TWM615662U - Photonic crystal surface emitting laser device - Google Patents

Photonic crystal surface emitting laser device Download PDF

Info

Publication number
TWM615662U
TWM615662U TW110205227U TW110205227U TWM615662U TW M615662 U TWM615662 U TW M615662U TW 110205227 U TW110205227 U TW 110205227U TW 110205227 U TW110205227 U TW 110205227U TW M615662 U TWM615662 U TW M615662U
Authority
TW
Taiwan
Prior art keywords
photonic crystal
layer
emitting laser
crystal surface
laser element
Prior art date
Application number
TW110205227U
Other languages
Chinese (zh)
Inventor
陳立人
洪國彬
盧廷昌
林建宏
Original Assignee
富昱晶雷射科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富昱晶雷射科技股份有限公司 filed Critical 富昱晶雷射科技股份有限公司
Publication of TWM615662U publication Critical patent/TWM615662U/en

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Lasers (AREA)

Abstract

A photonic crystal surface emitting laser device including at least one photonic crystal surface emitting laser unit is provided. The photonic crystal surface emitting laser unit includes a light-emitting layer, a photonic crystal layer, a doped semiconductor layer, and a diffractive grating. The light-emitting layer is configured to emit a light beam. The photonic crystal layer is disposed on one side of the light-emitting layer. The doped semiconductor layer is disposed on another side of the light-emitting layer. The diffractive grating is disposed on the photonic crystal layer or the doped semiconductor layer.

Description

光子晶體面射型雷射元件Photonic crystal surface emitting laser element

本新型創作是有關於一種雷射元件,且特別是有關於一種光子晶體面射型雷射元件。This new creation is related to a laser element, and particularly to a photonic crystal surface emitting laser element.

電致發光光子晶體面射型雷射可實現單模態輸出(single mode output)、窄光譜波長線寬(spectrum wavelength linewidth)及小的出光發散角,其主要結構包括一底披覆層(bottom cladding layer)、一發光層及一光子晶體層,其中發光層位於底披覆層與光子晶體層之間。在此架構及操作機制下,雷射光會從頂部與底部的至少其中一個方向出射至外界。The electroluminescent photonic crystal surface-emitting laser can achieve single mode output, narrow spectrum wavelength linewidth and small light divergence angle. Its main structure includes a bottom coating layer (bottom coating). cladding layer), a light-emitting layer and a photonic crystal layer, wherein the light-emitting layer is located between the bottom cladding layer and the photonic crystal layer. Under this structure and operation mechanism, the laser light will be emitted to the outside from at least one of the top and bottom directions.

若再搭配微機電系統(micro-electro mechanical system, MEMS)光學元件或機械擺動光學元件來使光子晶體面射型雷射產生動態的偏折,便可達到掃描的效果。然而,無論是微機電系統或機械擺動光學元件都是利用機構擺動的方式來達到掃描的效果,會有掃描速度受限於機械擺動速度以及元件的可靠度不足、耐用性不佳的問題。If combined with micro-electro mechanical system (MEMS) optical elements or mechanical swing optical elements to make the photonic crystal surface-emitting laser produce dynamic deflection, the scanning effect can be achieved. However, whether it is a micro-electromechanical system or a mechanically oscillating optical element, the scanning effect is achieved by means of mechanical oscillation, and there are problems that the scanning speed is limited by the mechanical oscillating speed, the reliability of the element is insufficient, and the durability is poor.

本新型創作提供一種光子晶體面射型雷射元件,可以利用簡單的架構決定雷射光束的出光偏折方向。This new creation provides a photonic crystal surface-emitting laser element, which can use a simple structure to determine the light deflection direction of the laser beam.

本新型創作的一實施例提出一種光子晶體面射型雷射元件,包括至少一光子晶體面射型雷射單元,光子晶體面射型雷射單元包括一發光層、一光子晶體層、一摻雜半導體層及一繞射光柵。發光層用以發出一光束,光子晶體層配置於發光層的一側。摻雜半導體層配置於發光層的另一側,且繞射光柵配置於光子晶體層上或摻雜半導體層上。An embodiment of the present invention proposes a photonic crystal surface-emitting laser element, which includes at least one photonic crystal surface-emitting laser unit. The photonic crystal surface-emitting laser unit includes a light-emitting layer, a photonic crystal layer, and a dopant. The hetero semiconductor layer and a diffraction grating. The light-emitting layer is used for emitting a light beam, and the photonic crystal layer is disposed on one side of the light-emitting layer. The doped semiconductor layer is arranged on the other side of the light-emitting layer, and the diffraction grating is arranged on the photonic crystal layer or the doped semiconductor layer.

在本新型創作的實施例的光子晶體面射型雷射元件中,由於採用配置於光子晶體層上或摻雜半導體層上的繞射光柵來繞射經光子晶體層所繞射出的雷射光束,因此可以利用簡單的架構來決定雷射光束的出光偏折方向。In the photonic crystal surface-emitting laser element of the embodiment of the present invention, a diffraction grating disposed on the photonic crystal layer or on the doped semiconductor layer is used to diffract the laser beam diffracted by the photonic crystal layer Therefore, a simple structure can be used to determine the direction of deflection of the laser beam.

圖1A為本新型創作的一實施例的光子晶體面射型雷射元件的立體示意圖,圖1B為圖1A的光子晶體面射型雷射元件的上視示意圖,而圖1C為圖1B的光子晶體面射型雷射元件沿著I-I線的剖面示意圖,其中在圖1A中,光子晶體面射型雷射元件的頂部被局部切開,以便於示出部分的內部結構。請參照圖1A、圖1B及圖1C,本實施例的光子晶體面射型雷射元件200包括至少一光子晶體面射型雷射單元100(圖1A至圖1C是以一個光子晶體面射型雷射單元100為例),光子晶體面射型雷射單元100包括一發光層120、一光子晶體層130、一摻雜半導體層110及一繞射光柵300。發光層120用以發出一光束122,在本實施例中,發光層120包括量子井層、多重量子井(multiple quantum well)層或量子點(quantum dot)層,而其所發出的光束122可為紅外光、可見光或紫外光。Fig. 1A is a three-dimensional schematic diagram of a photonic crystal surface-emitting laser element of an embodiment of the new creation, Fig. 1B is a schematic top view of the photonic crystal surface-emitting laser element of Fig. 1A, and Fig. 1C is a photonic crystal surface-emitting laser element of Fig. 1B A schematic cross-sectional view of the crystal surface-emitting laser element along the line II, in which in FIG. 1A, the top of the photonic crystal surface-emitting laser element is partially cut to show part of the internal structure. 1A, 1B and 1C, the photonic crystal surface emitting laser element 200 of this embodiment includes at least one photonic crystal surface emitting laser unit 100 (FIG. 1A to FIG. 1C are a photonic crystal surface emitting type Take the laser unit 100 as an example). The photonic crystal surface-emitting laser unit 100 includes a light-emitting layer 120, a photonic crystal layer 130, a doped semiconductor layer 110, and a diffraction grating 300. The light-emitting layer 120 is used to emit a light beam 122. In this embodiment, the light-emitting layer 120 includes a quantum well layer, a multiple quantum well layer or a quantum dot layer, and the light beam 122 emitted therefrom can be It is infrared light, visible light or ultraviolet light.

光子晶體層130配置於發光層120的一側,而摻雜半導體層110配置於發光層120的另一側。在本實施例中,光子晶體層130為P型半導體層,且摻雜半導體層110為N型半導體層。然而,在其他實施例中,也可以是光子晶體層130為N型半導體層,而摻雜半導體層110為P型半導體層。此外,繞射光柵300配置於光子晶體層130上或摻雜半導體層110上,而圖1A與圖1C是以配置於光子晶體層130上為例。The photonic crystal layer 130 is disposed on one side of the light emitting layer 120, and the doped semiconductor layer 110 is disposed on the other side of the light emitting layer 120. In this embodiment, the photonic crystal layer 130 is a P-type semiconductor layer, and the doped semiconductor layer 110 is an N-type semiconductor layer. However, in other embodiments, the photonic crystal layer 130 may be an N-type semiconductor layer, and the doped semiconductor layer 110 may be a P-type semiconductor layer. In addition, the diffraction grating 300 is configured on the photonic crystal layer 130 or the doped semiconductor layer 110, and FIGS. 1A and 1C are configured on the photonic crystal layer 130 as an example.

