane filter 424 ′ where it is then conveyed into a collection manifold 407 ′ and outlet 406 ′.
  • Hollow fiber filtration system 400 ′ may be submerged in the liquid F (for example, grey water) to be filtered.
  • the system may be configured to draw liquid F inwardly along a length of fiber membrane filters 424 ′, which serve as inlets 404 ′ through wall 408 ′. Drawing of liquid F may be achieved in a system at atmospheric pressure through placement of a pump on a downstream side of system 400 ′. Alternatively, liquid F may be pressurized for force flow into walls 408 ′ of fiber membrane filters 424 ′.
  • Filtration system 400 ′ includes one or more transducers for generating pressure wave(s) configured to dislodge residue fouling layer 412 ′.
  • transducers 410 ′ may be disposed within central cavity 411 ′.
  • transducers 410 ′ may be disposed on or within fiber walls 408 ′ (for example, on the exterior surface, where fouling layer 412 ′ forms) so as to generate one or more pressure waves to dislodge residue fouling layer 412 ′.
  • one or more transducers may be disposed adjacent to (but perhaps not on or in) filter wall 408 ′ so as to generate one or more pressure waves effective to dislodge at least some of residue 412 ′.
  • transducer(s) 410 ′ may be disposed longitudinally among the plurality of hollow fiber membrane filters 424 ′. In another embodiment, transducer(s) 410 ′ may be disposed axially within module 401 ′. It will thus be appreciated that any suitable placement of transducers (for example, disposed on or adjacent to wall 408 ′) may be possible.
  • transducers 410 ′ may be disposed on an inside surface of lumen 405 ′, where fouling layer residue 412 ′ collects, within cavity 411 ′, or anywhere else that will result in the desired dislodgement of at least some of residue 412 ′.
  • FIG. 7 illustrates a filtration system 500 configured as a helically wound filtration system.
  • a helically wound configuration may include a plurality of filter membrane layers 508 a separated by a plurality of spacer layers 508 b .
  • filter layers 508 a may be sandwiched between adjacent spacer layers 508 b
  • spacer layers 508 b are similarly sandwiched between adjacent filter layers 508 a .
  • the sandwiched, alternating layer structure may be helically or spirally wound for placement within a cylindrical housing 502 .
  • Liquid feed F is fed through inlet 504 , while grey liquid concentrate 506 a and filtered clean liquid 506 b exit separately through outlet 506 .
  • Pressurized grey liquid feed F may be introduced through a seal 526 at inlet 504 .
  • Feed F enters between layers 508 a and 508 b , and the clean portion of the liquid (for example, pure water) passes through filter layer 508 a , where it may proceed to product collection vessel 528 that may be disposed at the center of helically wound filtration system 500 .
  • Vessel 528 may include perforations 530 through which the filtered clean liquid is allowed to enter for conveyance towards outlet 506 .
  • Filtered clean liquid 506 b exits through the outlet 506 of vessel 528 . Concentrated “dirty” liquid that does not penetrate through filter layer 508 a is conveyed towards outlet 506 , exiting separately as concentrated liquid at 506 a.
  • a surface of filter layers 508 a that is adjacent to feed F may be considered to be on an “upstream” side of filter layer 508 a .
  • An opposite surface of filter layer 508 a that is adjacent to where filtered clean liquid exits from the filter layer 508 a may be considered to be a downstream side of filter layer 508 a.
  • One or more of filter layers 508 a may include one or more transducers (not shown so as to not overly complicate FIG. 7 ) disposed thereon or therein so as to generate one or more pressure waves to dislodge filter residue materials stopped by the upstream side of filter layers 508 a .
  • one or more transducers may be disposed adjacent to (but perhaps not on or in) the filter layers 508 a so as to generate one or more pressure waves effective to dislodge a fouling layer residue disposed on filter layers 508 a . It will thus be appreciated that any suitable placement of transducers (for example, disposed on or adjacent to filter layers 508 a ) may be possible.
  • FIG. 8 describes a method S 10 by which a filter residue may be removed from a filter used in filtering a liquid.
  • a pressure wave may be generated on or adjacent to a filter having filtered residue adhered thereto.
  • Such a pressure wave may be generated by a transducer disposed on, in or adjacent to the filter.
  • the transducer may employ an electrical power or other power input, and output energy in another form that directly or indirectly results in generation of a pressure wave.
  • the one or more transducers may apply electrical resistance heating to the liquid so as to result in vaporization of a portion of the liquid adjacent to the transducer. Where heating is employed, the method may further include reducing the flow into the filter prior to activation of the transducer so as to reduce the power required to achieve liquid vaporization.
  • a transducer may comprise a high frequency ultrasonic generator that similarly results in generation of vapor bubbles within the liquid. In either case, the generated vapor bubble results in the generation of a pressure wave as a result of the near instantaneous expansion of the liquid as it undergoes a phase change from a liquid to a gas.
  • the transducer may activate a laser (for example, a laser diode) that results in heating of liquid adjacent to the laser, which causes the liquid to undergo a phase change from a liquid to a gas, resulting in generation of a pressure wave due to the near instantaneous expansion associated with the phase change.
  • a laser for example, a laser diode
  • Another transducer that similarly results in heating and vaporization may include a spark gap.
  • Various other transducers may also be suitable for use.
  • the pressure wave may advantageously be generated in a manner so that at least a portion of the force vector applied by the pressure wave is configured to shear or otherwise dislodge filter residue materials from the filter surface, rather than press the filter residue materials further into the filter.
  • the dislodged materials may be removed at S 16 (for example, through a bypass valve or other suitable removal mechanism).
  • the method may operate as a continuous or batch process.
  • the method may involve continuous or periodic activation of the one or more transducers so as to dislodge the filter residue materials collected on an upstream side of the filter.
  • the transducers may be activated at desired intervals, while a bypass valve may be activated to remove dislodged filter residue materials at the same or a different interval.
  • the pressure wave(s) may be generated substantially continuously or periodically.
  • the dislodged filter residue materials may be removed from the system substantially continuously or periodically.
  • the present methods do not necessarily require a “back-flush” operation that would require flow reversal through the filter.
  • the present methods do not necessarily require introduction of a mixed liquid/gas stream into the system to scour or “airlift” the filter fouling layer residue from the filter.
  • this vapor may simply represent the liquid (for example, water) of the feed vaporized from liquid to a vapor state (for example, still water), and thus may not typically involve the introduction or generation of dangerous gases (for example, H 2 or O 2 ) within the system.
  • dangerous gases for example, H 2 or O 2
  • a range includes each individual member.
  • a group having 1-3 cells refers to groups having 1, 2, or 3 cells.
  • a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.

