TWM628506U - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
TWM628506U
TWM628506U TW110214910U TW110214910U TWM628506U TW M628506 U TWM628506 U TW M628506U TW 110214910 U TW110214910 U TW 110214910U TW 110214910 U TW110214910 U TW 110214910U TW M628506 U TWM628506 U TW M628506U
Authority
TW
Taiwan
Prior art keywords
carrier
resonance
ultrasonic sensor
piezoelectric body
thickness
Prior art date
Application number
TW110214910U
Other languages
Chinese (zh)
Inventor
陳隆
蘇益廷
陳彥全
Original Assignee
詠業科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 詠業科技股份有限公司 filed Critical 詠業科技股份有限公司
Priority to TW110214910U priority Critical patent/TWM628506U/en
Publication of TWM628506U publication Critical patent/TWM628506U/en

Links

Images

Landscapes

  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

An ultrasonic transducer, including a piezoceramic element with physical characteristics of radial mode resonant frequencies and thickness mode resonant frequencies, and with an upper surface and a lower surface opposite to each other through the piezoceramic element and a lateral surface connecting the upper surface and the lower surface, and an acoustic matching layer set on the upper surface of the piezoceramic element and having a first resonant matching part and a second resonant matching part, wherein a thickness of the first resonant matching part in a direction perpendicular to the upper surface is greater than a thickness of the second resonant matching part in the direction, and the thickness of the first resonant matching part matches one radial mode resonant frequency of the piezoceramic element and the thickness of the second resonance matching part matches the other radial resonant frequency or a thickness mode resonant frequency of the piezoceramic element.

Description

超聲波傳感器 Ultrasonic sensor

本新型大體上為一種超聲波傳感器,更具體言之,其係關於一種聲阻匹配層具第一共振匹配部與第二共振匹配部來匹配不同共振模式的超聲波傳感器。 The present invention is generally an ultrasonic sensor, and more specifically, it relates to an ultrasonic sensor in which an acoustic impedance matching layer has a first resonance matching part and a second resonance matching part to match different resonance modes.

現有的超聲波傳感器(ultrasonic transducer)可用於短距離的物體檢測,其通過發出的超聲波碰撞到物體之後反射回來的時間差,可以計算出超聲波傳感器與待檢測物體之間的距離。對於超聲波檢測而言,待檢測物體的類型與性質並不會受到太多的限制,包括各種表面顏色、透明度、硬度的固體、液體或粉體等,其都可以用超聲波傳感器來進行檢測。因此,現今超聲波傳感器已廣泛應用在停車雷達(parking sensor)、位高檢測(level sensor)、薄片層數檢測(multiple sheet detection)及流量檢測(flow meter)等領域。 The existing ultrasonic transducer (ultrasonic transducer) can be used for short-distance object detection, which can calculate the distance between the ultrasonic sensor and the object to be detected by the time difference between the emitted ultrasonic wave and the reflection after hitting the object. For ultrasonic testing, the types and properties of objects to be detected are not limited too much, including solids, liquids or powders with various surface colors, transparency, hardness, etc., which can be detected by ultrasonic sensors. Therefore, ultrasonic sensors have been widely used in the fields of parking sensor, level sensor, multiple sheet detection and flow meter.

超聲波傳感器的主要組成元件為壓電陶瓷片(piezoceramics),例如以鋯鈦酸鉛(lead zirconate titanate,PZT)材料製作的陶瓷片,其雙面會塗佈導電層。在工作時施加高頻交流電訊號會讓壓電陶瓷產生高頻率振動,所述高頻率振動是一種聲波,如果此聲波的頻率落在超聲波範圍,即為超聲波振動。然而,為了讓所產生的超聲波能從壓電陶瓷傳遞到空氣中,壓 電陶瓷的聲阻(acoustic impedance)必須與空氣的聲阻匹配才行。 The main components of the ultrasonic sensor are piezoelectric ceramics (piezoceramics), such as ceramics made of lead zirconate titanate (PZT) material, and conductive layers are coated on both sides of the ceramics. Applying a high-frequency alternating current signal during operation will cause the piezoelectric ceramic to generate high-frequency vibration. The high-frequency vibration is a kind of sound wave. If the frequency of the sound wave falls within the ultrasonic range, it is ultrasonic vibration. However, in order to transmit the generated ultrasonic energy from the piezoelectric ceramic to the air, the pressure The acoustic impedance of electric ceramics must match the acoustic impedance of air.

聲阻(Z)=材料密度(ρ)*超聲波聲速(C),壓電陶瓷的聲阻約為30-35 MRayl(106公斤/平方公尺‧秒),空氣的聲阻約為430 Rayl(公斤/平方公尺‧秒),壓電陶瓷的聲阻與空氣的聲阻,有非常大的差距,導致壓電陶瓷所產生的超聲波能量無法傳遞到空氣中。因此,聲阻匹配層(acoustic matching layer)就成了超聲波傳感器中必要的部件,其會設置在壓電陶瓷與空氣之間,使得兩者的聲阻得以匹配,從而可有效地將超聲波傳遞到空氣中。用於超聲波空氣傳感器(ultrasonic air transducer)的聲阻匹配層的聲阻,其最理想值為:√(35M*430)Rayl,約為0.12 MRayl,但是自然界中很難找到聲阻低於1 MRayl而且又耐用的材料,一般業界常用的聲阻匹配層材料為高分子樹脂與空心玻璃球混合成的複合材料,來達到較低的聲阻特性,同時也具有較佳的耐候性及可靠度。 Acoustic resistance (Z) = material density (ρ) * ultrasonic sound speed (C), the acoustic resistance of piezoelectric ceramics is about 30-35 MRayl (10 6 kg/m²·sec), and the acoustic resistance of air is about 430 Rayl (kg/m²·sec), the acoustic resistance of piezoelectric ceramics is very different from that of air, so that the ultrasonic energy generated by piezoelectric ceramics cannot be transmitted to the air. Therefore, the acoustic matching layer (acoustic matching layer) has become a necessary component in the ultrasonic sensor, which is arranged between the piezoelectric ceramic and the air, so that the acoustic resistance of the two can be matched, so that the ultrasonic wave can be effectively transmitted to the air. in the air. The most ideal value of the acoustic resistance of the acoustic resistance matching layer used for the ultrasonic air transducer is: √(35M*430) Rayl, which is about 0.12 MRayl, but it is difficult to find an acoustic resistance lower than 1 MRayl in nature Moreover, it is a durable material. Generally, the commonly used acoustic impedance matching layer material in the industry is a composite material mixed with polymer resin and hollow glass spheres to achieve lower acoustic impedance characteristics, as well as better weather resistance and reliability.

另一方面,一般壓電陶瓷在不同的設置條件下可能會具有不同的共振模式,例如徑向共振模式或是厚度共振模式。壓電陶瓷在不同共振模式下所發出的聲波會具有不同的頻率,一般的聲阻匹配層並不能同時匹配壓電陶瓷在不同共振模式下發出的聲波。故此,本領域的技術人士仍須研究開發可適用於壓電陶瓷多種震動模式的聲阻匹配層。 On the other hand, general piezoelectric ceramics may have different resonance modes under different setting conditions, such as radial resonance mode or thickness resonance mode. The sound waves emitted by piezoelectric ceramics in different resonance modes will have different frequencies, and the general acoustic impedance matching layer cannot match the sound waves emitted by piezoelectric ceramics in different resonance modes at the same time. Therefore, those skilled in the art still need to research and develop an acoustic impedance matching layer applicable to various vibration modes of piezoelectric ceramics.

以上背景技術內容的公開僅用於輔助理解本案的新型構思及技術方案,其並不必然屬於本專利申請的現有技術,在沒有明確的證據表明上述內容在本專利申請的申請日前已經公開的情況下,上述背景技術不應當用於評價本申請的新穎性和創造性。 The disclosure of the above background technology content is only used to assist the understanding of the novel concept and technical solution of the present case, and it does not necessarily belong to the prior art of the present patent application. In the following, the above background art should not be used to evaluate the novelty and inventive step of the present application.