在本實施例中,光子晶體面射型雷射元件200更包括一第一電極140,電性連接至摻雜半導體層110,其中光子晶體面射型雷射單元100更包括一第二電極150,配置於光子晶體層130上,且電性連接至光子晶體層130。在本實施例中,藉由在第二電極150與第一電極140施加順向偏壓,可使光子晶體層130中的電洞與摻雜半導體層110中的電子遷移至發光層120中,並在發光層120中復合,以產生光束122。In this embodiment, the photonic crystal surface-emitting laser element 200 further includes a first electrode 140 electrically connected to the doped semiconductor layer 110, wherein the photonic crystal surface-emitting laser unit 100 further includes a second electrode 150 , Disposed on the photonic crystal layer 130 and electrically connected to the photonic crystal layer 130. In this embodiment, by applying forward bias to the second electrode 150 and the first electrode 140, the holes in the photonic crystal layer 130 and the electrons in the doped semiconductor layer 110 can be transferred to the light emitting layer 120. And recombined in the light-emitting layer 120 to generate a light beam 122.

發光層120所發出的光束122在光子晶體層130中產生在圖1C中的水平方向的共振,且光子晶體層130可包括二階光柵(grating)的結構,其將光束122往圖1C中的鉛直方向導引,而往圖1C中的上方與下方傳遞。也就是說,發光層120為增益介質,發出光束122並提供光學增益,光束122進入光子晶體層130產生繞射共振後,產生鉛直方向放射的雷射光束。此外,此二階光柵的結構可以是具有二維孔洞陣列的結構。在其他實施例中,光子晶體層130也可以是三階以上的光柵結構,此外,光子晶體層130也可以是一維光柵結構。光束122經由光子晶體層130及繞射光柵300繞射後,從光子晶體面射型雷射單元100出射。在其他實施例中,光子晶體層130也可以包括成對的兩個圓形或矩形孔洞的二維陣列、三角形孔洞陣列或其他各種可能的光子晶體結構。The light beam 122 emitted by the light-emitting layer 120 generates a horizontal resonance in the photonic crystal layer 130 in the horizontal direction in FIG. Direction guide, and transfer to the top and bottom in Figure 1C. In other words, the light-emitting layer 120 is a gain medium that emits a light beam 122 and provides optical gain. After the light beam 122 enters the photonic crystal layer 130 to generate diffraction resonance, a laser beam radiated in a vertical direction is generated. In addition, the structure of the second-order grating may be a structure with a two-dimensional array of holes. In other embodiments, the photonic crystal layer 130 may also be a grating structure with three or more orders. In addition, the photonic crystal layer 130 may also be a one-dimensional grating structure. The light beam 122 is diffracted by the photonic crystal layer 130 and the diffraction grating 300 and then exits the photonic crystal surface-emitting laser unit 100. In other embodiments, the photonic crystal layer 130 may also include a two-dimensional array of two circular or rectangular holes in pairs, a triangular hole array, or various other possible photonic crystal structures.

在本實施例的光子晶體面射型雷射元件200中,由於採用配置於光子晶體層130上或摻雜半導體層110上的繞射光柵300來繞射經光子晶體層130所繞射出的光束122(即雷射光束),因此可以利用簡單的架構來決定光束122(即雷射光束)的出光偏折方向。In the photonic crystal surface-emitting laser element 200 of this embodiment, since the diffraction grating 300 disposed on the photonic crystal layer 130 or the doped semiconductor layer 110 is used to diffract the light beam diffracted by the photonic crystal layer 130 122 (ie the laser beam), so a simple structure can be used to determine the direction of light deflection of the beam 122 (ie, the laser beam).

在本實施例中,第二電極150的一部分為繞射光柵300。舉例而言,如圖1A與圖1C所繪示,第二電極150的中央部分形成有週期性排列的長條形狹縫152,以形成繞射光柵300。然而,在其他實施例中,第二電極150的中央可以有一開口,而開口中設有以不同於第二電極150的材質形成的繞射光柵300,此繞射光柵300的材質可以是金屬、半導體或氧化物。In this embodiment, a part of the second electrode 150 is a diffraction grating 300. For example, as shown in FIGS. 1A and 1C, the central portion of the second electrode 150 is formed with periodically arranged long slits 152 to form a diffraction grating 300. However, in other embodiments, the second electrode 150 may have an opening in the center, and the opening is provided with a diffraction grating 300 formed of a different material from the second electrode 150. The material of the diffraction grating 300 may be metal, Semiconductor or oxide.

在本實施例中,光子晶體面射型雷射單元100更包括一透明導電層170,配置於光子晶體層130與第二電極150之間,以電性連接光子晶體層130與第二電極150。在本實施例中,光子晶體面射型雷射元件200更包括一基板160,配置於摻雜半導體層110與第一電極140之間,且電性連接摻雜半導體層110與第一電極140,而基板160具有導電性。In this embodiment, the photonic crystal surface-emitting laser unit 100 further includes a transparent conductive layer 170 disposed between the photonic crystal layer 130 and the second electrode 150 to electrically connect the photonic crystal layer 130 and the second electrode 150 . In this embodiment, the photonic crystal surface-emitting laser element 200 further includes a substrate 160, which is disposed between the doped semiconductor layer 110 and the first electrode 140, and is electrically connected to the doped semiconductor layer 110 and the first electrode 140 , And the substrate 160 has conductivity.

在本實施例中,光子晶體層130包括一披覆層(cladding layer)132、一折射率漸變層(graded index layer, GRIN layer)136及一歐姆接觸層134。披覆層132配置於發光層120上,折射率漸變層136配置於披覆層132上。歐姆接觸層134配置於折射率漸變層136與透明導電層170之間,且與透明導電層170接觸以形成歐姆接觸,其中披覆層132、折射率漸變層136及歐姆接觸層134具有光子晶體結構。舉例而言,光子晶體層130具有多個通孔131,位於披覆層132、折射率漸變層136及歐姆接觸層134中,且從披覆層132往歐姆接觸層134延伸,以形成光子晶體結構。在本實施例中,通孔131貫穿歐姆接觸層134、折射率漸變層136與披覆層132。此外,在一實施例中,通孔131可在平行於基板160的方向上排列成二維陣列。在本實施例中,光子晶體面射型雷射單元100更包括一電流限制層180,配置於光子晶體層130與透明導電層170之間,且具有一開口182,其中透明導電層170通過開口182而連接至光子晶體層130。In this embodiment, the photonic crystal layer 130 includes a cladding layer 132, a graded index layer (GRIN layer) 136, and an ohmic contact layer 134. The cladding layer 132 is configured on the light-emitting layer 120, and the refractive index graded layer 136 is configured on the cladding layer 132. The ohmic contact layer 134 is disposed between the graded refractive index layer 136 and the transparent conductive layer 170, and is in contact with the transparent conductive layer 170 to form an ohmic contact. The cladding layer 132, the graded refractive index layer 136, and the ohmic contact layer 134 have photonic crystals. structure. For example, the photonic crystal layer 130 has a plurality of through holes 131 located in the cladding layer 132, the graded refractive index layer 136 and the ohmic contact layer 134, and extend from the cladding layer 132 to the ohmic contact layer 134 to form a photonic crystal structure. In this embodiment, the through hole 131 penetrates the ohmic contact layer 134, the graded refractive index layer 136 and the cladding layer 132. In addition, in an embodiment, the through holes 131 may be arranged in a two-dimensional array in a direction parallel to the substrate 160. In this embodiment, the photonic crystal surface-emitting laser unit 100 further includes a current confinement layer 180, which is disposed between the photonic crystal layer 130 and the transparent conductive layer 170, and has an opening 182, wherein the transparent conductive layer 170 passes through the opening 182 and connected to the photonic crystal layer 130.