Abstract

Filtration systems and methods for removing a filter residue from a filter employed in filtering a liquid (for example, grey water). The filtration system may include a vessel having an inlet through which a liquid can be introduced during use and an outlet through which filtered clean liquid can exit. A filter configured to filter the liquid is disposed within the vessel between the inlet and the outlet. The filtration system may further include at least one transducer disposed on or adjacent to the filter. The at least one transducer may be configured to generate one or more pressure waves effective to dislodge at least some residue materials collected on an upstream side of the filter.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This Patent Application is a U.S. National Stage filing under 35 U.S.C. § 371 of International Application No. PCT/US2013/066836, entitled “FILTRATION SYSTEMS AND METHODS FOR FILTERING SOLIDS”, filed on Oct. 25, 2013, that claims the benefit of Australian Provisional Application No. 2012905265, filed on Nov. 30, 2012, the entire contents of which are incorporated herein by reference in their entirety.
BACKGROUND
Wastewater treatment and other water treatment schemes are useful for providing treated water for numerous uses, particularly in locations where access to sufficient fresh water (sometimes referred to as “white water”) is limited. There are several treatment methods in use, ranging from primary settling treatment through secondary and tertiary treatment regimes, each using various degrees of physical sedimentation and floatation, biological treatment, filtration, chlorination, ozonation, and so on.
There are several types of filtration systems in use, depending on the type and quality of both the water being treated and the desired end use of that water. With particular regard to commercial scale filtration systems, examples include hollow fiber filters with pore sizes in the micrometer and nanometer range. Smaller pore sizes are found in reverse osmosis systems which may be used for example to de-salinate sea water for human consumption.
Given the way in which filters work, that is to provide a barrier to undesired material in the water, they eventually build up residue on their upstream surface. This residue can reduce the performance of the filter and therefore must regularly be cleaned. Cleaning regimes may include liquid or gas backwashing, gas scouring, or chemical treatment.
SUMMARY
Embodiments of the present disclosure are directed to filtration systems, filter modules, and methods for removing residue (for example, a filter cake) from a filter used in filtering a liquid (for example, grey water, black water, municipal water, river water, sea water, another liquid, etc.). Such embodiments allow materials such as solids or other residues that can become caked against an upstream surface of a filter of such a filtration system to be at least in part removed.
An embodiment is directed to a filtration system for filtering a liquid. The filtration system may include a vessel having an inlet through which a liquid can be introduced during use and an outlet through which filtered, cleaned liquid can exit. A filter that is configured to filter residue from such a liquid may be disposed within the vessel between the inlet and outlet. The filtration system may further include at least one transducer disposed in, on or adjacent to the filter. The at least one transducer may be configured to generate one or more pressure waves effective to dislodge residue collected on an upstream side of the filter. The at least one transducer may employ an electrical power input to produce an energy output in a different form (for example, heat energy, mechanical movement, audio energy, light or other electromagnetic energy, a spark, etc.) that results in generation of a pressure wave within the liquid.
An embodiment is directed to a filter module for use in a filtration system for filtering solids from a liquid. The filter module includes a plurality of hollow fiber membrane filters. Each hollow fiber membrane filter may be configured to filter a liquid. The filter module includes at least one transducer disposed in, on, or adjacent to the plurality of hollow fiber membrane filters. The at least one transducer may be configured to generate one or more pressure waves effective to dislodge at least some residue from the plurality of hollow fiber filters.
Another embodiment is directed to a method for removing at least some residue from a filter used in filtering a liquid. The method includes generating at least one pressure wave within a liquid at a location in, on, or adjacent to a filter having a residue disposed thereon. Generation of the pressure wave dislodges at least some of the residue from the filter, which would otherwise reduce performance of the filter. Once dislodged, the dislodged residue may be removed.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1A is a cut-away perspective view of an embodiment of a filtration system including a vessel having a filter disposed therein with at least one transducer disposed adjacent to the filter that is configured to generate a pressure wave to dislodge at least some residue from the upstream side of the filter.
FIG. 1B is a cut-away perspective view of the filtration system of FIG. 1A, illustrating generation of a vapor bubble and resulting pressure wave.
FIG. 1C is a cut-away perspective view of the filtration system of FIG. 1B illustrating dislodgement of residue from the upstream side of the filter as a result of action of the generated pressure wave.
FIG. 1D is a cut-away perspective view of the filtration system of FIG. 1C illustrating removal of dislodged residue material through a bypass valve adjacent to the upstream side of the filter.
FIG. 2A is a cut-away perspective view of another embodiment of a filtration system similar to that of FIG. 1A, but including a pressure wave reflector configured to reflect a portion of a generated pressure wave that propagates away from the filter back towards the filter.
FIG. 2B is a cut-away perspective view of the filtration system of FIG. 2A illustrating reflection of a portion of the generated pressure wave.
FIG. 3 is a cut-away perspective view of another embodiment of a filtration system similar to that of FIG. 1A, but including a plurality of transducers disposed adjacent to an upstream side of the filter.
FIG. 4A is a perspective view of an embodiment of a filter including a plurality of transducers disposed thereon, with one or more electrically conductive traces disposed on the filter to provide electrical power to the transducers.
FIG. 4B is a cross-sectional view through the filter of FIG. 4A.
FIG. 5 is a schematic view of a filtration system that provides a cross-flow configuration.
FIG. 6A is a schematic perspective view of a filtration system configured as a plurality of hollow filters.
FIG. 6B is an end view of the outlet of the filtration system of FIG. 6A.
FIG. 6C is a longitudinal cross-sectional view through the filtration system of FIG. 6B.
FIG. 6D is a longitudinal partial cross-sectional view through another embodiment of a filtration system configured with a plurality of hollow fiber membrane filters.
FIG. 6E is a transverse cross-sectional view through the filtration system of FIG. 6D.
FIG. 6F is a transverse cross-sectional view through a single hollow fiber membrane filter such as that included in the filtration system of FIG. 6D.
FIG. 7 is a perspective and partial cut away view of a helically wound filtration system.
FIG. 8 is a flowchart describing an illustrative embodiment of a method of removing at least some residue from a filter used to filter a liquid.
DETAILED DESCRIPTION
Embodiments of the present disclosure are directed to filtration systems, filter modules, and methods for removing residue from a filter used in filtering a liquid. Such embodiments may provide a convenient, simple, and inexpensive mechanism for removing accumulated filtered residue material from the upstream side of a filter of a filtration system. In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.