有鑑於前述現有技術的現況,本新型於此提出了一種新穎的超 聲波傳感器,特點在於其聲阻匹配層具有厚度不同的第一共振匹配部與第二共振匹配部來匹配壓電體不同的共振頻率。 In view of the current state of the prior art, the present invention proposes a novel super The acoustic wave sensor is characterized in that its acoustic resistance matching layer has a first resonance matching part and a second resonance matching part with different thicknesses to match the different resonance frequencies of the piezoelectric body.

本新型的目的之一在於提出一種超聲波傳感器,包含一壓電體,具有徑向共振頻率及厚度共振頻率,且具有一上表面、隔著該壓電體的一下表面以及連接該上表面與該下表面的側表面,以及一聲阻匹配層,設置在該壓電體的該上表面上,且具有第一共振匹配部與第二共振匹配部,其中該第一共振匹配部在垂直該上表面的方向上的厚度大於該第二共振匹配部在該方向上的厚度,且該第一共振匹配部的該厚度匹配該壓電體的該徑向共振頻率,該第二共振匹配部的該厚度匹配該壓電體的該另一徑向共振頻率或該厚度共振頻率。 One of the objectives of the present invention is to provide an ultrasonic sensor, which includes a piezoelectric body, which has a radial resonance frequency and a thickness resonance frequency, and has an upper surface, a lower surface separated by the piezoelectric body, and a connection between the upper surface and the piezoelectric body. The side surface of the lower surface and the acoustic impedance matching layer are arranged on the upper surface of the piezoelectric body, and have a first resonance matching part and a second resonance matching part, wherein the first resonance matching part is perpendicular to the upper surface The thickness in the direction of the surface is greater than the thickness of the second resonance matching part in the direction, and the thickness of the first resonance matching part matches the radial resonance frequency of the piezoelectric body, the second resonance matching part The thickness The thickness matches the other radial resonance frequency or the thickness resonance frequency of the piezoelectric body.

本新型的另一目的在於提出一種超聲波傳感器,包含一壓電體,具有一上表面、一隔著該壓電體的下表面、以及連接該上表面與該下表面的側表面,一承載體,具有一內表面以及隔著該承載體的外表面,且該壓電體的該上表面與該承載體的內表面接合並具有一彎曲共振頻率及一厚度共振頻率,以及一聲阻匹配層,與該承載體的該外表面接合,且具有第一共振匹配部以及第二共振匹配部,其中該第一共振匹配部在垂直該外表面的方向上的厚度大於該第二共振匹配部在該方向上的厚度,且該第一共振匹配部的該厚度匹配該壓電體與該承載體形成的該彎曲共振頻率,該第二共振匹配部的該厚度匹配該壓電體與該承載體形成的另一彎曲共振頻率或該厚度共振頻率。 Another object of the present invention is to provide an ultrasonic sensor, comprising a piezoelectric body, having an upper surface, a lower surface separated by the piezoelectric body, and a side surface connecting the upper surface and the lower surface, and a carrier body , has an inner surface and an outer surface separated by the carrier, and the upper surface of the piezoelectric body is joined to the inner surface of the carrier and has a bending resonance frequency and a thickness resonance frequency, and an acoustic impedance matching layer , which is engaged with the outer surface of the carrier, and has a first resonance matching portion and a second resonance matching portion, wherein the thickness of the first resonance matching portion in the direction perpendicular to the outer surface is greater than that of the second resonance matching portion at The thickness in the direction, and the thickness of the first resonance matching portion matches the bending resonance frequency formed by the piezoelectric body and the carrier, and the thickness of the second resonance matching portion matches the piezoelectric body and the carrier Another bending resonance frequency formed or the thickness resonance frequency.

本新型的這類目的與其他目的,在閱者讀過後文中以多種圖形與繪圖來描述的具體實施例細節說明後,必然可變得更為明瞭顯見。 These and other objects of the present invention will inevitably become more apparent after the reader has read the detailed description of the specific embodiments described hereinafter with various figures and drawings.

100:超聲波傳感器 100: Ultrasonic sensor

102:壓電體 102: Piezoelectric

102a:上表面 102a: Upper surface

102b:下表面 102b: Lower surface

102c:側表面 102c: Side Surface

104:聲阻匹配層 104: Acoustic impedance matching layer

104a:徑向共振匹配部 104a: Radial resonance matching part

104b:厚度共振匹配部 104b: Thickness resonance matching part

105:聲阻匹配層 105: Acoustic impedance matching layer

105a:第一共振匹配部 105a: the first resonance matching part

105b:第二共振匹配部 105b: second resonance matching part

106:導線 106: Wire

108:管狀承載體 108: Tubular carrier

108a:上開口 108a: upper opening

108b:下開口 108b: Lower opening

108c:內表面 108c: inner surface

109:桶狀承載體 109: Barrel carrier

109a:頂部 109a: Top

109b:下開口 109b: Lower opening

109c:內表面 109c: inner surface

109d:開孔 109d: Opening

110:減震體 110: Shock Absorber

112:承載盤 112: Carrier plate

114:引腳 114: pin

116:承載體 116: Carrier

116a:外表面 116a: External surface

116b:內表面 116b: inner surface

118:桶狀承載體 118: Barrel carrier

118a:外表面 118a: outer surface

118b:下開口 118b: lower opening

118c:內表面 118c: inner surface

D1:第一方向 D1: first direction

D2:第二方向 D2: Second direction

第1圖是根據本新型較佳實施例中一超聲波傳感器的一實施態樣的截面圖;第2圖是根據本新型實施例中一壓電體在不同振動模式下的阻抗(Ω)對頻率(kHz)的線圖;第3圖是根據本新型實施例中一超聲波傳感器的另一實施態樣的截面圖;第4圖是根據本新型實施例中一超聲波傳感器的又一實施態樣的截面圖;第5圖是根據本新型實施例中一超聲波傳感器的又一實施態樣的截面圖;第6圖是根據本新型實施例中一超聲波傳感器的又一實施態樣的截面圖;第7圖是根據本新型實施例中一超聲波傳感器的又一實施態樣的截面圖;第8圖是根據本新型實施例中一超聲波傳感器的又一實施態樣的截面圖;第9圖是根據本新型實施例中一超聲波傳感器的又一實施態樣的截面圖;第10圖是根據本新型實施例中一超聲波傳感器的又一實施態樣的截面圖;以及第11圖是根據本新型實施例中一超聲波傳感器的又一實施態樣的截面圖。 Figure 1 is a cross-sectional view of an embodiment of an ultrasonic sensor according to a preferred embodiment of the present invention; Figure 2 is impedance (Ω) versus frequency of a piezoelectric body in different vibration modes according to an embodiment of the present invention (kHz) line diagram; FIG. 3 is a cross-sectional view of another embodiment of an ultrasonic sensor according to an embodiment of the present invention; FIG. 4 is a cross-sectional view of another embodiment of an ultrasonic sensor according to an embodiment of the present invention Sectional view; Figure 5 is a cross-sectional view of another embodiment of an ultrasonic sensor according to an embodiment of the present invention; Figure 6 is a cross-sectional view of another embodiment of an ultrasonic sensor according to an embodiment of the present invention; Fig. 7 is a cross-sectional view of another embodiment of an ultrasonic sensor according to an embodiment of the present invention; Fig. 8 is a cross-sectional view of another embodiment of an ultrasonic sensor according to an embodiment of the present invention; FIG. 10 is a cross-sectional view of yet another embodiment of an ultrasonic sensor according to an embodiment of the present invention; and FIG. 11 is a cross-sectional view of another embodiment of an ultrasonic sensor according to an embodiment of the present invention. A cross-sectional view of yet another embodiment of an ultrasonic sensor in the example.