在本實施例中,光子晶體面射型雷射單元100更包括一折射率漸變層190,配置於基板160與摻雜半導體層110之間,其中摻雜半導體層110為披覆層。In this embodiment, the photonic crystal surface-emitting laser unit 100 further includes a refractive index graded layer 190 disposed between the substrate 160 and the doped semiconductor layer 110, wherein the doped semiconductor layer 110 is a cladding layer.

另外,在圖1B中,繞射光柵300的週期性方向P1是沿著I-I線的方向,然而,在其他實施例中,如圖1D與圖1E,繞射光柵300的週期性方向P1也可以是根據實際所需的光束122的偏折方向而沿著其他方向。In addition, in FIG. 1B, the periodic direction P1 of the diffraction grating 300 is the direction along the II line. However, in other embodiments, as shown in FIGS. 1D and 1E, the periodic direction P1 of the diffraction grating 300 may also be It follows other directions according to the deflection direction of the light beam 122 that is actually required.

請再參照圖1A至圖1C,本新型創作並不限制各膜層的材質,在一些實施例中,基板160的材質可以是氮化鎵(gallium nitride, GaN)、砷化鎵(gallium arsenide, GaAs)、、磷化銦(indium phosphide, InP)、銻化鎵(gallium antimonide, GaSb)、砷化銦(indium arsenide, InAs)或其他適當的材質。在其他實施例中,當第一電極140可以電性連接至摻雜半導體層110,而不需透過基板160電性連接至摻雜半導體層110時,基板160可以是半絕緣基板或絕緣基板,如藍寶石基板(sapphire substrate)。發光層120的材質可包括氮化鎵、氮化鋁鎵(aluminum gallium nitride, AlGaN)、砷化鎵、砷化銦鎵(indium gallium arsenide, InGaAs)、砷化鋁鎵(aluminum gallium arsenide, AlGaAs)、磷化鎵(gallium phosphide, GaP)、砷化銦(indium arsenide, InAs)、銻化銦砷(indium arsenic antimonide, InAsSb)、銻化銦鎵砷(indium gallium arsenic antimonide, InGaAsSb)、銻化鋁鎵砷(aluminum gallium arsenic antimonide, AlGaAsSb)、砷磷化銦鎵(indium gallium arsenide phosphide, InGaAsP)、砷化鋁銦鎵(aluminum indium gallium arsenide, AlInGaAs)其他適當的半導體材質或其組合,且發光層120可以採用兩種以上的不同材質或兩種以上的相同化合物但元素比例不同的材質,來形成量子井層、多種量子井層或量子點結構。披覆層132、摻雜半導體層110及折射率漸變層136及190的材質例如是砷化鋁鎵(aluminum gallium arsenide, AlGaAs)、砷化鎵、氮化鋁鎵、砷化鋁鎵銦(aluminum gallium indium arsenide, AlGaInAs)、磷化鋁鎵銦(aluminum gallium indium phosphide, AlGaInP)、銻化鋁鎵砷或其他適當材質。歐姆接觸層134的材質可以是氮化鎵、砷化鎵、砷磷化銦鎵(indium gallium arsenide phosphide, InGaAsP)、砷化銦鎵(indium gallium arsenide, InGaAs)或其他適當的材質。此外,歐姆接觸層134可以重摻雜鈹(beryllium)、碳(carbon)、鋅(zinc)或其組合而形成P型摻雜,以與透明導電層170有良好的歐姆接觸,其中鈹摻雜的濃度可以約為10 19cm -3,而碳摻雜濃度可以約為10 19cm -3至10 20cm -3,且鋅摻雜的濃度可以約為10 19cm -3至10 20cm -3,但本新型創作不以此為限。電流限制層180的材質可以是氮化矽(silicon nitride)、氧化矽(silicon oxide)或其他適當的材質,電流限制層180可以阻擋電流,以使電流集中在開口182處並通過開口182。 Please refer to FIGS. 1A to 1C again. The present invention does not limit the material of each film layer. In some embodiments, the material of the substrate 160 may be gallium nitride (GaN) or gallium arsenide (gallium arsenide, GaAs), indium phosphide (InP), gallium antimonide (GaSb), indium arsenide (InAs) or other appropriate materials. In other embodiments, when the first electrode 140 may be electrically connected to the doped semiconductor layer 110 without being electrically connected to the doped semiconductor layer 110 through the substrate 160, the substrate 160 may be a semi-insulating substrate or an insulating substrate, Such as sapphire substrate (sapphire substrate). The material of the light-emitting layer 120 may include gallium nitride, aluminum gallium nitride (AlGaN), gallium arsenide, indium gallium arsenide (InGaAs), aluminum gallium arsenide (AlGaAs) , Gallium phosphide (GaP), indium arsenide (InAs), indium arsenic antimonide (InAsSb), indium gallium arsenic antimonide (InGaAsSb), aluminum antimonide Gallium arsenide (aluminum gallium arsenic antimonide, AlGaAsSb), indium gallium arsenide phosphide (InGaAsP), aluminum indium gallium arsenide (AlInGaAs), other suitable semiconductor materials or combinations thereof, and the light-emitting layer 120 can use two or more different materials or two or more materials of the same compound but different element ratios to form a quantum well layer, a variety of quantum well layers or a quantum dot structure. The materials of the cladding layer 132, the doped semiconductor layer 110, and the refractive index graded layers 136 and 190 are, for example, aluminum gallium arsenide (AlGaAs), gallium arsenide, aluminum gallium nitride, aluminum gallium indium arsenide (aluminum gallium arsenide, AlGaAs), and aluminum gallium arsenide (AlGaAs). gallium indium arsenide, AlGaInAs), aluminum gallium indium phosphide (AlGaInP), aluminum gallium arsenide antimonide or other appropriate materials. The material of the ohmic contact layer 134 may be gallium nitride, gallium arsenide, indium gallium arsenide phosphide (InGaAsP), indium gallium arsenide (InGaAs) or other suitable materials. In addition, the ohmic contact layer 134 may be heavily doped with beryllium, carbon, zinc, or a combination thereof to form a P-type doping, so as to have a good ohmic contact with the transparent conductive layer 170, wherein the beryllium doped the concentration may be about 10 19 cm -3, and the carbon doping concentration may be approximately 10 19 cm -3 to 10 20 cm -3, and the doping concentration of zinc may be approximately 10 19 cm -3 to 10 20 cm - 3 , but the creation of the new model is not limited to this. The material of the current confinement layer 180 can be silicon nitride, silicon oxide or other suitable materials. The current confinement layer 180 can block current so that the current is concentrated at the opening 182 and passes through the opening 182.

透明導電層170的材料例如為氧化銦錫(indium tin oxide, ITO)、氧化銻錫(antimony tin oxide, ATO)、摻雜氟的氧化錫(fluorine doped tin oxide, FTO)、氧化鋁鋅(aluminum zinc oxide, AZO)、氧化鎵鋅(gallium zinc oxide, GZO)、氧化銦鋅(indium zinc oxide, IZO)、氧化鋅(zinc oxide, ZnO)、石墨烯(graphene)或其他適當的透明導電材料。第一電極140與第二電極150可以是金屬電極,其材質例如是金、鈦金合金、鈦鉑金合金、鎳鍺金合金或其他適當的金屬。透明導電層170可以傳導電流,使電流集中通過開口182,而同時透明導電層170也可以讓發光層120所發出的光束122穿透,而不會遮住光束122。The material of the transparent conductive layer 170 is, for example, indium tin oxide (ITO), antimony tin oxide (ATO), fluorine doped tin oxide (FTO), aluminum zinc oxide (aluminum tin oxide) Zinc oxide (AZO), gallium zinc oxide (GZO), indium zinc oxide (IZO), zinc oxide (ZnO), graphene (graphene) or other suitable transparent conductive materials. The first electrode 140 and the second electrode 150 may be metal electrodes, and the material thereof is, for example, gold, titanium gold alloy, titanium platinum gold alloy, nickel germanium gold alloy, or other suitable metals. The transparent conductive layer 170 can conduct current and concentrate the current through the opening 182. At the same time, the transparent conductive layer 170 can also allow the light beam 122 emitted by the light-emitting layer 120 to penetrate without blocking the light beam 122.