FIGS. 1A-1D illustrate an embodiment of a filtration system 100 including vessel 102 (for example, a cylindrical pipe) having inlet 104 and outlet 106. While system 100 may be shown with a single inlet 104 and single outlet 106, it will be understood that any of the various filtration systems within the scope of the present disclosure may include one or more than one inlets and one or more outlets at any suitable location on the vessel 102. A liquid (for example, grey water) can be introduced through inlet 104 and a filtered, clean liquid can exit through outlet 106. Filtration system 100 may include a filter 108 disposable within vessel 102 between inlet 104 and outlet 106. Filter 108 is configured to filter solids from a liquid (for example, grey water, black water, river water, mains water, a liquid other than water, etc.) introduced through inlet 104. Filtration system 100 may further include at least one transducer 110 disposed in, on or adjacent to filter 108. In FIG. 1A, transducer 110 is illustrated as being disposed downstream relative to filter 108, although other placement is possible, some of which are described below. Transducer 110 is capable of generating one or more pressure waves that are effective to dislodge at least some of residue 112 disposed on an upstream side of filter 108. In an embodiment, residue 112 may comprise various solids or other residue materials that are stopped by filter 108, which residue materials may form what may be referred to as a fouling layer. Such residue materials may include, but are not limited to, solid particulate materials, dissolved salts (for example, which may precipitate as solids), bacteria, or other materials within the grey liquid that may be denied passage through filter 108.
Filter 108 may comprise any suitable material or construction. In one embodiment, filter 108 may be a reverse osmosis filter. Filter 108 may be configured as a flexible, mesh membrane substrate, and may be formed of a material such as, but not limited to cellulose acetate, polysulfone, polyamide, polyolefins, and combinations thereof. Other materials (for example, paper, natural or synthetic fibers, metallic fiber or web, etc.) may also be employed. It will be readily apparent that any suitable filter material capable of filtering undesirable materials from a liquid may be employed. A reverse osmosis filter may be semi-permeable so as to allow passage of water or other liquid through filter 108, while preventing passage of other materials. A pressure may be applied to the feed side of the filtration system to provide a pressure gradient that causes water or other liquid to flow through the filter.
Transducer 110 may be any structure capable of converting an electrical energy (for example, an applied voltage) or other energy input to another output form (for example, heat energy, mechanical movement, audio energy, for example in the form of ultrasound waves, light, for example laser light or other electromagnetic energy, a spark, etc.) that results in generation of a pressure wave. Examples of transducers include, but are not limited to, a resistive heating element, a high frequency ultrasound generator (for example, a piezoelectric transducer), a laser, a sparking gap for generating a spark which heats the liquid to induce a phase change from liquid to vapor, or any other structure capable of converting an electrical or other power input to another form of energy that results directly or indirectly in generation of a pressure wave within the liquid (for example, grey water) within vessel 102.
For example, a resistive heating element, a laser, or a sparking gap may act to heat liquid immediately adjacent to and in contact with the transducer so as to induce a phase change from liquid to gas. The nearly instantaneous phase change results in a substantial increase in volume, generating a pressure wave. A high frequency ultrasound (for example, about 20,000 Hz or higher) generator may include a piezoelectric generator that can result in cavitation of the liquid (for example, as a result of a substantial drop in pressure), which similarly results in generation of a pressure wave within the liquid. Transducers operating under various other principles so as to result in generation of a pressure wave may also be employed.
Where transducer 110 acts to heat liquid immediately adjacent to transducer 110 so as to induce a phase change, the flow rate through system 100 may be reduced immediately prior to activation of transducer 110. Such slowing of the flow serves to reduce the pressure of the liquid, which reduces the input power requirements needed to achieve vaporization of the liquid at a given pressure. In addition, a pressure drop typically occurs as a result of passage through a filter such as filter 108 so that placement of transducer 110 downstream from filter 108 also reduces the pressure of the liquid and, thus, the power required to effect vaporization and pressure wave generation. Thus, in an embodiment, transducer 110 may be disposed downstream from filter 108, and/or the flow rate of liquid through filter 108 may be reduced so as to reduce the pressure and input power that would otherwise be required to achieve vaporization and pressure wave generation.
In the embodiment illustrated in FIGS. 1A-1D, transducer 110 is disposed near filter 108, at a location that is downstream relative to filter 108. As shown in FIG. 1B, upon activation of transducer 110 (for example, a vapor bubble generating resistive heating element), a vapor bubble 114 forms within the liquid at transducer 110. Bubble 114 may form as a result of heating of the liquid adjacent to transducer 110. Because the heated portion of liquid expands rapidly upon vaporization, a vapor bubble 114 forms, generating a pressure wave 116 within the liquid. Pressure wave 116 results because vapor bubble 114 occupies a substantially larger volume than the same material before it was vaporized, when it was in a liquid state. As seen in FIG. 1C the vapor bubble may quickly collapse as the material of vapor bubble 114 quickly recondenses, while pressure wave 116 propagates outward from its point of origin. Pressure wave 116 hits the downstream side of filter 108, applying a force to residue 112 (for example, caked solids forming a fouling layer) that causes at least some of residue 112 to be dislodged from the upstream side of filter 108. For example, as shown in FIG. 1C, at least a portion of pressure wave 116 may propagate in an upstream direction, dislodging material 112 from an upstream side of filter 108 as pressure wave 116 passes through or otherwise contacts filter 108.
In the embodiment shown in FIG. 1C, pressure wave 116 propagates in a direction that may be substantially opposite to the typical direction of flow F (see FIG. 1A). Portions of generated pressure wave 116 located away from the longitudinal center of vessel 102 may include a shearing vector component as well as a component that is substantially opposite the flow direction F. Where transducer 110 may be disposed at a location other than along the longitudinal center of vessel 102, it will be apparent that the force vectors applied by pressure waves 116 will differ. For example, that portion of the pressure wave that is aligned with the point of origination (for example, transducer 110) of pressure wave 116 may propagate in a direction that is substantially opposite the flow direction F.
While the generation of pressure wave 116 may result in at least some back flow of liquid as a result of the action of pressure wave 116 upon the liquid within vessel 102, dislodgment of residue 112 may be achieved largely as a result of the action of pressure wave 116 upon residue 112 rather than any backflow of the liquid that may momentarily occur.
FIG. 1D shows how once residue 112 is dislodged from filter 108, they may be removed from vessel 102. It will be readily appreciated that pressure wave 116 is not required to dislodge all of residue 112, and that some portion of residue 112 may remain caked on filter 108 after the dislodgement by pressure wave 116. Whatever the fraction or portion of residue 112 dislodged, these materials may be removed to prevent their redeposition onto filter 108. While any removal mechanism may be employed, FIG. 1D illustrates opening of a bypass valve at a location adjacent to and upstream from filter 108, so that dislodged residue 112 may be removed after being dislodged. Any suitable mechanism for physical removal of residue 112 may be employed, the bypass valve of FIG. 1D merely represents a non-limiting embodiment of such a mechanism. Other mechanisms will be apparent to one of skill in the art in light of the present disclosure.
As shown in FIGS. 2A and 2B, in order to increase the efficacy of generated pressure wave 116, system 100 may further include pressure wave reflector 118 configured to reflect a portion 116′ of pressure wave 116 that propagates away from the upstream side of filter 108. For example, reflector 118 may be disposed downstream relative to transducer 110, so as to redirect that portion of pressure wave 116 that would otherwise be wasted. Reflector 118 may comprise any suitable rigid material (for example, rigid plastic, ceramic, metal, etc.). Reflection of portion 116′ of pressure wave 116 back towards filter 108 increases the fraction of generated pressure wave 116 that is directed in a manner calculated to dislodge residue 112 caked or otherwise disposed on filter 108.