在下文的本新型細節描述中,元件符號會標示在隨附的圖示中成為其中的一部份,並且以可實行該實施例之特例描述方式來表示。這類的實施例會說明足夠的細節俾使該領域之一般技藝人士得以具以實施。為了圖例清楚之故,圖示中可能有部分元件的尺寸會加以誇大。閱者須瞭解到本新型中亦可利用其他的實施例或是在不悖離所述實施例的前提下,作出結構性、邏輯性、及電性上的改變。因此,下文之細節描述不可被視為是一種限定,反之,其中所包含的實施例將由隨附的申請專利範圍來加以界定。 In the following detailed description of the invention, reference numerals will be identified as part of the accompanying drawings, and will be presented in a description of a specific example in which the embodiment can be practiced. Such embodiments will be described in sufficient detail to enable those of ordinary skill in the art to practice them. The dimensions of some of the elements in the illustrations may be exaggerated for clarity of illustration. Readers should understand that other embodiments can also be used in the present invention or structural, logical, and electrical changes can be made without departing from the described embodiments. Therefore, the following detailed description is not to be regarded as a limitation, but rather the embodiments contained therein are to be defined by the scope of the appended claims.

首先請參照第1圖,其繪示出根據本新型實施例中一超聲波傳感器100的一實施態樣的截面示意圖。在此實施例中,超聲波傳感器100包含一壓電體102,其具有隔著該壓電體102相對的上表面102a與下表面102b以及連接上表面102a與下表面102b的側表面102c。壓電體102可包含實心方形、多邊形或圓形的壓電材料,或是環狀壓電材料,或是多層陶瓷製程的壓電材料,或是具有溝槽的壓電材料。該些壓電材料可包含鋯鈦酸鉛(Pb(ZrTi)O3)、鈦酸鉛(PbTiO3)等含鉛的壓電材料,或鈦酸鋇(BaTiO3)、鈮酸鉀鈉((NaK)NbO3)等不含鉛的壓電材料,其聲阻約為30-35 MRayl,遠大於空氣的聲阻430 Rayl,故需要設置聲阻匹配層來使兩者的聲阻匹配。壓電體102的導電層上可連接導線106,將外部的高頻交流電訊號電連接至壓電體102,使其產生高頻率振動,藉以發出超聲波。在本新型實施例中,一聲阻匹配層104設置在壓電體102的上表面102a上並與之直接接觸。一般而言,聲阻匹配層104在垂直壓電體102上表面102a的方向(第一方向D1,即厚度方向或軸向)上的厚度約等於壓電體102在工作頻率下所發出的超聲波在該聲阻匹配層104中時的波長的1/4,如此能達到最佳的超聲波傳遞效 果。 First, please refer to FIG. 1 , which illustrates a schematic cross-sectional view of an implementation of an ultrasonic sensor 100 according to an embodiment of the present invention. In this embodiment, the ultrasonic sensor 100 includes a piezoelectric body 102 having an upper surface 102a and a lower surface 102b opposite to each other across the piezoelectric body 102 and a side surface 102c connecting the upper surface 102a and the lower surface 102b. The piezoelectric body 102 may include a solid square, polygonal or circular piezoelectric material, or a ring-shaped piezoelectric material, or a piezoelectric material made of a multilayer ceramic process, or a piezoelectric material with grooves. These piezoelectric materials may include lead-containing piezoelectric materials such as lead zirconate titanate (Pb(ZrTi)O 3 ), lead titanate (PbTiO 3 ), or barium titanate (BaTiO 3 ), potassium sodium niobate ((( The acoustic resistance of lead-free piezoelectric materials such as NaK)NbO 3 ) is about 30-35 MRayl, which is much larger than that of air, which is 430 Rayl. Therefore, an acoustic resistance matching layer needs to be provided to match the acoustic resistances of the two. The conductive layer of the piezoelectric body 102 can be connected to a wire 106 to electrically connect an external high-frequency alternating current signal to the piezoelectric body 102 to generate high-frequency vibration, thereby emitting ultrasonic waves. In the novel embodiment, the acoustic impedance matching layer 104 is disposed on the upper surface 102a of the piezoelectric body 102 and is in direct contact therewith. Generally speaking, the thickness of the acoustic impedance matching layer 104 in the direction perpendicular to the upper surface 102a of the piezoelectric body 102 (the first direction D1, that is, the thickness direction or the axial direction) is approximately equal to the ultrasonic wave emitted by the piezoelectric body 102 at the operating frequency In the acoustic impedance matching layer 104, the wavelength is 1/4, so that the best ultrasonic transmission effect can be achieved.

儘管如此,一般壓電陶瓷在不同的設置條件下可能會具有不同的共振模式,例如徑向共振模式(radial mode resonance)或是厚度共振模式(thickness mode resonance),壓電陶瓷在這些不同的共振模式下所發出的聲波會具有不同的共振頻率。請參照第2圖,其為根據本新型實施例中一壓電體102在不同振動模式下的阻抗(Ω)對頻率(kHz)的線圖。從圖中可以看到,當壓電體102通電產生高頻率振動時,其在不同的振動頻率下會具有不同的阻抗,當阻抗相對較低時即代表壓電體102在該頻率的振動下能產生較大的能量效益,也就是穩定的共振態。以圖中的曲線為例,壓電體102在50kHz的較低頻率共振時可達到一相對較低的阻抗,此時其處於徑向共振模式,其共振力有相當的部分是朝向壓電體102的徑向,即第二方向D2。另一方面,壓電體102在200kHz的較高頻率共振時也可達到一相對較低的阻抗,此時其處於厚度共振模式(或稱之為軸向共振模式),其共振力大部分是朝向壓電體102的厚度方向,即第一方向D1。一般而言,使用較低頻共振的超聲波傳感器可以增加偵測距離,但是盲區相對較大,解析度也相對較差。反之,使用較高頻共振的超聲波傳感器,其偵測距離較短,但是盲區相對較小,解析度也相對較好。 However, in general, piezoelectric ceramics may have different resonance modes under different setting conditions, such as radial mode resonance or thickness mode resonance. The sound waves emitted in the mode will have different resonant frequencies. Please refer to FIG. 2 , which is a graph of impedance (Ω) versus frequency (kHz) of a piezoelectric body 102 in different vibration modes according to an embodiment of the present invention. As can be seen from the figure, when the piezoelectric body 102 is energized to generate high-frequency vibration, it will have different impedances at different vibration frequencies. When the impedance is relatively low, it means that the piezoelectric body 102 is vibrating at this frequency. It can produce a large energy benefit, that is, a stable resonance state. Taking the curve in the figure as an example, when the piezoelectric body 102 resonates at a lower frequency of 50 kHz, it can reach a relatively low impedance. At this time, it is in a radial resonance mode, and a considerable part of its resonance force is directed toward the piezoelectric body. The radial direction of 102, that is, the second direction D2. On the other hand, the piezoelectric body 102 can also achieve a relatively low impedance when resonating at a higher frequency of 200 kHz. At this time, it is in the thickness resonance mode (or called the axial resonance mode), and its resonance force is mostly It faces the thickness direction of the piezoelectric body 102 , that is, the first direction D1 . Generally speaking, the use of ultrasonic sensors with lower frequency resonance can increase the detection distance, but the blind area is relatively large and the resolution is relatively poor. On the contrary, the ultrasonic sensor with higher frequency resonance has a shorter detection distance, but a relatively small blind area and relatively good resolution.