此外,在一實施例中,在上述各膜層中,P型摻雜可以是摻雜鈹、碳、鋅或其組合,而其摻雜濃度例如約為10 17cm -3至10 18cm -3(除了歐姆接觸層134的摻雜濃度是約為10 19cm -3至10 20cm -3之外),而N型摻雜可以是摻雜矽,而其摻雜濃度例如約為10 17cm -3至10 18cm -3,但本新型創作不以此為限。在其他實施例中,也可以是摻雜其他適當元素來達成P型摻雜與N型摻雜。 Further, in an embodiment, the above-described film layer, P-type dopant may be doped beryllium, carbon, zinc, or combinations thereof, for example, the dopant concentration of approximately 10 17 cm -3 to 10 cm 18 - 3 (except that the doping concentration of the ohmic contact layer 134 is about 10 19 cm -3 to 10 20 cm -3 ), and the N-type doping may be doped silicon, and its doping concentration is, for example, about 10 17 cm -3 to 10 18 cm -3 , but the creation of the new model is not limited to this. In other embodiments, other suitable elements can also be doped to achieve P-type doping and N-type doping.

在本實施例中,基板160、折射率漸變層190及雜摻半導體層110皆為N型摻雜半導體層,而光子晶體層130包括披覆層132、折射率漸變層136與歐姆接觸層134均為P型摻雜半導體層。然而,在其他實施例中,也可以是基板160、折射率漸變層190及雜摻半導體層110皆為P型摻雜半導體層,而披覆層132、折射率漸變層136與歐姆接觸層134均為N型摻雜半導體層。In this embodiment, the substrate 160, the graded refractive index layer 190, and the doped semiconductor layer 110 are all N-type doped semiconductor layers, and the photonic crystal layer 130 includes a cladding layer 132, a graded refractive index layer 136, and an ohmic contact layer 134. All are P-type doped semiconductor layers. However, in other embodiments, it is also possible that the substrate 160, the graded refractive index layer 190, and the doped semiconductor layer 110 are all P-type doped semiconductor layers, and the cladding layer 132, the graded refractive index layer 136, and the ohmic contact layer 134 are all P-type doped semiconductor layers. All are N-type doped semiconductor layers.

繞射光柵300的材質可以是金屬、矽、半導體、透明導電層(如氧化銦錫、氧化銦鋅或氧化鋁鋅等)。繞射光柵300可以是一維的光柵(如呈條紋狀)或二維的光柵(如呈線陣列狀、孔洞陣列狀、柱陣列狀或多邊形陣列狀),也可以是微透鏡陣列。The material of the diffraction grating 300 can be metal, silicon, semiconductor, transparent conductive layer (such as indium tin oxide, indium zinc oxide, or aluminum zinc oxide, etc.). The diffraction grating 300 may be a one-dimensional grating (such as a stripe shape) or a two-dimensional grating (such as a linear array, a hole array, a column array, or a polygonal array), or a microlens array.

圖2A為本新型創作的另一實施例的光子晶體面射型雷射元件的剖面示意圖,圖2B是圖2A中的光子晶體層、透明導電層的繞射光柵表面及繞射光柵的簡化立體示意圖。請參照圖2A與圖2B,本實施例的光子晶體面射型雷射元件200a類似於圖1C的光子晶體面射型雷射元件200,而兩者的差異如下所述。在光子晶體面射型雷射元件200a的光子晶體面射型雷射單元100a中,透明導電層170a的背對發光層120的表面為一繞射光柵表面172a。繞射光柵表面172a的週期性方向與繞射光柵300的週期性方向可以相同或不同,而圖2B是以繞射光柵300的週期性方向與繞射光柵表面172a的週期性方向夾一銳角為例。光束122在經過繞射光柵表面172a與繞射光柵300兩次繞射,在偏折角度上可以產生更多的變化。舉例而言,如圖2B所繪示,光束122在經過繞射光柵表面172a的繞射作用後可分為兩道,而這兩道光束122再經過繞射光柵300的繞射作用後,共分出四道光束122。分出的光束122的夾角可由繞射光柵的週期來控制。而如圖1C的光子晶體面射型雷射元件200,由於透明導電層170的背對發光層120的表面為平滑表面,則光束122只經過繞射光柵300的繞射作用而分出兩道光束122。2A is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation, and FIG. 2B is a simplified three-dimensional view of the photonic crystal layer, the diffraction grating surface of the transparent conductive layer, and the diffraction grating in FIG. 2A Schematic. 2A and 2B, the photonic crystal surface emitting laser element 200a of this embodiment is similar to the photonic crystal surface emitting laser element 200 of FIG. 1C, and the difference between the two is as follows. In the photonic crystal surface emitting laser unit 100a of the photonic crystal surface emitting laser element 200a, the surface of the transparent conductive layer 170a facing away from the light emitting layer 120 is a diffraction grating surface 172a. The periodic direction of the diffraction grating surface 172a and the periodic direction of the diffraction grating 300 may be the same or different, and FIG. 2B shows that the periodic direction of the diffraction grating 300 and the periodic direction of the diffraction grating surface 172a include an acute angle as example. The light beam 122 is diffracted twice from the diffraction grating 300 after passing through the diffraction grating surface 172a, and more changes can be produced in the deflection angle. For example, as shown in FIG. 2B, the light beam 122 can be divided into two after being diffracted by the diffraction grating surface 172a, and after the two light beams 122 are diffracted by the diffraction grating 300, a total of Four beams 122 are split. The angle of the split beam 122 can be controlled by the period of the diffraction grating. As for the photonic crystal surface-emitting laser element 200 shown in FIG. 1C, since the surface of the transparent conductive layer 170 opposite to the light-emitting layer 120 is a smooth surface, the light beam 122 only passes through the diffraction effect of the diffraction grating 300 and splits into two.光光122。 Light beam 122.

在本實施例中,繞射光柵表面172a可以由透明導電層170a的沉積製程在沉積較厚的透明導電層170a時自然形成,也可以是額外藉由蝕刻製程來形成。In this embodiment, the diffraction grating surface 172a may be formed naturally by the deposition process of the transparent conductive layer 170a when the thicker transparent conductive layer 170a is deposited, or may be additionally formed by an etching process.

在一實施例中,繞射光柵表面172a可以是一維的光柵(如呈條紋狀)或二維的光柵(如呈線陣列狀、孔洞陣列狀、柱陣列狀或多邊形陣列狀),也可以是微透鏡陣列。In one embodiment, the diffraction grating surface 172a may be a one-dimensional grating (such as a stripe shape) or a two-dimensional grating (such as a linear array, a hole array, a column array, or a polygonal array), or It is a micro lens array.