FIG. 3 illustrates an embodiment of another filtration system 100 in which transducers 110 are disposed on an upstream side of filter 108, adjacent to where residue 112 becomes disposed onto filter 108. In an embodiment, the one or more transducers 110 may actually be disposed on or in filter 108 itself. FIGS. 4A and 4B illustrate such an embodiment. It will be readily apparent that placement of one or more transducers 110 may thus vary (for example, upstream from filter, downstream from filter, on filter, etc.), as desired. In some embodiments, placement will be relatively near filter 108 and residue 112 so that a generated pressure wave may be required to propagate only a relatively short distance, which limits dissipation and weakening of the force provided within the pressure wave for dislodging such residue 112. In an embodiment, transducers 110 may be disposed not more than about 10 cm, not more than about 5 cm, not more than about 3 cm, or not more than about 1 cm from the upstream side of filter 108 where residue 112 accumulate. All else being equal, closer placement increases the efficacy of the pressure wave 116 in dislodging residue 112.
As shown in FIG. 3, where transducers 110 a-110 c are disposed upstream relative to filter 108 and residue 112, the transducers may be located in very close proximity relative to residue 112 (for example, not more than about 10 mm, not more than about 5 mm, or not more than about 3 mm) Such close placement provides relatively greater strength to the dislodging force delivered to residue 112 by the generated pressure wave. Such relatively close placement also orients the generated pressure wave so that a larger fraction of the wave exhibits a force vector that is configured to shear the residue 112 from the surface of filter 108, rather than pushing residue 112 further into filter 108. In other words, closer placement of transducers 110 a-110 c results in a smaller radius exhibited by the pressure wave at the time it first contacts residue 112. Thus, only a small fraction of the pressure wave is oriented to push residue 112 further into filter 108, while the vast majority of the circumference of the pressure wave is oriented to shear solids 112 from filter 108. Furthermore, the applied shearing force is concentrated within a relatively smaller radius circle, so that the shearing force applied to any given location along residue 112 is correspondingly higher than if the pressure wave exhibited a relatively larger radius (which corresponds to further placement from filter 108 and residue 112).
Relatively close placement of the transducers to filter 108 may be particularly beneficial where the transducers are disposed upstream relative to filter 108. When positioned downstream as in FIG. 1A-1D, no portion of the pressure wave may exhibit a force vector that pushes residue 112 further into filter 108. Thus relatively close placement to filter 108 may be particularly beneficial where the transducers are placed upstream relative to filter 108. In some embodiments, transducers may be placed both upstream and downstream (or on the filter and downstream, or on the filter and upstream).
FIG. 3 further illustrates how one of 3 illustrated transducers 110 a-110 c fires, generating a vapor bubble and associated pressure wave 116. Pressure wave 116 shears at least some residue 112 from filter 108 adjacent to transducer 110 c. Additional transducers 110 b and 110 a may fire relative to transducer 110 c in any desired sequence. In an embodiment, all transducers may fire substantially simultaneously. In another embodiment, all transducers may fire in a non-simultaneous sequence, for example, that may be configured to more effectively or efficiently dislodge residue 112. In an embodiment, transducer 110 c may fire, followed by firing of transducer 110 b, followed by firing of transducer 110 a. Any of transducers 110 a-110 c may fire again, even in a different sequence. For example, transducer 110 c may fire, followed by 110 b, followed by 110 a, followed by simultaneous firing of all of transducers 110 a-110 c. It will be readily apparent that any conceivable firing sequence, including any number of transducers, arranged in any desired geometric pattern, may be employed, as desired. A controller 111 may be provided to provide electrical power to transducers 110 a-110 c (for example, through electrically conductive traces or other wiring) in a desired sequence.
FIGS. 4A and 4B illustrate an embodiment of a filter 208 including a plurality of transducers 210 disposed on filter 208, and in which filter 208 further includes one or more electrically conductive traces 218 disposed on filter 208 configured to provide electrical power to transducers 210. Thus, during use, transducers 210 may be selectively activated so as to result in generation of a pressure wave that dislodges at least some residue 212 caked or otherwise disposed on an upstream side of filter 208. As perhaps best seen in FIG. 4B, transducers 210 may be disposed on only one side of filter 208 (for example, that side of filter 208 which becomes the upstream side of filter 208 during use). Traces 218 may be flexible, as the substrate 220 of filter 208 may also be flexible, allowing such a filter to be employed in helically wound or other layered filtration systems.
Filter 208 may comprise a flexible, polymeric mesh membrane substrate 220, for example, such as those typically employed for reverse osmosis separation or other filtration techniques. Suitable polymeric materials from which filter substrate 220 may be formed include, but are not limited to cellulose acetate, polysulfone, polyamide, polyolefins, and combinations thereof. Other materials (for example, paper, natural or synthetic fibers, metallic fiber or web, etc.) may also be employed. It will be readily apparent that any suitable substrate material capable of filtering undesirable residue materials from a liquid may be employed. Substrate 220 may advantageously exhibit thermal stability so as to resist degradation that might otherwise occur upon exposure to heating, or repeated exposure vaporized liquid (for example, steam) within the liquid feed. Substrate 220 may also advantageously be bondable to electrically conductive traces 218 so as to prevent separation of traces 218 from substrate 220. Furthermore, traces 218, transducers 210, and or other components may be coated with a protective coating (for example, a silicone or similar protective polymer coating) to protect and/or insulate such components.
Where transducers 210 comprise resistive heating elements that operate to vaporize a portion of the liquid to form a vapor bubble (which results in generation of a pressure wave as a result of the nearly instantaneous increase in volume), transducers 210 may include an electrically insulative layer 222 disposed over a portion of transducer 210 to reduce a surface area of heating element transducer 210 exposed to the liquid to be vaporized. Such a reduction in surface area serves to decrease the power required to be delivered to vaporize the liquid in contact with heating element transducer 210. Such an insulative layer 222 may comprise any suitable electrically insulative material (for example, plastic, ceramic, etc.). Layer 222 may also exhibit thermal insulative characteristics to aid in focusing delivery of the generated heat to a desired area.
In an embodiment, insulative layer 222 may comprise a substantially rigid material (for example, a rigid plastic or ceramic) that also serves as a pressure wave reflector to reflect that portion of a generated pressure wave that propagates away from a fouling layer residue back towards the upstream side of the filter so as to direct more of the energy of the generated pressure wave so that it results in dislodgement of residue materials caked onto or otherwise disposed on filter 208. In another embodiment, a separate rigid pressure wave reflector may be provided (for example, similar to reflector 118 of FIG. 2A).
In an embodiment, electrically conductive traces 218 and transducers 210 cover only a relatively small fraction of the face of filter 208 on which they are disposed. For example, traces 218 and transducers 210 may be disposed on the upstream face of filter 208, and may cover or occlude no more than about 10% of the surface area of the face on which they are disposed, no more than about 5% of the face on which they are disposed, or no more than about 3% of the face on which they are disposed. Such small fractions prevent the inclusion of traces 218 and transducers 210 from interfering significantly with efficacy of filter 208.
In some embodiments, it may be possible to position traces 218 and transducers 210 on the downstream side of the filter, and the generated pressure wave may include at least a portion thereof that propagates upstream, through the filter so as to dislodge residue materials disposed on the upstream face. In another embodiment, it may be possible to position transducers 210 on an upstream face of filter 208, while positioning traces 218 on the downstream face of filter 208, with a portion of trace(s) 218 passing through substrate 220 to make the needed electrical connection with transducer 210. In another embodiment, traces 218 may be embedded within substrate 220. While the electrical connections are described as being formed with the use of electrically conductive traces, it will be understood that any other electrical connection (for example, one or more wires) may also be employed. For purposes of the present disclosure and claims, the term “electrically conductive trace” is to be broadly construed to include wires or similar electrical connections.