由於壓電體102具有不同共振模式的性質,且這些共振模式可以透過改變所施加電源頻率的高低來達成,故我們可以視應用的場合來決定所要採用的壓電體共振模式。然而,儘管壓電體102能以不同的共振模式運作,但不同的共振模式會具有不同的共振頻率,故會需要不同厚度的聲阻匹配層來與之匹配。回到第1圖。如第1圖所示,本新型的特點在於聲阻匹配層104具有不同的厚度。更具體言之,本新型的聲阻匹配層104具有厚度不同的第一共振匹配部104a及第二共振匹配部104b,分別匹配壓電體的 一徑向共振頻率及另一徑向共振頻率或是厚度共振頻率。從截面外型來看,第二共振匹配部104b像是位於壓電體102中心處的凹槽,第一共振匹配部104a則圍繞著第二共振匹配部104b。由於壓電體102的徑向共振頻率較低(50kHz),在此模式下發出的超聲波波長會較長,故會需要厚度較厚的聲阻匹配層,而壓電體102的厚度共振頻率較高(200kHz),在此模式下發出的超聲波波長會較短,故會需要厚度較薄的聲阻匹配層。本實施例中,第一共振匹配部104a的厚度係匹配壓電體102的徑向共振頻率,第二共振匹配部104b的厚度係匹配壓電體102的另一徑向頻率或是厚度共振頻率。 Since the piezoelectric body 102 has properties of different resonance modes, and these resonance modes can be achieved by changing the applied power frequency, the piezoelectric body resonance mode to be used can be determined according to the application. However, although the piezoelectric body 102 can operate in different resonant modes, the different resonant modes have different resonant frequencies, and thus require different thicknesses of acoustic impedance matching layers to match them. Back to Figure 1. As shown in FIG. 1, the present invention is characterized in that the acoustic impedance matching layers 104 have different thicknesses. More specifically, the acoustic impedance matching layer 104 of the present invention has a first resonance matching portion 104a and a second resonance matching portion 104b with different thicknesses, which match the piezoelectric body respectively. A radial resonance frequency and another radial resonance frequency or thickness resonance frequency. From the cross-sectional view, the second resonance matching portion 104b is like a groove located at the center of the piezoelectric body 102, and the first resonance matching portion 104a surrounds the second resonance matching portion 104b. Since the radial resonance frequency of the piezoelectric body 102 is relatively low (50 kHz), the wavelength of ultrasonic waves emitted in this mode will be longer, so a thicker acoustic impedance matching layer is required, and the thickness resonance frequency of the piezoelectric body 102 is higher than that of the piezoelectric body 102 . High (200kHz), the wavelength of ultrasonic waves emitted in this mode will be shorter, so a thinner acoustic impedance matching layer will be required. In this embodiment, the thickness of the first resonance matching portion 104 a matches the radial resonance frequency of the piezoelectric body 102 , and the thickness of the second resonance matching portion 104 b matches another radial frequency or thickness resonance frequency of the piezoelectric body 102 . .

聲阻匹配層104包含由有機高分子材料以及實心粉體或是空心粉體構成的複合材料,該有機高分子材料包括環氧樹脂(Epoxy)、乙烯基酯樹脂(vinyl ester resin)、丙烯酸樹脂(acrylic resin)、聚氨酯(polyurethane)、或是紫外線硬化膠(UV膠)等。空心或實心粉體可為空心玻璃球顆粒或是實心玻璃球顆粒,其係作為填充物均勻散佈在該有機高分子材料中,以調整聲阻匹配層104的整體密度。空心玻璃球顆粒的密度介於0.1g/cm3~0.6g/cm3(公克/立方公分)之間。由於聲阻與材料的密度成正比,聲阻匹配層104的密度越低,所能得出的聲阻也越低,故越能達成聲阻匹配的功效。在有機高分子材料中加入不同體積比的玻璃球顆粒,經過混合、脫泡及固化等處理,即可調製成不同密度且不同厚度的聲阻匹配層104。 The acoustic impedance matching layer 104 includes a composite material composed of an organic polymer material and a solid powder or a hollow powder. The organic polymer material includes epoxy resin, vinyl ester resin, and acrylic resin. (acrylic resin), polyurethane (polyurethane), or ultraviolet curing glue (UV glue), etc. The hollow or solid powder can be hollow glass sphere particles or solid glass sphere particles, which are uniformly dispersed in the organic polymer material as a filler to adjust the overall density of the acoustic impedance matching layer 104 . The density of the hollow glass sphere particles is between 0.1g/cm 3 ~0.6g/cm 3 (grams/cubic centimeter). Since the acoustic resistance is proportional to the density of the material, the lower the density of the acoustic resistance matching layer 104 is, the lower the acoustic resistance can be obtained, and thus the better the effect of acoustic resistance matching can be achieved. Adding glass ball particles with different volume ratios to the organic polymer material, and after mixing, defoaming and curing, the acoustic impedance matching layers 104 with different densities and different thicknesses can be modulated.

現在請參照第3圖,其繪示出根據本新型實施例中超聲波傳感器的另一實施態樣的截面示意圖。在此實施例中,超聲波傳感器100可以設置在一管狀承載體108中。管狀承載體108具有一上開口108a與下開口108b,其中管狀承載體108的內表面108c圍繞著聲阻匹配層104並與之接合。在其他實施例中,管狀承載體108的內表面108c也可與壓電體102接合。聲阻匹配層104的第一共振匹配部104a與第二共振匹配部104b從管狀承載 體108的上開口108a露出,導線106則可經由管狀承載體108的下開口108b接出。管狀承載體108的截面形狀可為方形、多邊形或是圓形。管狀承載體108的材料包含選自下列群組或其組合的金屬材質:鋁、鈦、銅、不鏽鋼,或是下列群組或其組合的非金屬材質:玻璃、壓克力、鐵氟龍(PTFE)、聚二氟乙烯(PVDF)、聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚對苯二甲酸丁酯(PBT)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯硫醚(PPS)、液晶聚合物(LCP)、或是聚醚醚酮(PEEK)等。 Please refer now to FIG. 3 , which shows a schematic cross-sectional view of another implementation of an ultrasonic sensor according to an embodiment of the present invention. In this embodiment, the ultrasonic sensor 100 may be provided in a tubular carrier 108 . The tubular carrier 108 has an upper opening 108a and a lower opening 108b, wherein the inner surface 108c of the tubular carrier 108 surrounds and engages with the acoustic impedance matching layer 104 . In other embodiments, the inner surface 108c of the tubular carrier 108 may also engage the piezoelectric body 102 . The first resonance matching portion 104a and the second resonance matching portion 104b of the acoustic impedance matching layer 104 are carried from the tubular The upper opening 108 a of the body 108 is exposed, and the wires 106 can be connected out through the lower opening 108 b of the tubular carrier 108 . The cross-sectional shape of the tubular carrier 108 can be square, polygonal or circular. The material of the tubular carrier 108 includes a metal material selected from the following group or a combination thereof: aluminum, titanium, copper, stainless steel, or a non-metallic material selected from the following group or a combination thereof: glass, acrylic, Teflon ( PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polybutylene terephthalate (PBT), acrylonitrile-butadiene-styrene Copolymer (ABS), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), or polyether ether ketone (PEEK), etc.