圖3為本新型創作的再一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖3,本實施例的光子晶體面射型雷射元件200c類似於圖1C的光子晶體面射型雷射元件200,而兩者的差異如下所述。本實施例的光子晶體面射型雷射元件200c的光子晶體面射型雷射單元100c更包括一分布式布拉格反射鏡(distributed Bragg reflector, DBR)195,配置於摻雜半導體層110與基板160之間,以將從光子晶體層130往圖3下方繞射的光束122往繞射光柵300的方向反射。如此一來,便能夠提升光束122從繞射光柵300出光的光能量,以達到更佳的光利用效率。3 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. Referring to FIG. 3, the photonic crystal surface emitting laser element 200c of this embodiment is similar to the photonic crystal surface emitting laser element 200 of FIG. 1C, and the difference between the two is as follows. The photonic crystal surface emitting laser unit 100c of the photonic crystal surface emitting laser element 200c of this embodiment further includes a distributed Bragg reflector (DBR) 195, which is disposed on the doped semiconductor layer 110 and the substrate 160 In between, the light beam 122 diffracted from the photonic crystal layer 130 downward in FIG. 3 is reflected in the direction of the diffraction grating 300. In this way, the light energy of the light beam 122 emitted from the diffraction grating 300 can be increased to achieve better light utilization efficiency.

圖4為本新型創作的另一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖4,本實施例的光子晶體面射型雷射元件200d類似於圖1C的光子晶體面射型雷射元件200,而兩者的差異如下所述。在本實施例的光子晶體面射型雷射元件200d的光子晶體面射型雷射單元100d中,摻雜半導體層110與第一電極140配置於基板160的同一側上。4 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. Referring to FIG. 4, the photonic crystal surface emitting laser element 200d of this embodiment is similar to the photonic crystal surface emitting laser element 200 of FIG. 1C, and the difference between the two is as follows. In the photonic crystal surface emitting laser unit 100d of the photonic crystal surface emitting laser element 200d of this embodiment, the doped semiconductor layer 110 and the first electrode 140 are disposed on the same side of the substrate 160.

圖5為本新型創作的又一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖5,本實施例的光子晶體面射型雷射元件200e類似於圖1C的光子晶體面射型雷射元件200,而兩者的差異如下所述。在本實施例的光子晶體面射型雷射元件200e的光子晶體面射型雷射單元100e中,繞射光柵300配置於摻雜半導體層110的一側上,而在圖5的例子當中,基板160配置於摻雜半導體層110與繞射光柵300之間。在本實施例中,繞射光柵300可為第一電極140的一部分,也就是第一電極140的中央具有週期性排列的長條形狹縫142,以形成繞射光柵300。或者,在其他實施例中,繞射光柵300的材質也可以是不同於第一電極140的其他金屬、半導體或氧化物,第一電極140中央有一開口,而繞射光柵300配置於此開口中。5 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. Referring to FIG. 5, the photonic crystal surface emitting laser element 200e of this embodiment is similar to the photonic crystal surface emitting laser element 200 of FIG. 1C, and the difference between the two is as follows. In the photonic crystal surface emitting laser unit 100e of the photonic crystal surface emitting laser element 200e of this embodiment, the diffraction grating 300 is disposed on one side of the doped semiconductor layer 110, and in the example of FIG. 5, The substrate 160 is disposed between the doped semiconductor layer 110 and the diffraction grating 300. In this embodiment, the diffraction grating 300 may be a part of the first electrode 140, that is, the center of the first electrode 140 has periodically arranged long slits 142 to form the diffraction grating 300. Alternatively, in other embodiments, the material of the diffraction grating 300 may also be other metals, semiconductors or oxides different from the first electrode 140. The first electrode 140 has an opening in the center, and the diffraction grating 300 is disposed in the opening. .

另一方面,在本實施例中,第二電極150e則覆蓋光子晶體層130,而光束122往圖5的下方出光。On the other hand, in this embodiment, the second electrode 150e covers the photonic crystal layer 130, and the light beam 122 emits light toward the bottom of FIG. 5.

圖6為本新型創作的再一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖6,本實施例的光子晶體面射型雷射元件200f類似於圖5的光子晶體面射型雷射元件200e,而兩者的差異如下所述。在本實施例的光子晶體面射型雷射元件200f的光子晶體面射型雷射單元100f中,摻雜半導體層110與第一電極140配置於基板160的同一側上,而繞射光柵300與第一電極140分別配置於基板160的相對兩側。6 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. Referring to FIG. 6, the photonic crystal surface emitting laser element 200f of this embodiment is similar to the photonic crystal surface emitting laser element 200e of FIG. 5, and the difference between the two is as follows. In the photonic crystal surface emitting laser unit 100f of the photonic crystal surface emitting laser element 200f of this embodiment, the doped semiconductor layer 110 and the first electrode 140 are disposed on the same side of the substrate 160, and the diffraction grating 300 The first electrode 140 and the first electrode 140 are respectively disposed on two opposite sides of the substrate 160.

圖7為本新型創作的再一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖7,本實施例的光子晶體面射型雷射元件200g類似於圖5的光子晶體面射型雷射元件200e,而兩者的差異如下所述。在本實施例的光子晶體面射型雷射元件200g的光子晶體面射型雷射單元100g中,基板160g的背對於發光層120的表面具有繞射光柵表面結構162g,以形成繞射光柵300g。FIG. 7 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. Referring to FIG. 7, the photonic crystal surface emitting laser element 200g of this embodiment is similar to the photonic crystal surface emitting laser element 200e of FIG. 5, and the difference between the two is as follows. In the photonic crystal surface emitting laser unit 100g of the photonic crystal surface emitting laser element 200g of this embodiment, the surface of the substrate 160g facing away from the light emitting layer 120 has a diffraction grating surface structure 162g to form a diffraction grating 300g .

圖8為本新型創作的另一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖8,本實施例的光子晶體面射型雷射元件200h類似於圖6的光子晶體面射型雷射元件200f,而兩者的差異如下所述。在本實施例的光子晶體面射型雷射元件200h的光子晶體面射型雷射單元100h中,基板160h的背對於發光層120的表面具有繞射光柵表面結構162h,以形成繞射光柵300h。FIG. 8 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. Please refer to FIG. 8, the photonic crystal surface emitting laser element 200h of this embodiment is similar to the photonic crystal surface emitting laser element 200f of FIG. 6, and the difference between the two is as follows. In the photonic crystal surface emitting laser unit 100h of the photonic crystal surface emitting laser element 200h of this embodiment, the surface of the substrate 160h facing away from the light emitting layer 120 has a diffraction grating surface structure 162h to form a diffraction grating 300h .

圖9為本新型創作的又一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖9,本實施例的光子晶體面射型雷射元件200j類似於圖1C的光子晶體面射型雷射元件200,而兩者的差異如下所述。在本實施例的光子晶體面射型雷射元件200j的光子晶體面射型雷射單元100j中,披覆層132j具有光子晶體結構,而其上被覆蓋有半導體層132’。半導體層132’的材質類似或相同於披覆層132j的材質,可以隨著披覆層132j而為P型或N型摻雜半導體層。半導體層132’上可依序設置有折射率漸變層136j與歐姆接觸層134j。電流限制層180覆蓋半導體層132’與歐姆接觸層134j的邊緣,且其開口182暴露出歐姆接觸層134j的中央。第二電極150透過開口182連接至歐姆接觸層134j,而繞射光柵300位於歐姆接觸層134j的中央。9 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. Referring to FIG. 9, the photonic crystal surface emitting laser element 200j of this embodiment is similar to the photonic crystal surface emitting laser element 200 of FIG. 1C, and the difference between the two is as follows. In the photonic crystal surface emitting laser unit 100j of the photonic crystal surface emitting laser element 200j of this embodiment, the cladding layer 132j has a photonic crystal structure, and the semiconductor layer 132' is covered thereon. The material of the semiconductor layer 132' is similar or the same as that of the cladding layer 132j, and can be a P-type or N-type doped semiconductor layer along with the cladding layer 132j. The semiconductor layer 132' may be sequentially provided with a graded refractive index layer 136j and an ohmic contact layer 134j. The current confinement layer 180 covers the edges of the semiconductor layer 132' and the ohmic contact layer 134j, and the opening 182 thereof exposes the center of the ohmic contact layer 134j. The second electrode 150 is connected to the ohmic contact layer 134j through the opening 182, and the diffraction grating 300 is located in the center of the ohmic contact layer 134j.