Filtration systems including one or more transducers for generating a pressure wave may be employed within any suitable filtration configuration. FIGS. 1A-1D show filter 108 configured as a dead end filter that extends across vessel 102 (for example, a pipe) in an orientation that is substantially perpendicular to the direction of flow F. In addition to such a dead end configuration, other configurations, such as, but not limited to, cross-flow filters, helically wound filters, and hollow filters (for example, a hollow fiber filtration system) are also contemplated. Other configurations may also be employed.
FIG. 5 illustrates an embodiment of a filtration system 300 having a cross-flow configuration in which the direction of flow F is substantially parallel to filter 308 during operation. For example, a feed liquid may be introduced through inlet 304 into portion 305 of vessel 302. Pressure may be applied to grey liquid within portion 305 so as to cause a portion of the liquid to flow through filter 308, into portion 307, while residue 312 within the liquid are collected against filter 308. Concentrated grey liquid 306 a may exit from system 300 through outlet 306, while filtered cleaned liquid (for example, clean water) 306 b may exit through a separate outlet at outlet 306. For purposes of such a cross-flow filter, portion 305 may be considered to be on a “upstream” side of filter 308, as liquid within this portion has not yet passed through filter 308. Similarly, portion 307 may be considered to be on a “downstream” side of filter 308, as liquid within this portion has passed through filter 308. Residue 312 collects on the upstream side of filter 308, within portion 305.
Filter 308 may include one or more transducers 310 disposed thereon (for example, as shown in FIGS. 4A and 4B) so as to generate one or more pressure waves to dislodge at least some of residue 312. In another embodiment, one or more transducers 310 may be disposed adjacent to filter 308, for example, within portion 307, downstream from filter 308 similar to the configuration shown in FIG. 1A, or upstream from filter 308, within portion 305, similar to the configuration shown in FIG. 3. In any case, transducers 310 are disposed so as to generate one or more pressure waves effective to dislodge residue 312. It will thus be appreciated that any suitable disposition of transducers (for example, disposed in, on, or adjacent to filter 308) may be possible.
FIGS. 6A-6C illustrate an embodiment of a filtration system 400 configured as a hollow (for example, a tube) filter, which specifically has a configuration including a plurality of hollow filters 424 that may be disposed within a vessel (for example, a tube) 402. The cylindrical wall 408 of each hollow filter 424 may comprise a filter configured to filter residue 412 from a liquid feed F. Liquid feed F may be introduced into filtration system 400 through inlet 404 so that the liquid is fed into hollow filters 424. Hollow filters 424 may operate as parallel filtration systems, increasing the filtration capacity of the system as compared to a single hollow filter. In other words, any given portion of the liquid to be filtered may pass through only one of hollow filters 424. As the liquid advances towards outlet 406, the filtered, clean liquid migrates across filter wall 408 to the region 407 that is exterior to hollow filters 424, but within collection vessel 402. Thus, the filtered liquid (for example, clean water) can be collected at outlet 406 from region 407, surrounding hollow filters 424. Concentrated “dirty” grey liquid may exit system 400 through the outlet ends 406 of hollow filters 424. The two exiting flows are separated from one another. In an embodiment, hollow filters 424 may comprise hollow fiber membrane filters (for example, to form a hollow fiber filtration system). The hollow fiber membrane filters may be in the form of microfilters or nanofilters.
Similar to the filter illustrated in FIG. 5, such a configuration (for example, tube-in-tube) may operate in a cross-flow configuration, where the interior 405 of hollow filters 424 may be considered to be on an “upstream” side of filter 408, as liquid within hollow filters 424 has not passed through filter 408. Portion 407 that is exterior hollow filters 424 and within outer vessel 402 may be considered to be a downstream side of filter 408, as liquid within this portion has passed through filter 408. While described in the context of the grey liquid being fed into hollow filters 424 at inlet 404, it will be understood that the opposite configuration may be employed, where grey liquid is fed into region 407, exterior hollow filters 424, so that the relationships are reversed. In other words, filtered clean liquid would then exit from the outlet ends of hollow filters 424, while the concentrated “dirty” grey liquid would remain within portion 407, exterior hollow filters 424.
The cylindrical wall 408 of each hollow filter 424 may itself comprise the filter. As shown in FIG. 6C, the flow of liquid through hollow filters 424 results in residue filtered from the liquid collecting on the inside or upstream surface of filter wall 408, as filtered clean liquid (for example, clean water) passes through the filter wall 408 into region 407. One or more of filter walls 408 may include one or more transducers 410 disposed thereon or therein so as to generate one or more pressure waves to dislodge residue fouling layer 412. In another embodiment, one or more transducers 410 may be disposed adjacent to (but perhaps not on or in) filter wall 408 so as to generate one or more pressure waves effective to dislodge at least some of residue 412. It will thus be appreciated that any suitable placement of transducers 410 (for example, disposed on or adjacent to filter 408) may be possible.
While the systems illustrated in FIGS. 5 and 6A-6C have been described in terms of a cross-flow system, it will be understood that such systems could also be configured to operate as a direct flow system.
Another embodiment of a hollow fiber filtration system is shown in FIGS. 6D-6F. Filtration system 400′ includes a bundle of hollow fiber membrane filters 424′ oriented so as to extend longitudinally within system 400′. Bundles of hollow fiber membrane filters 424′ may be provided in a plurality of filter modules 401′ (for example, system 400′ may include 4 modules 401′). Each module includes a plurality of hollow fiber membrane filters 424′, so that individual modules 401′ may be removed and replaced, as needed. System 400′ may include a header 403′, in which the hollow fiber membrane filters 424′ are mounted in header 403′ in close proximity to one another to prevent excessive movement therebetween, for example, as seen in FIGS. 6D-6E. Filtrate from the plurality of modules 401′ may be collected through a common manifold 407′ for delivery to outlet 406′. The plurality of hollow fiber membrane filters 424′ may be contained within a protective perforated cage (for example, screen mesh) 402′. The wall 408′ of each fiber membrane filter may comprise a filter configured to filter residual materials 412′ from a liquid feed, which enters any given fiber membrane filter 424′ through wall 408′. Liquid to be filtered is conveyed from the outside of each hollow fiber membrane filter 424′, through wall 408′, leaving fouling layer residue 412′ surrounding the outside of each fiber membrane filter 424′ (see FIG. 6F). The liquid filtrate (for example, cleaned liquid) passes up the hollow central lumen 405′ of each fiber membrane filter 424′ where it is then conveyed into a collection manifold 407′ and outlet 406′. Hollow fiber filtration system 400′ may be submerged in the liquid F (for example, grey water) to be filtered. The system may be configured to draw liquid F inwardly along a length of fiber membrane filters 424′, which serve as inlets 404′ through wall 408′. Drawing of liquid F may be achieved in a system at atmospheric pressure through placement of a pump on a downstream side of system 400′. Alternatively, liquid F may be pressurized for force flow into walls 408′ of fiber membrane filters 424′.
Filtration system 400′ includes one or more transducers for generating pressure wave(s) configured to dislodge residue fouling layer 412′. For example, transducers 410′ may be disposed within central cavity 411′. In another embodiment, transducers 410′ may be disposed on or within fiber walls 408′ (for example, on the exterior surface, where fouling layer 412′ forms) so as to generate one or more pressure waves to dislodge residue fouling layer 412′. In another embodiment, one or more transducers may be disposed adjacent to (but perhaps not on or in) filter wall 408′ so as to generate one or more pressure waves effective to dislodge at least some of residue 412′. In one embodiment, transducer(s) 410′ may be disposed longitudinally among the plurality of hollow fiber membrane filters 424′. In another embodiment, transducer(s) 410′ may be disposed axially within module 401′. It will thus be appreciated that any suitable placement of transducers (for example, disposed on or adjacent to wall 408′) may be possible.