現在請參照第4圖,其繪示出根據本新型實施例中超聲波傳感器的又一實施態樣的截面示意圖。在此實施例中,超聲波傳感器100還可包含一減震體110,其與壓電體102的下表面102b以及管狀承載體108的內表面108c接合。如此,在壓電體102運作時的高頻振動下,減震體110能有效地減震,降低超聲波傳感器的餘震(ringing)。在其他實施例中,也可能設置兩種具有不同減震係數或硬度的減震體,來達到更佳的減震效果。減震體110的材料可包含纖維狀彈性體,具體可包括矽膠(Silicone)、橡膠(Rubber)、乙烯-醋酸乙烯酯共聚物(EVA)、苯乙烯彈性體(Styrene Elastomer)、聚酯彈性體(Polyester Elastomer)、烯烴彈性體(Olefin Elastomer)、熱塑性硫化橡膠(TPV)、熱塑性聚氨酯(TPU)、環氧樹脂(Epoxy)、軟木(wood cork)、聚酯棉、羊毛氈、玻璃纖維或是泡棉。 Please refer now to FIG. 4 , which illustrates a schematic cross-sectional view of yet another implementation of an ultrasonic sensor according to an embodiment of the present invention. In this embodiment, the ultrasonic sensor 100 may further include a shock absorbing body 110 which is engaged with the lower surface 102b of the piezoelectric body 102 and the inner surface 108c of the tubular carrier 108 . In this way, under the high frequency vibration when the piezoelectric body 102 operates, the damping body 110 can effectively damp the vibration and reduce the aftershock (ringing) of the ultrasonic sensor. In other embodiments, two kinds of shock absorbing bodies with different shock absorbing coefficients or hardnesses may also be provided to achieve better shock absorbing effect. The material of the shock absorbing body 110 may include a fibrous elastomer, specifically, may include Silicone, Rubber, Ethylene Vinyl Acetate (EVA), Styrene Elastomer, Polyester Elastomer (Polyester Elastomer), olefin elastomer (Olefin Elastomer), thermoplastic vulcanizate (TPV), thermoplastic polyurethane (TPU), epoxy resin (Epoxy), cork (wood cork), polyester cotton, wool felt, glass fiber or foam cotton.

現在請參照第5圖,其繪示出根據本新型實施例中超聲波傳感器的又一實施態樣的截面示意圖。在此實施例中,超聲波傳感器100還可包含一承載盤112,其上表面與減震體110相接,周圍則與管狀承載體108的內表面108c接合而固定在管狀承載體108上,可提供超聲波傳感器100部件更穩固的支撐效果。承載盤112並具有引線或引腳114,壓電體102可透過導線106連接至承載盤112的引腳114並從管狀承載體108的下開口108b接 出。 Please refer now to FIG. 5 , which shows a schematic cross-sectional view of yet another implementation of the ultrasonic sensor according to the new embodiment of the present invention. In this embodiment, the ultrasonic sensor 100 may further include a carrier plate 112, the upper surface of which is connected to the shock absorbing body 110, and the periphery of which is engaged with the inner surface 108c of the tubular carrier 108 and fixed on the tubular carrier 108. Provides a more stable support effect for the components of the ultrasonic sensor 100 . The carrier plate 112 has lead wires or pins 114, and the piezoelectric body 102 can be connected to the pins 114 of the carrier plate 112 through the wires 106 and from the lower opening 108b of the tubular carrier body 108. out.

現在請參照第6圖,其繪示出根據本新型實施例中超聲波傳感器的又一實施態樣的截面示意圖。在此實施例中,有別於前述實施例,超聲波傳感器100係設置在一桶狀承載體109中。桶狀承載體109具有一頂部109a、一下開口109b以及連接該頂部109a與該下開口109b的桶身,該頂部109a中心還形成有一開孔109d。壓電體102及聲阻匹配層104設置於桶狀承載體109內,其中聲阻匹配層104的第一共振匹配部104a與桶狀承載體109頂部109a的內表面接合,第二共振匹配部104b則從開孔109d露出。導線106則可經由桶狀承載體109的下開口109b接出。桶狀承載體109的截面形狀可為方形、多邊形或是圓形。桶狀承載體109的材料可包含選自下列群組或其組合的金屬材質:鋁、鈦、銅、不鏽鋼,或是下列群組或其組合的非金屬材質:玻璃、壓克力、鐵氟龍(PTFE)、聚二氟乙烯(PVDF)、聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚對苯二甲酸丁酯(PBT)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯硫醚(PPS)、液晶聚合物(LCP)、或是聚醚醚酮(PEEK)等。 Please refer now to FIG. 6 , which illustrates a schematic cross-sectional view of yet another implementation of an ultrasonic sensor according to an embodiment of the present invention. In this embodiment, different from the previous embodiments, the ultrasonic sensor 100 is disposed in a barrel-shaped carrier 109 . The barrel-shaped carrier 109 has a top 109a, a lower opening 109b, and a barrel connecting the top 109a and the lower opening 109b, and an opening 109d is formed in the center of the top 109a. The piezoelectric body 102 and the acoustic impedance matching layer 104 are disposed in the barrel-shaped carrier 109, wherein the first resonance matching portion 104a of the acoustic impedance matching layer 104 is joined to the inner surface of the top 109a of the barrel-shaped carrier 109, and the second resonance matching portion 104b is exposed from the opening 109d. The wires 106 can be connected out through the lower opening 109b of the barrel-shaped carrier 109 . The cross-sectional shape of the barrel-shaped carrier 109 may be square, polygonal or circular. The material of the barrel-shaped carrier 109 may include a metal material selected from the following group or a combination thereof: aluminum, titanium, copper, stainless steel, or a non-metallic material selected from the following group or a combination thereof: glass, acrylic, iron fluoride Dragon (PTFE), Polyvinylidene Fluoride (PVDF), Polypropylene (PP), Polyethylene (PE), Polyvinyl Chloride (PVC), Polybutylene Terephthalate (PBT), Acrylonitrile-Butadiene- Styrene copolymer (ABS), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), or polyether ether ketone (PEEK), etc.

現在請參照第7圖,其繪示出根據本新型實施例中超聲波傳感器的又一實施態樣的截面示意圖。在此實施例中,桶狀承載體109的頂部109a並未形成有開孔,聲阻匹配層104的第二共振匹配部104b也與桶狀承載體109頂部109a的內表面接合。這樣的設計使得超聲波傳感器更適合用在外界環境較為嚴苛的場合,其可有效保護聲阻匹配層不受損傷。 Please refer now to FIG. 7 , which illustrates a schematic cross-sectional view of yet another implementation of the ultrasonic sensor according to the new embodiment of the present invention. In this embodiment, the top 109 a of the barrel-shaped carrier 109 is not formed with an opening, and the second resonance matching portion 104 b of the acoustic impedance matching layer 104 is also engaged with the inner surface of the top 109 a of the barrel-shaped carrier 109 . Such a design makes the ultrasonic sensor more suitable for use in a harsh external environment, which can effectively protect the acoustic impedance matching layer from damage.

現在請參照第8圖,其繪示出根據本新型實施例中超聲波傳感器的又一實施態樣的截面示意圖。在此實施例中,超聲波傳感器100還可包含一減震體110,其與壓電體102的下表面102b以及桶狀承載體109的內表面109c接合,並填滿壓電體102以及聲阻匹配層104與桶狀承載體109之間的 空隙。如此,在壓電體102運作時的高頻振動下,減震體110能有效地減震,降低超聲波傳感器的餘震(ringing)。在其他實施例中,也可能設置兩種具有不同減震係數或硬度的減震體,來達到更佳的減震效果。減震體110的材料可包含纖維狀彈性體,具體可包括矽膠(Silicone)、橡膠(Rubber)、乙烯-醋酸乙烯酯共聚物(EVA)、苯乙烯彈性體(Styrene Elastomer)、聚酯彈性體(Polyester Elastomer)、烯烴彈性體(Olefin Elastomer)、熱塑性硫化橡膠(TPV)、熱塑性聚氨酯(TPU)、環氧樹脂(Epoxy)、軟木(wood cork)、聚酯棉、羊毛氈、玻璃纖維或是泡棉。 Please refer now to FIG. 8 , which illustrates a schematic cross-sectional view of yet another implementation of the ultrasonic sensor according to the novel embodiment. In this embodiment, the ultrasonic sensor 100 may further include a shock absorbing body 110, which is engaged with the lower surface 102b of the piezoelectric body 102 and the inner surface 109c of the barrel-shaped carrier 109, and fills the piezoelectric body 102 and the acoustic resistance between the matching layer 104 and the barrel-shaped carrier 109 void. In this way, under the high frequency vibration when the piezoelectric body 102 operates, the damping body 110 can effectively damp the vibration and reduce the aftershock (ringing) of the ultrasonic sensor. In other embodiments, two kinds of shock absorbing bodies with different shock absorbing coefficients or hardnesses may also be provided to achieve better shock absorbing effect. The material of the shock absorbing body 110 may include a fibrous elastomer, specifically, may include Silicone, Rubber, Ethylene Vinyl Acetate (EVA), Styrene Elastomer, Polyester Elastomer (Polyester Elastomer), olefin elastomer (Olefin Elastomer), thermoplastic vulcanizate (TPV), thermoplastic polyurethane (TPU), epoxy resin (Epoxy), cork (wood cork), polyester cotton, wool felt, glass fiber or foam cotton.