圖10為本新型創作的又一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖10,本實施例的光子晶體面射型雷射元件200k類似於圖5的光子晶體面射型雷射元件200e及圖9的光子晶體面射型雷射元件200j,而其差異如下所述。在本實施例的光子晶體面射型雷射元件200k的光子晶體面射型雷射單元100k中,是以圖9的披覆層132j、半導體層132’、折射率漸變層136j與歐姆接觸層134j來取代圖5的光子晶體層130,且光子晶體面射型雷射單元100k不包含透明導電層170,而第二電極150k經由開口182連接至歐姆接觸層134j。10 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. 10, the photonic crystal surface emitting laser element 200k of this embodiment is similar to the photonic crystal surface emitting laser element 200e of FIG. 5 and the photonic crystal surface emitting laser element 200j of FIG. 9, and the differences are as follows Said. In the photonic crystal surface emitting laser unit 100k of the photonic crystal surface emitting laser element 200k of this embodiment, the cladding layer 132j, the semiconductor layer 132', the graded refractive index layer 136j, and the ohmic contact layer are shown in FIG. 134j replaces the photonic crystal layer 130 in FIG. 5, and the photonic crystal surface-emitting laser unit 100k does not include the transparent conductive layer 170, and the second electrode 150k is connected to the ohmic contact layer 134j through the opening 182.

圖11為本新型創作的再一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖11,本實施例的光子晶體面射型雷射元件200m類似於圖10的光子晶體面射型雷射元件200k,而兩者的差異如下所述。本實施例的光子晶體面射型雷射元件200m的光子晶體面射型雷射單元100m更包括分布式布拉格反射鏡195,配置於半導體層132’與折射率漸變層136j之間。FIG. 11 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. Referring to FIG. 11, the photonic crystal surface emitting laser element 200m of this embodiment is similar to the photonic crystal surface emitting laser element 200k of FIG. 10, and the difference between the two is as follows. The photonic crystal surface emitting laser unit 100m of the photonic crystal surface emitting laser element 200m of this embodiment further includes a distributed Bragg reflector 195 disposed between the semiconductor layer 132' and the graded refractive index layer 136j.

在其他實施例中,圖6、圖7、圖8中的光子晶體層130及其上面的結構也可以如圖10或圖11那樣,改成披覆層132j、半導體層132’、折射率漸變層136j、歐姆接觸層134j及第二電極150k,且不具有透明導電層170,也就是圖6、圖7、圖8的發光層120以上的結構可以置換為如圖10或圖11中發光層120以上的結構,以形層另外6種光子晶體面射型雷射單元。In other embodiments, the photonic crystal layer 130 and the structure thereon in FIG. 6, FIG. 7, FIG. 8 can also be changed to a cladding layer 132j, a semiconductor layer 132', and a graded refractive index as shown in FIG. 10 or FIG. The layer 136j, the ohmic contact layer 134j, and the second electrode 150k, and do not have the transparent conductive layer 170, that is, the structure above the light-emitting layer 120 in FIG. 6, FIG. 7, and FIG. 8 can be replaced with the light-emitting layer in FIG. 10 or FIG. With a structure above 120, another 6 types of photonic crystal surface-emitting laser units are formed.

圖12為本新型創作的又一實施例的光子晶體面射型雷射元件的剖面示意圖。請參照圖12,本實施例的光子晶體面射型雷射元件200i類似於圖1A的光子晶體面射型雷射元件200,而兩者的差異如下所述。本實施例的光子晶體面射型雷射元件200i包括多個排成陣列的光子晶體面射型雷射單元100,圖12中是以2×2個光子晶體面射型雷射單元100為例,然而,在其他實施例中,可以是M×N個光子晶體面射型雷射單元100,其中M與N為任意正整數。舉例而言,在一實施例中,光子晶體面射型雷射元件200i可包括10×10個光子晶體面射型雷射單元100。這些光子晶體面射型雷射單元100的多個繞射光柵300的週期與排列方向的至少其中之一不相同。舉例而言,圖12中的繞射光柵3001、3002、3003及3004的週期或排列方向(即週期方向)皆不相同,例如可採用如圖1B至圖1E那樣的不同的週期方向P1,以形成不同的光束122的出光方向。12 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. Referring to FIG. 12, the photonic crystal surface emitting laser element 200i of this embodiment is similar to the photonic crystal surface emitting laser element 200 of FIG. 1A, and the difference between the two is as follows. The photonic crystal surface emitting laser element 200i of this embodiment includes a plurality of photonic crystal surface emitting laser units 100 arranged in an array. In FIG. 12, 2×2 photonic crystal surface emitting laser units 100 are taken as an example. However, in other embodiments, there may be M×N photonic crystal surface-emitting laser units 100, where M and N are any positive integers. For example, in one embodiment, the photonic crystal surface-emitting laser element 200 i may include 10×10 photonic crystal surface-emitting laser units 100. The period of the diffraction gratings 300 of these photonic crystal surface-emitting laser units 100 is different from at least one of the arrangement directions. For example, the periods or arrangement directions (that is, the periodic directions) of the diffraction gratings 3001, 3002, 3003, and 3004 in FIG. 12 are all different. For example, different periodic directions P1 as shown in FIGS. 1B to 1E can be used to Different light exit directions of the light beam 122 are formed.

在本實施例中,這些光子晶體面射型雷射單元100電性連接至一控制器210,控制器210可個別且獨立地控制這些光子晶體面射型雷射單元100的發光。舉例而言,由於這些光子晶體面射型雷射單元100的發光方向不同,控制器210可依序使這些光子晶體面射型雷射單元100發出不同方向的光束122(即雷射光束),以達到光束掃描的效果。由於這樣的光束掃描是電控的,而不是還要經過機械控制的,所以會有較快的掃描速度、較高的可靠度及較佳的耐用性。這樣的光子晶體面射型雷射元件200i可應用於光偵測及測距,如應用於光達(lidar)或三維感測,而有速度快、可靠度佳、耐用性高等優點。此外,這種不憑藉機械作動、高功率、高光束品質且可達到二維掃描的雷射(即光子晶體面射型雷射元件200i)還可應用於智能交通(smart mobility)的感測系統、物體辨識系統或適應性照明等。In this embodiment, the photonic crystal surface-emitting laser units 100 are electrically connected to a controller 210, and the controller 210 can individually and independently control the light emission of the photonic crystal surface-emitting laser units 100. For example, since the light-emitting directions of the photonic crystal surface-emitting laser units 100 are different, the controller 210 can sequentially cause the photonic crystal surface-emitting laser units 100 to emit light beams 122 (ie, laser beams) in different directions. In order to achieve the effect of beam scanning. Since such beam scanning is electronically controlled, rather than mechanically controlled, it will have a faster scanning speed, higher reliability and better durability. Such a photonic crystal surface-emitting laser element 200i can be applied to light detection and ranging, such as lidar or three-dimensional sensing, and has the advantages of high speed, high reliability, and high durability. In addition, this laser that does not rely on mechanical action, high power, high beam quality and can achieve two-dimensional scanning (ie photonic crystal surface-emitting laser element 200i) can also be used in smart mobility sensing systems , Object recognition system or adaptive lighting, etc.

在本實施例中,控制器210可通過硬體描述語言(Hardware Description Languages,HDL)或本領域技術人員熟悉的數位電路、類比電路的任何其他設計方式來設計,並且硬體電路可通過現場可程式閘陣列(Field Programmable Gate Array,FPGA)、複雜可程式邏輯裝置(Complex Programmable Logic Device,CPLD)或專用積體電路(Application-Specific Integrated Circuit,ASIC)而實現。In this embodiment, the controller 210 can be designed by hardware description language (Hardware Description Languages, HDL) or any other design methods of digital circuits and analog circuits familiar to those skilled in the art, and the hardware circuit can be designed on site. Programmable gate array (Field Programmable Gate Array, FPGA), complex programmable logic device (Complex Programmable Logic Device, CPLD) or dedicated integrated circuit (Application-Specific Integrated Circuit, ASIC).