While described in a configuration where flow is from outside of hollow fiber membrane filters 424′, through wall 408′ and into lumen 405′, it will be understood that a configuration having an opposite flow direction is also possible. Such an embodiment may lead to build up of fouling layer residue 412′ on the inside surface of lumen 405′. In such an embodiment, transducers 410′ may be disposed on an inside surface of lumen 405′, where fouling layer residue 412′ collects, within cavity 411′, or anywhere else that will result in the desired dislodgement of at least some of residue 412′.
FIG. 7 illustrates a filtration system 500 configured as a helically wound filtration system. Such a helically wound configuration may include a plurality of filter membrane layers 508 a separated by a plurality of spacer layers 508 b. Thus, filter layers 508 a may be sandwiched between adjacent spacer layers 508 b, while spacer layers 508 b are similarly sandwiched between adjacent filter layers 508 a. The sandwiched, alternating layer structure may be helically or spirally wound for placement within a cylindrical housing 502.
Liquid feed F is fed through inlet 504, while grey liquid concentrate 506 a and filtered clean liquid 506 b exit separately through outlet 506. Pressurized grey liquid feed F may be introduced through a seal 526 at inlet 504. Feed F enters between layers 508 a and 508 b, and the clean portion of the liquid (for example, pure water) passes through filter layer 508 a, where it may proceed to product collection vessel 528 that may be disposed at the center of helically wound filtration system 500. Vessel 528 may include perforations 530 through which the filtered clean liquid is allowed to enter for conveyance towards outlet 506. Filtered clean liquid 506 b exits through the outlet 506 of vessel 528. Concentrated “dirty” liquid that does not penetrate through filter layer 508 a is conveyed towards outlet 506, exiting separately as concentrated liquid at 506 a.
Similar to several of the previously described configurations, a surface of filter layers 508 a that is adjacent to feed F may be considered to be on an “upstream” side of filter layer 508 a. An opposite surface of filter layer 508 a that is adjacent to where filtered clean liquid exits from the filter layer 508 a may be considered to be a downstream side of filter layer 508 a.
One or more of filter layers 508 a may include one or more transducers (not shown so as to not overly complicate FIG. 7) disposed thereon or therein so as to generate one or more pressure waves to dislodge filter residue materials stopped by the upstream side of filter layers 508 a. In another embodiment, one or more transducers may be disposed adjacent to (but perhaps not on or in) the filter layers 508 a so as to generate one or more pressure waves effective to dislodge a fouling layer residue disposed on filter layers 508 a. It will thus be appreciated that any suitable placement of transducers (for example, disposed on or adjacent to filter layers 508 a) may be possible.
FIG. 8 describes a method S10 by which a filter residue may be removed from a filter used in filtering a liquid. As shown, at S12, a pressure wave may be generated on or adjacent to a filter having filtered residue adhered thereto. Such a pressure wave may be generated by a transducer disposed on, in or adjacent to the filter. The transducer may employ an electrical power or other power input, and output energy in another form that directly or indirectly results in generation of a pressure wave. The one or more transducers may apply electrical resistance heating to the liquid so as to result in vaporization of a portion of the liquid adjacent to the transducer. Where heating is employed, the method may further include reducing the flow into the filter prior to activation of the transducer so as to reduce the power required to achieve liquid vaporization.
Another embodiment of a transducer may comprise a high frequency ultrasonic generator that similarly results in generation of vapor bubbles within the liquid. In either case, the generated vapor bubble results in the generation of a pressure wave as a result of the near instantaneous expansion of the liquid as it undergoes a phase change from a liquid to a gas. In another embodiment, the transducer may activate a laser (for example, a laser diode) that results in heating of liquid adjacent to the laser, which causes the liquid to undergo a phase change from a liquid to a gas, resulting in generation of a pressure wave due to the near instantaneous expansion associated with the phase change. Another transducer that similarly results in heating and vaporization may include a spark gap. Various other transducers may also be suitable for use.
Because of the generation of the pressure wave, at S14 residue materials that are caked on an upstream side of the filter are dislodged from the filter, as a result of the action of the pressure wave against the residue materials. The pressure wave may advantageously be generated in a manner so that at least a portion of the force vector applied by the pressure wave is configured to shear or otherwise dislodge filter residue materials from the filter surface, rather than press the filter residue materials further into the filter. Once the filter residue material is dislodged from the filter, the dislodged materials may be removed at S16 (for example, through a bypass valve or other suitable removal mechanism).
It will be appreciated that such a method may operate as a continuous or batch process. Furthermore, in any case, the method may involve continuous or periodic activation of the one or more transducers so as to dislodge the filter residue materials collected on an upstream side of the filter. For example, in one embodiment the transducers may be activated at desired intervals, while a bypass valve may be activated to remove dislodged filter residue materials at the same or a different interval. Thus, the pressure wave(s) may be generated substantially continuously or periodically. Similarly, the dislodged filter residue materials may be removed from the system substantially continuously or periodically.
It will be appreciated that the present methods do not necessarily require a “back-flush” operation that would require flow reversal through the filter. Similarly, the present methods do not necessarily require introduction of a mixed liquid/gas stream into the system to scour or “airlift” the filter fouling layer residue from the filter. Furthermore, where a vapor is generated within the filtration system adjacent to the filter or filter residue, this vapor may simply represent the liquid (for example, water) of the feed vaporized from liquid to a vapor state (for example, still water), and thus may not typically involve the introduction or generation of dangerous gases (for example, H2 or O2) within the system. This is not to be understood that the present methods cannot employ features such as “back-flushing”, “airlifting” or generation of dangerous gases, but that such features are not required, and if they are included, are entirely optional.
One skilled in the art will appreciate that, for this and other processes and methods disclosed herein, the functions performed in the processes and methods may be implemented in differing order, in at least some embodiments. Furthermore, the outlined steps and operations are only provided as examples, and some of the steps and operations may be optional, combined into fewer steps and operations, or expanded into additional steps and operations without detracting from the essence of the disclosed embodiments.
The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (for example, bodies of the appended claims) are generally intended as “open” terms (for example, the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,”, etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (for example, “a” and/or “an” should be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number (for example, the bare recitation of “recitations,” without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
As will be understood by one skilled in the art, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as “up to,” “at least,” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
From the foregoing, it will be appreciated that various embodiments of the present disclosure have been described herein for purposes of illustration, and that various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the various embodiments disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (9)