現在請參照第9圖,其繪示出根據本新型實施例中超聲波傳感器的又一實施態樣的截面示意圖。在此實施例中,超聲波傳感器100還可包含一承載盤112,其上表面與減震體110相接,周圍則與桶狀承載體109的內表面109c接合而固定在桶狀承載體109上,可提供超聲波傳感器100部件更穩固的支撐效果。承載盤112並具有引線或引腳114,壓電體102可透過導線106連接至承載盤112的引腳114並從桶狀承載體109的下開口109b接出。 Please refer now to FIG. 9 , which illustrates a schematic cross-sectional view of yet another implementation of the ultrasonic sensor according to the novel embodiment. In this embodiment, the ultrasonic sensor 100 may further include a carrier plate 112 , the upper surface of which is connected to the shock absorbing body 110 , and the periphery of which is engaged with the inner surface 109 c of the barrel-shaped carrier 109 to be fixed on the barrel-shaped carrier 109 , which can provide a more stable support effect for the components of the ultrasonic sensor 100 . The carrier plate 112 has lead wires or pins 114 , and the piezoelectric body 102 can be connected to the pins 114 of the carrier plate 112 through the wires 106 and connected out from the lower opening 109 b of the barrel-shaped carrier body 109 .

現在請參照第10圖,其繪示出根據本新型實施例中超聲波傳感器的又一實施態樣的截面示意圖。在此實施例中,於前述實施例不同的是,壓電體並未與聲阻匹配層直接接合。如第9圖所示,超聲波傳感器100包含一承載體116。承載體116具有一內表面116b以及隔著承載體116的外表面116a,且壓電體102係設置在承載體116的內表面116b上,聲阻匹配層105則設置在承載體116的外表面116a上,其中承載體116的面積會大於其與壓電體102以及聲阻匹配層105的接合面面積,有部分從周圍延伸而出。在這樣的設置下,由於壓電體102並未與聲阻匹配層105直接接合且兩者間隔著一平板狀的承載體116,壓電體102原有較低頻共振態的徑向共振模式會轉 變為彎曲共振模式(bending mode resonance),此時其共振力有相當的部分會傳導到所接合的承載體116並使其產生彎曲震動。如此,壓電體102變成具有一較低頻的彎曲共振頻率及一較高頻的厚度共振頻率,而聲阻匹配層105具有一較厚的第一共振匹配部105a以及一較薄的第二共振匹配部105b以分別匹配其一彎曲共振頻率及另一彎曲共振頻率或是厚度共振頻率。承載體116的材料包含選自下列群組或其組合的金屬材質:鋁、鈦、銅、不鏽鋼,或是下列群組或其組合的非金屬材質:玻璃、壓克力、鐵氟龍(PTFE)、聚二氟乙烯(PVDF)、聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚對苯二甲酸丁酯(PBT)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯硫醚(PPS)、液晶聚合物(LCP)、或是聚醚醚酮(PEEK)等。 Please refer now to FIG. 10 , which illustrates a schematic cross-sectional view of yet another implementation of the ultrasonic sensor according to the novel embodiment of the present invention. In this embodiment, different from the previous embodiments, the piezoelectric body is not directly bonded to the acoustic impedance matching layer. As shown in FIG. 9 , the ultrasonic sensor 100 includes a carrier 116 . The carrier 116 has an inner surface 116b and an outer surface 116a separated by the carrier 116 , the piezoelectric body 102 is disposed on the inner surface 116b of the carrier 116 , and the acoustic impedance matching layer 105 is disposed on the outer surface of the carrier 116 On 116a, the area of the carrier 116 is larger than the area of the joint surface with the piezoelectric body 102 and the acoustic impedance matching layer 105, and some parts extend from the periphery. Under such an arrangement, since the piezoelectric body 102 is not directly bonded to the acoustic impedance matching layer 105 and the two are separated by a plate-shaped carrier 116 , the piezoelectric body 102 originally has a radial resonance mode of a lower frequency resonance state. will turn It becomes a bending resonance mode (bending mode resonance), and a considerable part of its resonance force will be transmitted to the joined carrier 116 and cause bending vibration. In this way, the piezoelectric body 102 has a lower-frequency bending resonance frequency and a higher-frequency thickness resonance frequency, and the acoustic impedance matching layer 105 has a thicker first resonance matching portion 105a and a thinner second resonance matching portion 105a. The resonance matching part 105b is used to match one bending resonance frequency and another bending resonance frequency or thickness resonance frequency respectively. The material of the carrier 116 includes a metal material selected from the following group or a combination thereof: aluminum, titanium, copper, stainless steel, or a non-metallic material selected from the following group or a combination thereof: glass, acrylic, Teflon (PTFE) ), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polybutylene terephthalate (PBT), acrylonitrile-butadiene-styrene copolymer (ABS), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), or polyether ether ketone (PEEK), etc.

現在請參照第11圖,其繪示出根據本新型實施例中超聲波傳感器的又一實施態樣的截面示意圖。在此實施例中,於前述實施例不同的是,承載體為一桶狀承載體118而非平板狀承載體116。桶狀承載體118具有一外表面118a以及與之相對的內表面118c。壓電體102係設置在桶狀承載體118的內部且與其內表面118c相接,聲阻匹配層105則設置在桶狀承載體118的外部且與其外表面118a相接。這樣的設置適用於須使用桶狀承載體來提供保護以及使用聲阻匹配層來提供聲阻匹配的場合。 Please refer now to FIG. 11 , which shows a schematic cross-sectional view of yet another implementation of the ultrasonic sensor according to the new embodiment of the present invention. In this embodiment, the difference from the previous embodiments is that the carrier is a barrel-shaped carrier 118 instead of a flat-plate carrier 116 . The barrel-shaped carrier 118 has an outer surface 118a and an inner surface 118c opposite thereto. The piezoelectric body 102 is disposed inside the barrel-shaped carrier 118 and is in contact with its inner surface 118c, and the acoustic impedance matching layer 105 is disposed outside the barrel-shaped carrier 118 and in contact with its outer surface 118a. Such an arrangement is suitable for applications where a barrel-shaped carrier is required to provide protection and an acoustic impedance matching layer is used to provide acoustic impedance matching.

根據本新型前述各實施例的超聲波傳感器態樣,不同厚度的聲阻匹配層可匹配壓電體在不同設置下的共振模式,並可兼容應用在使用桶狀承載體以及平板狀承載體的場合。 According to the ultrasonic sensor aspects of the aforementioned embodiments of the present invention, the acoustic impedance matching layers of different thicknesses can match the resonance modes of the piezoelectric body under different settings, and can be compatible with the application of the barrel-shaped carrier and the flat-plate carrier. .