此外,光子晶體面射型雷射元件200i中的光子晶體面射型雷射單元100,也可以採用上述其他實施例的光子晶體面射型雷射單元(例如光子晶體面射型雷射單元100a~100h)來取代,以形成各種具有排成陣列的光子晶體面射型雷射單元的光子晶體面射型雷射元件。In addition, the photonic crystal surface emitting laser unit 100 in the photonic crystal surface emitting laser element 200i may also use the photonic crystal surface emitting laser unit of the other embodiments described above (for example, the photonic crystal surface emitting laser unit 100a). ~100h) to form various photonic crystal surface emitting laser elements with arrayed photonic crystal surface emitting laser units.

綜上所述,在本新型創作的實施例的光子晶體面射型雷射元件中,由於採用配置於光子晶體層上或摻雜半導體層上的繞射光柵來繞射經光子晶體層所繞射出的雷射光束,因此可以利用簡單的架構來決定雷射光束的出光偏折方向。本新型創作的一實施例的光子晶體面射型雷射元件可包括多個排成陣列的光子晶體面射型雷射單元,這些光子晶體面射型雷射單元的多個繞射光柵的週期與排列方向的至少其中之一不相同。由於這些光子晶體面射型雷射單元的發光方向不同,可藉由控制器依序使這些光子晶體面射型雷射單元發出不同方向的雷射光束,以達到光束掃描的效果。由於這樣的光束掃描是電控的,而不是還要經過機械控制的,所以會有較快的掃描速度、較高的可靠度及較佳的耐用性。這樣的光子晶體面射型雷射元件可應用於光偵測及測距,如應用於光達或三維感測,而有速度快、可靠度佳、耐用性高等優點。To sum up, in the photonic crystal surface-emitting laser element of the embodiment of the present invention, the diffraction grating arranged on the photonic crystal layer or the doped semiconductor layer is used to diffract the photonic crystal layer. Therefore, a simple structure can be used to determine the deflection direction of the laser beam. The photonic crystal surface emitting laser element of an embodiment of the present invention may include a plurality of photonic crystal surface emitting laser units arranged in an array, and the period of the multiple diffraction gratings of these photonic crystal surface emitting laser units It is different from at least one of the arrangement directions. Since the light-emitting directions of these photonic crystal surface-emitting laser units are different, the controller can sequentially cause the photonic crystal surface-emitting laser units to emit laser beams in different directions to achieve the beam scanning effect. Since such beam scanning is electronically controlled, rather than mechanically controlled, it will have a faster scanning speed, higher reliability and better durability. Such photonic crystal surface-emitting laser elements can be applied to light detection and ranging, such as lidar or three-dimensional sensing, and have the advantages of high speed, high reliability, and high durability.

100、100a、100c、100d、100e、100f、100g、100h、100j、100k、100m:光子晶體面射型雷射單元 110:摻雜半導體層 120:發光層 122:光束 130:光子晶體層 131:通孔 132、132j:披覆層 132’:半導體層 134、134j:歐姆接觸層 136、136j、190:折射率漸變層 140:第一電極 142、152:長條形狹縫 150、150e、150k:第二電極 160、160g、160h:基板 162g、162h:繞射光柵表面結構 170、170a:透明導電層 172a:繞射光柵表面 180:電流限制層 182:開口 195:分布式布拉格反射鏡 200、200a、200c、200d、200e、200f、200g、200h、200i、200j、200k、200m:光子晶體面射型雷射元件 210:控制器 300、300g、300h、3001、3002、3003、3004:繞射光柵 P1:週期性方向 100, 100a, 100c, 100d, 100e, 100f, 100g, 100h, 100j, 100k, 100m: photonic crystal surface-emitting laser unit 110: doped semiconductor layer 120: luminescent layer 122: beam 130: Photonic crystal layer 131: Through hole 132, 132j: cladding layer 132’: Semiconductor layer 134, 134j: Ohmic contact layer 136, 136j, 190: refractive index graded layer 140: first electrode 142, 152: Long slit 150, 150e, 150k: second electrode 160, 160g, 160h: substrate 162g, 162h: Diffraction grating surface structure 170, 170a: transparent conductive layer 172a: Diffraction grating surface 180: current limiting layer 182: open 195: Distributed Bragg reflector 200, 200a, 200c, 200d, 200e, 200f, 200g, 200h, 200i, 200j, 200k, 200m: photonic crystal surface-emitting laser element 210: Controller 300, 300g, 300h, 3001, 3002, 3003, 3004: diffraction grating P1: Periodic direction

圖1A為本新型創作的一實施例的光子晶體面射型雷射元件的立體示意圖。 圖1B為圖1A的光子晶體面射型雷射元件的上視示意圖。 圖1C為圖1B的光子晶體面射型雷射元件沿著I-I線的剖面示意圖。 圖1D與圖1E分別為本新型創作的另兩個實施例的光子晶體面射型雷射元件的上視示意圖。 圖2A為本新型創作的另一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖2B是圖2A中的光子晶體層、透明導電層的繞射光柵表面及繞射光柵的簡化立體示意圖。 圖3為本新型創作的再一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖4為本新型創作的另一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖5為本新型創作的又一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖6為本新型創作的再一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖7為本新型創作的再一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖8為本新型創作的另一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖9為本新型創作的又一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖10為本新型創作的又一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖11為本新型創作的再一實施例的光子晶體面射型雷射元件的剖面示意圖。 圖12為本新型創作的又一實施例的光子晶體面射型雷射元件的剖面示意圖。 FIG. 1A is a three-dimensional schematic diagram of a photonic crystal surface-emitting laser element according to an embodiment of the new creation. FIG. 1B is a schematic top view of the photonic crystal surface-emitting laser element of FIG. 1A. FIG. 1C is a schematic cross-sectional view of the photonic crystal surface-emitting laser element of FIG. 1B along the line I-I. FIG. 1D and FIG. 1E are schematic top views of the photonic crystal surface-emitting laser elements of two other embodiments created by the new type, respectively. 2A is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. 2B is a simplified three-dimensional schematic diagram of the photonic crystal layer, the diffraction grating surface of the transparent conductive layer, and the diffraction grating in FIG. 2A. 3 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. 4 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. 5 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. 6 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. FIG. 7 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. FIG. 8 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. 9 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. 10 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. FIG. 11 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation. 12 is a schematic cross-sectional view of a photonic crystal surface-emitting laser element according to another embodiment of the new creation.

100:光子晶體面射型雷射單元 100: Photonic crystal surface-emitting laser unit

110:摻雜半導體層 110: doped semiconductor layer

120:發光層 120: luminescent layer

122:光束 122: beam

130:光子晶體層 130: Photonic crystal layer

131:通孔 131: Through hole

132:披覆層 132: Overlay

134:歐姆接觸層 134: Ohmic contact layer

136、190:折射率漸變層 136, 190: Refractive index graded layer

140:第一電極 140: first electrode

150:第二電極 150: second electrode

152:長條形狹縫 152: Long slit

160:基板 160: substrate

170:透明導電層 170: Transparent conductive layer

180:電流限制層 180: current limiting layer

182:開口 182: open

200:光子晶體面射型雷射元件 200: Photonic crystal surface emitting laser element

300:繞射光柵 300: Diffraction grating

Claims (10)