What is claimed is:
1. A filtration system for filtration of solids from a liquid, the filtration system comprising:
a vessel that includes an inlet through which the liquid is introduced during use and an outlet through which filtered liquid exits;
a filter disposable within the vessel between the inlet and the outlet, wherein the filter is configured to filter the liquid;
at least one transducer disposed in, on, or adjacent to the filter, wherein the at least one transducer comprises a vapor bubble generating resistive heating element, a laser, or a sparking gap configured to generate one or more pressure waves effective to dislodge at least some residue from the filter.
2. The filtration system of claim 1, wherein the at least one transducer comprises at least one vapor bubble generating resistive heating element configured to generate at least one vapor bubble that displaces the liquid to create a pressure wave effective to dislodge the at least some residue from the filter.
3. The filtration system of claim 1, wherein the at least one transducer includes a plurality of transducers that are disposed on an upstream side of the filter, wherein the filter comprises a plurality of electrically conductive traces configured to provide electrical power to the plurality of transducers.
4. The filtration system of claim 3, wherein the plurality of electrically conductive traces and the plurality of transducers occlude no more than about 10% of a surface area of the upstream side of the filter.
5. The filtration system of claim 3, further comprising a controller configured to provide the electrical power to the plurality of electrically conductive traces in a selected sequence.
6. The filtration system of claim 1, further comprising a pressure wave reflector configured to reflect a portion of a generated pressure wave that propagates away from an upstream side of the filter back towards the upstream side of the filter.
7. The filtration system of claim 1, wherein the filtration system includes a dead end filter that extends across the vessel and have an orientation that is substantially perpendicular to a direction of flow from the inlet to the outlet.
8. The filtration system of claim 1, wherein the filtration system is configured as a cross-flow filtration system to maintain a direction of flow substantially parallel to the filter during use.
9. The filtration system of claim 1, wherein the filtration system is configured as a helically wound filtration system.
US14/648,460 2012-11-30 2013-10-25 Filtration system for filtration of solids from a liquid Expired - Fee Related US10040007B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2012905265 2012-11-30
AU2012905265A AU2012905265A0 (en) 2012-11-30 Filtration systems and methods for filtering solids
PCT/US2013/066836 WO2014084997A1 (en) 2012-11-30 2013-10-25 Filtration systems and methods for filtering solids