以上所述僅為本新型之較佳實施例,凡依本新型申請專利範圍所做之均等變化與修飾,皆應屬本新型之涵蓋範圍。 The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:超聲波傳感器 100: Ultrasonic sensor

102:壓電體 102: Piezoelectric

102a:上表面 102a: Upper surface

102b:下表面 102b: Lower surface

102c:側表面 102c: Side Surface

104:聲阻匹配層 104: Acoustic impedance matching layer

104a:第一共振匹配部 104a: the first resonance matching part

104b:第二共振匹配部 104b: second resonance matching part

106:導線 106: Wire

D1:第一方向 D1: first direction

D2:第二方向 D2: Second direction

Claims (20)

一種超聲波傳感器,包含:一壓電體,具有徑向共振頻率及厚度共振頻率,且具有一上表面、隔著該壓電體的一下表面以及連接該上表面與該下表面的側表面;以及一聲阻匹配層,設置在該壓電體的該上表面上,且具有第一共振匹配部與第二共振匹配部,其中該第一共振匹配部在垂直該上表面的方向上的厚度大於該第二共振匹配部在該方向上的厚度,且該第一共振匹配部的該厚度匹配該壓電體的該徑向共振頻率,該第二共振匹配部的該厚度匹配該壓電體的該另一徑向共振頻率或該厚度共振頻率。 An ultrasonic sensor, comprising: a piezoelectric body having a radial resonance frequency and a thickness resonance frequency, and having an upper surface, a lower surface separated by the piezoelectric body, and a side surface connecting the upper surface and the lower surface; and The acoustic impedance matching layer is arranged on the upper surface of the piezoelectric body, and has a first resonance matching part and a second resonance matching part, wherein the thickness of the first resonance matching part in the direction perpendicular to the upper surface is greater than The thickness of the second resonance matching portion in the direction, and the thickness of the first resonance matching portion matches the radial resonance frequency of the piezoelectric body, and the thickness of the second resonance matching portion matches the piezoelectric body. The other radial resonance frequency or the thickness resonance frequency. 如申請專利範圍第1項所述之超聲波傳感器,其中該徑向共振頻率小於該厚度共振頻率。 The ultrasonic sensor of claim 1, wherein the radial resonance frequency is lower than the thickness resonance frequency. 如申請專利範圍第1項所述之超聲波傳感器,更具有一管狀承載體,該管狀承載體具有一上開口與一下開口,該壓電體與該聲阻匹配層設置於該管狀承載體內,且該聲阻匹配層從該管狀承載體的該上開口露出。 The ultrasonic sensor described in claim 1 of the scope of the application further comprises a tubular carrier, the tubular carrier has an upper opening and a lower opening, the piezoelectric body and the acoustic resistance matching layer are disposed in the tubular carrier, and The acoustic resistance matching layer is exposed from the upper opening of the tubular carrier. 如申請專利範圍第3項所述之超聲波傳感器,更包含一減震體,該減震體與該壓電體的該下表面以及該管狀承載體的內表面相接。 The ultrasonic sensor as described in item 3 of the claimed scope further comprises a shock absorbing body, and the shock absorbing body is in contact with the lower surface of the piezoelectric body and the inner surface of the tubular carrier. 如申請專利範圍第4項所述之超聲波傳感器,更包含一承載盤,該承載盤具有引線或引腳,且該承載盤與該減震體相接並從該管狀 承載體的該下開口露出。 The ultrasonic sensor as described in item 4 of the scope of the application further comprises a carrying plate, the carrying plate has lead wires or pins, and the carrying plate is connected to the shock absorbing body and extends from the tubular The lower opening of the carrier body is exposed. 如申請專利範圍第3項所述之超聲波傳感器,其中該管狀承載體包含截面為方形、多邊形或是圓形的管狀結構。 The ultrasonic sensor according to claim 3, wherein the tubular carrier comprises a tubular structure with a square, polygonal or circular cross-section. 如申請專利範圍第3項所述之超聲波傳感器,其中該管狀承載體的材料包含選自下列群組或其組合的金屬材質:鋁、鈦、銅以及不鏽鋼,或是下列群組或其組合的的非金屬材質:玻璃、壓克力、鐵氟龍(PTFE)、聚二氟乙烯(PVDF)、聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚對苯二甲酸丁酯(PBT)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯硫醚(PPS)、液晶聚合物(LCP)以及聚醚醚酮(PEEK)。 The ultrasonic sensor as described in claim 3, wherein the material of the tubular carrier comprises metal materials selected from the following group or a combination thereof: aluminum, titanium, copper and stainless steel, or a metal material selected from the following group or a combination thereof Non-metallic materials: glass, acrylic, Teflon (PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polyterephthalic acid Butyl ester (PBT), acrylonitrile-butadiene-styrene copolymer (ABS), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), and polyetheretherketone (PEEK). 如申請專利範圍第1項所述之超聲波傳感器,其中該聲阻匹配層包含有機高分子材料,或是包含由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(Epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨酯(polyurethane)、矽膠(Silicone)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin),且該聲阻匹配層的該第一共振匹配部與該第二共振匹配部包含相同或不同材料。 The ultrasonic sensor as described in item 1 of the claimed scope, wherein the acoustic impedance matching layer comprises an organic polymer material, or a composite material composed of an organic polymer material mixed with a hollow powder or a solid powder, the organic polymer Polymer materials include epoxy resin, vinyl ester resin, ultraviolet curing glue (UV glue), polyurethane, silicone, acrylic resin, or cyanic acid cyanate resin, and the first resonance matching part and the second resonance matching part of the acoustic impedance matching layer comprise the same or different materials. 如申請專利範圍第1項所述之超聲波傳感器,其中該壓電體包含實心方形、多邊形、圓形的壓電材料,或是環狀壓電材料,或是多層陶瓷壓電材料,或是具有溝槽的壓電材料。 The ultrasonic sensor as described in item 1 of the claimed scope, wherein the piezoelectric body comprises a solid square, polygonal, circular piezoelectric material, or a ring-shaped piezoelectric material, or a multilayer ceramic piezoelectric material, or has a Piezoelectric material for grooves. 如申請專利範圍第1項所述之超聲波傳感器,更具有一桶狀承載體,該桶狀承載體具有一封閉的頂部、一下開口以及連接該頂部與該下開口的桶身,該壓電體及該聲阻匹配層設置於該桶狀承載體內,且該聲阻匹配層的該第一共振匹配部及該第二共振匹配部與該桶狀承載體的該封閉的頂部接合。 The ultrasonic sensor described in claim 1 further includes a barrel-shaped carrier, the barrel-shaped carrier has a closed top, a lower opening, and a barrel connecting the top and the lower opening, the piezoelectric body and the acoustic impedance matching layer is disposed in the barrel-shaped carrier, and the first resonance matching portion and the second resonance matching portion of the acoustic impedance matching layer are engaged with the closed top of the barrel-shaped carrier. 如申請專利範圍第1項所述之超聲波傳感器,更具有一桶狀承載體,該桶狀承載體具有一頂部、一下開口以及連接該頂部與該下開口的桶身,該頂部具有一開孔,該壓電體及該聲阻匹配層設置於該桶狀承載體內,其中該聲阻匹配層的該第一共振匹配部與該承載體的該頂部接合,且該聲阻匹配層的該第二共振匹配部從該頂部的該開孔露出。 The ultrasonic sensor described in claim 1 further includes a barrel-shaped carrier, the barrel-shaped carrier has a top, a lower opening, and a barrel connecting the top and the lower opening, and the top has an opening , the piezoelectric body and the acoustic impedance matching layer are arranged in the barrel-shaped carrier, wherein the first resonance matching portion of the acoustic impedance matching layer is engaged with the top of the carrier, and the first resonance matching portion of the acoustic impedance matching layer is Two resonance matching parts are exposed from the opening of the top. 如申請專利範圍第11項所述之超聲波傳感器,更包含一減震體,該減震體與該壓電體的該下表面以及該桶身的內表面相接。 The ultrasonic sensor as described in claim 11 further comprises a shock absorbing body, and the shock absorbing body is in contact with the lower surface of the piezoelectric body and the inner surface of the barrel. 如申請專利範圍第12項所述之超聲波傳感器,更包含一承載盤,該承載盤具有引線或引腳,且該承載盤與該減震體以及該桶身的內表面相接,並從該桶狀承載體的該下開口露出。 The ultrasonic sensor as described in item 12 of the scope of the application further comprises a carrying plate, the carrying plate has lead wires or pins, and the carrying plate is connected to the shock absorbing body and the inner surface of the barrel, and is connected from the The lower opening of the barrel-shaped carrier is exposed. 如申請專利範圍第11項所述之超聲波傳感器,其中該桶狀承載體的截面為方形、多邊形或是圓形。 The ultrasonic sensor according to claim 11, wherein the barrel-shaped carrier has a square, polygonal or circular cross-section. 如申請專利範圍第11項所述之超聲波傳感器,其中該桶狀承載體的材料包含選自下列群組或其組合的金屬材質:鋁、鈦、銅以及不 鏽鋼,或是下列群組或其組合的的非金屬材質:玻璃、壓克力、鐵氟龍(PTFE)、聚二氟乙烯(PVDF)、聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚對苯二甲酸丁酯(PBT)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯硫醚(PPS)、液晶聚合物(LCP)以及聚醚醚酮(PEEK)。 The ultrasonic sensor as described in claim 11, wherein the material of the barrel-shaped carrier comprises a metal material selected from the following group or a combination thereof: aluminum, titanium, copper, and non-ferrous metals. Stainless steel, or non-metallic materials of the following groups or combinations: glass, acrylic, Teflon (PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethylene (PE), Polyvinyl chloride (PVC), polybutylene terephthalate (PBT), acrylonitrile-butadiene-styrene copolymer (ABS), polyphenylene sulfide (PPS), liquid crystal polymer (LCP) and polyether ether ketone (PEEK). 一種超聲波傳感器,包含:一壓電體,具有一上表面、一隔著該壓電體的下表面、以及連接該上表面與該下表面的側表面;一承載體,具有一內表面以及隔著該承載體的外表面,且該壓電體的該上表面與該承載體的內表面接合並具有一彎曲共振頻率及一厚度共振頻率;以及一聲阻匹配層,與該承載體的該外表面接合,且具有第一共振匹配部以及第二共振匹配部,其中該第一共振匹配部在垂直該外表面的方向上的厚度大於該第二共振匹配部在該方向上的厚度,且該第一共振匹配部的該厚度匹配該壓電體與該承載體形成的該彎曲共振頻率,該第二共振匹配部的該厚度匹配該壓電體與該承載體形成的該另一彎曲共振頻率或該厚度共振頻率。 An ultrasonic sensor, comprising: a piezoelectric body with an upper surface, a lower surface separated by the piezoelectric body, and a side surface connecting the upper surface and the lower surface; a carrier body with an inner surface and a spacer facing the outer surface of the carrier, and the upper surface of the piezoelectric body is joined to the inner surface of the carrier and has a bending resonant frequency and a thickness resonant frequency; and an acoustic impedance matching layer, and the carrier of the carrier The outer surface is joined and has a first resonance matching portion and a second resonance matching portion, wherein the thickness of the first resonance matching portion in a direction perpendicular to the outer surface is greater than the thickness of the second resonance matching portion in the direction, and The thickness of the first resonance matching portion matches the bending resonance frequency formed by the piezoelectric body and the carrier, and the thickness of the second resonance matching portion matches the other bending resonance formed by the piezoelectric body and the carrier frequency or the resonant frequency of the thickness. 如申請專利範圍第16項所述之超聲波傳感器,該彎曲共振頻率小於其厚度共振頻率。 The ultrasonic sensor of claim 16, wherein the bending resonance frequency is lower than the thickness resonance frequency. 如申請專利範圍第16項所述之超聲波傳感器,該承載體為平板狀承載體或桶狀承載體。 According to the ultrasonic sensor described in claim 16, the carrier is a flat carrier or a barrel carrier. 如申請專利範圍第16項所述之超聲波傳感器,其中該承載體的材料包含選自下列群組或其組合的金屬材質:鋁、鈦、銅以及不鏽鋼,或是下列群組或其組合的的非金屬材質:玻璃、壓克力、鐵氟龍(PTFE)、聚二氟乙烯(PVDF)、聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚對苯二甲酸丁酯(PBT)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯硫醚(PPS)、液晶聚合物(LCP)以及聚醚醚酮(PEEK)。 The ultrasonic sensor of claim 16, wherein the material of the carrier comprises a metal material selected from the following group or a combination thereof: aluminum, titanium, copper and stainless steel, or a metal material from the following group or a combination thereof Non-metallic materials: glass, acrylic, Teflon (PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polybutylene terephthalate ester (PBT), acrylonitrile-butadiene-styrene copolymer (ABS), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), and polyetheretherketone (PEEK). 如申請專利範圍第16項所述之超聲波傳感器,其中該聲阻匹配層包含有機高分子材料,或是包含由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(Epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨酯(polyurethane)、矽膠(Silicone)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin),且該聲阻匹配層的該第一共振匹配部與該第二共振匹配部包含相同或不同材料。 The ultrasonic sensor as described in claim 16, wherein the acoustic impedance matching layer comprises an organic polymer material, or a composite material composed of an organic polymer material mixed with a hollow powder or a solid powder, the organic polymer Polymer materials include epoxy resin, vinyl ester resin, ultraviolet curing glue (UV glue), polyurethane, silicone, acrylic resin, or cyanic acid cyanate resin, and the first resonance matching part and the second resonance matching part of the acoustic impedance matching layer comprise the same or different materials.
TW110214910U 2021-12-15 2021-12-15 Ultrasonic transducer TWM628506U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110214910U TWM628506U (en) 2021-12-15 2021-12-15 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110214910U TWM628506U (en) 2021-12-15 2021-12-15 Ultrasonic transducer