一種光子晶體面射型雷射元件,包括: 至少一光子晶體面射型雷射單元,該光子晶體面射型雷射單元包括: 一發光層,用以發出一光束; 一光子晶體層,配置於該發光層的一側; 一摻雜半導體層,配置於該發光層的另一側;以及 一繞射光柵,配置於該光子晶體層上或該摻雜半導體層上。 A photonic crystal surface-emitting laser element, including: At least one photonic crystal surface-emitting laser unit, the photonic crystal surface-emitting laser unit includes: A light-emitting layer for emitting a light beam; A photonic crystal layer disposed on one side of the light-emitting layer; A doped semiconductor layer disposed on the other side of the light-emitting layer; and A diffraction grating is arranged on the photonic crystal layer or the doped semiconductor layer. 如請求項1所述的光子晶體面射型雷射元件,更包括一第一電極,電性連接至該摻雜半導體層,其中該光子晶體面射型雷射單元更包括一第二電極,配置於該光子晶體層上,且電性連接至該光子晶體層。The photonic crystal surface-emitting laser element according to claim 1, further comprising a first electrode electrically connected to the doped semiconductor layer, wherein the photonic crystal surface-emitting laser unit further includes a second electrode, It is arranged on the photonic crystal layer and is electrically connected to the photonic crystal layer. 如請求項2所述的光子晶體面射型雷射元件,其中該第二電極的一部分為該繞射光柵,且該光束經由該光子晶體層及該繞射光柵繞射後,從該光子晶體面射型雷射單元出射。The photonic crystal surface-emitting laser element according to claim 2, wherein a part of the second electrode is the diffraction grating, and the light beam is diffracted from the photonic crystal layer and the diffraction grating. The surface-fired laser unit emits. 如請求項2所述的光子晶體面射型雷射元件,其中該光子晶體面射型雷射單元更包括一透明導電層,配置於該光子晶體層與該第二電極之間。The photonic crystal surface-emitting laser element according to claim 2, wherein the photonic crystal surface-emitting laser unit further includes a transparent conductive layer disposed between the photonic crystal layer and the second electrode. 如請求項4所述的光子晶體面射型雷射元件,其中該透明導電層的背對該發光層的表面為一繞射光柵表面。The photonic crystal surface-emitting laser element according to claim 4, wherein the surface of the transparent conductive layer facing away from the light-emitting layer is a diffraction grating surface. 如請求項2所述的光子晶體面射型雷射元件,更包括一基板,配置於該摻雜半導體層與該第一電極之間。The photonic crystal surface-emitting laser element according to claim 2 further includes a substrate disposed between the doped semiconductor layer and the first electrode. 如請求項2所述的光子晶體面射型雷射元件,更包括一基板,其中該摻雜半導體層與該第一電極配置於該基板的同一側上。The photonic crystal surface-emitting laser element according to claim 2, further comprising a substrate, wherein the doped semiconductor layer and the first electrode are arranged on the same side of the substrate. 如請求項2所述的光子晶體面射型雷射元件,更包括一基板,配置於該摻雜半導體層與該繞射光柵之間。The photonic crystal surface-emitting laser element according to claim 2 further includes a substrate disposed between the doped semiconductor layer and the diffraction grating. 如請求項2所述的光子晶體面射型雷射元件,更包括一基板,其中該摻雜半導體層配置於該發光層與該基板之間,且該基板的背對於該發光層的表面具有繞射光柵表面結構,以形成該繞射光柵。The photonic crystal surface-emitting laser device according to claim 2, further comprising a substrate, wherein the doped semiconductor layer is disposed between the light-emitting layer and the substrate, and the surface of the substrate opposite to the light-emitting layer has Diffraction grating surface structure to form the diffraction grating. 如請求項1所述的光子晶體面射型雷射元件,其中該至少一光子晶體面射型雷射單元為多個排成陣列的光子晶體面射型雷射單元,該些光子晶體面射型雷射單元的多個繞射光柵的週期與排列方向的至少其中之一不相同。The photonic crystal surface emitting laser element according to claim 1, wherein the at least one photonic crystal surface emitting laser unit is a plurality of photonic crystal surface emitting laser units arranged in an array, and the photonic crystal surface emitting laser units are The period of the plurality of diffraction gratings of the laser unit is different from at least one of the arrangement directions.
TW110205227U 2021-04-01 2021-05-10 Photonic crystal surface emitting laser device TWM615662U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163169255P 2021-04-01 2021-04-01
US63/169,255 2021-04-01

Publications (1)

Publication Number Publication Date
TWM615662U true TWM615662U (en) 2021-08-11

Family

ID=78285940

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110116735A TWI791217B (en) 2021-04-01 2021-05-10 Photonic crystal surface emitting laser device
TW110205227U TWM615662U (en) 2021-04-01 2021-05-10 Photonic crystal surface emitting laser device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110116735A TWI791217B (en) 2021-04-01 2021-05-10 Photonic crystal surface emitting laser device

Country Status (1)

Country Link
TW (2) TWI791217B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791217B (en) * 2021-04-01 2023-02-01 富昱晶雷射科技股份有限公司 Photonic crystal surface emitting laser device
US11881674B2 (en) * 2021-07-21 2024-01-23 Kabushiki Kaisha Toshiba Surface-emitting semiconductor light-emitting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062084A1 (en) * 2004-12-08 2006-06-15 Sumitomo Electric Industries, Ltd. Semiconductor laser device and method for manufacturing same
JP6213915B2 (en) * 2013-03-04 2017-10-18 国立大学法人京都大学 Semiconductor laser element
TWI698057B (en) * 2018-02-13 2020-07-01 國立交通大學 Two-dimensional photonic crystal laser with transparent oxide conducting cladding layers
JP7279875B2 (en) * 2018-09-03 2023-05-23 国立大学法人京都大学 Surface-emitting laser element and method for manufacturing surface-emitting laser element
CN110247302B (en) * 2019-07-09 2020-12-01 华中科技大学 Surface emitting laser based on surface grating
TWI791217B (en) * 2021-04-01 2023-02-01 富昱晶雷射科技股份有限公司 Photonic crystal surface emitting laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791217B (en) * 2021-04-01 2023-02-01 富昱晶雷射科技股份有限公司 Photonic crystal surface emitting laser device
US11881674B2 (en) * 2021-07-21 2024-01-23 Kabushiki Kaisha Toshiba Surface-emitting semiconductor light-emitting device

Also Published As

Publication number Publication date
TWI791217B (en) 2023-02-01
TW202239510A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
US11322648B2 (en) Photon source and a method of fabricating a photon source
US11482835B2 (en) VCSEL device with multiple stacked active regions
US10033158B1 (en) Semiconductor laser, laser assembly and method of making a semiconductor laser
TWI791217B (en) Photonic crystal surface emitting laser device
US20060192209A1 (en) Optical integrated semiconductor light emitting device
JPH08503817A (en) Surface emitting laser diode
JP6812692B2 (en) Laser components, laser light generators and optical coherence tomography
JP7293348B2 (en) Phase-coupled laser device and method for manufacturing a phase-coupled laser device
JP5198793B2 (en) Semiconductor device and manufacturing method thereof
KR20100057043A (en) Optoelectronic component
US20220224080A1 (en) Vertical cavity surface emitting laser device and manufacturing method thereof
US20230102405A1 (en) Semiconductor laser diode including multiple active layers and a grating layer
JPH05283808A (en) Surface light-emitting layser having low-resistance bragg reflection layer
TW201906263A (en) Surface-emitting semiconductor laser and sensing module
JP5382289B2 (en) Light emitting device
TWI830021B (en) Photonic crystal surface-emitting laser
US9735545B1 (en) Vertical cavity surface emitting laser with composite reflectors
US8536603B2 (en) Optoelectronic semiconductor chip and method of producing an optoelectronic semiconductor chip
US20220320827A1 (en) Photonic crystal surface emitting laser device
US20220224081A1 (en) Surface-emitting laser
US20220247154A1 (en) Edge emitting laser device
US11139636B2 (en) Electrically pumped photonic-crystal surface-emitting lasers with optical detector
TWI838888B (en) A semiconductor laser diode including multiple junctions and grating layer
US20060023764A1 (en) Semiconductor laser and method of manufacturing the same
WO2010022526A2 (en) Superluminescent diode, or amplifier chip