Publications (2)

Publication Number Publication Date
US20150306525A1 US20150306525A1 (en) 2015-10-29
US10040007B2 true US10040007B2 (en) 2018-08-07

Family

ID=50828344

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/648,460 Expired - Fee Related US10040007B2 (en) 2012-11-30 2013-10-25 Filtration system for filtration of solids from a liquid

Country Status (2)

Country Link
US (1) US10040007B2 (en)
WO (1) WO2014084997A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11232684B2 (en) 2019-09-09 2022-01-25 Appleton Grp Llc Smart luminaire group control using intragroup communication
US11328564B2 (en) 2019-08-31 2022-05-10 Appleton Grp Llc Event indications of hazardous environment luminaires using visual sequences
US11343898B2 (en) 2019-09-20 2022-05-24 Appleton Grp Llc Smart dimming and sensor failure detection as part of built in daylight harvesting inside the luminaire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014112798A1 (en) * 2014-09-05 2016-03-10 Christian-Albrechts-Universität Zu Kiel Self-cleaning dead-end filter system with micro sieve
US20200376417A1 (en) * 2017-11-19 2020-12-03 Oded SHAMIR Filter apparatus and/or method
CN109911474B (en) * 2018-12-27 2021-07-16 北京华夏光谷光电科技有限公司 Underwater laser bubble collection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158629A (en) 1974-08-12 1979-06-19 Vernon D. Beehler Dynamic self-cleaning filter for liquids
US4645542A (en) 1984-04-26 1987-02-24 Anco Engineers, Inc. Method of pressure pulse cleaning the interior of heat exchanger tubes located within a pressure vessel such as a tube bundle heat exchanger, boiler, condenser or the like
US6221255B1 (en) * 1998-01-26 2001-04-24 Achyut R. Vadoothker Ultrasound-assisted filtration system
WO2001047399A2 (en) 1999-12-23 2001-07-05 Strix Limited Electric water heating appliances
US7347937B1 (en) 2000-01-28 2008-03-25 Entegris, Inc. Perfluorinated thermoplastic filter cartridge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158629A (en) 1974-08-12 1979-06-19 Vernon D. Beehler Dynamic self-cleaning filter for liquids
US4645542A (en) 1984-04-26 1987-02-24 Anco Engineers, Inc. Method of pressure pulse cleaning the interior of heat exchanger tubes located within a pressure vessel such as a tube bundle heat exchanger, boiler, condenser or the like
US6221255B1 (en) * 1998-01-26 2001-04-24 Achyut R. Vadoothker Ultrasound-assisted filtration system
WO2001047399A2 (en) 1999-12-23 2001-07-05 Strix Limited Electric water heating appliances
US7347937B1 (en) 2000-01-28 2008-03-25 Entegris, Inc. Perfluorinated thermoplastic filter cartridge

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion for International Application No. PCT/US2012/065927 dated May 21, 2013.
Robinson et al., The dymanics of spherical bubble growth, International Journal of Heat and Mass Transfer (Aug. 18, 2004), 47:5101-5113.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11328564B2 (en) 2019-08-31 2022-05-10 Appleton Grp Llc Event indications of hazardous environment luminaires using visual sequences
US11769380B2 (en) 2019-08-31 2023-09-26 Appleton Grp Llc Event indications of hazardous environment luminaires using visual sequences
US11232684B2 (en) 2019-09-09 2022-01-25 Appleton Grp Llc Smart luminaire group control using intragroup communication
US11343898B2 (en) 2019-09-20 2022-05-24 Appleton Grp Llc Smart dimming and sensor failure detection as part of built in daylight harvesting inside the luminaire

Also Published As

Publication number Publication date
WO2014084997A1 (en) 2014-06-05
US20150306525A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
US10040007B2 (en) Filtration system for filtration of solids from a liquid
US7008540B1 (en) Ultrasonically cleaned membrane filtration system
JP4445862B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same, and operating method thereof
EP2537807A1 (en) Separation membrane module for processing of oil-containing waste water, method for processing oil-containing waste water, and apparatus for processing oil-containing waste water
KR101684722B1 (en) Apparatus for the treatment of liquids
US8852441B2 (en) Apparatus for purifying liquids, in particular for purifying ballast water
JP4369153B2 (en) Membrane separation device and membrane separation method
KR101604017B1 (en) RO Membrane device and Counter Cross Current method for scale prevention for RO Membrane device
JP4251879B2 (en) Operation method of separation membrane module
JP4225471B2 (en) Operation method of multistage separation membrane module
TW200401664A (en) Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus
JPH03165818A (en) Hollow fiber membrane separating module and hollow fiber membrane separating apparatus
JP2002113338A (en) Separation membrane element and module using the same
JP2020093233A (en) Separation membrane module and separation membrane system
KR20050033547A (en) Separation membrane module and method of operating separation membrane module
JPH10230145A (en) Spiral membrane element
US20180229188A1 (en) Unhoused Filtration Device and Methods of Use
JP5811162B2 (en) Pleated filter, ballast water treatment apparatus using the pleat filter, and ballast water treatment method
JP7101453B2 (en) Cleaning method of ceramic filtration membrane, filtration membrane device and filtration container
JP2008183561A (en) Membrane separation device and membrane separation method
JP2010194405A (en) Membrane filtration system and membrane filtration apparatus
JPH10230140A (en) Spiral membrane element
JP2004202409A (en) Separation membrane module, separation membrane apparatus and method for operating the same
US11305234B1 (en) Supercoil filtration unit
RU2398619C2 (en) Membrane ultra-micro-filtration roll element

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADAM MECHANICA PTY LTD., AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADAM, QUENTIN ARTHUR CARL;REEL/FRAME:031479/0873

Effective date: 20120223

Owner name: EMPIRE TECHNOLOGY DEVELOPMENT LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADAM MECHANICA PTY LTD.;REEL/FRAME:031479/0934

Effective date: 20120605

AS Assignment

Owner name: ADAM MECHANICA PTY LTD., AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADAM, QUENTIN ARTHUR CARL;REEL/FRAME:035744/0628

Effective date: 20120223

Owner name: EMPIRE TECHNOLOGY DEVELOPMENT LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADAM MECHANICA PTY LTD.;REEL/FRAME:035744/0759

Effective date: 20120605

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: CRESTLINE DIRECT FINANCE, L.P., TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:EMPIRE TECHNOLOGY DEVELOPMENT LLC;REEL/FRAME:048373/0217

Effective date: 20181228

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20220807