Publications (1)

Publication Number Publication Date
TWM628506U true TWM628506U (en) 2022-06-21

Family

ID=83063713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110214910U TWM628506U (en) 2021-12-15 2021-12-15 Ultrasonic transducer

Country Status (1)

Country Link
TW (1) TWM628506U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816253B (en) * 2021-12-15 2023-09-21 詠業科技股份有限公司 Ultrasonic transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816253B (en) * 2021-12-15 2023-09-21 詠業科技股份有限公司 Ultrasonic transducer

Similar Documents

Publication Publication Date Title
US11534796B2 (en) Ultrasonic transducer
US11433427B2 (en) Ultrasonic transducer
US4825116A (en) Transmitter-receiver of ultrasonic distance measuring device
US5664456A (en) Ultrasonic transducer
TWM628506U (en) Ultrasonic transducer
JP3231102U (en) Ultrasonic transducer
US4628490A (en) Wideband sonar energy absorber
US4219889A (en) Double mass-loaded high power piezo-electric underwater transducer
US11583896B2 (en) Sound transducer including a piezoceramic transducer element integrated in a vibratory diaphragm
TWI816253B (en) Ultrasonic transducer
TWI816239B (en) Ultrasonic transducer
CN215575645U (en) Ultrasonic sensor
CN219676284U (en) Ultrasonic sensor
CN219871774U (en) ultrasonic sensor
TWI772167B (en) Ultrasonic transducer
US20040174095A1 (en) Anisotropic acoustic impedance matching material
US20210264888A1 (en) Flexural Ultrasonic Transducer
KR102097103B1 (en) Improved ultrasonic transducer with the enhanced acoustic radiation power
Luo et al. Characterics of CMUT with MXene (Ti 3 C 2 T x) Diaphragm
TW202333396A (en) Piezoelectric structure
JP2021082886A (en) Ultrasonic device and fluid detector
JP2021082884A (en) Ultrasonic device and fluid detector
CN118124212A (en) Transmission coupling material and method for improving ultrasonic signal-to-noise ratio in gaseous medium
JP2021082885A (en) Ultrasonic device and fluid detector